• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkGeometry_DEFINED
9 #define SkGeometry_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkNx.h"
13 
from_point(const SkPoint & point)14 static inline Sk2s from_point(const SkPoint& point) {
15     return Sk2s::Load(&point);
16 }
17 
to_point(const Sk2s & x)18 static inline SkPoint to_point(const Sk2s& x) {
19     SkPoint point;
20     x.store(&point);
21     return point;
22 }
23 
times_2(const Sk2s & value)24 static Sk2s times_2(const Sk2s& value) {
25     return value + value;
26 }
27 
28 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
29     equation.
30 */
31 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
32 
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
36 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
37 
38 /** Set pt to the point on the src quadratic specified by t. t must be
39     0 <= t <= 1.0
40 */
41 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);
42 
43 /** Given a src quadratic bezier, chop it at the specified t value,
44     where 0 < t < 1, and return the two new quadratics in dst:
45     dst[0..2] and dst[2..4]
46 */
47 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
48 
49 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
50     The new quads are returned in dst[0..2] and dst[2..4]
51 */
52 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
53 
54 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
55     for extrema, and return the number of t-values that are found that represent
56     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
57     function returns 0.
58     Returned count      tValues[]
59     0                   ignored
60     1                   0 < tValues[0] < 1
61 */
62 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
63 
64 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
65     the resulting beziers are monotonic in Y. This is called by the scan converter.
66     Depending on what is returned, dst[] is treated as follows
67     0   dst[0..2] is the original quad
68     1   dst[0..2] and dst[2..4] are the two new quads
69 */
70 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
71 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
72 
73 /** Given 3 points on a quadratic bezier, if the point of maximum
74     curvature exists on the segment, returns the t value for this
75     point along the curve. Otherwise it will return a value of 0.
76 */
77 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
78 
79 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
80     if the point of maximum curvature exists on the quad segment.
81     Depending on what is returned, dst[] is treated as follows
82     1   dst[0..2] is the original quad
83     2   dst[0..2] and dst[2..4] are the two new quads
84     If dst == null, it is ignored and only the count is returned.
85 */
86 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
87 
88 /** Given 3 points on a quadratic bezier, use degree elevation to
89     convert it into the cubic fitting the same curve. The new cubic
90     curve is returned in dst[0..3].
91 */
92 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
93 
94 ///////////////////////////////////////////////////////////////////////////////
95 
96 /** Set pt to the point on the src cubic specified by t. t must be
97     0 <= t <= 1.0
98 */
99 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
100                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
101 
102 /** Given a src cubic bezier, chop it at the specified t value,
103     where 0 < t < 1, and return the two new cubics in dst:
104     dst[0..3] and dst[3..6]
105 */
106 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
107 
108 /** Given a src cubic bezier, chop it at the specified t values,
109     where 0 < t < 1, and return the new cubics in dst:
110     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
111 */
112 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
113                    int t_count);
114 
115 /** Given a src cubic bezier, chop it at the specified t == 1/2,
116     The new cubics are returned in dst[0..3] and dst[3..6]
117 */
118 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
119 
120 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
121     for extrema, and return the number of t-values that are found that represent
122     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
123     function returns 0.
124     Returned count      tValues[]
125     0                   ignored
126     1                   0 < tValues[0] < 1
127     2                   0 < tValues[0] < tValues[1] < 1
128 */
129 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
130                        SkScalar tValues[2]);
131 
132 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
133     the resulting beziers are monotonic in Y. This is called by the scan converter.
134     Depending on what is returned, dst[] is treated as follows
135     0   dst[0..3] is the original cubic
136     1   dst[0..3] and dst[3..6] are the two new cubics
137     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
138     If dst == null, it is ignored and only the count is returned.
139 */
140 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
141 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
142 
143 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
144     inflection points.
145 */
146 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
147 
148 /** Return 1 for no chop, 2 for having chopped the cubic at a single
149     inflection point, 3 for having chopped at 2 inflection points.
150     dst will hold the resulting 1, 2, or 3 cubics.
151 */
152 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
153 
154 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
155 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
156                               SkScalar tValues[3] = nullptr);
157 
158 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
159 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
160 
161 enum class SkCubicType {
162     kSerpentine,
163     kLoop,
164     kLocalCusp,       // Cusp at a non-infinite parameter value with an inflection at t=infinity.
