• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkAtomics.h"
9 #include "SkCanvas.h"
10 #include "SkClipStack.h"
11 #include "SkPath.h"
12 #include "SkPathOps.h"
13 #include "SkClipOpPriv.h"
14 
15 #include <new>
16 
17 
18 // 0-2 are reserved for invalid, empty & wide-open
19 static const int32_t kFirstUnreservedGenID = 3;
20 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
21 
Element(const Element & that)22 SkClipStack::Element::Element(const Element& that) {
23     switch (that.getType()) {
24         case kEmpty_Type:
25             fRRect.setEmpty();
26             fPath.reset();
27             break;
28         case kRect_Type: // Rect uses rrect
29         case kRRect_Type:
30             fPath.reset();
31             fRRect = that.fRRect;
32             break;
33         case kPath_Type:
34             fPath.set(that.getPath());
35             break;
36     }
37 
38     fSaveCount = that.fSaveCount;
39     fOp = that.fOp;
40     fType = that.fType;
41     fDoAA = that.fDoAA;
42     fFiniteBoundType = that.fFiniteBoundType;
43     fFiniteBound = that.fFiniteBound;
44     fIsIntersectionOfRects = that.fIsIntersectionOfRects;
45     fGenID = that.fGenID;
46 }
47 
operator ==(const Element & element) const48 bool SkClipStack::Element::operator== (const Element& element) const {
49     if (this == &element) {
50         return true;
51     }
52     if (fOp != element.fOp ||
53         fType != element.fType ||
54         fDoAA != element.fDoAA ||
55         fSaveCount != element.fSaveCount) {
56         return false;
57     }
58     switch (fType) {
59         case kPath_Type:
60             return this->getPath() == element.getPath();
61         case kRRect_Type:
62             return fRRect == element.fRRect;
63         case kRect_Type:
64             return this->getRect() == element.getRect();
65         case kEmpty_Type:
66             return true;
67         default:
68             SkDEBUGFAIL("Unexpected type.");
69             return false;
70     }
71 }
72 
invertShapeFillType()73 void SkClipStack::Element::invertShapeFillType() {
74     switch (fType) {
75         case kRect_Type:
76             fPath.init();
77             fPath.get()->addRect(this->getRect());
78             fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
79             fType = kPath_Type;
80             break;
81         case kRRect_Type:
82             fPath.init();
83             fPath.get()->addRRect(fRRect);
84             fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
85             fType = kPath_Type;
86             break;
87         case kPath_Type:
88             fPath.get()->toggleInverseFillType();
89             break;
90         case kEmpty_Type:
91             // Should this set to an empty, inverse filled path?
92             break;
93     }
94 }
95 
initPath(int saveCount,const SkPath & path,SkClipOp op,bool doAA)96 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkClipOp op,
97                                     bool doAA) {
98     if (!path.isInverseFillType()) {
99         SkRect r;
100         if (path.isRect(&r)) {
101             this->initRect(saveCount, r, op, doAA);
102             return;
103         }
104         SkRect ovalRect;
105         if (path.isOval(&ovalRect)) {
106             SkRRect rrect;
107             rrect.setOval(ovalRect);
108             this->initRRect(saveCount, rrect, op, doAA);
109             return;
110         }
111     }
112     fPath.set(path);
113     fPath.get()->setIsVolatile(true);
114     fType = kPath_Type;
115     this->initCommon(saveCount, op, doAA);
116 }
117 
asPath(SkPath * path) const118 void SkClipStack::Element::asPath(SkPath* path) const {
119     switch (fType) {
120         case kEmpty_Type:
121             path->reset();
122             path->setIsVolatile(true);
123             break;
124         case kRect_Type:
125             path->reset();
126             path->addRect(this->getRect());
127             path->setIsVolatile(true);
128             break;
129         case kRRect_Type:
130             path->reset();
131             path->addRRect(fRRect);
132             path->setIsVolatile(true);
133             break;
134         case kPath_Type:
135             *path = *fPath.get();
136             break;
137     }
138     path->setIsVolatile(true);
139 }
140 
setEmpty()141 void SkClipStack::Element::setEmpty() {
142     fType = kEmpty_Type;
143     fFiniteBound.setEmpty();
144     fFiniteBoundType = kNormal_BoundsType;
145     fIsIntersectionOfRects = false;
146     fRRect.setEmpty();
147     fPath.reset();
148     fGenID = kEmptyGenID;
149     SkDEBUGCODE(this->checkEmpty();)
150 }
151 
checkEmpty() const152 void SkClipStack::Element::checkEmpty() const {
153     SkASSERT(fFiniteBound.isEmpty());
154     SkASSERT(kNormal_BoundsType == fFiniteBoundType);
