1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides a class for OpenMP runtime code generation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGOpenMPRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/Bitcode/ReaderWriter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <cassert>
29
30 using namespace clang;
31 using namespace CodeGen;
32
33 namespace {
34 /// \brief Base class for handling code generation inside OpenMP regions.
35 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
36 public:
37 /// \brief Kinds of OpenMP regions used in codegen.
38 enum CGOpenMPRegionKind {
39 /// \brief Region with outlined function for standalone 'parallel'
40 /// directive.
41 ParallelOutlinedRegion,
42 /// \brief Region with outlined function for standalone 'task' directive.
43 TaskOutlinedRegion,
44 /// \brief Region for constructs that do not require function outlining,
45 /// like 'for', 'sections', 'atomic' etc. directives.
46 InlinedRegion,
47 /// \brief Region with outlined function for standalone 'target' directive.
48 TargetRegion,
49 };
50
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)51 CGOpenMPRegionInfo(const CapturedStmt &CS,
52 const CGOpenMPRegionKind RegionKind,
53 const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
54 bool HasCancel)
55 : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
56 CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
57
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)58 CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
59 const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
60 bool HasCancel)
61 : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
62 Kind(Kind), HasCancel(HasCancel) {}
63
64 /// \brief Get a variable or parameter for storing global thread id
65 /// inside OpenMP construct.
66 virtual const VarDecl *getThreadIDVariable() const = 0;
67
68 /// \brief Emit the captured statement body.
69 void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
70
71 /// \brief Get an LValue for the current ThreadID variable.
72 /// \return LValue for thread id variable. This LValue always has type int32*.
73 virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
74
emitUntiedSwitch(CodeGenFunction &)75 virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
76
getRegionKind() const77 CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
78
getDirectiveKind() const79 OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
80
hasCancel() const81 bool hasCancel() const { return HasCancel; }
82
classof(const CGCapturedStmtInfo * Info)83 static bool classof(const CGCapturedStmtInfo *Info) {
84 return Info->getKind() == CR_OpenMP;
85 }
86
87 ~CGOpenMPRegionInfo() override = default;
88
89 protected:
90 CGOpenMPRegionKind RegionKind;
91 RegionCodeGenTy CodeGen;
92 OpenMPDirectiveKind Kind;
93 bool HasCancel;
94 };
95
96 /// \brief API for captured statement code generation in OpenMP constructs.
97 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
98 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)99 CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
100 const RegionCodeGenTy &CodeGen,
101 OpenMPDirectiveKind Kind, bool HasCancel)
102 : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
103 HasCancel),
104 ThreadIDVar(ThreadIDVar) {
105 assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
106 }
107
108 /// \brief Get a variable or parameter for storing global thread id
109 /// inside OpenMP construct.
getThreadIDVariable() const110 const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
111
112 /// \brief Get the name of the capture helper.
getHelperName() const113 StringRef getHelperName() const override { return ".omp_outlined."; }
114
classof(const CGCapturedStmtInfo * Info)115 static bool classof(const CGCapturedStmtInfo *Info) {
116 return CGOpenMPRegionInfo::classof(Info) &&
117 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
118 ParallelOutlinedRegion;
119 }
120
121 private:
122 /// \brief A variable or parameter storing global thread id for OpenMP
123 /// constructs.
124 const VarDecl *ThreadIDVar;
125 };
126
127 /// \brief API for captured statement code generation in OpenMP constructs.
128 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
129 public:
130 class UntiedTaskActionTy final : public PrePostActionTy {
131 bool Untied;
132 const VarDecl *PartIDVar;
133 const RegionCodeGenTy UntiedCodeGen;
134 llvm::SwitchInst *UntiedSwitch = nullptr;
135
136 public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)137 UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
138 const RegionCodeGenTy &UntiedCodeGen)
139 : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)140 void Enter(CodeGenFunction &CGF) override {
141 if (Untied) {
142 // Emit task switching point.
143 auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
144 CGF.GetAddrOfLocalVar(PartIDVar),
145 PartIDVar->getType()->castAs<PointerType>());
146 auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation());
147 auto *DoneBB = CGF.createBasicBlock(".untied.done.");
148 UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
149 CGF.EmitBlock(DoneBB);
150 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
151 CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
152 UntiedSwitch->addCase(CGF.Builder.getInt32(0),
153 CGF.Builder.GetInsertBlock());
154 emitUntiedSwitch(CGF);
155 }
156 }
emitUntiedSwitch(CodeGenFunction & CGF) const157 void emitUntiedSwitch(CodeGenFunction &CGF) const {
158 if (Untied) {
159 auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
160 CGF.GetAddrOfLocalVar(PartIDVar),
161 PartIDVar->getType()->castAs<PointerType>());
162 CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
163 PartIdLVal);
164 UntiedCodeGen(CGF);
165 CodeGenFunction::JumpDest CurPoint =
166 CGF.getJumpDestInCurrentScope(".untied.next.");
167 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
168 CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
169 UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
170 CGF.Builder.GetInsertBlock());
171 CGF.EmitBranchThroughCleanup(CurPoint);
172 CGF.EmitBlock(CurPoint.getBlock());
173 }
174 }
getNumberOfParts() const175 unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
176 };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)177 CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
178 const VarDecl *ThreadIDVar,
179 const RegionCodeGenTy &CodeGen,
180 OpenMPDirectiveKind Kind, bool HasCancel,
181 const UntiedTaskActionTy &Action)
182 : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
183 ThreadIDVar(ThreadIDVar), Action(Action) {
184 assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
185 }
186
187 /// \brief Get a variable or parameter for storing global thread id
188 /// inside OpenMP construct.
getThreadIDVariable() const189 const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
190
191 /// \brief Get an LValue for the current ThreadID variable.
192 LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
193
194 /// \brief Get the name of the capture helper.
getHelperName() const195 StringRef getHelperName() const override { return ".omp_outlined."; }
196
emitUntiedSwitch(CodeGenFunction & CGF)197 void emitUntiedSwitch(CodeGenFunction &CGF) override {
198 Action.emitUntiedSwitch(CGF);
199 }
200
classof(const CGCapturedStmtInfo * Info)201 static bool classof(const CGCapturedStmtInfo *Info) {
202 return CGOpenMPRegionInfo::classof(Info) &&
203 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
204 TaskOutlinedRegion;
205 }
206
207 private:
208 /// \brief A variable or parameter storing global thread id for OpenMP
209 /// constructs.
210 const VarDecl *ThreadIDVar;
211 /// Action for emitting code for untied tasks.
212 const UntiedTaskActionTy &Action;
213 };
214
215 /// \brief API for inlined captured statement code generation in OpenMP
216 /// constructs.
217 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
218 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)219 CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
220 const RegionCodeGenTy &CodeGen,
221 OpenMPDirectiveKind Kind, bool HasCancel)
222 : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
223 OldCSI(OldCSI),
224 OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
225
226 // \brief Retrieve the value of the context parameter.
getContextValue() const227 llvm::Value *getContextValue() const override {
228 if (OuterRegionInfo)
229 return OuterRegionInfo->getContextValue();
230 llvm_unreachable("No context value for inlined OpenMP region");
231 }
232
setContextValue(llvm::Value * V)233 void setContextValue(llvm::Value *V) override {
234 if (OuterRegionInfo) {
235 OuterRegionInfo->setContextValue(V);
236 return;
237 }
238 llvm_unreachable("No context value for inlined OpenMP region");
239 }
240
241 /// \brief Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const242 const FieldDecl *lookup(const VarDecl *VD) const override {
243 if (OuterRegionInfo)
244 return OuterRegionInfo->lookup(VD);
245 // If there is no outer outlined region,no need to lookup in a list of
246 // captured variables, we can use the original one.
247 return nullptr;
248 }
249
getThisFieldDecl() const250 FieldDecl *getThisFieldDecl() const override {
251 if (OuterRegionInfo)
252 return OuterRegionInfo->getThisFieldDecl();
253 return nullptr;
254 }
255
256 /// \brief Get a variable or parameter for storing global thread id
257 /// inside OpenMP construct.
getThreadIDVariable() const258 const VarDecl *getThreadIDVariable() const override {
259 if (OuterRegionInfo)
260 return OuterRegionInfo->getThreadIDVariable();
261 return nullptr;
262 }
263
264 /// \brief Get the name of the capture helper.
getHelperName() const265 StringRef getHelperName() const override {
266 if (auto *OuterRegionInfo = getOldCSI())
267 return OuterRegionInfo->getHelperName();
268 llvm_unreachable("No helper name for inlined OpenMP construct");
269 }
270
emitUntiedSwitch(CodeGenFunction & CGF)271 void emitUntiedSwitch(CodeGenFunction &CGF) override {
272 if (OuterRegionInfo)
273 OuterRegionInfo->emitUntiedSwitch(CGF);
274 }
275
getOldCSI() const276 CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
277
classof(const CGCapturedStmtInfo * Info)278 static bool classof(const CGCapturedStmtInfo *Info) {
279 return CGOpenMPRegionInfo::classof(Info) &&
280 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
281 }
282
283 ~CGOpenMPInlinedRegionInfo() override = default;
284
285 private:
286 /// \brief CodeGen info about outer OpenMP region.
287 CodeGenFunction::CGCapturedStmtInfo *OldCSI;
288 CGOpenMPRegionInfo *OuterRegionInfo;
289 };
290
291 /// \brief API for captured statement code generation in OpenMP target
292 /// constructs. For this captures, implicit parameters are used instead of the
293 /// captured fields. The name of the target region has to be unique in a given
294 /// application so it is provided by the client, because only the client has
295 /// the information to generate that.
296 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
297 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)298 CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
299 const RegionCodeGenTy &CodeGen, StringRef HelperName)
300 : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
301 /*HasCancel=*/false),
302 HelperName(HelperName) {}
303
304 /// \brief This is unused for target regions because each starts executing
305 /// with a single thread.
getThreadIDVariable() const306 const VarDecl *getThreadIDVariable() const override { return nullptr; }
307
308 /// \brief Get the name of the capture helper.
getHelperName() const309 StringRef getHelperName() const override { return HelperName; }
310
classof(const CGCapturedStmtInfo * Info)311 static bool classof(const CGCapturedStmtInfo *Info) {
312 return CGOpenMPRegionInfo::classof(Info) &&
313 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
314 }
315
316 private:
317 StringRef HelperName;
318 };
319
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)320 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
321 llvm_unreachable("No codegen for expressions");
322 }
323 /// \brief API for generation of expressions captured in a innermost OpenMP
324 /// region.
325 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
326 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)327 CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
328 : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
329 OMPD_unknown,
330 /*HasCancel=*/false),
331 PrivScope(CGF) {
332 // Make sure the globals captured in the provided statement are local by
333 // using the privatization logic. We assume the same variable is not
334 // captured more than once.
335 for (auto &C : CS.captures()) {
336 if (!C.capturesVariable() && !C.capturesVariableByCopy())
337 continue;
338
339 const VarDecl *VD = C.getCapturedVar();
340 if (VD->isLocalVarDeclOrParm())
341 continue;
342
343 DeclRefExpr DRE(const_cast<VarDecl *>(VD),
344 /*RefersToEnclosingVariableOrCapture=*/false,
345 VD->getType().getNonReferenceType(), VK_LValue,
346 SourceLocation());
347 PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address {
348 return CGF.EmitLValue(&DRE).getAddress();
349 });
350 }
351 (void)PrivScope.Privatize();
352 }
353
354 /// \brief Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const355 const FieldDecl *lookup(const VarDecl *VD) const override {
356 if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
357 return FD;
358 return nullptr;
359 }
360
361 /// \brief Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)362 void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
363 llvm_unreachable("No body for expressions");
364 }
365
366 /// \brief Get a variable or parameter for storing global thread id
367 /// inside OpenMP construct.
getThreadIDVariable() const368 const VarDecl *getThreadIDVariable() const override {
369 llvm_unreachable("No thread id for expressions");
370 }
371
372 /// \brief Get the name of the capture helper.
getHelperName() const373 StringRef getHelperName() const override {
374 llvm_unreachable("No helper name for expressions");
375 }
376
classof(const CGCapturedStmtInfo * Info)377 static bool classof(const CGCapturedStmtInfo *Info) { return false; }
378
379 private:
380 /// Private scope to capture global variables.
381 CodeGenFunction::OMPPrivateScope PrivScope;
382 };
383
384 /// \brief RAII for emitting code of OpenMP constructs.
385 class InlinedOpenMPRegionRAII {
386 CodeGenFunction &CGF;
387 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
388 FieldDecl *LambdaThisCaptureField = nullptr;
389
390 public:
391 /// \brief Constructs region for combined constructs.
392 /// \param CodeGen Code generation sequence for combined directives. Includes
393 /// a list of functions used for code generation of implicitly inlined
394 /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)395 InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
396 OpenMPDirectiveKind Kind, bool HasCancel)
397 : CGF(CGF) {
398 // Start emission for the construct.
399 CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
400 CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
401 std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
402 LambdaThisCaptureField = CGF.LambdaThisCaptureField;
403 CGF.LambdaThisCaptureField = nullptr;
404 }
405
~InlinedOpenMPRegionRAII()406 ~InlinedOpenMPRegionRAII() {
407 // Restore original CapturedStmtInfo only if we're done with code emission.
408 auto *OldCSI =
409 cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
410 delete CGF.CapturedStmtInfo;
411 CGF.CapturedStmtInfo = OldCSI;
412 std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
413 CGF.LambdaThisCaptureField = LambdaThisCaptureField;
414 }
415 };
416
417 /// \brief Values for bit flags used in the ident_t to describe the fields.
418 /// All enumeric elements are named and described in accordance with the code
419 /// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
420 enum OpenMPLocationFlags {
421 /// \brief Use trampoline for internal microtask.
422 OMP_IDENT_IMD = 0x01,
423 /// \brief Use c-style ident structure.
424 OMP_IDENT_KMPC = 0x02,
425 /// \brief Atomic reduction option for kmpc_reduce.
426 OMP_ATOMIC_REDUCE = 0x10,
427 /// \brief Explicit 'barrier' directive.
428 OMP_IDENT_BARRIER_EXPL = 0x20,
429 /// \brief Implicit barrier in code.
430 OMP_IDENT_BARRIER_IMPL = 0x40,
431 /// \brief Implicit barrier in 'for' directive.
432 OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
433 /// \brief Implicit barrier in 'sections' directive.
434 OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
435 /// \brief Implicit barrier in 'single' directive.
436 OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140
437 };
438
439 /// \brief Describes ident structure that describes a source location.
440 /// All descriptions are taken from
441 /// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
442 /// Original structure:
443 /// typedef struct ident {
444 /// kmp_int32 reserved_1; /**< might be used in Fortran;
445 /// see above */
446 /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
447 /// KMP_IDENT_KMPC identifies this union
448 /// member */
449 /// kmp_int32 reserved_2; /**< not really used in Fortran any more;
450 /// see above */
451 ///#if USE_ITT_BUILD
452 /// /* but currently used for storing
453 /// region-specific ITT */
454 /// /* contextual information. */
455 ///#endif /* USE_ITT_BUILD */
456 /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
457 /// C++ */
458 /// char const *psource; /**< String describing the source location.
459 /// The string is composed of semi-colon separated
460 // fields which describe the source file,
461 /// the function and a pair of line numbers that
462 /// delimit the construct.
463 /// */
464 /// } ident_t;
465 enum IdentFieldIndex {
466 /// \brief might be used in Fortran
467 IdentField_Reserved_1,
468 /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
469 IdentField_Flags,
470 /// \brief Not really used in Fortran any more
471 IdentField_Reserved_2,
472 /// \brief Source[4] in Fortran, do not use for C++
473 IdentField_Reserved_3,
474 /// \brief String describing the source location. The string is composed of
475 /// semi-colon separated fields which describe the source file, the function
476 /// and a pair of line numbers that delimit the construct.
477 IdentField_PSource
478 };
479
480 /// \brief Schedule types for 'omp for' loops (these enumerators are taken from
481 /// the enum sched_type in kmp.h).
482 enum OpenMPSchedType {
483 /// \brief Lower bound for default (unordered) versions.
484 OMP_sch_lower = 32,
485 OMP_sch_static_chunked = 33,
486 OMP_sch_static = 34,
487 OMP_sch_dynamic_chunked = 35,
488 OMP_sch_guided_chunked = 36,
489 OMP_sch_runtime = 37,
490 OMP_sch_auto = 38,
491 /// static with chunk adjustment (e.g., simd)
492 OMP_sch_static_balanced_chunked = 45,
493 /// \brief Lower bound for 'ordered' versions.
494 OMP_ord_lower = 64,
495 OMP_ord_static_chunked = 65,
496 OMP_ord_static = 66,
497 OMP_ord_dynamic_chunked = 67,
498 OMP_ord_guided_chunked = 68,
499 OMP_ord_runtime = 69,
500 OMP_ord_auto = 70,
501 OMP_sch_default = OMP_sch_static,
502 /// \brief dist_schedule types
503 OMP_dist_sch_static_chunked = 91,
504 OMP_dist_sch_static = 92,
505 /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
506 /// Set if the monotonic schedule modifier was present.
507 OMP_sch_modifier_monotonic = (1 << 29),
508 /// Set if the nonmonotonic schedule modifier was present.