165     kCuspAtInfinity,  // Cusp with a cusp at t=infinity and a local inflection.
166     kQuadratic,
167     kLineOrPoint
168 };
169 
170 /** Returns the cubic classification.
171 
172     t[],s[] are set to the two homogeneous parameter values at which points the lines L & M
173     intersect with K, sorted from smallest to largest and oriented so positive values of the
174     implicit are on the "left" side. For a serpentine curve they are the inflection points. For a
175     loop they are the double point. For a local cusp, they are both equal and denote the cusp point.
176     For a cusp at an infinite parameter value, one will be the local inflection point and the other
177     +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a
178     parameter value of +inf (t,s = 1,0).
179 
180     d[] is filled with the cubic inflection function coefficients. See "Resolution Independent
181     Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization:
182 
183     https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
184 */
185 SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr,
186                             double d[4] = nullptr);
187 
188 ///////////////////////////////////////////////////////////////////////////////
189 
190 enum SkRotationDirection {
191     kCW_SkRotationDirection,
192     kCCW_SkRotationDirection
193 };
194 
195 struct SkConic {
SkConicSkConic196     SkConic() {}
SkConicSkConic197     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
198         fPts[0] = p0;
199         fPts[1] = p1;
200         fPts[2] = p2;
201         fW = w;
202     }
SkConicSkConic203     SkConic(const SkPoint pts[3], SkScalar w) {
204         memcpy(fPts, pts, sizeof(fPts));
205         fW = w;
206     }
207 
208     SkPoint  fPts[3];
209     SkScalar fW;
210 
setSkConic211     void set(const SkPoint pts[3], SkScalar w) {
212         memcpy(fPts, pts, 3 * sizeof(SkPoint));
213         fW = w;
214     }
215 
setSkConic216     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
217         fPts[0] = p0;
218         fPts[1] = p1;
219         fPts[2] = p2;
220         fW = w;
221     }
222 
223     /**
224      *  Given a t-value [0...1] return its position and/or tangent.
225      *  If pos is not null, return its position at the t-value.
226      *  If tangent is not null, return its tangent at the t-value. NOTE the
227      *  tangent value's length is arbitrary, and only its direction should
228      *  be used.
229      */
230     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
231     bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const;
232     void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
233     void chop(SkConic dst[2]) const;
234 
235     SkPoint evalAt(SkScalar t) const;
236     SkVector evalTangentAt(SkScalar t) const;
237 
238     void computeAsQuadError(SkVector* err) const;
239     bool asQuadTol(SkScalar tol) const;
240 
241     /**
242      *  return the power-of-2 number of quads needed to approximate this conic
243      *  with a sequence of quads. Will be >= 0.
244      */
245     int computeQuadPOW2(SkScalar tol) const;
246 
247     /**
248      *  Chop this conic into N quads, stored continguously in pts[], where
249      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
250      */
251     int SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
252 
253     bool findXExtrema(SkScalar* t) const;
254     bool findYExtrema(SkScalar* t) const;
255     bool chopAtXExtrema(SkConic dst[2]) const;
256     bool chopAtYExtrema(SkConic dst[2]) const;
257 
258     void computeTightBounds(SkRect* bounds) const;
259     void computeFastBounds(SkRect* bounds) const;
260 
261     /** Find the parameter value where the conic takes on its maximum curvature.
262      *
263      *  @param t   output scalar for max curvature.  Will be unchanged if
264      *             max curvature outside 0..1 range.
