• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2012 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 #ifndef SkPathRef_DEFINED
10 #define SkPathRef_DEFINED
11 
12 #include "../private/SkAtomics.h"
13 #include "../private/SkTDArray.h"
14 #include "SkMatrix.h"
15 #include "SkPoint.h"
16 #include "SkRRect.h"
17 #include "SkRect.h"
18 #include "SkRefCnt.h"
19 #include <stddef.h> // ptrdiff_t
20 
21 class SkRBuffer;
22 class SkWBuffer;
23 
24 /**
25  * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
26  * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
27  * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
28  * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
29  * constructor a pointer to a sk_sp<SkPathRef>, which may be updated to point to a new SkPathRef
30  * after the editor's constructor returns.
31  *
32  * The points and verbs are stored in a single allocation. The points are at the begining of the
33  * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
34  * and verbs both grow into the middle of the allocation until the meet. To access verb i in the
35  * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
36  * logical verb or the last verb in memory).
37  */
38 
39 class SK_API SkPathRef final : public SkNVRefCnt<SkPathRef> {
40 public:
41     class Editor {
42     public:
43         Editor(sk_sp<SkPathRef>* pathRef,
44                int incReserveVerbs = 0,
45                int incReservePoints = 0);
46 
~Editor()47         ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
48 
49         /**
50          * Returns the array of points.
51          */
points()52         SkPoint* points() { return fPathRef->getPoints(); }
points()53         const SkPoint* points() const { return fPathRef->points(); }
54 
55         /**
56          * Gets the ith point. Shortcut for this->points() + i
57          */
atPoint(int i)58         SkPoint* atPoint(int i) {
59             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
60             return this->points() + i;
61         }
atPoint(int i)62         const SkPoint* atPoint(int i) const {
63             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
64             return this->points() + i;
65         }
66 
67         /**
68          * Adds the verb and allocates space for the number of points indicated by the verb. The
69          * return value is a pointer to where the points for the verb should be written.
70          * 'weight' is only used if 'verb' is kConic_Verb
71          */
72         SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
73             SkDEBUGCODE(fPathRef->validate();)
74             return fPathRef->growForVerb(verb, weight);
75         }
76 
77         /**
78          * Allocates space for multiple instances of a particular verb and the
79          * requisite points & weights.
80          * The return pointer points at the first new point (indexed normally [<i>]).
81          * If 'verb' is kConic_Verb, 'weights' will return a pointer to the
82          * space for the conic weights (indexed normally).
83          */
84         SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
85                                      int numVbs,
86                                      SkScalar** weights = NULL) {
87             return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
88         }
89 
90         /**
91          * Resets the path ref to a new verb and point count. The new verbs and points are
92          * uninitialized.
93          */
resetToSize(int newVerbCnt,int newPointCnt,int newConicCount)94         void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
95             fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
96         }
97 
98         /**
99          * Gets the path ref that is wrapped in the Editor.
100          */
pathRef()101         SkPathRef* pathRef() { return fPathRef; }
102 
setIsOval(bool isOval,bool isCCW,unsigned start)103         void setIsOval(bool isOval, bool isCCW, unsigned start) {
104             fPathRef->setIsOval(isOval, isCCW, start);
105         }
106 
setIsRRect(bool isRRect,bool isCCW,unsigned start)107         void setIsRRect(bool isRRect, bool isCCW, unsigned start) {
108             fPathRef->setIsRRect(isRRect, isCCW, start);
109         }
110 
setBounds(const SkRect & rect)111         void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
112 
113     private:
114         SkPathRef* fPathRef;
115     };
116 
117     class SK_API Iter {
118     public:
119         Iter();
120         Iter(const SkPathRef&);
121 
122         void setPathRef(const SkPathRef&);
123 
124         /** Return the next verb in this iteration of the path. When all
125             segments have been visited, return kDone_Verb.
126 
127             @param  pts The points representing the current verb and/or segment
128                         This must not be NULL.
129             @return The verb for the current segment
130         */
131         uint8_t next(SkPoint pts[4]);
132         uint8_t peek() const;
133 
conicWeight()134         SkScalar conicWeight() const { return *fConicWeights; }
135 
136     private:
137         const SkPoint*  fPts;
138         const uint8_t*  fVerbs;
139         const uint8_t*  fVerbStop;
140         const SkScalar* fConicWeights;
141     };
142 
143 public:
144     /**
145      * Gets a path ref with no verbs or points.
146      */
147     static SkPathRef* CreateEmpty();
148 
149     /**
150      *  Returns true if all of the points in this path are finite, meaning there
151      *  are no infinities and no NaNs.
