• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "anv_private.h"
25 
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28 
29 #include "common/gen_l3_config.h"
30 
31 /**
32  * This file implements some lightweight memcpy/memset operations on the GPU
33  * using a vertex buffer and streamout.
34  */
35 
36 /**
37  * Returns the greatest common divisor of a and b that is a power of two.
38  */
39 static inline uint64_t
gcd_pow2_u64(uint64_t a,uint64_t b)40 gcd_pow2_u64(uint64_t a, uint64_t b)
41 {
42    assert(a > 0 || b > 0);
43 
44    unsigned a_log2 = ffsll(a) - 1;
45    unsigned b_log2 = ffsll(b) - 1;
46 
47    /* If either a or b is 0, then a_log2 or b_log2 will be UINT_MAX in which
48     * case, the MIN2() will take the other one.  If both are 0 then we will
49     * hit the assert above.
50     */
51    return 1 << MIN2(a_log2, b_log2);
52 }
53 
54 void
genX(cmd_buffer_gpu_memcpy)55 genX(cmd_buffer_gpu_memcpy)(struct anv_cmd_buffer *cmd_buffer,
56                             struct anv_bo *dst, uint32_t dst_offset,
57                             struct anv_bo *src, uint32_t src_offset,
58                             uint32_t size)
59 {
60    if (size == 0)
61       return;
62 
63    assert(dst_offset + size <= dst->size);
64    assert(src_offset + size <= src->size);
65 
66    /* The maximum copy block size is 4 32-bit components at a time. */
67    unsigned bs = 16;
68    bs = gcd_pow2_u64(bs, src_offset);
69    bs = gcd_pow2_u64(bs, dst_offset);
70    bs = gcd_pow2_u64(bs, size);
71 
72    enum isl_format format;
73    switch (bs) {
74    case 4:  format = ISL_FORMAT_R32_UINT;          break;
75    case 8:  format = ISL_FORMAT_R32G32_UINT;       break;
76    case 16: format = ISL_FORMAT_R32G32B32A32_UINT; break;
77    default:
78       unreachable("Invalid size");
79    }
80 
81    if (!cmd_buffer->state.current_l3_config) {
82       const struct gen_l3_config *cfg =
83          gen_get_default_l3_config(&cmd_buffer->device->info);
84       genX(cmd_buffer_config_l3)(cmd_buffer, cfg);
85    }
86 
87    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
88 
89    genX(flush_pipeline_select_3d)(cmd_buffer);
90 
91    uint32_t *dw;
92    dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS));
93    GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, dw + 1,
94       &(struct GENX(VERTEX_BUFFER_STATE)) {
95          .VertexBufferIndex = 32, /* Reserved for this */
96          .AddressModifyEnable = true,
97          .BufferStartingAddress = { src, src_offset },
98          .BufferPitch = bs,
99 #if (GEN_GEN >= 8)
100          .MemoryObjectControlState = GENX(MOCS),
101          .BufferSize = size,
102 #else
103          .VertexBufferMemoryObjectControlState = GENX(MOCS),
104          .EndAddress = { src, src_offset + size - 1 },
105 #endif
106       });
107 
108    dw = anv_batch_emitn(&cmd_buffer->batch, 3, GENX(3DSTATE_VERTEX_ELEMENTS));
109    GENX(VERTEX_ELEMENT_STATE_pack)(&cmd_buffer->batch, dw + 1,
110       &(struct GENX(VERTEX_ELEMENT_STATE)) {
111          .VertexBufferIndex = 32,
112          .Valid = true,
113          .SourceElementFormat = format,
114          .SourceElementOffset = 0,
115          .Component0Control = (bs >= 4) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
116          .Component1Control = (bs >= 8) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
117          .Component2Control = (bs >= 12) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
118          .Component3Control = (bs >= 16) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
119       });
120 
121 #if GEN_GEN >= 8
122    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_SGVS), sgvs);
123 #endif
124 
125    /* Disable all shader stages */
126    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VS), vs);
127    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HS), hs);
128    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
129    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DS), DS);
130    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_GS), gs);
131    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS), gs);
132 
133    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SBE), sbe) {
134       sbe.VertexURBEntryReadOffset = 1;
135       sbe.NumberofSFOutputAttributes = 1;
136       sbe.VertexURBEntryReadLength = 1;
137 #if GEN_GEN >= 8
138       sbe.ForceVertexURBEntryReadLength = true;
139       sbe.ForceVertexURBEntryReadOffset = true;
140 #endif
141 
142 #if GEN_GEN >= 9
143       for (unsigned i = 0; i < 32; i++)
144          sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
145 #endif
146    }
147 
148    /* Emit URB setup.  We tell it that the VS is active because we want it to
149     * allocate space for the VS.  Even though one isn't run, we need VUEs to
150     * store the data that VF is going to pass to SOL.