155     SkASSERT(!fIsIntersectionOfRects);
156     SkASSERT(kEmptyGenID == fGenID);
157     SkASSERT(fRRect.isEmpty());
158     SkASSERT(!fPath.isValid());
159 }
160 
canBeIntersectedInPlace(int saveCount,SkClipOp op) const161 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkClipOp op) const {
162     if (kEmpty_Type == fType &&
163         (kDifference_SkClipOp == op || kIntersect_SkClipOp == op)) {
164         return true;
165     }
166     // Only clips within the same save/restore frame (as captured by
167     // the save count) can be merged
168     return  fSaveCount == saveCount &&
169             kIntersect_SkClipOp == op &&
170             (kIntersect_SkClipOp == fOp || kReplace_SkClipOp == fOp);
171 }
172 
rectRectIntersectAllowed(const SkRect & newR,bool newAA) const173 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
174     SkASSERT(kRect_Type == fType);
175 
176     if (fDoAA == newAA) {
177         // if the AA setting is the same there is no issue
178         return true;
179     }
180 
181     if (!SkRect::Intersects(this->getRect(), newR)) {
182         // The calling code will correctly set the result to the empty clip
183         return true;
184     }
185 
186     if (this->getRect().contains(newR)) {
187         // if the new rect carves out a portion of the old one there is no
188         // issue
189         return true;
190     }
191 
192     // So either the two overlap in some complex manner or newR contains oldR.
193     // In the first, case the edges will require different AA. In the second,
194     // the AA setting that would be carried forward is incorrect (e.g., oldR
195     // is AA while newR is BW but since newR contains oldR, oldR will be
196     // drawn BW) since the new AA setting will predominate.
197     return false;
198 }
199 
200 // a mirror of combineBoundsRevDiff
combineBoundsDiff(FillCombo combination,const SkRect & prevFinite)201 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
202     switch (combination) {
203         case kInvPrev_InvCur_FillCombo:
204             // In this case the only pixels that can remain set
205             // are inside the current clip rect since the extensions
206             // to infinity of both clips cancel out and whatever
207             // is outside of the current clip is removed
208             fFiniteBoundType = kNormal_BoundsType;
209             break;
210         case kInvPrev_Cur_FillCombo:
211             // In this case the current op is finite so the only pixels
212             // that aren't set are whatever isn't set in the previous
213             // clip and whatever this clip carves out
214             fFiniteBound.join(prevFinite);
215             fFiniteBoundType = kInsideOut_BoundsType;
216             break;
217         case kPrev_InvCur_FillCombo:
218             // In this case everything outside of this clip's bound
219             // is erased, so the only pixels that can remain set
220             // occur w/in the intersection of the two finite bounds
221             if (!fFiniteBound.intersect(prevFinite)) {
222                 fFiniteBound.setEmpty();
223                 fGenID = kEmptyGenID;
224             }
225             fFiniteBoundType = kNormal_BoundsType;
226             break;
227         case kPrev_Cur_FillCombo:
228             // The most conservative result bound is that of the
229             // prior clip. This could be wildly incorrect if the
230             // second clip either exactly matches the first clip
231             // (which should yield the empty set) or reduces the
232             // size of the prior bound (e.g., if the second clip
233             // exactly matched the bottom half of the prior clip).
234             // We ignore these two possibilities.
235             fFiniteBound = prevFinite;
236             break;
237         default:
238             SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
239             break;
240     }
241 }
242 
combineBoundsXOR(int combination,const SkRect & prevFinite)243 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
244 
245     switch (combination) {
246         case kInvPrev_Cur_FillCombo:       // fall through
247         case kPrev_InvCur_FillCombo:
248             // With only one of the clips inverted the result will always
249             // extend to infinity. The only pixels that may be un-writeable
250             // lie within the union of the two finite bounds
251             fFiniteBound.join(prevFinite);
252             fFiniteBoundType = kInsideOut_BoundsType;
253             break;
254         case kInvPrev_InvCur_FillCombo:
255             // The only pixels that can survive are within the
256             // union of the two bounding boxes since the extensions
257             // to infinity of both clips cancel out
258             // fall through!