152      */
isFinite()153     bool isFinite() const {
154         if (fBoundsIsDirty) {
155             this->computeBounds();
156         }
157         return SkToBool(fIsFinite);
158     }
159 
160     /**
161      *  Returns a mask, where each bit corresponding to a SegmentMask is
162      *  set if the path contains 1 or more segments of that type.
163      *  Returns 0 for an empty path (no segments).
164      */
getSegmentMasks()165     uint32_t getSegmentMasks() const { return fSegmentMask; }
166 
167     /** Returns true if the path is an oval.
168      *
169      * @param rect      returns the bounding rect of this oval. It's a circle
170      *                  if the height and width are the same.
171      * @param isCCW     is the oval CCW (or CW if false).
172      * @param start     indicates where the contour starts on the oval (see
173      *                  SkPath::addOval for intepretation of the index).
174      *
175      * @return true if this path is an oval.
176      *              Tracking whether a path is an oval is considered an
177      *              optimization for performance and so some paths that are in
178      *              fact ovals can report false.
179      */
isOval(SkRect * rect,bool * isCCW,unsigned * start)180     bool isOval(SkRect* rect, bool* isCCW, unsigned* start) const {
181         if (fIsOval) {
182             if (rect) {
183                 *rect = this->getBounds();
184             }
185             if (isCCW) {
186                 *isCCW = SkToBool(fRRectOrOvalIsCCW);
187             }
188             if (start) {
189                 *start = fRRectOrOvalStartIdx;
190             }
191         }
192 
193         return SkToBool(fIsOval);
194     }
195 
isRRect(SkRRect * rrect,bool * isCCW,unsigned * start)196     bool isRRect(SkRRect* rrect, bool* isCCW, unsigned* start) const {
197         if (fIsRRect) {
198             if (rrect) {
199                 *rrect = this->getRRect();
200             }
201             if (isCCW) {
202                 *isCCW = SkToBool(fRRectOrOvalIsCCW);
203             }
204             if (start) {
205                 *start = fRRectOrOvalStartIdx;
206             }
207         }
208         return SkToBool(fIsRRect);
209     }
210 
211 
hasComputedBounds()212     bool hasComputedBounds() const {
213         return !fBoundsIsDirty;
214     }
215 
216     /** Returns the bounds of the path's points. If the path contains 0 or 1
217         points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
218         Note: this bounds may be larger than the actual shape, since curves
219         do not extend as far as their control points.
220     */
getBounds()221     const SkRect& getBounds() const {
222         if (fBoundsIsDirty) {
223             this->computeBounds();
224         }
225         return fBounds;
226     }
227 
228     SkRRect getRRect() const;
229 
230     /**
231      * Transforms a path ref by a matrix, allocating a new one only if necessary.
232      */
233     static void CreateTransformedCopy(sk_sp<SkPathRef>* dst,
234                                       const SkPathRef& src,
235                                       const SkMatrix& matrix);
236 
237     static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
238 
239     /**
240      * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
241      * repopulated with approximately the same number of verbs and points. A new path ref is created
242      * only if necessary.
243      */
244     static void Rewind(sk_sp<SkPathRef>* pathRef);
245 
246     ~SkPathRef();
countPoints()247     int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
countVerbs()248     int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
countWeights()249     int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
250 
251     /**
252      * Returns a pointer one beyond the first logical verb (last verb in memory order).
253      */
verbs()254     const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; }
255 
256     /**
257      * Returns a const pointer to the first verb in memory (which is the last logical verb).
258      */
verbsMemBegin()259     const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
260 
261     /**
262      * Returns a const pointer to the first point.
263      */
points()264     const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; }
265 
266     /**
267      * Shortcut for this->points() + this->countPoints()
268      */
pointsEnd()269     const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
270 
conicWeights()271     const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); }
conicWeightsEnd()272     const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); }
273 
274     /**
275      * Convenience methods for getting to a verb or point by index.
276      */
atVerb(int index)277     uint8_t atVerb(int index) const {
278         SkASSERT((unsigned) index < (unsigned) fVerbCnt);
279         return this->verbs()[~index];
280     }
atPoint(int index)281     const SkPoint& atPoint(int index) const {
282         SkASSERT((unsigned) index < (unsigned) fPointCnt);
283         return this->points()[index];
284     }
285 
286     bool operator== (const SkPathRef& ref) const;
287 
288     /**
289      * Writes the path points and verbs to a buffer.