509 OMP_sch_modifier_nonmonotonic = (1 << 30),
510 };
511
512 enum OpenMPRTLFunction {
513 /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
514 /// kmpc_micro microtask, ...);
515 OMPRTL__kmpc_fork_call,
516 /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc,
517 /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
518 OMPRTL__kmpc_threadprivate_cached,
519 /// \brief Call to void __kmpc_threadprivate_register( ident_t *,
520 /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
521 OMPRTL__kmpc_threadprivate_register,
522 // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
523 OMPRTL__kmpc_global_thread_num,
524 // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
525 // kmp_critical_name *crit);
526 OMPRTL__kmpc_critical,
527 // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
528 // global_tid, kmp_critical_name *crit, uintptr_t hint);
529 OMPRTL__kmpc_critical_with_hint,
530 // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
531 // kmp_critical_name *crit);
532 OMPRTL__kmpc_end_critical,
533 // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
534 // global_tid);
535 OMPRTL__kmpc_cancel_barrier,
536 // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
537 OMPRTL__kmpc_barrier,
538 // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
539 OMPRTL__kmpc_for_static_fini,
540 // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
541 // global_tid);
542 OMPRTL__kmpc_serialized_parallel,
543 // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
544 // global_tid);
545 OMPRTL__kmpc_end_serialized_parallel,
546 // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
547 // kmp_int32 num_threads);
548 OMPRTL__kmpc_push_num_threads,
549 // Call to void __kmpc_flush(ident_t *loc);
550 OMPRTL__kmpc_flush,
551 // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
552 OMPRTL__kmpc_master,
553 // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
554 OMPRTL__kmpc_end_master,
555 // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
556 // int end_part);
557 OMPRTL__kmpc_omp_taskyield,
558 // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
559 OMPRTL__kmpc_single,
560 // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
561 OMPRTL__kmpc_end_single,
562 // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
563 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
564 // kmp_routine_entry_t *task_entry);
565 OMPRTL__kmpc_omp_task_alloc,
566 // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
567 // new_task);
568 OMPRTL__kmpc_omp_task,
569 // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
570 // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
571 // kmp_int32 didit);
572 OMPRTL__kmpc_copyprivate,
573 // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
574 // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
575 // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
576 OMPRTL__kmpc_reduce,
577 // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
578 // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
579 // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
580 // *lck);
581 OMPRTL__kmpc_reduce_nowait,
582 // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
583 // kmp_critical_name *lck);
584 OMPRTL__kmpc_end_reduce,
585 // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
586 // kmp_critical_name *lck);
587 OMPRTL__kmpc_end_reduce_nowait,
588 // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
589 // kmp_task_t * new_task);
590 OMPRTL__kmpc_omp_task_begin_if0,
591 // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
592 // kmp_task_t * new_task);
593 OMPRTL__kmpc_omp_task_complete_if0,
594 // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
595 OMPRTL__kmpc_ordered,
596 // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
597 OMPRTL__kmpc_end_ordered,
598 // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
599 // global_tid);
600 OMPRTL__kmpc_omp_taskwait,
601 // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
602 OMPRTL__kmpc_taskgroup,
603 // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
604 OMPRTL__kmpc_end_taskgroup,
605 // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
606 // int proc_bind);
607 OMPRTL__kmpc_push_proc_bind,
608 // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
609 // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
610 // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
611 OMPRTL__kmpc_omp_task_with_deps,
612 // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
613 // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
614 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
615 OMPRTL__kmpc_omp_wait_deps,
616 // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
617 // global_tid, kmp_int32 cncl_kind);
618 OMPRTL__kmpc_cancellationpoint,
619 // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
620 // kmp_int32 cncl_kind);
621 OMPRTL__kmpc_cancel,
622 // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
623 // kmp_int32 num_teams, kmp_int32 thread_limit);
624 OMPRTL__kmpc_push_num_teams,
625 // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
626 // microtask, ...);
627 OMPRTL__kmpc_fork_teams,
628 // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
629 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
630 // sched, kmp_uint64 grainsize, void *task_dup);
631 OMPRTL__kmpc_taskloop,
632 // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
633 // num_dims, struct kmp_dim *dims);
634 OMPRTL__kmpc_doacross_init,
635 // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
636 OMPRTL__kmpc_doacross_fini,
637 // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
638 // *vec);
639 OMPRTL__kmpc_doacross_post,
640 // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
641 // *vec);
642 OMPRTL__kmpc_doacross_wait,
643
644 //
645 // Offloading related calls
646 //
647 // Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
648 // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
649 // *arg_types);
650 OMPRTL__tgt_target,
651 // Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
652 // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
653 // int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
654 OMPRTL__tgt_target_teams,
655 // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
656 OMPRTL__tgt_register_lib,
657 // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
658 OMPRTL__tgt_unregister_lib,
659 // Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
660 // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
661 OMPRTL__tgt_target_data_begin,
662 // Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
663 // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
664 OMPRTL__tgt_target_data_end,
665 // Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
666 // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
667 OMPRTL__tgt_target_data_update,
668 };
669
670 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
671 /// region.
672 class CleanupTy final : public EHScopeStack::Cleanup {
673 PrePostActionTy *Action;
674
675 public:
CleanupTy(PrePostActionTy * Action)676 explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)677 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
678 if (!CGF.HaveInsertPoint())
679 return;
680 Action->Exit(CGF);
681 }
682 };
683
684 } // anonymous namespace
685
operator ()(CodeGenFunction & CGF) const686 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
687 CodeGenFunction::RunCleanupsScope Scope(CGF);
688 if (PrePostAction) {
689 CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
690 Callback(CodeGen, CGF, *PrePostAction);
691 } else {
692 PrePostActionTy Action;
693 Callback(CodeGen, CGF, Action);
694 }
695 }
696
getThreadIDVariableLValue(CodeGenFunction & CGF)697 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
698 return CGF.EmitLoadOfPointerLValue(
699 CGF.GetAddrOfLocalVar(getThreadIDVariable()),
700 getThreadIDVariable()->getType()->castAs<PointerType>());
701 }
702
EmitBody(CodeGenFunction & CGF,const Stmt *)703 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
704 if (!CGF.HaveInsertPoint())
705 return;
706 // 1.2.2 OpenMP Language Terminology
707 // Structured block - An executable statement with a single entry at the
708 // top and a single exit at the bottom.
709 // The point of exit cannot be a branch out of the structured block.
710 // longjmp() and throw() must not violate the entry/exit criteria.
711 CGF.EHStack.pushTerminate();
712 CodeGen(CGF);
713 CGF.EHStack.popTerminate();
714 }
715
getThreadIDVariableLValue(CodeGenFunction & CGF)716 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
717 CodeGenFunction &CGF) {
718 return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
719 getThreadIDVariable()->getType(),
720 AlignmentSource::Decl);
721 }
722
CGOpenMPRuntime(CodeGenModule & CGM)723 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
724 : CGM(CGM), OffloadEntriesInfoManager(CGM) {
725 IdentTy = llvm::StructType::create(
726 "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */,
727 CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */,
728 CGM.Int8PtrTy /* psource */, nullptr);
729 KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
730
731 loadOffloadInfoMetadata();
732 }
733
clear()734 void CGOpenMPRuntime::clear() {
735 InternalVars.clear();
736 }
737
738 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)739 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
740 const Expr *CombinerInitializer, const VarDecl *In,
741 const VarDecl *Out, bool IsCombiner) {
742 // void .omp_combiner.(Ty *in, Ty *out);
743 auto &C = CGM.getContext();
744 QualType PtrTy = C.getPointerType(Ty).withRestrict();
745 FunctionArgList Args;
746 ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
747 /*Id=*/nullptr, PtrTy);
748 ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
749 /*Id=*/nullptr, PtrTy);
750 Args.push_back(&OmpOutParm);
751 Args.push_back(&OmpInParm);
752 auto &FnInfo =
753 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
754 auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
755 auto *Fn = llvm::Function::Create(
756 FnTy, llvm::GlobalValue::InternalLinkage,
757 IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule());
758 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo);
759 Fn->addFnAttr(llvm::Attribute::AlwaysInline);
760 CodeGenFunction CGF(CGM);
761 // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
762 // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
763 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args);
764 CodeGenFunction::OMPPrivateScope Scope(CGF);
765 Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
766 Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address {
767 return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
768 .getAddress();
769 });
770 Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
771 Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address {
772 return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
773 .getAddress();
774 });
775 (void)Scope.Privatize();
776 CGF.EmitIgnoredExpr(CombinerInitializer);
777 Scope.ForceCleanup();
778 CGF.FinishFunction();
779 return Fn;
780 }
781
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)782 void CGOpenMPRuntime::emitUserDefinedReduction(
783 CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
784 if (UDRMap.count(D) > 0)
785 return;
786 auto &C = CGM.getContext();
787 if (!In || !Out) {
788 In = &C.Idents.get("omp_in");
789 Out = &C.Idents.get("omp_out");
790 }
791 llvm::Function *Combiner = emitCombinerOrInitializer(
792 CGM, D->getType(), D->getCombiner(), cast<VarDecl>(D->lookup(In).front()),
793 cast<VarDecl>(D->lookup(Out).front()),
794 /*IsCombiner=*/true);
795 llvm::Function *Initializer = nullptr;
796 if (auto *Init = D->getInitializer()) {
797 if (!Priv || !Orig) {
798 Priv = &C.Idents.get("omp_priv");
799 Orig = &C.Idents.get("omp_orig");
800 }
801 Initializer = emitCombinerOrInitializer(
802 CGM, D->getType(), Init, cast<VarDecl>(D->lookup(Orig).front()),
803 cast<VarDecl>(D->lookup(Priv).front()),
804 /*IsCombiner=*/false);
805 }
806 UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer)));
807 if (CGF) {
808 auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
809 Decls.second.push_back(D);
810 }
811 }
812
813 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)814 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
815 auto I = UDRMap.find(D);
816 if (I != UDRMap.end())
817 return I->second;
818 emitUserDefinedReduction(/*CGF=*/nullptr, D);
819 return UDRMap.lookup(D);
820 }
821
822 // Layout information for ident_t.
getIdentAlign(CodeGenModule & CGM)823 static CharUnits getIdentAlign(CodeGenModule &CGM) {
824 return CGM.getPointerAlign();
825 }
getIdentSize(CodeGenModule & CGM)826 static CharUnits getIdentSize(CodeGenModule &CGM) {
827 assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign()));
828 return CharUnits::fromQuantity(16) + CGM.getPointerSize();
829 }
getOffsetOfIdentField(IdentFieldIndex Field)830 static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) {
831 // All the fields except the last are i32, so this works beautifully.
832 return unsigned(Field) * CharUnits::fromQuantity(4);
833 }
createIdentFieldGEP(CodeGenFunction & CGF,Address Addr,IdentFieldIndex Field,const llvm::Twine & Name="")834 static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr,
835 IdentFieldIndex Field,
836 const llvm::Twine &Name = "") {
837 auto Offset = getOffsetOfIdentField(Field);
838 return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name);
839 }
840
emitParallelOrTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)841 llvm::Value *CGOpenMPRuntime::emitParallelOrTeamsOutlinedFunction(
842 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
843 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
844 assert(ThreadIDVar->getType()->isPointerType() &&
845 "thread id variable must be of type kmp_int32 *");
846 const CapturedStmt *CS = cast<CapturedStmt>(D.getAssociatedStmt());
847 CodeGenFunction CGF(CGM, true);
848 bool HasCancel = false;
849 if (auto *OPD = dyn_cast<OMPParallelDirective>(&D))
850 HasCancel = OPD->hasCancel();
851 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
852 HasCancel = OPSD->hasCancel();
853 else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
854 HasCancel = OPFD->hasCancel();
855 CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
856 HasCancel);
857 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
858 return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
859 }
860
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)861 llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction(
862 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
863 const VarDecl *PartIDVar, const VarDecl *TaskTVar,
864 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
865 bool Tied, unsigned &NumberOfParts) {
866 auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
867 PrePostActionTy &) {
868 auto *ThreadID = getThreadID(CGF, D.getLocStart());
869 auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart());
870 llvm::Value *TaskArgs[] = {
871 UpLoc, ThreadID,
872 CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
873 TaskTVar->getType()->castAs<PointerType>())
874 .getPointer()};
875 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
876 };
877 CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
878 UntiedCodeGen);
879 CodeGen.setAction(Action);
880 assert(!ThreadIDVar->getType()->isPointerType() &&
881 "thread id variable must be of type kmp_int32 for tasks");
882 auto *CS = cast<CapturedStmt>(D.getAssociatedStmt());
883 auto *TD = dyn_cast<OMPTaskDirective>(&D);
884 CodeGenFunction CGF(CGM, true);
885 CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
886 InnermostKind,
887 TD ? TD->hasCancel() : false, Action);
888 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
889 auto *Res = CGF.GenerateCapturedStmtFunction(*CS);
890 if (!Tied)
891 NumberOfParts = Action.getNumberOfParts();
892 return Res;
893 }
894
getOrCreateDefaultLocation(unsigned Flags)895 Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
896 CharUnits Align = getIdentAlign(CGM);
897 llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags);
898 if (!Entry) {
899 if (!DefaultOpenMPPSource) {
900 // Initialize default location for psource field of ident_t structure of
901 // all ident_t objects. Format is ";file;function;line;column;;".
902 // Taken from
903 // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
904 DefaultOpenMPPSource =
905 CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
906 DefaultOpenMPPSource =
907 llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
908 }
909 auto DefaultOpenMPLocation = new llvm::GlobalVariable(
910 CGM.getModule(), IdentTy, /*isConstant*/ true,
911 llvm::GlobalValue::PrivateLinkage, /*Initializer*/ nullptr);
912 DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
913 DefaultOpenMPLocation->setAlignment(Align.getQuantity());
914
915 llvm::Constant *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0, true);
916 llvm::Constant *Values[] = {Zero,
917 llvm::ConstantInt::get(CGM.Int32Ty, Flags),
918 Zero, Zero, DefaultOpenMPPSource};
919 llvm::Constant *Init = llvm::ConstantStruct::get(IdentTy, Values);
920 DefaultOpenMPLocation->setInitializer(Init);
921 OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation;
922 }
923 return Address(Entry, Align);
924 }
925
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)926 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
927 SourceLocation Loc,
928 unsigned Flags) {
929 Flags |= OMP_IDENT_KMPC;
930 // If no debug info is generated - return global default location.
931 if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
932 Loc.isInvalid())
933 return getOrCreateDefaultLocation(Flags).getPointer();
934
935 assert(CGF.CurFn && "No function in current CodeGenFunction.");
936
937 Address LocValue = Address::invalid();
938 auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
939 if (I != OpenMPLocThreadIDMap.end())
940 LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM));
941
942 // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
943 // GetOpenMPThreadID was called before this routine.
944 if (!LocValue.isValid()) {
945 // Generate "ident_t .kmpc_loc.addr;"
946 Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM),
947 ".kmpc_loc.addr");
948 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
949 Elem.second.DebugLoc = AI.getPointer();
950 LocValue = AI;
951
952 CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
953 CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
954 CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
955 CGM.getSize(getIdentSize(CGF.CGM)));
956 }
957
958 // char **psource = &.kmpc_loc_<flags>.addr.psource;
959 Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource);
960
961 auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
962 if (OMPDebugLoc == nullptr) {
963 SmallString<128> Buffer2;
964 llvm::raw_svector_ostream OS2(Buffer2);
965 // Build debug location
966 PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
967 OS2 << ";" << PLoc.getFilename() << ";";
968 if (const FunctionDecl *FD =
969 dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) {
970 OS2 << FD->getQualifiedNameAsString();
971 }
972 OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
973 OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
974 OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
975 }
976 // *psource = ";<File>;<Function>;<Line>;<Column>;;";
977 CGF.Builder.CreateStore(OMPDebugLoc, PSource);
978
979 // Our callers always pass this to a runtime function, so for
980 // convenience, go ahead and return a naked pointer.
981 return LocValue.getPointer();
982 }
983
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)984 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
985 SourceLocation Loc) {
986 assert(CGF.CurFn && "No function in current CodeGenFunction.");
987
988 llvm::Value *ThreadID = nullptr;
989 // Check whether we've already cached a load of the thread id in this
990 // function.
991 auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
992 if (I != OpenMPLocThreadIDMap.end()) {
993 ThreadID = I->second.ThreadID;
994 if (ThreadID != nullptr)
995 return ThreadID;
996 }
997 if (auto *OMPRegionInfo =
998 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
999 if (OMPRegionInfo->getThreadIDVariable()) {
1000 // Check if this an outlined function with thread id passed as argument.
1001 auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1002 ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal();
1003 // If value loaded in entry block, cache it and use it everywhere in
1004 // function.
1005 if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1006 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1007 Elem.second.ThreadID = ThreadID;
1008 }
1009 return ThreadID;
1010 }
1011 }
1012
1013 // This is not an outlined function region - need to call __kmpc_int32
1014 // kmpc_global_thread_num(ident_t *loc).
1015 // Generate thread id value and cache this value for use across the
1016 // function.
1017 CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1018 CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
1019 ThreadID =
1020 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
1021 emitUpdateLocation(CGF, Loc));
1022 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1023 Elem.second.ThreadID = ThreadID;
1024 return ThreadID;
1025 }
1026
functionFinished(CodeGenFunction & CGF)1027 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1028 assert(CGF.CurFn && "No function in current CodeGenFunction.");
1029 if (OpenMPLocThreadIDMap.count(CGF.CurFn))
1030 OpenMPLocThreadIDMap.erase(CGF.CurFn);
1031 if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1032 for(auto *D : FunctionUDRMap[CGF.CurFn]) {
1033 UDRMap.erase(D);
1034 }
1035 FunctionUDRMap.erase(CGF.CurFn);
1036 }
1037 }
1038
getIdentTyPointerTy()1039 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1040 if (!IdentTy) {
1041 }
1042 return llvm::PointerType::getUnqual(IdentTy);
1043 }
1044
getKmpc_MicroPointerTy()1045 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1046 if (!Kmpc_MicroTy) {
1047 // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1048 llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1049 llvm::PointerType::getUnqual(CGM.Int32Ty)};
1050 Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1051 }
1052 return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1053 }
1054
1055 llvm::Constant *
createRuntimeFunction(unsigned Function)1056 CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
1057 llvm::Constant *RTLFn = nullptr;
1058 switch (static_cast<OpenMPRTLFunction>(Function)) {
1059 case OMPRTL__kmpc_fork_call: {
1060 // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
1061 // microtask, ...);
1062 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1063 getKmpc_MicroPointerTy()};
1064 llvm::FunctionType *FnTy =
1065 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
1066 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
1067 break;
1068 }
1069 case OMPRTL__kmpc_global_thread_num: {
1070 // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
1071 llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1072 llvm::FunctionType *FnTy =
1073 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1074 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
1075 break;
1076 }
1077 case OMPRTL__kmpc_threadprivate_cached: {
1078 // Build void *__kmpc_threadprivate_cached(ident_t *loc,
1079 // kmp_int32 global_tid, void *data, size_t size, void ***cache);
1080 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1081 CGM.VoidPtrTy, CGM.SizeTy,
1082 CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
1083 llvm::FunctionType *FnTy =
1084 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
1085 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
1086 break;
1087 }
1088 case OMPRTL__kmpc_critical: {
1089 // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
1090 // kmp_critical_name *crit);
1091 llvm::Type *TypeParams[] = {
1092 getIdentTyPointerTy(), CGM.Int32Ty,
1093 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1094 llvm::FunctionType *FnTy =
1095 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1096 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
1097 break;
1098 }
1099 case OMPRTL__kmpc_critical_with_hint: {
1100 // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
1101 // kmp_critical_name *crit, uintptr_t hint);
1102 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1103 llvm::PointerType::getUnqual(KmpCriticalNameTy),
1104 CGM.IntPtrTy};
1105 llvm::FunctionType *FnTy =
1106 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1107 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
1108 break;
1109 }
1110 case OMPRTL__kmpc_threadprivate_register: {
1111 // Build void __kmpc_threadprivate_register(ident_t *, void *data,
1112 // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
1113 // typedef void *(*kmpc_ctor)(void *);
1114 auto KmpcCtorTy =
1115 llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1116 /*isVarArg*/ false)->getPointerTo();
1117 // typedef void *(*kmpc_cctor)(void *, void *);
1118 llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1119 auto KmpcCopyCtorTy =
1120 llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
1121 /*isVarArg*/ false)->getPointerTo();
1122 // typedef void (*kmpc_dtor)(void *);
1123 auto KmpcDtorTy =
1124 llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
1125 ->getPointerTo();
1126 llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
1127 KmpcCopyCtorTy, KmpcDtorTy};
1128 auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
1129 /*isVarArg*/ false);
1130 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
1131 break;
1132 }
1133 case OMPRTL__kmpc_end_critical: {
1134 // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
1135 // kmp_critical_name *crit);
1136 llvm::Type *TypeParams[] = {
1137 getIdentTyPointerTy(), CGM.Int32Ty,
1138 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1139 llvm::FunctionType *FnTy =
1140 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1141 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
1142 break;
1143 }
1144 case OMPRTL__kmpc_cancel_barrier: {
1145 // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
1146 // global_tid);
1147 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1148 llvm::FunctionType *FnTy =
1149 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1150 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
1151 break;
1152 }
1153 case OMPRTL__kmpc_barrier: {
1154 // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
1155 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1156 llvm::FunctionType *FnTy =
1157 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1158 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
1159 break;
1160 }
1161 case OMPRTL__kmpc_for_static_fini: {
1162 // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
1163 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1164 llvm::FunctionType *FnTy =
1165 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1166 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
1167 break;
1168 }
1169 case OMPRTL__kmpc_push_num_threads: {
1170 // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
1171 // kmp_int32 num_threads)
1172 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1173 CGM.Int32Ty};
1174 llvm::FunctionType *FnTy =
1175 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1176 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
1177 break;
1178 }
1179 case OMPRTL__kmpc_serialized_parallel: {
1180 // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
1181 // global_tid);
1182 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1183 llvm::FunctionType *FnTy =
1184 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1185 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
1186 break;
1187 }
1188 case OMPRTL__kmpc_end_serialized_parallel: {
1189 // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
1190 // global_tid);
1191 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1192 llvm::FunctionType *FnTy =
1193 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1194 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
1195 break;
1196 }
1197 case OMPRTL__kmpc_flush: {
1198 // Build void __kmpc_flush(ident_t *loc);
1199 llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1200 llvm::FunctionType *FnTy =
1201 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1202 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
1203 break;
1204 }
1205 case OMPRTL__kmpc_master: {
1206 // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
1207 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1208 llvm::FunctionType *FnTy =
1209 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1210 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
1211 break;
1212 }
1213 case OMPRTL__kmpc_end_master: {
1214 // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
1215 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1216 llvm::FunctionType *FnTy =
1217 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1218 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
1219 break;
1220 }
1221 case OMPRTL__kmpc_omp_taskyield: {
1222 // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
1223 // int end_part);
1224 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1225 llvm::FunctionType *FnTy =
1226 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1227 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
1228 break;
1229 }
1230 case OMPRTL__kmpc_single: {
1231 // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
1232 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1233 llvm::FunctionType *FnTy =
1234 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1235 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
1236 break;
1237 }
1238 case OMPRTL__kmpc_end_single: {
1239 // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
1240 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1241 llvm::FunctionType *FnTy =
1242 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1243 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
1244 break;
1245 }
1246 case OMPRTL__kmpc_omp_task_alloc: {
1247 // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
1248 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1249 // kmp_routine_entry_t *task_entry);
1250 assert(KmpRoutineEntryPtrTy != nullptr &&
1251 "Type kmp_routine_entry_t must be created.");
1252 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
1253 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
1254 // Return void * and then cast to particular kmp_task_t type.