259         case kPrev_Cur_FillCombo:
260             // The most conservative bound for xor is the
261             // union of the two bounds. If the two clips exactly overlapped
262             // the xor could yield the empty set. Similarly the xor
263             // could reduce the size of the original clip's bound (e.g.,
264             // if the second clip exactly matched the bottom half of the
265             // first clip). We ignore these two cases.
266             fFiniteBound.join(prevFinite);
267             fFiniteBoundType = kNormal_BoundsType;
268             break;
269         default:
270             SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
271             break;
272     }
273 }
274 
275 // a mirror of combineBoundsIntersection
combineBoundsUnion(int combination,const SkRect & prevFinite)276 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
277 
278     switch (combination) {
279         case kInvPrev_InvCur_FillCombo:
280             if (!fFiniteBound.intersect(prevFinite)) {
281                 fFiniteBound.setEmpty();
282                 fGenID = kWideOpenGenID;
283             }
284             fFiniteBoundType = kInsideOut_BoundsType;
285             break;
286         case kInvPrev_Cur_FillCombo:
287             // The only pixels that won't be drawable are inside
288             // the prior clip's finite bound
289             fFiniteBound = prevFinite;
290             fFiniteBoundType = kInsideOut_BoundsType;
291             break;
292         case kPrev_InvCur_FillCombo:
293             // The only pixels that won't be drawable are inside
294             // this clip's finite bound
295             break;
296         case kPrev_Cur_FillCombo:
297             fFiniteBound.join(prevFinite);
298             break;
299         default:
300             SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
301             break;
302     }
303 }
304 
305 // a mirror of combineBoundsUnion
combineBoundsIntersection(int combination,const SkRect & prevFinite)306 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
307 
308     switch (combination) {
309         case kInvPrev_InvCur_FillCombo:
310             // The only pixels that aren't writable in this case
311             // occur in the union of the two finite bounds
312             fFiniteBound.join(prevFinite);
313             fFiniteBoundType = kInsideOut_BoundsType;
314             break;
315         case kInvPrev_Cur_FillCombo:
316             // In this case the only pixels that will remain writeable
317             // are within the current clip
318             break;
319         case kPrev_InvCur_FillCombo:
320             // In this case the only pixels that will remain writeable
321             // are with the previous clip
322             fFiniteBound = prevFinite;
323             fFiniteBoundType = kNormal_BoundsType;
324             break;
325         case kPrev_Cur_FillCombo:
326             if (!fFiniteBound.intersect(prevFinite)) {
327                 this->setEmpty();
328             }
329             break;
330         default:
331             SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
332             break;
333     }
334 }
335 
336 // a mirror of combineBoundsDiff
combineBoundsRevDiff(int combination,const SkRect & prevFinite)337 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
338 
339     switch (combination) {
340         case kInvPrev_InvCur_FillCombo:
341             // The only pixels that can survive are in the
342             // previous bound since the extensions to infinity in
343             // both clips cancel out
344             fFiniteBound = prevFinite;
345             fFiniteBoundType = kNormal_BoundsType;
346             break;
347         case kInvPrev_Cur_FillCombo:
348             if (!fFiniteBound.intersect(prevFinite)) {
349                 this->setEmpty();
350             } else {
351                 fFiniteBoundType = kNormal_BoundsType;
352             }
353             break;
354         case kPrev_InvCur_FillCombo:
355             fFiniteBound.join(prevFinite);
356             fFiniteBoundType = kInsideOut_BoundsType;
357             break;
358         case kPrev_Cur_FillCombo:
359             // Fall through - as with the kDifference_Op case, the
360             // most conservative result bound is the bound of the
361             // current clip. The prior clip could reduce the size of this
362             // bound (as in the kDifference_Op case) but we are ignoring
363             // those cases.
364             break;
365         default:
366             SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
367             break;
368     }
369 }
370 
updateBoundAndGenID(const Element * prior)371 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
372     // We set this first here but we may overwrite it later if we determine that the clip is
373     // either wide-open or empty.