265      *
266      *  @return  true if max curvature found inside 0..1 range, false otherwise
267      */
268 //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented
269 
270     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
271 
272     enum {
273         kMaxConicsForArc = 5
274     };
275     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
276                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
277 };
278 
279 // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
280 namespace {
281 
282 /**
283  *  use for : eval(t) == A * t^2 + B * t + C
284  */
285 struct SkQuadCoeff {
SkQuadCoeffSkQuadCoeff286     SkQuadCoeff() {}
287 
SkQuadCoeffSkQuadCoeff288     SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
289         : fA(A)
290         , fB(B)
291         , fC(C)
292     {
293     }
294 
SkQuadCoeffSkQuadCoeff295     SkQuadCoeff(const SkPoint src[3]) {
296         fC = from_point(src[0]);
297         Sk2s P1 = from_point(src[1]);
298         Sk2s P2 = from_point(src[2]);
299         fB = times_2(P1 - fC);
300         fA = P2 - times_2(P1) + fC;
301     }
302 
evalSkQuadCoeff303     Sk2s eval(SkScalar t) {
304         Sk2s tt(t);
305         return eval(tt);
306     }
307 
evalSkQuadCoeff308     Sk2s eval(const Sk2s& tt) {
309         return (fA * tt + fB) * tt + fC;
310     }
311 
312     Sk2s fA;
313     Sk2s fB;
314     Sk2s fC;
315 };
316 
317 struct SkConicCoeff {
SkConicCoeffSkConicCoeff318     SkConicCoeff(const SkConic& conic) {
319         Sk2s p0 = from_point(conic.fPts[0]);
320         Sk2s p1 = from_point(conic.fPts[1]);
321         Sk2s p2 = from_point(conic.fPts[2]);
322         Sk2s ww(conic.fW);
323 
324         Sk2s p1w = p1 * ww;
325         fNumer.fC = p0;
326         fNumer.fA = p2 - times_2(p1w) + p0;
327         fNumer.fB = times_2(p1w - p0);
328 
329         fDenom.fC = Sk2s(1);
330         fDenom.fB = times_2(ww - fDenom.fC);
331         fDenom.fA = Sk2s(0) - fDenom.fB;
332     }
333 
evalSkConicCoeff334     Sk2s eval(SkScalar t) {
335         Sk2s tt(t);
336         Sk2s numer = fNumer.eval(tt);
337         Sk2s denom = fDenom.eval(tt);
338         return numer / denom;
339     }
340 
341     SkQuadCoeff fNumer;
342     SkQuadCoeff fDenom;
343 };
344 
345 struct SkCubicCoeff {
SkCubicCoeffSkCubicCoeff346     SkCubicCoeff(const SkPoint src[4]) {
347         Sk2s P0 = from_point(src[0]);
348         Sk2s P1 = from_point(src[1]);
349         Sk2s P2 = from_point(src[2]);
350         Sk2s P3 = from_point(src[3]);
351         Sk2s three(3);
352         fA = P3 + three * (P1 - P2) - P0;
353         fB = three * (P2 - times_2(P1) + P0);
354         fC = three * (P1 - P0);
355         fD = P0;
356     }
357 
evalSkCubicCoeff358     Sk2s eval(SkScalar t) {
359         Sk2s tt(t);
360         return eval(tt);
361     }
362 
evalSkCubicCoeff363     Sk2s eval(const Sk2s& t) {
364         return ((fA * t + fB) * t + fC) * t + fD;
365     }
366 
367     Sk2s fA;
368     Sk2s fB;
369     Sk2s fC;
370     Sk2s fD;
371 };
372 
373 }
374 
375 #include "SkTemplates.h"
376 
377 /**
378  *  Help class to allocate storage for approximating a conic with N quads.
379  */
380 class SkAutoConicToQuads {
381 public:
SkAutoConicToQuads()382     SkAutoConicToQuads() : fQuadCount(0) {}
383 
384     /**
385      *  Given a conic and a tolerance, return the array of points for the
386      *  approximating quad(s). Call countQuads() to know the number of quads
387      *  represented in these points.
388      *
389      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
390      *  there will be 9 points allocated as follows
391      *      quad[0] == pts[0..2]
392      *      quad[1] == pts[2..4]
393      *      quad[2] == pts[4..6]
394      *      quad[3] == pts[6..8]
395      */
computeQuads(const SkConic & conic,SkScalar tol)396     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
397         int pow2 = conic.computeQuadPOW2(tol);
398         fQuadCount = 1 << pow2;
399         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
400         fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2);
401         return pts;
402     }
403 
computeQuads(const SkPoint pts[3],SkScalar weight,SkScalar tol)404     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
405                                 SkScalar tol) {
406         SkConic conic;
407         conic.set(pts, weight);
408         return computeQuads(conic, tol);
409     }
410 
countQuads()411     int countQuads() const { return fQuadCount; }
412 
413 private:
414     enum {
415         kQuadCount = 8, // should handle most conics
416         kPointCount = 1 + 2 * kQuadCount,
417     };
418     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
419     int fQuadCount; // #quads for current usage
420 };
421 
422 #endif
423