1255 llvm::FunctionType *FnTy =
1256 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1257 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
1258 break;
1259 }
1260 case OMPRTL__kmpc_omp_task: {
1261 // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1262 // *new_task);
1263 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1264 CGM.VoidPtrTy};
1265 llvm::FunctionType *FnTy =
1266 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1267 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
1268 break;
1269 }
1270 case OMPRTL__kmpc_copyprivate: {
1271 // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
1272 // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
1273 // kmp_int32 didit);
1274 llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1275 auto *CpyFnTy =
1276 llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
1277 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
1278 CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
1279 CGM.Int32Ty};
1280 llvm::FunctionType *FnTy =
1281 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1282 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
1283 break;
1284 }
1285 case OMPRTL__kmpc_reduce: {
1286 // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
1287 // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
1288 // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
1289 llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1290 auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1291 /*isVarArg=*/false);
1292 llvm::Type *TypeParams[] = {
1293 getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1294 CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1295 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1296 llvm::FunctionType *FnTy =
1297 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1298 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
1299 break;
1300 }
1301 case OMPRTL__kmpc_reduce_nowait: {
1302 // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
1303 // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
1304 // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
1305 // *lck);
1306 llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1307 auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1308 /*isVarArg=*/false);
1309 llvm::Type *TypeParams[] = {
1310 getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1311 CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1312 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1313 llvm::FunctionType *FnTy =
1314 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1315 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
1316 break;
1317 }
1318 case OMPRTL__kmpc_end_reduce: {
1319 // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
1320 // kmp_critical_name *lck);
1321 llvm::Type *TypeParams[] = {
1322 getIdentTyPointerTy(), CGM.Int32Ty,
1323 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1324 llvm::FunctionType *FnTy =
1325 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1326 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
1327 break;
1328 }
1329 case OMPRTL__kmpc_end_reduce_nowait: {
1330 // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
1331 // kmp_critical_name *lck);
1332 llvm::Type *TypeParams[] = {
1333 getIdentTyPointerTy(), CGM.Int32Ty,
1334 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1335 llvm::FunctionType *FnTy =
1336 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1337 RTLFn =
1338 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
1339 break;
1340 }
1341 case OMPRTL__kmpc_omp_task_begin_if0: {
1342 // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1343 // *new_task);
1344 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1345 CGM.VoidPtrTy};
1346 llvm::FunctionType *FnTy =
1347 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1348 RTLFn =
1349 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
1350 break;
1351 }
1352 case OMPRTL__kmpc_omp_task_complete_if0: {
1353 // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1354 // *new_task);
1355 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1356 CGM.VoidPtrTy};
1357 llvm::FunctionType *FnTy =
1358 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1359 RTLFn = CGM.CreateRuntimeFunction(FnTy,
1360 /*Name=*/"__kmpc_omp_task_complete_if0");
1361 break;
1362 }
1363 case OMPRTL__kmpc_ordered: {
1364 // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
1365 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1366 llvm::FunctionType *FnTy =
1367 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1368 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
1369 break;
1370 }
1371 case OMPRTL__kmpc_end_ordered: {
1372 // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
1373 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1374 llvm::FunctionType *FnTy =
1375 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1376 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
1377 break;
1378 }
1379 case OMPRTL__kmpc_omp_taskwait: {
1380 // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
1381 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1382 llvm::FunctionType *FnTy =
1383 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1384 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
1385 break;
1386 }
1387 case OMPRTL__kmpc_taskgroup: {
1388 // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
1389 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1390 llvm::FunctionType *FnTy =
1391 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1392 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
1393 break;
1394 }
1395 case OMPRTL__kmpc_end_taskgroup: {
1396 // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
1397 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1398 llvm::FunctionType *FnTy =
1399 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1400 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
1401 break;
1402 }
1403 case OMPRTL__kmpc_push_proc_bind: {
1404 // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
1405 // int proc_bind)
1406 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1407 llvm::FunctionType *FnTy =
1408 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1409 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
1410 break;
1411 }
1412 case OMPRTL__kmpc_omp_task_with_deps: {
1413 // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
1414 // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
1415 // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
1416 llvm::Type *TypeParams[] = {
1417 getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
1418 CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
1419 llvm::FunctionType *FnTy =
1420 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1421 RTLFn =
1422 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
1423 break;
1424 }
1425 case OMPRTL__kmpc_omp_wait_deps: {
1426 // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
1427 // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
1428 // kmp_depend_info_t *noalias_dep_list);
1429 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1430 CGM.Int32Ty, CGM.VoidPtrTy,
1431 CGM.Int32Ty, CGM.VoidPtrTy};
1432 llvm::FunctionType *FnTy =
1433 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1434 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
1435 break;
1436 }
1437 case OMPRTL__kmpc_cancellationpoint: {
1438 // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
1439 // global_tid, kmp_int32 cncl_kind)
1440 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1441 llvm::FunctionType *FnTy =
1442 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1443 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
1444 break;
1445 }
1446 case OMPRTL__kmpc_cancel: {
1447 // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
1448 // kmp_int32 cncl_kind)
1449 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1450 llvm::FunctionType *FnTy =
1451 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1452 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
1453 break;
1454 }
1455 case OMPRTL__kmpc_push_num_teams: {
1456 // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
1457 // kmp_int32 num_teams, kmp_int32 num_threads)
1458 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
1459 CGM.Int32Ty};
1460 llvm::FunctionType *FnTy =
1461 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1462 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
1463 break;
1464 }
1465 case OMPRTL__kmpc_fork_teams: {
1466 // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
1467 // microtask, ...);
1468 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1469 getKmpc_MicroPointerTy()};
1470 llvm::FunctionType *FnTy =
1471 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
1472 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
1473 break;
1474 }
1475 case OMPRTL__kmpc_taskloop: {
1476 // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
1477 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
1478 // sched, kmp_uint64 grainsize, void *task_dup);
1479 llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
1480 CGM.IntTy,
1481 CGM.VoidPtrTy,
1482 CGM.IntTy,
1483 CGM.Int64Ty->getPointerTo(),
1484 CGM.Int64Ty->getPointerTo(),
1485 CGM.Int64Ty,
1486 CGM.IntTy,
1487 CGM.IntTy,
1488 CGM.Int64Ty,
1489 CGM.VoidPtrTy};
1490 llvm::FunctionType *FnTy =
1491 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1492 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
1493 break;
1494 }
1495 case OMPRTL__kmpc_doacross_init: {
1496 // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
1497 // num_dims, struct kmp_dim *dims);
1498 llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
1499 CGM.Int32Ty,
1500 CGM.Int32Ty,
1501 CGM.VoidPtrTy};
1502 llvm::FunctionType *FnTy =
1503 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1504 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
1505 break;
1506 }
1507 case OMPRTL__kmpc_doacross_fini: {
1508 // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
1509 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1510 llvm::FunctionType *FnTy =
1511 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1512 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
1513 break;
1514 }
1515 case OMPRTL__kmpc_doacross_post: {
1516 // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
1517 // *vec);
1518 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1519 CGM.Int64Ty->getPointerTo()};
1520 llvm::FunctionType *FnTy =
1521 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1522 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
1523 break;
1524 }
1525 case OMPRTL__kmpc_doacross_wait: {
1526 // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
1527 // *vec);
1528 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1529 CGM.Int64Ty->getPointerTo()};
1530 llvm::FunctionType *FnTy =
1531 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1532 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
1533 break;
1534 }
1535 case OMPRTL__tgt_target: {
1536 // Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
1537 // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
1538 // *arg_types);
1539 llvm::Type *TypeParams[] = {CGM.Int32Ty,
1540 CGM.VoidPtrTy,
1541 CGM.Int32Ty,
1542 CGM.VoidPtrPtrTy,
1543 CGM.VoidPtrPtrTy,
1544 CGM.SizeTy->getPointerTo(),
1545 CGM.Int32Ty->getPointerTo()};
1546 llvm::FunctionType *FnTy =
1547 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1548 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
1549 break;
1550 }
1551 case OMPRTL__tgt_target_teams: {
1552 // Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
1553 // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
1554 // int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
1555 llvm::Type *TypeParams[] = {CGM.Int32Ty,
1556 CGM.VoidPtrTy,
1557 CGM.Int32Ty,
1558 CGM.VoidPtrPtrTy,
1559 CGM.VoidPtrPtrTy,
1560 CGM.SizeTy->getPointerTo(),
1561 CGM.Int32Ty->getPointerTo(),
1562 CGM.Int32Ty,
1563 CGM.Int32Ty};
1564 llvm::FunctionType *FnTy =
1565 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1566 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
1567 break;
1568 }
1569 case OMPRTL__tgt_register_lib: {
1570 // Build void __tgt_register_lib(__tgt_bin_desc *desc);
1571 QualType ParamTy =
1572 CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
1573 llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
1574 llvm::FunctionType *FnTy =
1575 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1576 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
1577 break;
1578 }
1579 case OMPRTL__tgt_unregister_lib: {
1580 // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
1581 QualType ParamTy =
1582 CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
1583 llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
1584 llvm::FunctionType *FnTy =
1585 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1586 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
1587 break;
1588 }
1589 case OMPRTL__tgt_target_data_begin: {
1590 // Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
1591 // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
1592 llvm::Type *TypeParams[] = {CGM.Int32Ty,
1593 CGM.Int32Ty,
1594 CGM.VoidPtrPtrTy,
1595 CGM.VoidPtrPtrTy,
1596 CGM.SizeTy->getPointerTo(),
1597 CGM.Int32Ty->getPointerTo()};
1598 llvm::FunctionType *FnTy =
1599 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1600 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
1601 break;
1602 }
1603 case OMPRTL__tgt_target_data_end: {
1604 // Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
1605 // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
1606 llvm::Type *TypeParams[] = {CGM.Int32Ty,
1607 CGM.Int32Ty,
1608 CGM.VoidPtrPtrTy,
1609 CGM.VoidPtrPtrTy,
1610 CGM.SizeTy->getPointerTo(),
1611 CGM.Int32Ty->getPointerTo()};
1612 llvm::FunctionType *FnTy =
1613 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1614 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
1615 break;
1616 }
1617 case OMPRTL__tgt_target_data_update: {
1618 // Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
1619 // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
1620 llvm::Type *TypeParams[] = {CGM.Int32Ty,
1621 CGM.Int32Ty,
1622 CGM.VoidPtrPtrTy,
1623 CGM.VoidPtrPtrTy,
1624 CGM.SizeTy->getPointerTo(),
1625 CGM.Int32Ty->getPointerTo()};
1626 llvm::FunctionType *FnTy =
1627 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1628 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
1629 break;
1630 }
1631 }
1632 assert(RTLFn && "Unable to find OpenMP runtime function");
1633 return RTLFn;
1634 }
1635
createForStaticInitFunction(unsigned IVSize,bool IVSigned)1636 llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
1637 bool IVSigned) {
1638 assert((IVSize == 32 || IVSize == 64) &&
1639 "IV size is not compatible with the omp runtime");
1640 auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1641 : "__kmpc_for_static_init_4u")
1642 : (IVSigned ? "__kmpc_for_static_init_8"
1643 : "__kmpc_for_static_init_8u");
1644 auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1645 auto PtrTy = llvm::PointerType::getUnqual(ITy);
1646 llvm::Type *TypeParams[] = {
1647 getIdentTyPointerTy(), // loc
1648 CGM.Int32Ty, // tid
1649 CGM.Int32Ty, // schedtype
1650 llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1651 PtrTy, // p_lower
1652 PtrTy, // p_upper
1653 PtrTy, // p_stride
1654 ITy, // incr
1655 ITy // chunk
1656 };
1657 llvm::FunctionType *FnTy =
1658 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1659 return CGM.CreateRuntimeFunction(FnTy, Name);
1660 }
1661
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1662 llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
1663 bool IVSigned) {
1664 assert((IVSize == 32 || IVSize == 64) &&
1665 "IV size is not compatible with the omp runtime");
1666 auto Name =
1667 IVSize == 32
1668 ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1669 : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1670 auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1671 llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1672 CGM.Int32Ty, // tid
1673 CGM.Int32Ty, // schedtype
1674 ITy, // lower
1675 ITy, // upper
1676 ITy, // stride
1677 ITy // chunk
1678 };
1679 llvm::FunctionType *FnTy =
1680 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1681 return CGM.CreateRuntimeFunction(FnTy, Name);
1682 }
1683
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1684 llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
1685 bool IVSigned) {
1686 assert((IVSize == 32 || IVSize == 64) &&
1687 "IV size is not compatible with the omp runtime");
1688 auto Name =
1689 IVSize == 32
1690 ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1691 : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1692 llvm::Type *TypeParams[] = {
1693 getIdentTyPointerTy(), // loc
1694 CGM.Int32Ty, // tid
1695 };
1696 llvm::FunctionType *FnTy =
1697 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1698 return CGM.CreateRuntimeFunction(FnTy, Name);
1699 }
1700
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1701 llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
1702 bool IVSigned) {
1703 assert((IVSize == 32 || IVSize == 64) &&
1704 "IV size is not compatible with the omp runtime");
1705 auto Name =
1706 IVSize == 32
1707 ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1708 : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1709 auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1710 auto PtrTy = llvm::PointerType::getUnqual(ITy);
1711 llvm::Type *TypeParams[] = {
1712 getIdentTyPointerTy(), // loc
1713 CGM.Int32Ty, // tid
1714 llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1715 PtrTy, // p_lower
1716 PtrTy, // p_upper
1717 PtrTy // p_stride
1718 };
1719 llvm::FunctionType *FnTy =
1720 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1721 return CGM.CreateRuntimeFunction(FnTy, Name);
1722 }
1723
1724 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1725 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1726 assert(!CGM.getLangOpts().OpenMPUseTLS ||
1727 !CGM.getContext().getTargetInfo().isTLSSupported());
1728 // Lookup the entry, lazily creating it if necessary.
1729 return getOrCreateInternalVariable(CGM.Int8PtrPtrTy,
1730 Twine(CGM.getMangledName(VD)) + ".cache.");
1731 }
1732
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1733 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1734 const VarDecl *VD,
1735 Address VDAddr,
1736 SourceLocation Loc) {
1737 if (CGM.getLangOpts().OpenMPUseTLS &&
1738 CGM.getContext().getTargetInfo().isTLSSupported())
1739 return VDAddr;
1740
1741 auto VarTy = VDAddr.getElementType();
1742 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1743 CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1744 CGM.Int8PtrTy),
1745 CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1746 getOrCreateThreadPrivateCache(VD)};
1747 return Address(CGF.EmitRuntimeCall(
1748 createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
1749 VDAddr.getAlignment());
1750 }
1751
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1752 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1753 CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1754 llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1755 // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1756 // library.
1757 auto OMPLoc = emitUpdateLocation(CGF, Loc);
1758 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
1759 OMPLoc);
1760 // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1761 // to register constructor/destructor for variable.