374     fGenID = GetNextGenID();
375 
376     // First, optimistically update the current Element's bound information
377     // with the current clip's bound
378     fIsIntersectionOfRects = false;
379     switch (fType) {
380         case kRect_Type:
381             fFiniteBound = this->getRect();
382             fFiniteBoundType = kNormal_BoundsType;
383 
384             if (kReplace_SkClipOp == fOp ||
385                 (kIntersect_SkClipOp == fOp && nullptr == prior) ||
386                 (kIntersect_SkClipOp == fOp && prior->fIsIntersectionOfRects &&
387                     prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) {
388                 fIsIntersectionOfRects = true;
389             }
390             break;
391         case kRRect_Type:
392             fFiniteBound = fRRect.getBounds();
393             fFiniteBoundType = kNormal_BoundsType;
394             break;
395         case kPath_Type:
396             fFiniteBound = fPath.get()->getBounds();
397 
398             if (fPath.get()->isInverseFillType()) {
399                 fFiniteBoundType = kInsideOut_BoundsType;
400             } else {
401                 fFiniteBoundType = kNormal_BoundsType;
402             }
403             break;
404         case kEmpty_Type:
405             SkDEBUGFAIL("We shouldn't get here with an empty element.");
406             break;
407     }
408 
409     if (!fDoAA) {
410         fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f),
411                          SkScalarRoundToScalar(fFiniteBound.fTop),
412                          SkScalarRoundToScalar(fFiniteBound.fRight),
413                          SkScalarRoundToScalar(fFiniteBound.fBottom));
414     }
415 
416     // Now determine the previous Element's bound information taking into
417     // account that there may be no previous clip
418     SkRect prevFinite;
419     SkClipStack::BoundsType prevType;
420 
421     if (nullptr == prior) {
422         // no prior clip means the entire plane is writable
423         prevFinite.setEmpty();   // there are no pixels that cannot be drawn to
424         prevType = kInsideOut_BoundsType;
425     } else {
426         prevFinite = prior->fFiniteBound;
427         prevType = prior->fFiniteBoundType;
428     }
429 
430     FillCombo combination = kPrev_Cur_FillCombo;
431     if (kInsideOut_BoundsType == fFiniteBoundType) {
432         combination = (FillCombo) (combination | 0x01);
433     }
434     if (kInsideOut_BoundsType == prevType) {
435         combination = (FillCombo) (combination | 0x02);
436     }
437 
438     SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
439                 kInvPrev_Cur_FillCombo == combination ||
440                 kPrev_InvCur_FillCombo == combination ||
441                 kPrev_Cur_FillCombo == combination);
442 
443     // Now integrate with clip with the prior clips
444     switch (fOp) {
445         case kDifference_SkClipOp:
446             this->combineBoundsDiff(combination, prevFinite);
447             break;
448         case kXOR_SkClipOp:
449             this->combineBoundsXOR(combination, prevFinite);
450             break;
451         case kUnion_SkClipOp:
452             this->combineBoundsUnion(combination, prevFinite);
453             break;
454         case kIntersect_SkClipOp:
455             this->combineBoundsIntersection(combination, prevFinite);
456             break;
457         case kReverseDifference_SkClipOp:
458             this->combineBoundsRevDiff(combination, prevFinite);
459             break;
460         case kReplace_SkClipOp:
461             // Replace just ignores everything prior
462             // The current clip's bound information is already filled in
463             // so nothing to do
464             break;
465         default:
466             SkDebugf("SkClipOp error\n");
467             SkASSERT(0);
468             break;
469     }
470 }
471 
472 // This constant determines how many Element's are allocated together as a block in
473 // the deque. As such it needs to balance allocating too much memory vs.
474 // incurring allocation/deallocation thrashing. It should roughly correspond to
475 // the deepest save/restore stack we expect to see.