290      */
291     void writeToBuffer(SkWBuffer* buffer) const;
292 
293     /**
294      * Gets the number of bytes that would be written in writeBuffer()
295      */
296     uint32_t writeSize() const;
297 
298     void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const;
299 
300     /**
301      * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
302      * same ID then they have the same verbs and points. However, two path refs may have the same
303      * contents but different genIDs.
304      */
305     uint32_t genID() const;
306 
307     struct GenIDChangeListener {
~GenIDChangeListenerGenIDChangeListener308         virtual ~GenIDChangeListener() {}
309         virtual void onChange() = 0;
310     };
311 
312     void addGenIDChangeListener(GenIDChangeListener* listener);
313 
314     SkDEBUGCODE(void validate() const;)
315 
316 private:
317     enum SerializationOffsets {
318         kRRectOrOvalStartIdx_SerializationShift = 28,  // requires 3 bits
319         kRRectOrOvalIsCCW_SerializationShift = 27,     // requires 1 bit
320         kIsRRect_SerializationShift = 26,              // requires 1 bit
321         kIsFinite_SerializationShift = 25,             // requires 1 bit
322         kIsOval_SerializationShift = 24,               // requires 1 bit
323         kSegmentMask_SerializationShift = 0            // requires 4 bits
324     };
325 
SkPathRef()326     SkPathRef() {
327         fBoundsIsDirty = true;    // this also invalidates fIsFinite
328         fPointCnt = 0;
329         fVerbCnt = 0;
330         fVerbs = NULL;
331         fPoints = NULL;
332         fFreeSpace = 0;
333         fGenerationID = kEmptyGenID;
334         fSegmentMask = 0;
335         fIsOval = false;
336         fIsRRect = false;
337         // The next two values don't matter unless fIsOval or fIsRRect are true.
338         fRRectOrOvalIsCCW = false;
339         fRRectOrOvalStartIdx = 0xAC;
340         SkDEBUGCODE(fEditorsAttached = 0;)
341         SkDEBUGCODE(this->validate();)
342     }
343 
344     void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
345 
346     // Return true if the computed bounds are finite.
ComputePtBounds(SkRect * bounds,const SkPathRef & ref)347     static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
348         return bounds->setBoundsCheck(ref.points(), ref.countPoints());
349     }
350 
351     // called, if dirty, by getBounds()
computeBounds()352     void computeBounds() const {
353         SkDEBUGCODE(this->validate();)
354         // TODO(mtklein): remove fBoundsIsDirty and fIsFinite,
355         // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
356         SkASSERT(fBoundsIsDirty);
357 
358         fIsFinite = ComputePtBounds(&fBounds, *this);
359         fBoundsIsDirty = false;
360     }
361 
setBounds(const SkRect & rect)362     void setBounds(const SkRect& rect) {
363         SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
364         fBounds = rect;
365         fBoundsIsDirty = false;
366         fIsFinite = fBounds.isFinite();
367     }
368 
369     /** Makes additional room but does not change the counts or change the genID */
incReserve(int additionalVerbs,int additionalPoints)370     void incReserve(int additionalVerbs, int additionalPoints) {
371         SkDEBUGCODE(this->validate();)
372         size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
373         this->makeSpace(space);
374         SkDEBUGCODE(this->validate();)
375     }
376 
377     /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
378      *  allocates space for reserveVerb additional verbs and reservePoints additional points.*/
379     void resetToSize(int verbCount, int pointCount, int conicCount,
380                      int reserveVerbs = 0, int reservePoints = 0) {
381         SkDEBUGCODE(this->validate();)
382         fBoundsIsDirty = true;      // this also invalidates fIsFinite
383         fGenerationID = 0;
384 
385         fSegmentMask = 0;
386         fIsOval = false;
387         fIsRRect = false;
388 
389         size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
390         size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
391         size_t minSize = newSize + newReserve;
392 
393         ptrdiff_t sizeDelta = this->currSize() - minSize;
394 
395         if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
396             sk_free(fPoints);
397             fPoints = NULL;
398             fVerbs = NULL;
399             fFreeSpace = 0;
400             fVerbCnt = 0;
401             fPointCnt = 0;
402             this->makeSpace(minSize);
403             fVerbCnt = verbCount;
404             fPointCnt = pointCount;
405             fFreeSpace -= newSize;
406         } else {
407             fPointCnt = pointCount;
408             fVerbCnt = verbCount;
409             fFreeSpace = this->currSize() - minSize;
410         }
411         fConicWeights.setCount(conicCount);
412         SkDEBUGCODE(this->validate();)
413     }
414 
415     /**
416      * Increases the verb count by numVbs and point count by the required amount.