1762 llvm::Value *Args[] = {OMPLoc,
1763 CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1764 CGM.VoidPtrTy),
1765 Ctor, CopyCtor, Dtor};
1766 CGF.EmitRuntimeCall(
1767 createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
1768 }
1769
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1770 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1771 const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1772 bool PerformInit, CodeGenFunction *CGF) {
1773 if (CGM.getLangOpts().OpenMPUseTLS &&
1774 CGM.getContext().getTargetInfo().isTLSSupported())
1775 return nullptr;
1776
1777 VD = VD->getDefinition(CGM.getContext());
1778 if (VD && ThreadPrivateWithDefinition.count(VD) == 0) {
1779 ThreadPrivateWithDefinition.insert(VD);
1780 QualType ASTTy = VD->getType();
1781
1782 llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1783 auto Init = VD->getAnyInitializer();
1784 if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1785 // Generate function that re-emits the declaration's initializer into the
1786 // threadprivate copy of the variable VD
1787 CodeGenFunction CtorCGF(CGM);
1788 FunctionArgList Args;
1789 ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
1790 /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
1791 Args.push_back(&Dst);
1792
1793 auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1794 CGM.getContext().VoidPtrTy, Args);
1795 auto FTy = CGM.getTypes().GetFunctionType(FI);
1796 auto Fn = CGM.CreateGlobalInitOrDestructFunction(
1797 FTy, ".__kmpc_global_ctor_.", FI, Loc);
1798 CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1799 Args, SourceLocation());
1800 auto ArgVal = CtorCGF.EmitLoadOfScalar(
1801 CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1802 CGM.getContext().VoidPtrTy, Dst.getLocation());
1803 Address Arg = Address(ArgVal, VDAddr.getAlignment());
1804 Arg = CtorCGF.Builder.CreateElementBitCast(Arg,
1805 CtorCGF.ConvertTypeForMem(ASTTy));
1806 CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1807 /*IsInitializer=*/true);
1808 ArgVal = CtorCGF.EmitLoadOfScalar(
1809 CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1810 CGM.getContext().VoidPtrTy, Dst.getLocation());
1811 CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1812 CtorCGF.FinishFunction();
1813 Ctor = Fn;
1814 }
1815 if (VD->getType().isDestructedType() != QualType::DK_none) {
1816 // Generate function that emits destructor call for the threadprivate copy
1817 // of the variable VD
1818 CodeGenFunction DtorCGF(CGM);
1819 FunctionArgList Args;
1820 ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
1821 /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
1822 Args.push_back(&Dst);
1823
1824 auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1825 CGM.getContext().VoidTy, Args);
1826 auto FTy = CGM.getTypes().GetFunctionType(FI);
1827 auto Fn = CGM.CreateGlobalInitOrDestructFunction(
1828 FTy, ".__kmpc_global_dtor_.", FI, Loc);
1829 auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1830 DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1831 SourceLocation());
1832 // Create a scope with an artificial location for the body of this function.
1833 auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1834 auto ArgVal = DtorCGF.EmitLoadOfScalar(
1835 DtorCGF.GetAddrOfLocalVar(&Dst),
1836 /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1837 DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
1838 DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1839 DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1840 DtorCGF.FinishFunction();
1841 Dtor = Fn;
1842 }
1843 // Do not emit init function if it is not required.
1844 if (!Ctor && !Dtor)
1845 return nullptr;
1846
1847 llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1848 auto CopyCtorTy =
1849 llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1850 /*isVarArg=*/false)->getPointerTo();
1851 // Copying constructor for the threadprivate variable.
1852 // Must be NULL - reserved by runtime, but currently it requires that this
1853 // parameter is always NULL. Otherwise it fires assertion.
1854 CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1855 if (Ctor == nullptr) {
1856 auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1857 /*isVarArg=*/false)->getPointerTo();
1858 Ctor = llvm::Constant::getNullValue(CtorTy);
1859 }
1860 if (Dtor == nullptr) {
1861 auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1862 /*isVarArg=*/false)->getPointerTo();
1863 Dtor = llvm::Constant::getNullValue(DtorTy);
1864 }
1865 if (!CGF) {
1866 auto InitFunctionTy =
1867 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1868 auto InitFunction = CGM.CreateGlobalInitOrDestructFunction(
1869 InitFunctionTy, ".__omp_threadprivate_init_.",
1870 CGM.getTypes().arrangeNullaryFunction());
1871 CodeGenFunction InitCGF(CGM);
1872 FunctionArgList ArgList;
1873 InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1874 CGM.getTypes().arrangeNullaryFunction(), ArgList,
1875 Loc);
1876 emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1877 InitCGF.FinishFunction();
1878 return InitFunction;
1879 }
1880 emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1881 }
1882 return nullptr;
1883 }
1884
1885 /// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
1886 /// function. Here is the logic:
1887 /// if (Cond) {
1888 /// ThenGen();
1889 /// } else {
1890 /// ElseGen();
1891 /// }
emitOMPIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)1892 static void emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
1893 const RegionCodeGenTy &ThenGen,
1894 const RegionCodeGenTy &ElseGen) {
1895 CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
1896
1897 // If the condition constant folds and can be elided, try to avoid emitting
1898 // the condition and the dead arm of the if/else.
1899 bool CondConstant;
1900 if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
1901 if (CondConstant)
1902 ThenGen(CGF);
1903 else
1904 ElseGen(CGF);
1905 return;
1906 }
1907
1908 // Otherwise, the condition did not fold, or we couldn't elide it. Just
1909 // emit the conditional branch.
1910 auto ThenBlock = CGF.createBasicBlock("omp_if.then");
1911 auto ElseBlock = CGF.createBasicBlock("omp_if.else");
1912 auto ContBlock = CGF.createBasicBlock("omp_if.end");
1913 CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
1914
1915 // Emit the 'then' code.
1916 CGF.EmitBlock(ThenBlock);
1917 ThenGen(CGF);
1918 CGF.EmitBranch(ContBlock);
1919 // Emit the 'else' code if present.
1920 // There is no need to emit line number for unconditional branch.
1921 (void)ApplyDebugLocation::CreateEmpty(CGF);
1922 CGF.EmitBlock(ElseBlock);
1923 ElseGen(CGF);
1924 // There is no need to emit line number for unconditional branch.
1925 (void)ApplyDebugLocation::CreateEmpty(CGF);
1926 CGF.EmitBranch(ContBlock);
1927 // Emit the continuation block for code after the if.
1928 CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
1929 }
1930
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)1931 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
1932 llvm::Value *OutlinedFn,
1933 ArrayRef<llvm::Value *> CapturedVars,
1934 const Expr *IfCond) {
1935 if (!CGF.HaveInsertPoint())
1936 return;
1937 auto *RTLoc = emitUpdateLocation(CGF, Loc);
1938 auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
1939 PrePostActionTy &) {
1940 // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
1941 auto &RT = CGF.CGM.getOpenMPRuntime();
1942 llvm::Value *Args[] = {
1943 RTLoc,
1944 CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
1945 CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
1946 llvm::SmallVector<llvm::Value *, 16> RealArgs;
1947 RealArgs.append(std::begin(Args), std::end(Args));
1948 RealArgs.append(CapturedVars.begin(), CapturedVars.end());
1949
1950 auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
1951 CGF.EmitRuntimeCall(RTLFn, RealArgs);
1952 };
1953 auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
1954 PrePostActionTy &) {
1955 auto &RT = CGF.CGM.getOpenMPRuntime();
1956 auto ThreadID = RT.getThreadID(CGF, Loc);
1957 // Build calls:
1958 // __kmpc_serialized_parallel(&Loc, GTid);
1959 llvm::Value *Args[] = {RTLoc, ThreadID};
1960 CGF.EmitRuntimeCall(
1961 RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
1962
1963 // OutlinedFn(>id, &zero, CapturedStruct);
1964 auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
1965 Address ZeroAddr =
1966 CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
1967 /*Name*/ ".zero.addr");
1968 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
1969 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1970 OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
1971 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1972 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1973 CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
1974
1975 // __kmpc_end_serialized_parallel(&Loc, GTid);
1976 llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
1977 CGF.EmitRuntimeCall(
1978 RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
1979 EndArgs);
1980 };
1981 if (IfCond)
1982 emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
1983 else {
1984 RegionCodeGenTy ThenRCG(ThenGen);
1985 ThenRCG(CGF);
1986 }
1987 }
1988
1989 // If we're inside an (outlined) parallel region, use the region info's
1990 // thread-ID variable (it is passed in a first argument of the outlined function
1991 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
1992 // regular serial code region, get thread ID by calling kmp_int32
1993 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
1994 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)1995 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
1996 SourceLocation Loc) {
1997 if (auto *OMPRegionInfo =
1998 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
1999 if (OMPRegionInfo->getThreadIDVariable())
2000 return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
2001
2002 auto ThreadID = getThreadID(CGF, Loc);
2003 auto Int32Ty =
2004 CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2005 auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2006 CGF.EmitStoreOfScalar(ThreadID,
2007 CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2008
2009 return ThreadIDTemp;
2010 }
2011
2012 llvm::Constant *
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name)2013 CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
2014 const llvm::Twine &Name) {
2015 SmallString<256> Buffer;
2016 llvm::raw_svector_ostream Out(Buffer);
2017 Out << Name;
2018 auto RuntimeName = Out.str();
2019 auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first;
2020 if (Elem.second) {
2021 assert(Elem.second->getType()->getPointerElementType() == Ty &&
2022 "OMP internal variable has different type than requested");
2023 return &*Elem.second;
2024 }
2025
2026 return Elem.second = new llvm::GlobalVariable(
2027 CGM.getModule(), Ty, /*IsConstant*/ false,
2028 llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2029 Elem.first());
2030 }
2031
getCriticalRegionLock(StringRef CriticalName)2032 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2033 llvm::Twine Name(".gomp_critical_user_", CriticalName);
2034 return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var"));
2035 }
2036
2037 namespace {
2038 /// Common pre(post)-action for different OpenMP constructs.
2039 class CommonActionTy final : public PrePostActionTy {
2040 llvm::Value *EnterCallee;
2041 ArrayRef<llvm::Value *> EnterArgs;
2042 llvm::Value *ExitCallee;
2043 ArrayRef<llvm::Value *> ExitArgs;
2044 bool Conditional;
2045 llvm::BasicBlock *ContBlock = nullptr;
2046
2047 public:
CommonActionTy(llvm::Value * EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::Value * ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2048 CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
2049 llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
2050 bool Conditional = false)
2051 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2052 ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2053 void Enter(CodeGenFunction &CGF) override {
2054 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2055 if (Conditional) {
2056 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2057 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2058 ContBlock = CGF.createBasicBlock("omp_if.end");
2059 // Generate the branch (If-stmt)
2060 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2061 CGF.EmitBlock(ThenBlock);
2062 }
2063 }
Done(CodeGenFunction & CGF)2064 void Done(CodeGenFunction &CGF) {
2065 // Emit the rest of blocks/branches
2066 CGF.EmitBranch(ContBlock);
2067 CGF.EmitBlock(ContBlock, true);
2068 }
Exit(CodeGenFunction & CGF)2069 void Exit(CodeGenFunction &CGF) override {
2070 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2071 }
2072 };
2073 } // anonymous namespace
2074
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2075 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2076 StringRef CriticalName,
2077 const RegionCodeGenTy &CriticalOpGen,
2078 SourceLocation Loc, const Expr *Hint) {
2079 // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2080 // CriticalOpGen();
2081 // __kmpc_end_critical(ident_t *, gtid, Lock);
2082 // Prepare arguments and build a call to __kmpc_critical
2083 if (!CGF.HaveInsertPoint())
2084 return;
2085 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2086 getCriticalRegionLock(CriticalName)};
2087 llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2088 std::end(Args));
2089 if (Hint) {
2090 EnterArgs.push_back(CGF.Builder.CreateIntCast(
2091 CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
2092 }
2093 CommonActionTy Action(
2094 createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
2095 : OMPRTL__kmpc_critical),
2096 EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
2097 CriticalOpGen.setAction(Action);
2098 emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2099 }
2100
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2101 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2102 const RegionCodeGenTy &MasterOpGen,
2103 SourceLocation Loc) {
2104 if (!CGF.HaveInsertPoint())
2105 return;
2106 // if(__kmpc_master(ident_t *, gtid)) {
2107 // MasterOpGen();
2108 // __kmpc_end_master(ident_t *, gtid);
2109 // }
2110 // Prepare arguments and build a call to __kmpc_master
2111 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2112 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
2113 createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
2114 /*Conditional=*/true);
2115 MasterOpGen.setAction(Action);
2116 emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2117 Action.Done(CGF);
2118 }
2119
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2120 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2121 SourceLocation Loc) {
2122 if (!CGF.HaveInsertPoint())
2123 return;
2124 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2125 llvm::Value *Args[] = {
2126 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2127 llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2128 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
2129 if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2130 Region->emitUntiedSwitch(CGF);
2131 }
2132
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2133 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2134 const RegionCodeGenTy &TaskgroupOpGen,
2135 SourceLocation Loc) {
2136 if (!CGF.HaveInsertPoint())
2137 return;
2138 // __kmpc_taskgroup(ident_t *, gtid);
2139 // TaskgroupOpGen();
2140 // __kmpc_end_taskgroup(ident_t *, gtid);
2141 // Prepare arguments and build a call to __kmpc_taskgroup
2142 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2143 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
2144 createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
2145 Args);
2146 TaskgroupOpGen.setAction(Action);
2147 emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2148 }
2149
2150 /// Given an array of pointers to variables, project the address of a
2151 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2152 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2153 unsigned Index, const VarDecl *Var) {
2154 // Pull out the pointer to the variable.
2155 Address PtrAddr =
2156 CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize());
2157 llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2158
2159 Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
2160 Addr = CGF.Builder.CreateElementBitCast(
2161 Addr, CGF.ConvertTypeForMem(Var->getType()));
2162 return Addr;
2163 }
2164
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)2165 static llvm::Value *emitCopyprivateCopyFunction(
2166 CodeGenModule &CGM, llvm::Type *ArgsType,
2167 ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2168 ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) {
2169 auto &C = CGM.getContext();
2170 // void copy_func(void *LHSArg, void *RHSArg);
2171 FunctionArgList Args;
2172 ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
2173 C.VoidPtrTy);
2174 ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
2175 C.VoidPtrTy);
2176 Args.push_back(&LHSArg);
2177 Args.push_back(&RHSArg);
2178 auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2179 auto *Fn = llvm::Function::Create(
2180 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2181 ".omp.copyprivate.copy_func", &CGM.getModule());
2182 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
2183 CodeGenFunction CGF(CGM);
2184 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
2185 // Dest = (void*[n])(LHSArg);
2186 // Src = (void*[n])(RHSArg);
2187 Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2188 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2189 ArgsType), CGF.getPointerAlign());
2190 Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2191 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2192 ArgsType), CGF.getPointerAlign());
2193 // *(Type0*)Dst[0] = *(Type0*)Src[0];
2194 // *(Type1*)Dst[1] = *(Type1*)Src[1];
2195 // ...
2196 // *(Typen*)Dst[n] = *(Typen*)Src[n];
2197 for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2198 auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2199 Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2200
2201 auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2202 Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2203
2204 auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2205 QualType Type = VD->getType();
2206 CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2207 }
2208 CGF.FinishFunction();
2209 return Fn;
2210 }
2211
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2212 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2213 const RegionCodeGenTy &SingleOpGen,
2214 SourceLocation Loc,
2215 ArrayRef<const Expr *> CopyprivateVars,
2216 ArrayRef<const Expr *> SrcExprs,
2217 ArrayRef<const Expr *> DstExprs,
2218 ArrayRef<const Expr *> AssignmentOps) {
2219 if (!CGF.HaveInsertPoint())
2220 return;
2221 assert(CopyprivateVars.size() == SrcExprs.size() &&
2222 CopyprivateVars.size() == DstExprs.size() &&
2223 CopyprivateVars.size() == AssignmentOps.size());
2224 auto &C = CGM.getContext();
2225 // int32 did_it = 0;
2226 // if(__kmpc_single(ident_t *, gtid)) {
2227 // SingleOpGen();
2228 // __kmpc_end_single(ident_t *, gtid);
2229 // did_it = 1;
2230 // }
2231 // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2232 // <copy_func>, did_it);
2233
2234 Address DidIt = Address::invalid();
2235 if (!CopyprivateVars.empty()) {
2236 // int32 did_it = 0;
2237 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2238 DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2239 CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2240 }
2241 // Prepare arguments and build a call to __kmpc_single
2242 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2243 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
2244 createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
2245 /*Conditional=*/true);
2246 SingleOpGen.setAction(Action);
2247 emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2248 if (DidIt.isValid()) {
2249 // did_it = 1;
2250 CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2251 }
2252 Action.Done(CGF);
2253 // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2254 // <copy_func>, did_it);
2255 if (DidIt.isValid()) {
2256 llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2257 auto CopyprivateArrayTy =
2258 C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
2259 /*IndexTypeQuals=*/0);
2260 // Create a list of all private variables for copyprivate.
2261 Address CopyprivateList =
2262 CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2263 for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2264 Address Elem = CGF.Builder.CreateConstArrayGEP(
2265 CopyprivateList, I, CGF.getPointerSize());
2266 CGF.Builder.CreateStore(
2267 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2268 CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
2269 Elem);
2270 }
2271 // Build function that copies private values from single region to all other
2272 // threads in the corresponding parallel region.
2273 auto *CpyFn = emitCopyprivateCopyFunction(
2274 CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
2275 CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
2276 auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2277 Address CL =
2278 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
2279 CGF.VoidPtrTy);
2280 auto *DidItVal = CGF.Builder.CreateLoad(DidIt);
2281 llvm::Value *Args[] = {
2282 emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2283 getThreadID(CGF, Loc), // i32 <gtid>
2284 BufSize, // size_t <buf_size>
2285 CL.getPointer(), // void *<copyprivate list>
2286 CpyFn, // void (*) (void *, void *) <copy_func>
2287 DidItVal // i32 did_it
2288 };
2289 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
2290 }
2291 }
2292
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2293 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2294 const RegionCodeGenTy &OrderedOpGen,
2295 SourceLocation Loc, bool IsThreads) {
2296 if (!CGF.HaveInsertPoint())
2297 return;
2298 // __kmpc_ordered(ident_t *, gtid);
2299 // OrderedOpGen();
2300 // __kmpc_end_ordered(ident_t *, gtid);
2301 // Prepare arguments and build a call to __kmpc_ordered
2302 if (IsThreads) {
2303 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2304 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
2305 createRuntimeFunction(OMPRTL__kmpc_end_ordered),
2306 Args);
2307 OrderedOpGen.setAction(Action);
2308 emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2309 return;
2310 }
2311 emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2312 }
2313
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2314 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2315 OpenMPDirectiveKind Kind, bool EmitChecks,
2316 bool ForceSimpleCall) {
2317 if (!CGF.HaveInsertPoint())
2318 return;
2319 // Build call __kmpc_cancel_barrier(loc, thread_id);
2320 // Build call __kmpc_barrier(loc, thread_id);
2321 unsigned Flags;
2322 if (Kind == OMPD_for)
2323 Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2324 else if (Kind == OMPD_sections)
2325 Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2326 else if (Kind == OMPD_single)
2327 Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2328 else if (Kind == OMPD_barrier)
2329 Flags = OMP_IDENT_BARRIER_EXPL;
2330 else
2331 Flags = OMP_IDENT_BARRIER_IMPL;
2332 // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2333 // thread_id);
2334 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2335 getThreadID(CGF, Loc)};
2336 if (auto *OMPRegionInfo =
2337 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
2338 if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2339 auto *Result = CGF.EmitRuntimeCall(
2340 createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
2341 if (EmitChecks) {
2342 // if (__kmpc_cancel_barrier()) {
2343 // exit from construct;
2344 // }
2345 auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
2346 auto *ContBB = CGF.createBasicBlock(".cancel.continue");
2347 auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
2348 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2349 CGF.EmitBlock(ExitBB);
2350 // exit from construct;
2351 auto CancelDestination =
2352 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2353 CGF.EmitBranchThroughCleanup(CancelDestination);
2354 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2355 }
2356 return;
2357 }
2358 }
2359 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
2360 }
2361
2362 /// \brief Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2363 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2364 bool Chunked, bool Ordered) {
2365 switch (ScheduleKind) {
2366 case OMPC_SCHEDULE_static:
2367 return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2368 : (Ordered ? OMP_ord_static : OMP_sch_static);
2369 case OMPC_SCHEDULE_dynamic:
2370 return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2371 case OMPC_SCHEDULE_guided:
2372 return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2373 case OMPC_SCHEDULE_runtime:
2374 return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2375 case OMPC_SCHEDULE_auto:
2376 return Ordered ? OMP_ord_auto : OMP_sch_auto;
2377 case OMPC_SCHEDULE_unknown:
2378 assert(!Chunked && "chunk was specified but schedule kind not known");
2379 return Ordered ? OMP_ord_static : OMP_sch_static;
2380 }
2381 llvm_unreachable("Unexpected runtime schedule");
2382 }
2383
2384 /// \brief Map the OpenMP distribute schedule to the runtime enumeration.