476 static const int kDefaultElementAllocCnt = 8;
477 
SkClipStack()478 SkClipStack::SkClipStack()
479     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
480     , fSaveCount(0) {
481 }
482 
SkClipStack(void * storage,size_t size)483 SkClipStack::SkClipStack(void* storage, size_t size)
484     : fDeque(sizeof(Element), storage, size, kDefaultElementAllocCnt)
485     , fSaveCount(0) {
486 }
487 
SkClipStack(const SkClipStack & b)488 SkClipStack::SkClipStack(const SkClipStack& b)
489     : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
490     *this = b;
491 }
492 
~SkClipStack()493 SkClipStack::~SkClipStack() {
494     reset();
495 }
496 
operator =(const SkClipStack & b)497 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
498     if (this == &b) {
499         return *this;
500     }
501     reset();
502 
503     fSaveCount = b.fSaveCount;
504     SkDeque::F2BIter recIter(b.fDeque);
505     for (const Element* element = (const Element*)recIter.next();
506          element != nullptr;
507          element = (const Element*)recIter.next()) {
508         new (fDeque.push_back()) Element(*element);
509     }
510 
511     return *this;
512 }
513 
operator ==(const SkClipStack & b) const514 bool SkClipStack::operator==(const SkClipStack& b) const {
515     if (this->getTopmostGenID() == b.getTopmostGenID()) {
516         return true;
517     }
518     if (fSaveCount != b.fSaveCount ||
519         fDeque.count() != b.fDeque.count()) {
520         return false;
521     }
522     SkDeque::F2BIter myIter(fDeque);
523     SkDeque::F2BIter bIter(b.fDeque);
524     const Element* myElement = (const Element*)myIter.next();
525     const Element* bElement = (const Element*)bIter.next();
526 
527     while (myElement != nullptr && bElement != nullptr) {
528         if (*myElement != *bElement) {
529             return false;
530         }
531         myElement = (const Element*)myIter.next();
532         bElement = (const Element*)bIter.next();
533     }
534     return myElement == nullptr && bElement == nullptr;
535 }
536 
reset()537 void SkClipStack::reset() {
538     // We used a placement new for each object in fDeque, so we're responsible
539     // for calling the destructor on each of them as well.
540     while (!fDeque.empty()) {
541         Element* element = (Element*)fDeque.back();
542         element->~Element();
543         fDeque.pop_back();
544     }
545 
546     fSaveCount = 0;
547 }
548 
save()549 void SkClipStack::save() {
550     fSaveCount += 1;
551 }
552 
restore()553 void SkClipStack::restore() {
554     fSaveCount -= 1;
555     restoreTo(fSaveCount);
556 }
557 
restoreTo(int saveCount)558 void SkClipStack::restoreTo(int saveCount) {
559     while (!fDeque.empty()) {
560         Element* element = (Element*)fDeque.back();
561         if (element->fSaveCount <= saveCount) {
562             break;
563         }
564         element->~Element();
565         fDeque.pop_back();
566     }
567 }
568 
bounds(const SkIRect & deviceBounds) const569 SkRect SkClipStack::bounds(const SkIRect& deviceBounds) const {
570     // TODO: optimize this.
571     SkRect r;
572     SkClipStack::BoundsType bounds;
573     this->getBounds(&r, &bounds);
574     if (bounds == SkClipStack::kInsideOut_BoundsType) {
575         return SkRect::Make(deviceBounds);
576     }
577     return r.intersect(SkRect::Make(deviceBounds)) ? r : SkRect::MakeEmpty();
578 }
579 
580 // TODO: optimize this.
isEmpty(const SkIRect & r) const581 bool SkClipStack::isEmpty(const SkIRect& r) const { return this->bounds(r).isEmpty(); }
582 
getBounds(SkRect * canvFiniteBound,BoundsType * boundType,bool * isIntersectionOfRects) const583 void SkClipStack::getBounds(SkRect* canvFiniteBound,
584                             BoundsType* boundType,
585                             bool* isIntersectionOfRects) const {
586     SkASSERT(canvFiniteBound && boundType);
587 
588     Element* element = (Element*)fDeque.back();
589 
590     if (nullptr == element) {
591         // the clip is wide open - the infinite plane w/ no pixels un-writeable
592         canvFiniteBound->setEmpty();
593         *boundType = kInsideOut_BoundsType;
594         if (isIntersectionOfRects) {
595             *isIntersectionOfRects = false;
596         }
597         return;
598     }
599 
600     *canvFiniteBound = element->fFiniteBound;
601     *boundType = element->fFiniteBoundType;
602     if (isIntersectionOfRects) {
603         *isIntersectionOfRects = element->fIsIntersectionOfRects;
604     }
605 }
606 
internalQuickContains(const SkRect & rect) const607 bool SkClipStack::internalQuickContains(const SkRect& rect) const {
608 
609     Iter iter(*this, Iter::kTop_IterStart);
610     const Element* element = iter.prev();
611     while (element != nullptr) {
612         if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp())
613             return false;
614         if (element->isInverseFilled()) {
615             // Part of 'rect' could be trimmed off by the inverse-filled clip element
616             if (SkRect::Intersects(element->getBounds(), rect)) {
617                 return false;
618             }
619         } else {
620             if (!element->contains(rect)) {
621                 return false;
622             }
623         }