417      * The new points are uninitialized. All the new verbs are set to the specified
418      * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
419      * uninitialized conic weights.
420      */
421     SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
422 
423     /**
424      * Increases the verb count 1, records the new verb, and creates room for the requisite number
425      * of additional points. A pointer to the first point is returned. Any new points are
426      * uninitialized.
427      */
428     SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
429 
430     /**
431      * Ensures that the free space available in the path ref is >= size. The verb and point counts
432      * are not changed.
433      */
makeSpace(size_t size)434     void makeSpace(size_t size) {
435         SkDEBUGCODE(this->validate();)
436         ptrdiff_t growSize = size - fFreeSpace;
437         if (growSize <= 0) {
438             return;
439         }
440         size_t oldSize = this->currSize();
441         // round to next multiple of 8 bytes
442         growSize = (growSize + 7) & ~static_cast<size_t>(7);
443         // we always at least double the allocation
444         if (static_cast<size_t>(growSize) < oldSize) {
445             growSize = oldSize;
446         }
447         if (growSize < kMinSize) {
448             growSize = kMinSize;
449         }
450         size_t newSize = oldSize + growSize;
451         // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
452         // encapsulate this.
453         fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
454         size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
455         void* newVerbsDst = reinterpret_cast<void*>(
456                                 reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
457         void* oldVerbsSrc = reinterpret_cast<void*>(
458                                 reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
459         memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
460         fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
461         fFreeSpace += growSize;
462         SkDEBUGCODE(this->validate();)
463     }
464 
465     /**
466      * Private, non-const-ptr version of the public function verbsMemBegin().
467      */
verbsMemWritable()468     uint8_t* verbsMemWritable() {
469         SkDEBUGCODE(this->validate();)
470         return fVerbs - fVerbCnt;
471     }
472 
473     /**
474      * Gets the total amount of space allocated for verbs, points, and reserve.
475      */
currSize()476     size_t currSize() const {
477         return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
478     }
479 
480     /**
481      * Called the first time someone calls CreateEmpty to actually create the singleton.
482      */
483     friend SkPathRef* sk_create_empty_pathref();
484 
setIsOval(bool isOval,bool isCCW,unsigned start)485     void setIsOval(bool isOval, bool isCCW, unsigned start) {
486         fIsOval = isOval;
487         fRRectOrOvalIsCCW = isCCW;
488         fRRectOrOvalStartIdx = start;
489     }
490 
setIsRRect(bool isRRect,bool isCCW,unsigned start)491     void setIsRRect(bool isRRect, bool isCCW, unsigned start) {
492         fIsRRect = isRRect;
493         fRRectOrOvalIsCCW = isCCW;
494         fRRectOrOvalStartIdx = start;
495     }
496 
497     // called only by the editor. Note that this is not a const function.
getPoints()498     SkPoint* getPoints() {
499         SkDEBUGCODE(this->validate();)
500         fIsOval = false;
501         fIsRRect = false;
502         return fPoints;
503     }
504 
getPoints()505     const SkPoint* getPoints() const {
506         SkDEBUGCODE(this->validate();)
507         return fPoints;
508     }
509 
510     void callGenIDChangeListeners();
511 
512     enum {
513         kMinSize = 256,
514     };
515 
516     mutable SkRect   fBounds;
517 
518     SkPoint*            fPoints; // points to begining of the allocation
519     uint8_t*            fVerbs; // points just past the end of the allocation (verbs grow backwards)
520     int                 fVerbCnt;
521     int                 fPointCnt;
522     size_t              fFreeSpace; // redundant but saves computation
523     SkTDArray<SkScalar> fConicWeights;
524 
525     enum {
526         kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
527     };
528     mutable uint32_t    fGenerationID;
529     SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
530 
531     SkTDArray<GenIDChangeListener*> fGenIDChangeListeners;  // pointers are owned
532 
533     mutable uint8_t  fBoundsIsDirty;
534     mutable SkBool8  fIsFinite;    // only meaningful if bounds are valid
535 
536     SkBool8  fIsOval;
537     SkBool8  fIsRRect;
538     // Both the circle and rrect special cases have a notion of direction and starting point
539     // The next two variables store that information for either.
540     SkBool8  fRRectOrOvalIsCCW;
541     uint8_t  fRRectOrOvalStartIdx;
542     uint8_t  fSegmentMask;
543 
544     friend class PathRefTest_Private;
545     friend class ForceIsRRect_Private; // unit test isRRect
546 };
547 
548 #endif
549