2385 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2386 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2387 // only static is allowed for dist_schedule
2388 return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2389 }
2390
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2391 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2392 bool Chunked) const {
2393 auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2394 return Schedule == OMP_sch_static;
2395 }
2396
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2397 bool CGOpenMPRuntime::isStaticNonchunked(
2398 OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2399 auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2400 return Schedule == OMP_dist_sch_static;
2401 }
2402
2403
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2404 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2405 auto Schedule =
2406 getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2407 assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2408 return Schedule != OMP_sch_static;
2409 }
2410
addMonoNonMonoModifier(OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2411 static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
2412 OpenMPScheduleClauseModifier M1,
2413 OpenMPScheduleClauseModifier M2) {
2414 int Modifier = 0;
2415 switch (M1) {
2416 case OMPC_SCHEDULE_MODIFIER_monotonic:
2417 Modifier = OMP_sch_modifier_monotonic;
2418 break;
2419 case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2420 Modifier = OMP_sch_modifier_nonmonotonic;
2421 break;
2422 case OMPC_SCHEDULE_MODIFIER_simd:
2423 if (Schedule == OMP_sch_static_chunked)
2424 Schedule = OMP_sch_static_balanced_chunked;
2425 break;
2426 case OMPC_SCHEDULE_MODIFIER_last:
2427 case OMPC_SCHEDULE_MODIFIER_unknown:
2428 break;
2429 }
2430 switch (M2) {
2431 case OMPC_SCHEDULE_MODIFIER_monotonic:
2432 Modifier = OMP_sch_modifier_monotonic;
2433 break;
2434 case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2435 Modifier = OMP_sch_modifier_nonmonotonic;
2436 break;
2437 case OMPC_SCHEDULE_MODIFIER_simd:
2438 if (Schedule == OMP_sch_static_chunked)
2439 Schedule = OMP_sch_static_balanced_chunked;
2440 break;
2441 case OMPC_SCHEDULE_MODIFIER_last:
2442 case OMPC_SCHEDULE_MODIFIER_unknown:
2443 break;
2444 }
2445 return Schedule | Modifier;
2446 }
2447
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,llvm::Value * UB,llvm::Value * Chunk)2448 void CGOpenMPRuntime::emitForDispatchInit(CodeGenFunction &CGF,
2449 SourceLocation Loc,
2450 const OpenMPScheduleTy &ScheduleKind,
2451 unsigned IVSize, bool IVSigned,
2452 bool Ordered, llvm::Value *UB,
2453 llvm::Value *Chunk) {
2454 if (!CGF.HaveInsertPoint())
2455 return;
2456 OpenMPSchedType Schedule =
2457 getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
2458 assert(Ordered ||
2459 (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2460 Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2461 Schedule != OMP_sch_static_balanced_chunked));
2462 // Call __kmpc_dispatch_init(
2463 // ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2464 // kmp_int[32|64] lower, kmp_int[32|64] upper,
2465 // kmp_int[32|64] stride, kmp_int[32|64] chunk);
2466
2467 // If the Chunk was not specified in the clause - use default value 1.
2468 if (Chunk == nullptr)
2469 Chunk = CGF.Builder.getIntN(IVSize, 1);
2470 llvm::Value *Args[] = {
2471 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2472 CGF.Builder.getInt32(addMonoNonMonoModifier(
2473 Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2474 CGF.Builder.getIntN(IVSize, 0), // Lower
2475 UB, // Upper
2476 CGF.Builder.getIntN(IVSize, 1), // Stride
2477 Chunk // Chunk
2478 };
2479 CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2480 }
2481
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::Constant * ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,unsigned IVSize,bool Ordered,Address IL,Address LB,Address UB,Address ST,llvm::Value * Chunk)2482 static void emitForStaticInitCall(
2483 CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2484 llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule,
2485 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2486 unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB,
2487 Address ST, llvm::Value *Chunk) {
2488 if (!CGF.HaveInsertPoint())
2489 return;
2490
2491 assert(!Ordered);
2492 assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2493 Schedule == OMP_sch_static_balanced_chunked ||
2494 Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2495 Schedule == OMP_dist_sch_static ||
2496 Schedule == OMP_dist_sch_static_chunked);
2497
2498 // Call __kmpc_for_static_init(
2499 // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2500 // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2501 // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2502 // kmp_int[32|64] incr, kmp_int[32|64] chunk);
2503 if (Chunk == nullptr) {
2504 assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2505 Schedule == OMP_dist_sch_static) &&
2506 "expected static non-chunked schedule");
2507 // If the Chunk was not specified in the clause - use default value 1.
2508 Chunk = CGF.Builder.getIntN(IVSize, 1);
2509 } else {
2510 assert((Schedule == OMP_sch_static_chunked ||
2511 Schedule == OMP_sch_static_balanced_chunked ||
2512 Schedule == OMP_ord_static_chunked ||
2513 Schedule == OMP_dist_sch_static_chunked) &&
2514 "expected static chunked schedule");
2515 }
2516 llvm::Value *Args[] = {
2517 UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier(
2518 Schedule, M1, M2)), // Schedule type
2519 IL.getPointer(), // &isLastIter
2520 LB.getPointer(), // &LB
2521 UB.getPointer(), // &UB
2522 ST.getPointer(), // &Stride
2523 CGF.Builder.getIntN(IVSize, 1), // Incr
2524 Chunk // Chunk
2525 };
2526 CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2527 }
2528
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,Address IL,Address LB,Address UB,Address ST,llvm::Value * Chunk)2529 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2530 SourceLocation Loc,
2531 const OpenMPScheduleTy &ScheduleKind,
2532 unsigned IVSize, bool IVSigned,
2533 bool Ordered, Address IL, Address LB,
2534 Address UB, Address ST,
2535 llvm::Value *Chunk) {
2536 OpenMPSchedType ScheduleNum =
2537 getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
2538 auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
2539 auto *ThreadId = getThreadID(CGF, Loc);
2540 auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
2541 emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2542 ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize,
2543 Ordered, IL, LB, UB, ST, Chunk);
2544 }
2545
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,unsigned IVSize,bool IVSigned,bool Ordered,Address IL,Address LB,Address UB,Address ST,llvm::Value * Chunk)2546 void CGOpenMPRuntime::emitDistributeStaticInit(
2547 CodeGenFunction &CGF, SourceLocation Loc,
2548 OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned,
2549 bool Ordered, Address IL, Address LB, Address UB, Address ST,
2550 llvm::Value *Chunk) {
2551 OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr);
2552 auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
2553 auto *ThreadId = getThreadID(CGF, Loc);
2554 auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
2555 emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2556 ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2557 OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB,
2558 UB, ST, Chunk);
2559 }
2560
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc)2561 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2562 SourceLocation Loc) {
2563 if (!CGF.HaveInsertPoint())
2564 return;
2565 // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2566 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2567 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
2568 Args);
2569 }
2570
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2571 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2572 SourceLocation Loc,
2573 unsigned IVSize,
2574 bool IVSigned) {
2575 if (!CGF.HaveInsertPoint())
2576 return;
2577 // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2578 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2579 CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2580 }
2581
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2582 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2583 SourceLocation Loc, unsigned IVSize,
2584 bool IVSigned, Address IL,
2585 Address LB, Address UB,
2586 Address ST) {
2587 // Call __kmpc_dispatch_next(
2588 // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2589 // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2590 // kmp_int[32|64] *p_stride);
2591 llvm::Value *Args[] = {
2592 emitUpdateLocation(CGF, Loc),
2593 getThreadID(CGF, Loc),
2594 IL.getPointer(), // &isLastIter
2595 LB.getPointer(), // &Lower
2596 UB.getPointer(), // &Upper
2597 ST.getPointer() // &Stride
2598 };
2599 llvm::Value *Call =
2600 CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2601 return CGF.EmitScalarConversion(
2602 Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true),
2603 CGF.getContext().BoolTy, Loc);
2604 }
2605
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2606 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2607 llvm::Value *NumThreads,
2608 SourceLocation Loc) {
2609 if (!CGF.HaveInsertPoint())
2610 return;
2611 // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2612 llvm::Value *Args[] = {
2613 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2614 CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2615 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
2616 Args);
2617 }
2618
emitProcBindClause(CodeGenFunction & CGF,OpenMPProcBindClauseKind ProcBind,SourceLocation Loc)2619 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2620 OpenMPProcBindClauseKind ProcBind,
2621 SourceLocation Loc) {
2622 if (!CGF.HaveInsertPoint())
2623 return;
2624 // Constants for proc bind value accepted by the runtime.
2625 enum ProcBindTy {
2626 ProcBindFalse = 0,
2627 ProcBindTrue,
2628 ProcBindMaster,
2629 ProcBindClose,
2630 ProcBindSpread,
2631 ProcBindIntel,
2632 ProcBindDefault
2633 } RuntimeProcBind;
2634 switch (ProcBind) {
2635 case OMPC_PROC_BIND_master:
2636 RuntimeProcBind = ProcBindMaster;
2637 break;
2638 case OMPC_PROC_BIND_close:
2639 RuntimeProcBind = ProcBindClose;
2640 break;
2641 case OMPC_PROC_BIND_spread:
2642 RuntimeProcBind = ProcBindSpread;
2643 break;
2644 case OMPC_PROC_BIND_unknown:
2645 llvm_unreachable("Unsupported proc_bind value.");
2646 }
2647 // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2648 llvm::Value *Args[] = {
2649 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2650 llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
2651 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
2652 }
2653
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc)2654 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2655 SourceLocation Loc) {
2656 if (!CGF.HaveInsertPoint())
2657 return;
2658 // Build call void __kmpc_flush(ident_t *loc)
2659 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
2660 emitUpdateLocation(CGF, Loc));
2661 }
2662
2663 namespace {
2664 /// \brief Indexes of fields for type kmp_task_t.
2665 enum KmpTaskTFields {
2666 /// \brief List of shared variables.
2667 KmpTaskTShareds,
2668 /// \brief Task routine.
2669 KmpTaskTRoutine,
2670 /// \brief Partition id for the untied tasks.
2671 KmpTaskTPartId,
2672 /// Function with call of destructors for private variables.
2673 Data1,
2674 /// Task priority.
2675 Data2,
2676 /// (Taskloops only) Lower bound.
2677 KmpTaskTLowerBound,
2678 /// (Taskloops only) Upper bound.
2679 KmpTaskTUpperBound,
2680 /// (Taskloops only) Stride.
2681 KmpTaskTStride,
2682 /// (Taskloops only) Is last iteration flag.
2683 KmpTaskTLastIter,
2684 };
2685 } // anonymous namespace
2686
empty() const2687 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
2688 // FIXME: Add other entries type when they become supported.
2689 return OffloadEntriesTargetRegion.empty();
2690 }
2691
2692 /// \brief Initialize target region entry.
2693 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)2694 initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2695 StringRef ParentName, unsigned LineNum,
2696 unsigned Order) {
2697 assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2698 "only required for the device "
2699 "code generation.");
2700 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
2701 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr);
2702 ++OffloadingEntriesNum;
2703 }
2704
2705 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID)2706 registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2707 StringRef ParentName, unsigned LineNum,
2708 llvm::Constant *Addr, llvm::Constant *ID) {
2709 // If we are emitting code for a target, the entry is already initialized,
2710 // only has to be registered.
2711 if (CGM.getLangOpts().OpenMPIsDevice) {
2712 assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
2713 "Entry must exist.");
2714 auto &Entry =
2715 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
2716 assert(Entry.isValid() && "Entry not initialized!");
2717 Entry.setAddress(Addr);
2718 Entry.setID(ID);
2719 return;
2720 } else {
2721 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID);
2722 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
2723 }
2724 }
2725
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum) const2726 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
2727 unsigned DeviceID, unsigned FileID, StringRef ParentName,
2728 unsigned LineNum) const {
2729 auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
2730 if (PerDevice == OffloadEntriesTargetRegion.end())
2731 return false;
2732 auto PerFile = PerDevice->second.find(FileID);
2733 if (PerFile == PerDevice->second.end())
2734 return false;
2735 auto PerParentName = PerFile->second.find(ParentName);
2736 if (PerParentName == PerFile->second.end())
2737 return false;
2738 auto PerLine = PerParentName->second.find(LineNum);
2739 if (PerLine == PerParentName->second.end())
2740 return false;
2741 // Fail if this entry is already registered.
2742 if (PerLine->second.getAddress() || PerLine->second.getID())
2743 return false;
2744 return true;
2745 }
2746
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)2747 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
2748 const OffloadTargetRegionEntryInfoActTy &Action) {
2749 // Scan all target region entries and perform the provided action.
2750 for (auto &D : OffloadEntriesTargetRegion)
2751 for (auto &F : D.second)
2752 for (auto &P : F.second)
2753 for (auto &L : P.second)
2754 Action(D.first, F.first, P.first(), L.first, L.second);
2755 }
2756
2757 /// \brief Create a Ctor/Dtor-like function whose body is emitted through
2758 /// \a Codegen. This is used to emit the two functions that register and
2759 /// unregister the descriptor of the current compilation unit.
2760 static llvm::Function *
createOffloadingBinaryDescriptorFunction(CodeGenModule & CGM,StringRef Name,const RegionCodeGenTy & Codegen)2761 createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name,
2762 const RegionCodeGenTy &Codegen) {
2763 auto &C = CGM.getContext();
2764 FunctionArgList Args;
2765 ImplicitParamDecl DummyPtr(C, /*DC=*/nullptr, SourceLocation(),
2766 /*Id=*/nullptr, C.VoidPtrTy);
2767 Args.push_back(&DummyPtr);
2768
2769 CodeGenFunction CGF(CGM);
2770 GlobalDecl();
2771 auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2772 auto FTy = CGM.getTypes().GetFunctionType(FI);
2773 auto *Fn =
2774 CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation());
2775 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation());
2776 Codegen(CGF);
2777 CGF.FinishFunction();
2778 return Fn;
2779 }
2780
2781 llvm::Function *
createOffloadingBinaryDescriptorRegistration()2782 CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
2783
2784 // If we don't have entries or if we are emitting code for the device, we
2785 // don't need to do anything.
2786 if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
2787 return nullptr;
2788
2789 auto &M = CGM.getModule();
2790 auto &C = CGM.getContext();
2791
2792 // Get list of devices we care about
2793 auto &Devices = CGM.getLangOpts().OMPTargetTriples;
2794
2795 // We should be creating an offloading descriptor only if there are devices
2796 // specified.
2797 assert(!Devices.empty() && "No OpenMP offloading devices??");
2798
2799 // Create the external variables that will point to the begin and end of the
2800 // host entries section. These will be defined by the linker.
2801 auto *OffloadEntryTy =
2802 CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
2803 llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable(
2804 M, OffloadEntryTy, /*isConstant=*/true,
2805 llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
2806 ".omp_offloading.entries_begin");
2807 llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable(
2808 M, OffloadEntryTy, /*isConstant=*/true,
2809 llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
2810 ".omp_offloading.entries_end");
2811
2812 // Create all device images
2813 llvm::SmallVector<llvm::Constant *, 4> DeviceImagesEntires;
2814 auto *DeviceImageTy = cast<llvm::StructType>(
2815 CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
2816
2817 for (unsigned i = 0; i < Devices.size(); ++i) {
2818 StringRef T = Devices[i].getTriple();
2819 auto *ImgBegin = new llvm::GlobalVariable(
2820 M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
2821 /*Initializer=*/nullptr,
2822 Twine(".omp_offloading.img_start.") + Twine(T));
2823 auto *ImgEnd = new llvm::GlobalVariable(
2824 M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
2825 /*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T));
2826
2827 llvm::Constant *Dev =
2828 llvm::ConstantStruct::get(DeviceImageTy, ImgBegin, ImgEnd,
2829 HostEntriesBegin, HostEntriesEnd, nullptr);
2830 DeviceImagesEntires.push_back(Dev);
2831 }
2832
2833 // Create device images global array.
2834 llvm::ArrayType *DeviceImagesInitTy =
2835 llvm::ArrayType::get(DeviceImageTy, DeviceImagesEntires.size());
2836 llvm::Constant *DeviceImagesInit =
2837 llvm::ConstantArray::get(DeviceImagesInitTy, DeviceImagesEntires);
2838
2839 llvm::GlobalVariable *DeviceImages = new llvm::GlobalVariable(
2840 M, DeviceImagesInitTy, /*isConstant=*/true,
2841 llvm::GlobalValue::InternalLinkage, DeviceImagesInit,
2842 ".omp_offloading.device_images");
2843 DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2844
2845 // This is a Zero array to be used in the creation of the constant expressions
2846 llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
2847 llvm::Constant::getNullValue(CGM.Int32Ty)};
2848
2849 // Create the target region descriptor.
2850 auto *BinaryDescriptorTy = cast<llvm::StructType>(
2851 CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy()));
2852 llvm::Constant *TargetRegionsDescriptorInit = llvm::ConstantStruct::get(
2853 BinaryDescriptorTy, llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
2854 llvm::ConstantExpr::getGetElementPtr(DeviceImagesInitTy, DeviceImages,
2855 Index),
2856 HostEntriesBegin, HostEntriesEnd, nullptr);
2857
2858 auto *Desc = new llvm::GlobalVariable(
2859 M, BinaryDescriptorTy, /*isConstant=*/true,
2860 llvm::GlobalValue::InternalLinkage, TargetRegionsDescriptorInit,
2861 ".omp_offloading.descriptor");
2862
2863 // Emit code to register or unregister the descriptor at execution
2864 // startup or closing, respectively.
2865
2866 // Create a variable to drive the registration and unregistration of the
2867 // descriptor, so we can reuse the logic that emits Ctors and Dtors.