624         if (kReplace_SkClipOp == element->getOp()) {
625             break;
626         }
627         element = iter.prev();
628     }
629     return true;
630 }
631 
internalQuickContains(const SkRRect & rrect) const632 bool SkClipStack::internalQuickContains(const SkRRect& rrect) const {
633 
634     Iter iter(*this, Iter::kTop_IterStart);
635     const Element* element = iter.prev();
636     while (element != nullptr) {
637         if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp())
638             return false;
639         if (element->isInverseFilled()) {
640             // Part of 'rrect' could be trimmed off by the inverse-filled clip element
641             if (SkRect::Intersects(element->getBounds(), rrect.getBounds())) {
642                 return false;
643             }
644         } else {
645             if (!element->contains(rrect)) {
646                 return false;
647             }
648         }
649         if (kReplace_SkClipOp == element->getOp()) {
650             break;
651         }
652         element = iter.prev();
653     }
654     return true;
655 }
656 
asPath(SkPath * path) const657 bool SkClipStack::asPath(SkPath *path) const {
658     bool isAA = false;
659 
660     path->reset();
661     path->setFillType(SkPath::kInverseEvenOdd_FillType);
662 
663     SkClipStack::Iter iter(*this, SkClipStack::Iter::kBottom_IterStart);
664     while (const SkClipStack::Element* element = iter.next()) {
665         SkPath operand;
666         if (element->getType() != SkClipStack::Element::kEmpty_Type) {
667             element->asPath(&operand);
668         }
669 
670         SkClipOp elementOp = element->getOp();
671         if (elementOp == kReplace_SkClipOp) {
672             *path = operand;
673         } else {
674             Op(*path, operand, (SkPathOp)elementOp, path);
675         }
676 
677         // if the prev and curr clips disagree about aa -vs- not, favor the aa request.
678         // perhaps we need an API change to avoid this sort of mixed-signals about
679         // clipping.
680         isAA = (isAA || element->isAA());
681     }
682 
683     return isAA;
684 }
685 
pushElement(const Element & element)686 void SkClipStack::pushElement(const Element& element) {
687     // Use reverse iterator instead of back because Rect path may need previous
688     SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
689     Element* prior = (Element*) iter.prev();
690 
691     if (prior) {
692         if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) {
693             switch (prior->fType) {
694                 case Element::kEmpty_Type:
695                     SkDEBUGCODE(prior->checkEmpty();)
696                     return;
697                 case Element::kRect_Type:
698                     if (Element::kRect_Type == element.getType()) {
699                         if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) {
700                             SkRect isectRect;
701                             if (!isectRect.intersect(prior->getRect(), element.getRect())) {
702                                 prior->setEmpty();
703                                 return;
704                             }
705 
706                             prior->fRRect.setRect(isectRect);
707                             prior->fDoAA = element.isAA();
708                             Element* priorPrior = (Element*) iter.prev();
709                             prior->updateBoundAndGenID(priorPrior);
710                             return;
711                         }
712                         break;
713                     }
714                     // fallthrough
715                 default:
716                     if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) {
717                         prior->setEmpty();
718                         return;
719                     }
720                     break;
721             }
722         } else if (kReplace_SkClipOp == element.getOp()) {
723             this->restoreTo(fSaveCount - 1);
724             prior = (Element*) fDeque.back();
725         }
726     }
727     Element* newElement = new (fDeque.push_back()) Element(element);
728     newElement->updateBoundAndGenID(prior);
729 }
730 
clipRRect(const SkRRect & rrect,const SkMatrix & matrix,SkClipOp op,bool doAA)731 void SkClipStack::clipRRect(const SkRRect& rrect, const SkMatrix& matrix, SkClipOp op,
732                             bool doAA) {
733     SkRRect transformedRRect;
734     if (rrect.transform(matrix, &transformedRRect)) {
735         Element element(fSaveCount, transformedRRect, op, doAA);
736         this->pushElement(element);
737         if (this->hasClipRestriction(op)) {
738             Element element(fSaveCount, fClipRestrictionRect, kIntersect_SkClipOp, false);
739             this->pushElement(element);
740         }
741         return;
742     }
743     SkPath path;
744     path.addRRect(rrect);
745     path.setIsVolatile(true);
746     this->clipPath(path, matrix, op, doAA);
747 }
748 
clipRect(const SkRect & rect,const SkMatrix & matrix,SkClipOp op,bool doAA)749 void SkClipStack::clipRect(const SkRect& rect, const SkMatrix& matrix, SkClipOp op,
750                            bool doAA) {
751     if (matrix.rectStaysRect()) {