151     */
152    const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
153 
154    genX(emit_urb_setup)(cmd_buffer->device, &cmd_buffer->batch,
155                         cmd_buffer->state.current_l3_config,
156                         VK_SHADER_STAGE_VERTEX_BIT, entry_size);
157 
158    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
159       sob.SOBufferIndex = 0;
160       sob.SOBufferObjectControlState = GENX(MOCS);
161       sob.SurfaceBaseAddress = (struct anv_address) { dst, dst_offset };
162 
163 #if GEN_GEN >= 8
164       sob.SOBufferEnable = true;
165       sob.SurfaceSize = size - 1;
166 #else
167       sob.SurfacePitch = bs;
168       sob.SurfaceEndAddress = sob.SurfaceBaseAddress;
169       sob.SurfaceEndAddress.offset += size;
170 #endif
171 
172 #if GEN_GEN >= 8
173       /* As SOL writes out data, it updates the SO_WRITE_OFFSET registers with
174        * the end position of the stream.  We need to reset this value to 0 at
175        * the beginning of the run or else SOL will start at the offset from
176        * the previous draw.
177        */
178       sob.StreamOffsetWriteEnable = true;
179       sob.StreamOffset = 0;
180 #endif
181    }
182 
183 #if GEN_GEN <= 7
184    /* The hardware can do this for us on BDW+ (see above) */
185    anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), load) {
186       load.RegisterOffset = GENX(SO_WRITE_OFFSET0_num);
187       load.DataDWord = 0;
188    }
189 #endif
190 
191    dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_SO_DECL_LIST),
192                         .StreamtoBufferSelects0 = (1 << 0),
193                         .NumEntries0 = 1);
194    GENX(SO_DECL_ENTRY_pack)(&cmd_buffer->batch, dw + 3,
195       &(struct GENX(SO_DECL_ENTRY)) {
196          .Stream0Decl = {
197             .OutputBufferSlot = 0,
198             .RegisterIndex = 0,
199             .ComponentMask = (1 << (bs / 4)) - 1,
200          },
201       });
202 
203    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STREAMOUT), so) {
204       so.SOFunctionEnable = true;
205       so.RenderingDisable = true;
206       so.Stream0VertexReadOffset = 0;
207       so.Stream0VertexReadLength = DIV_ROUND_UP(32, 64);
208 #if GEN_GEN >= 8
209       so.Buffer0SurfacePitch = bs;
210 #else
211       so.SOBufferEnable0 = true;
212 #endif
213    }
214 
215 #if GEN_GEN >= 8
216    anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
217       topo.PrimitiveTopologyType = _3DPRIM_POINTLIST;
218    }
219 #endif
220 
221    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
222       prim.VertexAccessType         = SEQUENTIAL;
223       prim.PrimitiveTopologyType    = _3DPRIM_POINTLIST;
224       prim.VertexCountPerInstance   = size / bs;
225       prim.StartVertexLocation      = 0;
226       prim.InstanceCount            = 1;
227       prim.StartInstanceLocation    = 0;
228       prim.BaseVertexLocation       = 0;
229    }
230 
231    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
232 }
233