2868 auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var");
2869 ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(),
2870 IdentInfo, C.CharTy);
2871
2872 auto *UnRegFn = createOffloadingBinaryDescriptorFunction(
2873 CGM, ".omp_offloading.descriptor_unreg",
2874 [&](CodeGenFunction &CGF, PrePostActionTy &) {
2875 CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
2876 Desc);
2877 });
2878 auto *RegFn = createOffloadingBinaryDescriptorFunction(
2879 CGM, ".omp_offloading.descriptor_reg",
2880 [&](CodeGenFunction &CGF, PrePostActionTy &) {
2881 CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib),
2882 Desc);
2883 CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
2884 });
2885 return RegFn;
2886 }
2887
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size)2888 void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID,
2889 llvm::Constant *Addr, uint64_t Size) {
2890 StringRef Name = Addr->getName();
2891 auto *TgtOffloadEntryType = cast<llvm::StructType>(
2892 CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()));
2893 llvm::LLVMContext &C = CGM.getModule().getContext();
2894 llvm::Module &M = CGM.getModule();
2895
2896 // Make sure the address has the right type.
2897 llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy);
2898
2899 // Create constant string with the name.
2900 llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
2901
2902 llvm::GlobalVariable *Str =
2903 new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true,
2904 llvm::GlobalValue::InternalLinkage, StrPtrInit,
2905 ".omp_offloading.entry_name");
2906 Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2907 llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy);
2908
2909 // Create the entry struct.
2910 llvm::Constant *EntryInit = llvm::ConstantStruct::get(
2911 TgtOffloadEntryType, AddrPtr, StrPtr,
2912 llvm::ConstantInt::get(CGM.SizeTy, Size), nullptr);
2913 llvm::GlobalVariable *Entry = new llvm::GlobalVariable(
2914 M, TgtOffloadEntryType, true, llvm::GlobalValue::ExternalLinkage,
2915 EntryInit, ".omp_offloading.entry");
2916
2917 // The entry has to be created in the section the linker expects it to be.
2918 Entry->setSection(".omp_offloading.entries");
2919 // We can't have any padding between symbols, so we need to have 1-byte
2920 // alignment.
2921 Entry->setAlignment(1);
2922 }
2923
createOffloadEntriesAndInfoMetadata()2924 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
2925 // Emit the offloading entries and metadata so that the device codegen side
2926 // can
2927 // easily figure out what to emit. The produced metadata looks like this:
2928 //
2929 // !omp_offload.info = !{!1, ...}
2930 //
2931 // Right now we only generate metadata for function that contain target
2932 // regions.
2933
2934 // If we do not have entries, we dont need to do anything.
2935 if (OffloadEntriesInfoManager.empty())
2936 return;
2937
2938 llvm::Module &M = CGM.getModule();
2939 llvm::LLVMContext &C = M.getContext();
2940 SmallVector<OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
2941 OrderedEntries(OffloadEntriesInfoManager.size());
2942
2943 // Create the offloading info metadata node.
2944 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
2945
2946 // Auxiliar methods to create metadata values and strings.
2947 auto getMDInt = [&](unsigned v) {
2948 return llvm::ConstantAsMetadata::get(
2949 llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v));
2950 };
2951
2952 auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); };
2953
2954 // Create function that emits metadata for each target region entry;
2955 auto &&TargetRegionMetadataEmitter = [&](
2956 unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line,
2957 OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
2958 llvm::SmallVector<llvm::Metadata *, 32> Ops;
2959 // Generate metadata for target regions. Each entry of this metadata
2960 // contains:
2961 // - Entry 0 -> Kind of this type of metadata (0).
2962 // - Entry 1 -> Device ID of the file where the entry was identified.
2963 // - Entry 2 -> File ID of the file where the entry was identified.
2964 // - Entry 3 -> Mangled name of the function where the entry was identified.
2965 // - Entry 4 -> Line in the file where the entry was identified.
2966 // - Entry 5 -> Order the entry was created.
2967 // The first element of the metadata node is the kind.
2968 Ops.push_back(getMDInt(E.getKind()));
2969 Ops.push_back(getMDInt(DeviceID));
2970 Ops.push_back(getMDInt(FileID));
2971 Ops.push_back(getMDString(ParentName));
2972 Ops.push_back(getMDInt(Line));
2973 Ops.push_back(getMDInt(E.getOrder()));
2974
2975 // Save this entry in the right position of the ordered entries array.
2976 OrderedEntries[E.getOrder()] = &E;
2977
2978 // Add metadata to the named metadata node.
2979 MD->addOperand(llvm::MDNode::get(C, Ops));
2980 };
2981
2982 OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
2983 TargetRegionMetadataEmitter);
2984
2985 for (auto *E : OrderedEntries) {
2986 assert(E && "All ordered entries must exist!");
2987 if (auto *CE =
2988 dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
2989 E)) {
2990 assert(CE->getID() && CE->getAddress() &&
2991 "Entry ID and Addr are invalid!");
2992 createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0);
2993 } else
2994 llvm_unreachable("Unsupported entry kind.");
2995 }
2996 }
2997
2998 /// \brief Loads all the offload entries information from the host IR
2999 /// metadata.
loadOffloadInfoMetadata()3000 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3001 // If we are in target mode, load the metadata from the host IR. This code has
3002 // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3003
3004 if (!CGM.getLangOpts().OpenMPIsDevice)
3005 return;
3006
3007 if (CGM.getLangOpts().OMPHostIRFile.empty())
3008 return;
3009
3010 auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3011 if (Buf.getError())
3012 return;
3013
3014 llvm::LLVMContext C;
3015 auto ME = llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C);
3016
3017 if (ME.getError())
3018 return;
3019
3020 llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
3021 if (!MD)
3022 return;
3023
3024 for (auto I : MD->operands()) {
3025 llvm::MDNode *MN = cast<llvm::MDNode>(I);
3026
3027 auto getMDInt = [&](unsigned Idx) {
3028 llvm::ConstantAsMetadata *V =
3029 cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
3030 return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
3031 };
3032
3033 auto getMDString = [&](unsigned Idx) {
3034 llvm::MDString *V = cast<llvm::MDString>(MN->getOperand(Idx));
3035 return V->getString();
3036 };
3037
3038 switch (getMDInt(0)) {
3039 default:
3040 llvm_unreachable("Unexpected metadata!");
3041 break;
3042 case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3043 OFFLOAD_ENTRY_INFO_TARGET_REGION:
3044 OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
3045 /*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2),
3046 /*ParentName=*/getMDString(3), /*Line=*/getMDInt(4),
3047 /*Order=*/getMDInt(5));
3048 break;
3049 }
3050 }
3051 }
3052
emitKmpRoutineEntryT(QualType KmpInt32Ty)3053 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3054 if (!KmpRoutineEntryPtrTy) {
3055 // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3056 auto &C = CGM.getContext();
3057 QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3058 FunctionProtoType::ExtProtoInfo EPI;
3059 KmpRoutineEntryPtrQTy = C.getPointerType(
3060 C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3061 KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3062 }
3063 }
3064
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)3065 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
3066 QualType FieldTy) {
3067 auto *Field = FieldDecl::Create(
3068 C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
3069 C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
3070 /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
3071 Field->setAccess(AS_public);
3072 DC->addDecl(Field);
3073 return Field;
3074 }
3075
getTgtOffloadEntryQTy()3076 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
3077
3078 // Make sure the type of the entry is already created. This is the type we
3079 // have to create:
3080 // struct __tgt_offload_entry{
3081 // void *addr; // Pointer to the offload entry info.
3082 // // (function or global)
3083 // char *name; // Name of the function or global.
3084 // size_t size; // Size of the entry info (0 if it a function).
3085 // };
3086 if (TgtOffloadEntryQTy.isNull()) {
3087 ASTContext &C = CGM.getContext();
3088 auto *RD = C.buildImplicitRecord("__tgt_offload_entry");
3089 RD->startDefinition();
3090 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3091 addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
3092 addFieldToRecordDecl(C, RD, C.getSizeType());
3093 RD->completeDefinition();
3094 TgtOffloadEntryQTy = C.getRecordType(RD);
3095 }
3096 return TgtOffloadEntryQTy;
3097 }
3098
getTgtDeviceImageQTy()3099 QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
3100 // These are the types we need to build:
3101 // struct __tgt_device_image{
3102 // void *ImageStart; // Pointer to the target code start.
3103 // void *ImageEnd; // Pointer to the target code end.
3104 // // We also add the host entries to the device image, as it may be useful
3105 // // for the target runtime to have access to that information.
3106 // __tgt_offload_entry *EntriesBegin; // Begin of the table with all
3107 // // the entries.
3108 // __tgt_offload_entry *EntriesEnd; // End of the table with all the
3109 // // entries (non inclusive).
3110 // };
3111 if (TgtDeviceImageQTy.isNull()) {
3112 ASTContext &C = CGM.getContext();
3113 auto *RD = C.buildImplicitRecord("__tgt_device_image");
3114 RD->startDefinition();
3115 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3116 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3117 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
3118 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
3119 RD->completeDefinition();
3120 TgtDeviceImageQTy = C.getRecordType(RD);
3121 }
3122 return TgtDeviceImageQTy;
3123 }
3124
getTgtBinaryDescriptorQTy()3125 QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
3126 // struct __tgt_bin_desc{
3127 // int32_t NumDevices; // Number of devices supported.
3128 // __tgt_device_image *DeviceImages; // Arrays of device images
3129 // // (one per device).
3130 // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
3131 // // entries.
3132 // __tgt_offload_entry *EntriesEnd; // End of the table with all the
3133 // // entries (non inclusive).
3134 // };
3135 if (TgtBinaryDescriptorQTy.isNull()) {
3136 ASTContext &C = CGM.getContext();
3137 auto *RD = C.buildImplicitRecord("__tgt_bin_desc");
3138 RD->startDefinition();
3139 addFieldToRecordDecl(
3140 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3141 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
3142 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
3143 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
3144 RD->completeDefinition();
3145 TgtBinaryDescriptorQTy = C.getRecordType(RD);
3146 }
3147 return TgtBinaryDescriptorQTy;
3148 }
3149
3150 namespace {
3151 struct PrivateHelpersTy {
PrivateHelpersTy__anon79fdb01c1111::PrivateHelpersTy3152 PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
3153 const VarDecl *PrivateElemInit)
3154 : Original(Original), PrivateCopy(PrivateCopy),
3155 PrivateElemInit(PrivateElemInit) {}
3156 const VarDecl *Original;
3157 const VarDecl *PrivateCopy;
3158 const VarDecl *PrivateElemInit;
3159 };
3160 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3161 } // anonymous namespace
3162
3163 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3164 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3165 if (!Privates.empty()) {
3166 auto &C = CGM.getContext();
3167 // Build struct .kmp_privates_t. {
3168 // /* private vars */
3169 // };
3170 auto *RD = C.buildImplicitRecord(".kmp_privates.t");
3171 RD->startDefinition();
3172 for (auto &&Pair : Privates) {
3173 auto *VD = Pair.second.Original;
3174 auto Type = VD->getType();
3175 Type = Type.getNonReferenceType();
3176 auto *FD = addFieldToRecordDecl(C, RD, Type);
3177 if (VD->hasAttrs()) {
3178 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3179 E(VD->getAttrs().end());
3180 I != E; ++I)
3181 FD->addAttr(*I);
3182 }
3183 }
3184 RD->completeDefinition();
3185 return RD;
3186 }
3187 return nullptr;
3188 }
3189
3190 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3191 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3192 QualType KmpInt32Ty,
3193 QualType KmpRoutineEntryPointerQTy) {
3194 auto &C = CGM.getContext();
3195 // Build struct kmp_task_t {
3196 // void * shareds;
3197 // kmp_routine_entry_t routine;
3198 // kmp_int32 part_id;
3199 // kmp_cmplrdata_t data1;
3200 // kmp_cmplrdata_t data2;
3201 // For taskloops additional fields:
3202 // kmp_uint64 lb;
3203 // kmp_uint64 ub;
3204 // kmp_int64 st;
3205 // kmp_int32 liter;
3206 // };
3207 auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3208 UD->startDefinition();
3209 addFieldToRecordDecl(C, UD, KmpInt32Ty);
3210 addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3211 UD->completeDefinition();
3212 QualType KmpCmplrdataTy = C.getRecordType(UD);
3213 auto *RD = C.buildImplicitRecord("kmp_task_t");
3214 RD->startDefinition();
3215 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3216 addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3217 addFieldToRecordDecl(C, RD, KmpInt32Ty);
3218 addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3219 addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3220 if (isOpenMPTaskLoopDirective(Kind)) {
3221 QualType KmpUInt64Ty =
3222 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3223 QualType KmpInt64Ty =
3224 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3225 addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3226 addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3227 addFieldToRecordDecl(C, RD, KmpInt64Ty);
3228 addFieldToRecordDecl(C, RD, KmpInt32Ty);
3229 }
3230 RD->completeDefinition();
3231 return RD;
3232 }
3233
3234 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3235 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3236 ArrayRef<PrivateDataTy> Privates) {
3237 auto &C = CGM.getContext();
3238 // Build struct kmp_task_t_with_privates {
3239 // kmp_task_t task_data;
3240 // .kmp_privates_t. privates;
3241 // };
3242 auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3243 RD->startDefinition();
3244 addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3245 if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) {
3246 addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3247 }
3248 RD->completeDefinition();
3249 return RD;
3250 }
3251
3252 /// \brief Emit a proxy function which accepts kmp_task_t as the second
3253 /// argument.
3254 /// \code
3255 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3256 /// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3257 /// For taskloops:
3258 /// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3259 /// tt->shareds);
3260 /// return 0;
3261 /// }
3262 /// \endcode
3263 static llvm::Value *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Value * TaskFunction,llvm::Value * TaskPrivatesMap)3264 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3265 OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3266 QualType KmpTaskTWithPrivatesPtrQTy,
3267 QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3268 QualType SharedsPtrTy, llvm::Value *TaskFunction,
3269 llvm::Value *TaskPrivatesMap) {
3270 auto &C = CGM.getContext();
3271 FunctionArgList Args;
3272 ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
3273 ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
3274 /*Id=*/nullptr,
3275 KmpTaskTWithPrivatesPtrQTy.withRestrict());
3276 Args.push_back(&GtidArg);
3277 Args.push_back(&TaskTypeArg);
3278 auto &TaskEntryFnInfo =
3279 CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3280 auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3281 auto *TaskEntry =
3282 llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage,
3283 ".omp_task_entry.", &CGM.getModule());
3284 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo);
3285 CodeGenFunction CGF(CGM);
3286 CGF.disableDebugInfo();
3287 CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args);
3288
3289 // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3290 // tt,
3291 // For taskloops:
3292 // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3293 // tt->task_data.shareds);
3294 auto *GtidParam = CGF.EmitLoadOfScalar(
3295 CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3296 LValue TDBase = CGF.EmitLoadOfPointerLValue(
3297 CGF.GetAddrOfLocalVar(&TaskTypeArg),
3298 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3299 auto *KmpTaskTWithPrivatesQTyRD =
3300 cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3301 LValue Base =
3302 CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3303 auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3304 auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3305 auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3306 auto *PartidParam = PartIdLVal.getPointer();
3307
3308 auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3309 auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3310 auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3311 CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(),
3312 CGF.ConvertTypeForMem(SharedsPtrTy));
3313
3314 auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3315 llvm::Value *PrivatesParam;
3316 if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3317 auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3318 PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3319 PrivatesLVal.getPointer(), CGF.VoidPtrTy);
3320 } else
3321 PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3322
3323 llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
3324 TaskPrivatesMap,
3325 CGF.Builder
3326 .CreatePointerBitCastOrAddrSpaceCast(
3327 TDBase.getAddress(), CGF.VoidPtrTy)
3328 .getPointer()};
3329 SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3330 std::end(CommonArgs));
3331 if (isOpenMPTaskLoopDirective(Kind)) {
3332 auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3333 auto LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3334 auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal();
3335 auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3336 auto UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3337 auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal();
3338 auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3339 auto StLVal = CGF.EmitLValueForField(Base, *StFI);
3340 auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal();
3341 auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3342 auto LILVal = CGF.EmitLValueForField(Base, *LIFI);
3343 auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal();
3344 CallArgs.push_back(LBParam);
3345 CallArgs.push_back(UBParam);
3346 CallArgs.push_back(StParam);
3347 CallArgs.push_back(LIParam);
3348 }
3349 CallArgs.push_back(SharedsParam);
3350
3351 CGF.EmitCallOrInvoke(TaskFunction, CallArgs);
3352 CGF.EmitStoreThroughLValue(
3353 RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3354 CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3355 CGF.FinishFunction();
3356 return TaskEntry;
3357 }
3358
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3359 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3360 SourceLocation Loc,
3361 QualType KmpInt32Ty,
3362 QualType KmpTaskTWithPrivatesPtrQTy,
3363 QualType KmpTaskTWithPrivatesQTy) {
3364 auto &C = CGM.getContext();
3365 FunctionArgList Args;
3366 ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
3367 ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
3368 /*Id=*/nullptr,
3369 KmpTaskTWithPrivatesPtrQTy.withRestrict());
3370 Args.push_back(&GtidArg);
3371 Args.push_back(&TaskTypeArg);
3372 FunctionType::ExtInfo Info;
3373 auto &DestructorFnInfo =
3374 CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3375 auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo);
3376 auto *DestructorFn =
3377 llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3378 ".omp_task_destructor.", &CGM.getModule());
3379 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn,
3380 DestructorFnInfo);
3381 CodeGenFunction CGF(CGM);
3382 CGF.disableDebugInfo();
3383 CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3384 Args);
3385
3386 LValue Base = CGF.EmitLoadOfPointerLValue(
3387 CGF.GetAddrOfLocalVar(&TaskTypeArg),
3388 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3389 auto *KmpTaskTWithPrivatesQTyRD =
3390 cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3391 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3392 Base = CGF.EmitLValueForField(Base, *FI);
3393 for (auto *Field :
3394 cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3395 if (auto DtorKind = Field->getType().isDestructedType()) {
3396 auto FieldLValue = CGF.EmitLValueForField(Base, Field);
3397 CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
3398 }
3399 }
3400 CGF.FinishFunction();
3401 return DestructorFn;
3402 }
3403
3404 /// \brief Emit a privates mapping function for correct handling of private and
3405 /// firstprivate variables.