752         SkRect devRect;
753         matrix.mapRect(&devRect, rect);
754         if (this->hasClipRestriction(op)) {
755             if (!devRect.intersect(fClipRestrictionRect)) {
756                 devRect.setEmpty();
757             }
758         }
759         Element element(fSaveCount, devRect, op, doAA);
760         this->pushElement(element);
761         return;
762     }
763     SkPath path;
764     path.addRect(rect);
765     path.setIsVolatile(true);
766     this->clipPath(path, matrix, op, doAA);
767 }
768 
clipPath(const SkPath & path,const SkMatrix & matrix,SkClipOp op,bool doAA)769 void SkClipStack::clipPath(const SkPath& path, const SkMatrix& matrix, SkClipOp op,
770                            bool doAA) {
771     SkPath devPath;
772     path.transform(matrix, &devPath);
773     Element element(fSaveCount, devPath, op, doAA);
774     this->pushElement(element);
775     if (this->hasClipRestriction(op)) {
776         Element element(fSaveCount, fClipRestrictionRect, kIntersect_SkClipOp, false);
777         this->pushElement(element);
778     }
779 }
780 
clipEmpty()781 void SkClipStack::clipEmpty() {
782     Element* element = (Element*) fDeque.back();
783 
784     if (element && element->canBeIntersectedInPlace(fSaveCount, kIntersect_SkClipOp)) {
785         element->setEmpty();
786     }
787     new (fDeque.push_back()) Element(fSaveCount);
788 
789     ((Element*)fDeque.back())->fGenID = kEmptyGenID;
790 }
791 
792 ///////////////////////////////////////////////////////////////////////////////
793 
Iter()794 SkClipStack::Iter::Iter() : fStack(nullptr) {
795 }
796 
Iter(const SkClipStack & stack,IterStart startLoc)797 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
798     : fStack(&stack) {
799     this->reset(stack, startLoc);
800 }
801 
next()802 const SkClipStack::Element* SkClipStack::Iter::next() {
803     return (const SkClipStack::Element*)fIter.next();
804 }
805 
prev()806 const SkClipStack::Element* SkClipStack::Iter::prev() {
807     return (const SkClipStack::Element*)fIter.prev();
808 }
809 
skipToTopmost(SkClipOp op)810 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkClipOp op) {
811 
812     if (nullptr == fStack) {
813         return nullptr;
814     }
815 
816     fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
817 
818     const SkClipStack::Element* element = nullptr;
819 
820     for (element = (const SkClipStack::Element*) fIter.prev();
821          element;
822          element = (const SkClipStack::Element*) fIter.prev()) {
823 
824         if (op == element->fOp) {
825             // The Deque's iterator is actually one pace ahead of the
826             // returned value. So while "element" is the element we want to
827             // return, the iterator is actually pointing at (and will
828             // return on the next "next" or "prev" call) the element
829             // in front of it in the deque. Bump the iterator forward a
830             // step so we get the expected result.
831             if (nullptr == fIter.next()) {
832                 // The reverse iterator has run off the front of the deque
833                 // (i.e., the "op" clip is the first clip) and can't
834                 // recover. Reset the iterator to start at the front.
835                 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
836             }
837             break;
838         }
839     }
840 
841     if (nullptr == element) {
842         // There were no "op" clips
843         fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
844     }
845 
846     return this->next();
847 }
848 
reset(const SkClipStack & stack,IterStart startLoc)849 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
850     fStack = &stack;
851     fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
852 }
853 
854 // helper method
getConservativeBounds(int offsetX,int offsetY,int maxWidth,int maxHeight,SkRect * devBounds,bool * isIntersectionOfRects) const855 void SkClipStack::getConservativeBounds(int offsetX,
856                                         int offsetY,
857                                         int maxWidth,
858                                         int maxHeight,
859                                         SkRect* devBounds,
860                                         bool* isIntersectionOfRects) const {
861     SkASSERT(devBounds);
862 
863     devBounds->setLTRB(0, 0,
864                        SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
865 
866     SkRect temp;
867     SkClipStack::BoundsType boundType;
868 
869     // temp starts off in canvas space here
870     this->getBounds(&temp, &boundType, isIntersectionOfRects);
871     if (SkClipStack::kInsideOut_BoundsType == boundType) {
872         return;
873     }
874 
875     // but is converted to device space here
876     temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
877 
878     if (!devBounds->intersect(temp)) {
879         devBounds->setEmpty();
880     }
881 }
882 
isRRect(const SkRect & bounds,SkRRect * rrect,bool * aa) const883 bool SkClipStack::isRRect(const SkRect& bounds, SkRRect* rrect, bool* aa) const {
884     // We limit to 5 elements. This means the back element will be bounds checked at most 4 times if
885     // it is an rrect.