3406 /// \code
3407 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3408 /// **noalias priv1,..., <tyn> **noalias privn) {
3409 /// *priv1 = &.privates.priv1;
3410 /// ...;
3411 /// *privn = &.privates.privn;
3412 /// }
3413 /// \endcode
3414 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,ArrayRef<const Expr * > PrivateVars,ArrayRef<const Expr * > FirstprivateVars,ArrayRef<const Expr * > LastprivateVars,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3415 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3416 ArrayRef<const Expr *> PrivateVars,
3417 ArrayRef<const Expr *> FirstprivateVars,
3418 ArrayRef<const Expr *> LastprivateVars,
3419 QualType PrivatesQTy,
3420 ArrayRef<PrivateDataTy> Privates) {
3421 auto &C = CGM.getContext();
3422 FunctionArgList Args;
3423 ImplicitParamDecl TaskPrivatesArg(
3424 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3425 C.getPointerType(PrivatesQTy).withConst().withRestrict());
3426 Args.push_back(&TaskPrivatesArg);
3427 llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
3428 unsigned Counter = 1;
3429 for (auto *E: PrivateVars) {
3430 Args.push_back(ImplicitParamDecl::Create(
3431 C, /*DC=*/nullptr, Loc,
3432 /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
3433 .withConst()
3434 .withRestrict()));
3435 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3436 PrivateVarsPos[VD] = Counter;
3437 ++Counter;
3438 }
3439 for (auto *E : FirstprivateVars) {
3440 Args.push_back(ImplicitParamDecl::Create(
3441 C, /*DC=*/nullptr, Loc,
3442 /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
3443 .withConst()
3444 .withRestrict()));
3445 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3446 PrivateVarsPos[VD] = Counter;
3447 ++Counter;
3448 }
3449 for (auto *E: LastprivateVars) {
3450 Args.push_back(ImplicitParamDecl::Create(
3451 C, /*DC=*/nullptr, Loc,
3452 /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
3453 .withConst()
3454 .withRestrict()));
3455 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3456 PrivateVarsPos[VD] = Counter;
3457 ++Counter;
3458 }
3459 auto &TaskPrivatesMapFnInfo =
3460 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3461 auto *TaskPrivatesMapTy =
3462 CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3463 auto *TaskPrivatesMap = llvm::Function::Create(
3464 TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage,
3465 ".omp_task_privates_map.", &CGM.getModule());
3466 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap,
3467 TaskPrivatesMapFnInfo);
3468 TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3469 CodeGenFunction CGF(CGM);
3470 CGF.disableDebugInfo();
3471 CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3472 TaskPrivatesMapFnInfo, Args);
3473
3474 // *privi = &.privates.privi;
3475 LValue Base = CGF.EmitLoadOfPointerLValue(
3476 CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3477 TaskPrivatesArg.getType()->castAs<PointerType>());
3478 auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3479 Counter = 0;
3480 for (auto *Field : PrivatesQTyRD->fields()) {
3481 auto FieldLVal = CGF.EmitLValueForField(Base, Field);
3482 auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3483 auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3484 auto RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3485 RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
3486 CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
3487 ++Counter;
3488 }
3489 CGF.FinishFunction();
3490 return TaskPrivatesMap;
3491 }
3492
array_pod_sort_comparator(const PrivateDataTy * P1,const PrivateDataTy * P2)3493 static int array_pod_sort_comparator(const PrivateDataTy *P1,
3494 const PrivateDataTy *P2) {
3495 return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0);
3496 }
3497
3498 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3499 static void emitPrivatesInit(CodeGenFunction &CGF,
3500 const OMPExecutableDirective &D,
3501 Address KmpTaskSharedsPtr, LValue TDBase,
3502 const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3503 QualType SharedsTy, QualType SharedsPtrTy,
3504 const OMPTaskDataTy &Data,
3505 ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3506 auto &C = CGF.getContext();
3507 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3508 LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3509 LValue SrcBase;
3510 if (!Data.FirstprivateVars.empty()) {
3511 SrcBase = CGF.MakeAddrLValue(
3512 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3513 KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
3514 SharedsTy);
3515 }
3516 CodeGenFunction::CGCapturedStmtInfo CapturesInfo(
3517 cast<CapturedStmt>(*D.getAssociatedStmt()));
3518 FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3519 for (auto &&Pair : Privates) {
3520 auto *VD = Pair.second.PrivateCopy;
3521 auto *Init = VD->getAnyInitializer();
3522 if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3523 !CGF.isTrivialInitializer(Init)))) {
3524 LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3525 if (auto *Elem = Pair.second.PrivateElemInit) {
3526 auto *OriginalVD = Pair.second.Original;
3527 auto *SharedField = CapturesInfo.lookup(OriginalVD);
3528 auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3529 SharedRefLValue = CGF.MakeAddrLValue(
3530 Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
3531 SharedRefLValue.getType(), AlignmentSource::Decl);
3532 QualType Type = OriginalVD->getType();
3533 if (Type->isArrayType()) {
3534 // Initialize firstprivate array.
3535 if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3536 // Perform simple memcpy.
3537 CGF.EmitAggregateAssign(PrivateLValue.getAddress(),
3538 SharedRefLValue.getAddress(), Type);
3539 } else {
3540 // Initialize firstprivate array using element-by-element
3541 // intialization.
3542 CGF.EmitOMPAggregateAssign(
3543 PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
3544 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3545 Address SrcElement) {
3546 // Clean up any temporaries needed by the initialization.
3547 CodeGenFunction::OMPPrivateScope InitScope(CGF);
3548 InitScope.addPrivate(
3549 Elem, [SrcElement]() -> Address { return SrcElement; });
3550 (void)InitScope.Privatize();
3551 // Emit initialization for single element.
3552 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3553 CGF, &CapturesInfo);
3554 CGF.EmitAnyExprToMem(Init, DestElement,
3555 Init->getType().getQualifiers(),
3556 /*IsInitializer=*/false);
3557 });
3558 }
3559 } else {
3560 CodeGenFunction::OMPPrivateScope InitScope(CGF);
3561 InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
3562 return SharedRefLValue.getAddress();
3563 });
3564 (void)InitScope.Privatize();
3565 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3566 CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3567 /*capturedByInit=*/false);
3568 }
3569 } else
3570 CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3571 }
3572 ++FI;
3573 }
3574 }
3575
3576 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3577 static bool checkInitIsRequired(CodeGenFunction &CGF,
3578 ArrayRef<PrivateDataTy> Privates) {
3579 bool InitRequired = false;
3580 for (auto &&Pair : Privates) {
3581 auto *VD = Pair.second.PrivateCopy;
3582 auto *Init = VD->getAnyInitializer();
3583 InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
3584 !CGF.isTrivialInitializer(Init));
3585 }
3586 return InitRequired;
3587 }
3588
3589
3590 /// Emit task_dup function (for initialization of
3591 /// private/firstprivate/lastprivate vars and last_iter flag)
3592 /// \code
3593 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3594 /// lastpriv) {
3595 /// // setup lastprivate flag
3596 /// task_dst->last = lastpriv;
3597 /// // could be constructor calls here...
3598 /// }
3599 /// \endcode
3600 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3601 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3602 const OMPExecutableDirective &D,
3603 QualType KmpTaskTWithPrivatesPtrQTy,
3604 const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3605 const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3606 QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3607 ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3608 auto &C = CGM.getContext();
3609 FunctionArgList Args;
3610 ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc,
3611 /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
3612 ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc,
3613 /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
3614 ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc,
3615 /*Id=*/nullptr, C.IntTy);
3616 Args.push_back(&DstArg);
3617 Args.push_back(&SrcArg);
3618 Args.push_back(&LastprivArg);
3619 auto &TaskDupFnInfo =
3620 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3621 auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3622 auto *TaskDup =
3623 llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage,
3624 ".omp_task_dup.", &CGM.getModule());
3625 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo);
3626 CodeGenFunction CGF(CGM);
3627 CGF.disableDebugInfo();
3628 CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args);
3629
3630 LValue TDBase = CGF.EmitLoadOfPointerLValue(
3631 CGF.GetAddrOfLocalVar(&DstArg),
3632 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3633 // task_dst->liter = lastpriv;
3634 if (WithLastIter) {
3635 auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3636 LValue Base = CGF.EmitLValueForField(
3637 TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3638 LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3639 llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
3640 CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
3641 CGF.EmitStoreOfScalar(Lastpriv, LILVal);
3642 }
3643
3644 // Emit initial values for private copies (if any).
3645 assert(!Privates.empty());
3646 Address KmpTaskSharedsPtr = Address::invalid();
3647 if (!Data.FirstprivateVars.empty()) {
3648 LValue TDBase = CGF.EmitLoadOfPointerLValue(
3649 CGF.GetAddrOfLocalVar(&SrcArg),
3650 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3651 LValue Base = CGF.EmitLValueForField(
3652 TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3653 KmpTaskSharedsPtr = Address(
3654 CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
3655 Base, *std::next(KmpTaskTQTyRD->field_begin(),
3656 KmpTaskTShareds)),
3657 Loc),
3658 CGF.getNaturalTypeAlignment(SharedsTy));
3659 }
3660 emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
3661 SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
3662 CGF.FinishFunction();
3663 return TaskDup;
3664 }
3665
3666 /// Checks if destructor function is required to be generated.
3667 /// \return true if cleanups are required, false otherwise.
3668 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD)3669 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
3670 bool NeedsCleanup = false;
3671 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3672 auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
3673 for (auto *FD : PrivateRD->fields()) {
3674 NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
3675 if (NeedsCleanup)
3676 break;
3677 }
3678 return NeedsCleanup;
3679 }
3680
3681 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Value * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)3682 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
3683 const OMPExecutableDirective &D,
3684 llvm::Value *TaskFunction, QualType SharedsTy,
3685 Address Shareds, const OMPTaskDataTy &Data) {
3686 auto &C = CGM.getContext();
3687 llvm::SmallVector<PrivateDataTy, 4> Privates;
3688 // Aggregate privates and sort them by the alignment.
3689 auto I = Data.PrivateCopies.begin();
3690 for (auto *E : Data.PrivateVars) {
3691 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3692 Privates.push_back(std::make_pair(
3693 C.getDeclAlign(VD),
3694 PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
3695 /*PrivateElemInit=*/nullptr)));
3696 ++I;
3697 }
3698 I = Data.FirstprivateCopies.begin();
3699 auto IElemInitRef = Data.FirstprivateInits.begin();
3700 for (auto *E : Data.FirstprivateVars) {
3701 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3702 Privates.push_back(std::make_pair(
3703 C.getDeclAlign(VD),
3704 PrivateHelpersTy(
3705 VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
3706 cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))));
3707 ++I;
3708 ++IElemInitRef;
3709 }
3710 I = Data.LastprivateCopies.begin();
3711 for (auto *E : Data.LastprivateVars) {
3712 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3713 Privates.push_back(std::make_pair(
3714 C.getDeclAlign(VD),
3715 PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
3716 /*PrivateElemInit=*/nullptr)));
3717 ++I;
3718 }
3719 llvm::array_pod_sort(Privates.begin(), Privates.end(),
3720 array_pod_sort_comparator);
3721 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3722 // Build type kmp_routine_entry_t (if not built yet).
3723 emitKmpRoutineEntryT(KmpInt32Ty);
3724 // Build type kmp_task_t (if not built yet).
3725 if (KmpTaskTQTy.isNull()) {
3726 KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
3727 CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
3728 }
3729 auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3730 // Build particular struct kmp_task_t for the given task.
3731 auto *KmpTaskTWithPrivatesQTyRD =
3732 createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
3733 auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
3734 QualType KmpTaskTWithPrivatesPtrQTy =
3735 C.getPointerType(KmpTaskTWithPrivatesQTy);
3736 auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
3737 auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo();
3738 auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
3739 QualType SharedsPtrTy = C.getPointerType(SharedsTy);
3740
3741 // Emit initial values for private copies (if any).
3742 llvm::Value *TaskPrivatesMap = nullptr;
3743 auto *TaskPrivatesMapTy =
3744 std::next(cast<llvm::Function>(TaskFunction)->getArgumentList().begin(),
3745 3)
3746 ->getType();
3747 if (!Privates.empty()) {
3748 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3749 TaskPrivatesMap = emitTaskPrivateMappingFunction(
3750 CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
3751 FI->getType(), Privates);
3752 TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3753 TaskPrivatesMap, TaskPrivatesMapTy);
3754 } else {
3755 TaskPrivatesMap = llvm::ConstantPointerNull::get(
3756 cast<llvm::PointerType>(TaskPrivatesMapTy));
3757 }
3758 // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
3759 // kmp_task_t *tt);
3760 auto *TaskEntry = emitProxyTaskFunction(
3761 CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
3762 KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
3763 TaskPrivatesMap);
3764
3765 // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
3766 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
3767 // kmp_routine_entry_t *task_entry);
3768 // Task flags. Format is taken from
3769 // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
3770 // description of kmp_tasking_flags struct.
3771 enum {
3772 TiedFlag = 0x1,
3773 FinalFlag = 0x2,
3774 DestructorsFlag = 0x8,
3775 PriorityFlag = 0x20
3776 };
3777 unsigned Flags = Data.Tied ? TiedFlag : 0;
3778 bool NeedsCleanup = false;
3779 if (!Privates.empty()) {
3780 NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
3781 if (NeedsCleanup)
3782 Flags = Flags | DestructorsFlag;
3783 }
3784 if (Data.Priority.getInt())
3785 Flags = Flags | PriorityFlag;
3786 auto *TaskFlags =
3787 Data.Final.getPointer()
3788 ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
3789 CGF.Builder.getInt32(FinalFlag),
3790 CGF.Builder.getInt32(/*C=*/0))
3791 : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
3792 TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
3793 auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
3794 llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
3795 getThreadID(CGF, Loc), TaskFlags,
3796 KmpTaskTWithPrivatesTySize, SharedsSize,
3797 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3798 TaskEntry, KmpRoutineEntryPtrTy)};
3799 auto *NewTask = CGF.EmitRuntimeCall(
3800 createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
3801 auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3802 NewTask, KmpTaskTWithPrivatesPtrTy);
3803 LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
3804 KmpTaskTWithPrivatesQTy);
3805 LValue TDBase =
3806 CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
3807 // Fill the data in the resulting kmp_task_t record.
3808 // Copy shareds if there are any.
3809 Address KmpTaskSharedsPtr = Address::invalid();
3810 if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
3811 KmpTaskSharedsPtr =
3812 Address(CGF.EmitLoadOfScalar(
3813 CGF.EmitLValueForField(
3814 TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
3815 KmpTaskTShareds)),
3816 Loc),
3817 CGF.getNaturalTypeAlignment(SharedsTy));
3818 CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy);
3819 }
3820 // Emit initial values for private copies (if any).
3821 TaskResultTy Result;
3822 if (!Privates.empty()) {
3823 emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
3824 SharedsTy, SharedsPtrTy, Data, Privates,
3825 /*ForDup=*/false);
3826 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
3827 (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
3828 Result.TaskDupFn = emitTaskDupFunction(
3829 CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
3830 KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
3831 /*WithLastIter=*/!Data.LastprivateVars.empty());
3832 }
3833 }
3834 // Fields of union "kmp_cmplrdata_t" for destructors and priority.
3835 enum { Priority = 0, Destructors = 1 };
3836 // Provide pointer to function with destructors for privates.
3837 auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
3838 auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl();
3839 if (NeedsCleanup) {
3840 llvm::Value *DestructorFn = emitDestructorsFunction(
3841 CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
3842 KmpTaskTWithPrivatesQTy);
3843 LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
3844 LValue DestructorsLV = CGF.EmitLValueForField(
3845 Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
3846 CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3847 DestructorFn, KmpRoutineEntryPtrTy),
3848 DestructorsLV);
3849 }
3850 // Set priority.
3851 if (Data.Priority.getInt()) {
3852 LValue Data2LV = CGF.EmitLValueForField(
3853 TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
3854 LValue PriorityLV = CGF.EmitLValueForField(
3855 Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
3856 CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
3857 }
3858 Result.NewTask = NewTask;
3859 Result.TaskEntry = TaskEntry;
3860 Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
3861 Result.TDBase = TDBase;
3862 Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
3863 return Result;
3864 }
3865
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Value * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)3866 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
3867 const OMPExecutableDirective &D,
3868 llvm::Value *TaskFunction,
3869 QualType SharedsTy, Address Shareds,
3870 const Expr *IfCond,
3871 const OMPTaskDataTy &Data) {
3872 if (!CGF.HaveInsertPoint())
3873 return;
3874
3875 TaskResultTy Result =
3876 emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
3877 llvm::Value *NewTask = Result.NewTask;
3878 llvm::Value *TaskEntry = Result.TaskEntry;
3879 llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
3880 LValue TDBase = Result.TDBase;
3881 RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
3882 auto &C = CGM.getContext();
3883 // Process list of dependences.
3884 Address DependenciesArray = Address::invalid();
3885 unsigned NumDependencies = Data.Dependences.size();
3886 if (NumDependencies) {
3887 // Dependence kind for RTL.
3888 enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 };
3889 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
3890 RecordDecl *KmpDependInfoRD;
3891 QualType FlagsTy =
3892 C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
3893 llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
3894 if (KmpDependInfoTy.isNull()) {
3895 KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
3896 KmpDependInfoRD->startDefinition();
3897 addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
3898 addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
3899 addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
3900 KmpDependInfoRD->completeDefinition();
3901 KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
3902 } else
3903 KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
3904 CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy);
3905 // Define type kmp_depend_info[<Dependences.size()>];
3906 QualType KmpDependInfoArrayTy = C.getConstantArrayType(
3907 KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
3908 ArrayType::Normal, /*IndexTypeQuals=*/0);
3909 // kmp_depend_info[<Dependences.size()>] deps;
3910 DependenciesArray =
3911 CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
3912 for (unsigned i = 0; i < NumDependencies; ++i) {
3913 const Expr *E = Data.Dependences[i].second;
3914 auto Addr = CGF.EmitLValue(E);
3915 llvm::Value *Size;
3916 QualType Ty = E->getType();
3917 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
3918 LValue UpAddrLVal =
3919 CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
3920 llvm::Value *UpAddr =
3921 CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
3922 llvm::Value *LowIntPtr =
3923 CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
3924 llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
3925 Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
3926 } else
3927 Size = CGF.getTypeSize(Ty);
3928 auto Base = CGF.MakeAddrLValue(
3929 CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize),
3930 KmpDependInfoTy);
3931 // deps[i].base_addr = &<Dependences[i].second>;
3932 auto BaseAddrLVal = CGF.EmitLValueForField(
3933 Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
3934 CGF.EmitStoreOfScalar(
3935 CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
3936 BaseAddrLVal);
3937 // deps[i].len = sizeof(<Dependences[i].second>);
3938 auto LenLVal = CGF.EmitLValueForField(
3939 Base, *std::next(KmpDependInfoRD->field_begin(), Len));
3940 CGF.EmitStoreOfScalar(Size, LenLVal);
3941 // deps[i].flags = <Dependences[i].first>;
3942 RTLDependenceKindTy DepKind;
3943 switch (Data.Dependences[i].first) {
3944 case OMPC_DEPEND_in:
3945 DepKind = DepIn;
3946 break;
3947 // Out and InOut dependencies must use the same code.
3948 case OMPC_DEPEND_out:
3949 case OMPC_DEPEND_inout:
3950 DepKind = DepInOut;
3951 break;
3952 case OMPC_DEPEND_source:
3953 case OMPC_DEPEND_sink:
3954 case OMPC_DEPEND_unknown:
3955 llvm_unreachable("Unknown task dependence type");
3956 }
3957 auto FlagsLVal = CGF.EmitLValueForField(
3958 Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
3959 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
3960 FlagsLVal);
3961 }
3962 DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3963 CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()),
3964 CGF.VoidPtrTy);
3965 }
3966
3967 // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
3968 // libcall.