886     int cnt = fDeque.count();
887     if (!cnt || cnt > 5) {
888         return false;
889     }
890     const Element* back = static_cast<const Element*>(fDeque.back());
891     if (back->getType() != SkClipStack::Element::kRect_Type &&
892         back->getType() != SkClipStack::Element::kRRect_Type) {
893         return false;
894     }
895     if (back->getOp() == kReplace_SkClipOp) {
896         *rrect = back->asRRect();
897         *aa = back->isAA();
898         return true;
899     }
900 
901     if (back->getOp() == kIntersect_SkClipOp) {
902         SkRect backBounds;
903         if (!backBounds.intersect(bounds, back->asRRect().rect())) {
904             return false;
905         }
906         if (cnt > 1) {
907             SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
908             SkAssertResult(static_cast<const Element*>(iter.prev()) == back);
909             while (const Element* prior = (const Element*)iter.prev()) {
910                 if ((prior->getOp() != kIntersect_SkClipOp &&
911                      prior->getOp() != kReplace_SkClipOp) ||
912                     !prior->contains(backBounds)) {
913                     return false;
914                 }
915                 if (prior->getOp() == kReplace_SkClipOp) {
916                     break;
917                 }
918             }
919         }
920         *rrect = back->asRRect();
921         *aa = back->isAA();
922         return true;
923     }
924     return false;
925 }
926 
GetNextGenID()927 uint32_t SkClipStack::GetNextGenID() {
928     uint32_t id;
929     do {
930         id = static_cast<uint32_t>(sk_atomic_inc(&gGenID));
931     } while (id < kFirstUnreservedGenID);
932     return id;
933 }
934 
getTopmostGenID() const935 uint32_t SkClipStack::getTopmostGenID() const {
936     if (fDeque.empty()) {
937         return kWideOpenGenID;
938     }
939 
940     const Element* back = static_cast<const Element*>(fDeque.back());
941     if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) {
942         return kWideOpenGenID;
943     }
944 
945     return back->getGenID();
946 }
947 
948 #ifdef SK_DEBUG
dump() const949 void SkClipStack::Element::dump() const {
950     static const char* kTypeStrings[] = {
951         "empty",
952         "rect",
953         "rrect",
954         "path"
955     };
956     static_assert(0 == kEmpty_Type, "type_str");
957     static_assert(1 == kRect_Type, "type_str");
958     static_assert(2 == kRRect_Type, "type_str");
959     static_assert(3 == kPath_Type, "type_str");
960     static_assert(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, "type_str");
961 
962     static const char* kOpStrings[] = {
963         "difference",
964         "intersect",
965         "union",
966         "xor",
967         "reverse-difference",
968         "replace",
969     };
970     static_assert(0 == static_cast<int>(kDifference_SkClipOp), "op_str");
971     static_assert(1 == static_cast<int>(kIntersect_SkClipOp), "op_str");
972     static_assert(2 == static_cast<int>(kUnion_SkClipOp), "op_str");
973     static_assert(3 == static_cast<int>(kXOR_SkClipOp), "op_str");
974     static_assert(4 == static_cast<int>(kReverseDifference_SkClipOp), "op_str");
975     static_assert(5 == static_cast<int>(kReplace_SkClipOp), "op_str");
976     static_assert(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, "op_str");
977 
978     SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[fType],
979              kOpStrings[static_cast<int>(fOp)], (fDoAA ? "yes" : "no"), fSaveCount);
980     switch (fType) {
981         case kEmpty_Type:
982             SkDebugf("\n");
983             break;
984         case kRect_Type:
985             this->getRect().dump();
986             SkDebugf("\n");
987             break;
988         case kRRect_Type:
989             this->getRRect().dump();
990             SkDebugf("\n");
991             break;
992         case kPath_Type:
993             this->getPath().dump(nullptr, true, false);
994             break;
995     }
996 }
997 
dump() const998 void SkClipStack::dump() const {
999     B2TIter iter(*this);
1000     const Element* e;
1001     while ((e = iter.next())) {
1002         e->dump();
1003         SkDebugf("\n");
1004     }
1005 }
1006 #endif
1007