3969 // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
3970 // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
3971 // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
3972 // list is not empty
3973 auto *ThreadID = getThreadID(CGF, Loc);
3974 auto *UpLoc = emitUpdateLocation(CGF, Loc);
3975 llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
3976 llvm::Value *DepTaskArgs[7];
3977 if (NumDependencies) {
3978 DepTaskArgs[0] = UpLoc;
3979 DepTaskArgs[1] = ThreadID;
3980 DepTaskArgs[2] = NewTask;
3981 DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
3982 DepTaskArgs[4] = DependenciesArray.getPointer();
3983 DepTaskArgs[5] = CGF.Builder.getInt32(0);
3984 DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3985 }
3986 auto &&ThenCodeGen = [this, Loc, &Data, TDBase, KmpTaskTQTyRD,
3987 NumDependencies, &TaskArgs,
3988 &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
3989 if (!Data.Tied) {
3990 auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3991 auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
3992 CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
3993 }
3994 if (NumDependencies) {
3995 CGF.EmitRuntimeCall(
3996 createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
3997 } else {
3998 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
3999 TaskArgs);
4000 }
4001 // Check if parent region is untied and build return for untied task;
4002 if (auto *Region =
4003 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
4004 Region->emitUntiedSwitch(CGF);
4005 };
4006
4007 llvm::Value *DepWaitTaskArgs[6];
4008 if (NumDependencies) {
4009 DepWaitTaskArgs[0] = UpLoc;
4010 DepWaitTaskArgs[1] = ThreadID;
4011 DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
4012 DepWaitTaskArgs[3] = DependenciesArray.getPointer();
4013 DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
4014 DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4015 }
4016 auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
4017 NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF,
4018 PrePostActionTy &) {
4019 auto &RT = CGF.CGM.getOpenMPRuntime();
4020 CodeGenFunction::RunCleanupsScope LocalScope(CGF);
4021 // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
4022 // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
4023 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
4024 // is specified.
4025 if (NumDependencies)
4026 CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
4027 DepWaitTaskArgs);
4028 // Call proxy_task_entry(gtid, new_task);
4029 auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy](
4030 CodeGenFunction &CGF, PrePostActionTy &Action) {
4031 Action.Enter(CGF);
4032 llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
4033 CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs);
4034 };
4035
4036 // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
4037 // kmp_task_t *new_task);
4038 // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
4039 // kmp_task_t *new_task);
4040 RegionCodeGenTy RCG(CodeGen);
4041 CommonActionTy Action(
4042 RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
4043 RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
4044 RCG.setAction(Action);
4045 RCG(CGF);
4046 };
4047
4048 if (IfCond)
4049 emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
4050 else {
4051 RegionCodeGenTy ThenRCG(ThenCodeGen);
4052 ThenRCG(CGF);
4053 }
4054 }
4055
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Value * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)4056 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
4057 const OMPLoopDirective &D,
4058 llvm::Value *TaskFunction,
4059 QualType SharedsTy, Address Shareds,
4060 const Expr *IfCond,
4061 const OMPTaskDataTy &Data) {
4062 if (!CGF.HaveInsertPoint())
4063 return;
4064 TaskResultTy Result =
4065 emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
4066 // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
4067 // libcall.
4068 // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
4069 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
4070 // sched, kmp_uint64 grainsize, void *task_dup);
4071 llvm::Value *ThreadID = getThreadID(CGF, Loc);
4072 llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
4073 llvm::Value *IfVal;
4074 if (IfCond) {
4075 IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
4076 /*isSigned=*/true);
4077 } else
4078 IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
4079
4080 LValue LBLVal = CGF.EmitLValueForField(
4081 Result.TDBase,
4082 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
4083 auto *LBVar =
4084 cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
4085 CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
4086 /*IsInitializer=*/true);
4087 LValue UBLVal = CGF.EmitLValueForField(
4088 Result.TDBase,
4089 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
4090 auto *UBVar =
4091 cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
4092 CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
4093 /*IsInitializer=*/true);
4094 LValue StLVal = CGF.EmitLValueForField(
4095 Result.TDBase,
4096 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
4097 auto *StVar =
4098 cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
4099 CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
4100 /*IsInitializer=*/true);
4101 enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
4102 llvm::Value *TaskArgs[] = {
4103 UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(),
4104 UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()),
4105 llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0),
4106 llvm::ConstantInt::getSigned(
4107 CGF.IntTy, Data.Schedule.getPointer()
4108 ? Data.Schedule.getInt() ? NumTasks : Grainsize
4109 : NoSchedule),
4110 Data.Schedule.getPointer()
4111 ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
4112 /*isSigned=*/false)
4113 : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
4114 Result.TaskDupFn
4115 ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn,
4116 CGF.VoidPtrTy)
4117 : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
4118 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
4119 }
4120
4121 /// \brief Emit reduction operation for each element of array (required for
4122 /// array sections) LHS op = RHS.
4123 /// \param Type Type of array.
4124 /// \param LHSVar Variable on the left side of the reduction operation
4125 /// (references element of array in original variable).
4126 /// \param RHSVar Variable on the right side of the reduction operation
4127 /// (references element of array in original variable).
4128 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
4129 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)4130 static void EmitOMPAggregateReduction(
4131 CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
4132 const VarDecl *RHSVar,
4133 const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
4134 const Expr *, const Expr *)> &RedOpGen,
4135 const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
4136 const Expr *UpExpr = nullptr) {
4137 // Perform element-by-element initialization.
4138 QualType ElementTy;
4139 Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
4140 Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
4141
4142 // Drill down to the base element type on both arrays.
4143 auto ArrayTy = Type->getAsArrayTypeUnsafe();
4144 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
4145
4146 auto RHSBegin = RHSAddr.getPointer();
4147 auto LHSBegin = LHSAddr.getPointer();
4148 // Cast from pointer to array type to pointer to single element.
4149 auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
4150 // The basic structure here is a while-do loop.
4151 auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
4152 auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
4153 auto IsEmpty =
4154 CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
4155 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
4156
4157 // Enter the loop body, making that address the current address.
4158 auto EntryBB = CGF.Builder.GetInsertBlock();
4159 CGF.EmitBlock(BodyBB);
4160
4161 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
4162
4163 llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
4164 RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
4165 RHSElementPHI->addIncoming(RHSBegin, EntryBB);
4166 Address RHSElementCurrent =
4167 Address(RHSElementPHI,
4168 RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
4169
4170 llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
4171 LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
4172 LHSElementPHI->addIncoming(LHSBegin, EntryBB);
4173 Address LHSElementCurrent =
4174 Address(LHSElementPHI,
4175 LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
4176
4177 // Emit copy.
4178 CodeGenFunction::OMPPrivateScope Scope(CGF);
4179 Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; });
4180 Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; });
4181 Scope.Privatize();
4182 RedOpGen(CGF, XExpr, EExpr, UpExpr);
4183 Scope.ForceCleanup();
4184
4185 // Shift the address forward by one element.
4186 auto LHSElementNext = CGF.Builder.CreateConstGEP1_32(
4187 LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
4188 auto RHSElementNext = CGF.Builder.CreateConstGEP1_32(
4189 RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
4190 // Check whether we've reached the end.
4191 auto Done =
4192 CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
4193 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
4194 LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
4195 RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
4196
4197 // Done.
4198 CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
4199 }
4200
4201 /// Emit reduction combiner. If the combiner is a simple expression emit it as
4202 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
4203 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)4204 static void emitReductionCombiner(CodeGenFunction &CGF,
4205 const Expr *ReductionOp) {
4206 if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
4207 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
4208 if (auto *DRE =
4209 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
4210 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
4211 std::pair<llvm::Function *, llvm::Function *> Reduction =
4212 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
4213 RValue Func = RValue::get(Reduction.first);
4214 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
4215 CGF.EmitIgnoredExpr(ReductionOp);
4216 return;
4217 }
4218 CGF.EmitIgnoredExpr(ReductionOp);
4219 }
4220
emitReductionFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)4221 static llvm::Value *emitReductionFunction(CodeGenModule &CGM,
4222 llvm::Type *ArgsType,
4223 ArrayRef<const Expr *> Privates,
4224 ArrayRef<const Expr *> LHSExprs,
4225 ArrayRef<const Expr *> RHSExprs,
4226 ArrayRef<const Expr *> ReductionOps) {
4227 auto &C = CGM.getContext();
4228
4229 // void reduction_func(void *LHSArg, void *RHSArg);
4230 FunctionArgList Args;
4231 ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
4232 C.VoidPtrTy);
4233 ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
4234 C.VoidPtrTy);
4235 Args.push_back(&LHSArg);
4236 Args.push_back(&RHSArg);
4237 auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4238 auto *Fn = llvm::Function::Create(
4239 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
4240 ".omp.reduction.reduction_func", &CGM.getModule());
4241 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
4242 CodeGenFunction CGF(CGM);
4243 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
4244
4245 // Dst = (void*[n])(LHSArg);
4246 // Src = (void*[n])(RHSArg);
4247 Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4248 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
4249 ArgsType), CGF.getPointerAlign());
4250 Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4251 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
4252 ArgsType), CGF.getPointerAlign());
4253
4254 // ...
4255 // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
4256 // ...
4257 CodeGenFunction::OMPPrivateScope Scope(CGF);
4258 auto IPriv = Privates.begin();
4259 unsigned Idx = 0;
4260 for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
4261 auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
4262 Scope.addPrivate(RHSVar, [&]() -> Address {
4263 return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
4264 });
4265 auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
4266 Scope.addPrivate(LHSVar, [&]() -> Address {
4267 return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
4268 });
4269 QualType PrivTy = (*IPriv)->getType();
4270 if (PrivTy->isVariablyModifiedType()) {
4271 // Get array size and emit VLA type.
4272 ++Idx;
4273 Address Elem =
4274 CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize());
4275 llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
4276 auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy);
4277 auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
4278 CodeGenFunction::OpaqueValueMapping OpaqueMap(
4279 CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
4280 CGF.EmitVariablyModifiedType(PrivTy);
4281 }
4282 }
4283 Scope.Privatize();
4284 IPriv = Privates.begin();
4285 auto ILHS = LHSExprs.begin();
4286 auto IRHS = RHSExprs.begin();
4287 for (auto *E : ReductionOps) {
4288 if ((*IPriv)->getType()->isArrayType()) {
4289 // Emit reduction for array section.
4290 auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
4291 auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
4292 EmitOMPAggregateReduction(
4293 CGF, (*IPriv)->getType(), LHSVar, RHSVar,
4294 [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
4295 emitReductionCombiner(CGF, E);
4296 });
4297 } else
4298 // Emit reduction for array subscript or single variable.
4299 emitReductionCombiner(CGF, E);
4300 ++IPriv;
4301 ++ILHS;
4302 ++IRHS;
4303 }
4304 Scope.ForceCleanup();
4305 CGF.FinishFunction();
4306 return Fn;
4307 }
4308
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)4309 static void emitSingleReductionCombiner(CodeGenFunction &CGF,
4310 const Expr *ReductionOp,
4311 const Expr *PrivateRef,
4312 const DeclRefExpr *LHS,
4313 const DeclRefExpr *RHS) {
4314 if (PrivateRef->getType()->isArrayType()) {
4315 // Emit reduction for array section.
4316 auto *LHSVar = cast<VarDecl>(LHS->getDecl());
4317 auto *RHSVar = cast<VarDecl>(RHS->getDecl());
4318 EmitOMPAggregateReduction(
4319 CGF, PrivateRef->getType(), LHSVar, RHSVar,
4320 [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
4321 emitReductionCombiner(CGF, ReductionOp);
4322 });
4323 } else
4324 // Emit reduction for array subscript or single variable.
4325 emitReductionCombiner(CGF, ReductionOp);
4326 }
4327
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,bool WithNowait,bool SimpleReduction)4328 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
4329 ArrayRef<const Expr *> Privates,
4330 ArrayRef<const Expr *> LHSExprs,
4331 ArrayRef<const Expr *> RHSExprs,
4332 ArrayRef<const Expr *> ReductionOps,
4333 bool WithNowait, bool SimpleReduction) {
4334 if (!CGF.HaveInsertPoint())
4335 return;
4336 // Next code should be emitted for reduction:
4337 //
4338 // static kmp_critical_name lock = { 0 };
4339 //
4340 // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
4341 // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
4342 // ...
4343 // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
4344 // *(Type<n>-1*)rhs[<n>-1]);
4345 // }
4346 //
4347 // ...
4348 // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
4349 // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
4350 // RedList, reduce_func, &<lock>)) {
4351 // case 1:
4352 // ...
4353 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
4354 // ...
4355 // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
4356 // break;
4357 // case 2:
4358 // ...
4359 // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
4360 // ...
4361 // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
4362 // break;
4363 // default:;
4364 // }
4365 //
4366 // if SimpleReduction is true, only the next code is generated:
4367 // ...
4368 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
4369 // ...
4370
4371 auto &C = CGM.getContext();
4372
4373 if (SimpleReduction) {
4374 CodeGenFunction::RunCleanupsScope Scope(CGF);
4375 auto IPriv = Privates.begin();
4376 auto ILHS = LHSExprs.begin();
4377 auto IRHS = RHSExprs.begin();
4378 for (auto *E : ReductionOps) {
4379 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
4380 cast<DeclRefExpr>(*IRHS));
4381 ++IPriv;
4382 ++ILHS;
4383 ++IRHS;
4384 }
4385 return;
4386 }
4387
4388 // 1. Build a list of reduction variables.
4389 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
4390 auto Size = RHSExprs.size();
4391 for (auto *E : Privates) {
4392 if (E->getType()->isVariablyModifiedType())
4393 // Reserve place for array size.
4394 ++Size;
4395 }
4396 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
4397 QualType ReductionArrayTy =
4398 C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
4399 /*IndexTypeQuals=*/0);
4400 Address ReductionList =
4401 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
4402 auto IPriv = Privates.begin();
4403 unsigned Idx = 0;
4404 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
4405 Address Elem =
4406 CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize());
4407 CGF.Builder.CreateStore(
4408 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4409 CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
4410 Elem);
4411 if ((*IPriv)->getType()->isVariablyModifiedType()) {
4412 // Store array size.
4413 ++Idx;
4414 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
4415 CGF.getPointerSize());
4416 llvm::Value *Size = CGF.Builder.CreateIntCast(
4417 CGF.getVLASize(
4418 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
4419 .first,
4420 CGF.SizeTy, /*isSigned=*/false);
4421 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
4422 Elem);
4423 }
4424 }
4425
4426 // 2. Emit reduce_func().
4427 auto *ReductionFn = emitReductionFunction(
4428 CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
4429 LHSExprs, RHSExprs, ReductionOps);
4430
4431 // 3. Create static kmp_critical_name lock = { 0 };
4432 auto *Lock = getCriticalRegionLock(".reduction");
4433
4434 // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
4435 // RedList, reduce_func, &<lock>);
4436 auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
4437 auto *ThreadId = getThreadID(CGF, Loc);
4438 auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
4439 auto *RL =
4440 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList.getPointer(),
4441 CGF.VoidPtrTy);
4442 llvm::Value *Args[] = {
4443 IdentTLoc, // ident_t *<loc>
4444 ThreadId, // i32 <gtid>
4445 CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
4446 ReductionArrayTySize, // size_type sizeof(RedList)
4447 RL, // void *RedList
4448 ReductionFn, // void (*) (void *, void *) <reduce_func>
4449 Lock // kmp_critical_name *&<lock>
4450 };
4451 auto Res = CGF.EmitRuntimeCall(
4452 createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
4453 : OMPRTL__kmpc_reduce),
4454 Args);
4455
4456 // 5. Build switch(res)
4457 auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
4458 auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
4459
4460 // 6. Build case 1:
4461 // ...
4462 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
4463 // ...
4464 // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
4465 // break;
4466 auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
4467 SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
4468 CGF.EmitBlock(Case1BB);
4469
4470 // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
4471 llvm::Value *EndArgs[] = {
4472 IdentTLoc, // ident_t *<loc>
4473 ThreadId, // i32 <gtid>
4474 Lock // kmp_critical_name *&<lock>
4475 };
4476 auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps](
4477 CodeGenFunction &CGF, PrePostActionTy &Action) {
4478 auto IPriv = Privates.begin();
4479 auto ILHS = LHSExprs.begin();
4480 auto IRHS = RHSExprs.begin();
4481 for (auto *E : ReductionOps) {
4482 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
4483 cast<DeclRefExpr>(*IRHS));
4484 ++IPriv;
4485 ++ILHS;
4486 ++IRHS;
4487 }
4488 };
4489 RegionCodeGenTy RCG(CodeGen);
4490 CommonActionTy Action(
4491 nullptr, llvm::None,
4492 createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
4493 : OMPRTL__kmpc_end_reduce),
4494 EndArgs);
4495 RCG.setAction(Action);
4496 RCG(CGF);
4497
4498 CGF.EmitBranch(DefaultBB);
4499
4500 // 7. Build case 2:
4501 // ...
4502 // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
4503 // ...
4504 // break;
4505 auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
4506 SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
4507 CGF.EmitBlock(Case2BB);
4508
4509 auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps](
4510 CodeGenFunction &CGF, PrePostActionTy &Action) {
4511 auto ILHS = LHSExprs.begin();
4512 auto IRHS = RHSExprs.begin();
4513 auto IPriv = Privates.begin();
4514 for (auto *E : ReductionOps) {
4515 const Expr *XExpr = nullptr;
4516 const Expr *EExpr = nullptr;
4517 const Expr *UpExpr = nullptr;
4518 BinaryOperatorKind BO = BO_Comma;
4519 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
4520 if (BO->getOpcode() == BO_Assign) {
4521 XExpr = BO->getLHS();
4522 UpExpr = BO->getRHS();
4523 }
4524 }
4525 // Try to emit update expression as a simple atomic.
4526 auto *RHSExpr = UpExpr;
4527 if (RHSExpr) {
4528 // Analyze RHS part of the whole expression.
4529 if (auto *ACO = dyn_cast<AbstractConditionalOperator>(
4530 RHSExpr->IgnoreParenImpCasts())) {
4531 // If this is a conditional operator, analyze its condition for
4532 // min/max reduction operator.
4533 RHSExpr = ACO->getCond();
4534 }
4535 if (auto *BORHS =
4536 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
4537 EExpr = BORHS->getRHS();
4538 BO = BORHS->getOpcode();
4539 }
4540 }
4541 if (XExpr) {
4542 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
4543 auto &&AtomicRedGen = [BO, VD, IPriv,
4544 Loc](CodeGenFunction &CGF, const Expr *XExpr,
4545 const Expr *EExpr, const Expr *UpExpr) {
4546 LValue X = CGF.EmitLValue(XExpr);
4547 RValue E;
4548 if (EExpr)
4549 E = CGF.EmitAnyExpr(EExpr);
4550 CGF.EmitOMPAtomicSimpleUpdateExpr(
4551 X, E, BO, /*IsXLHSInRHSPart=*/true,
4552 llvm::AtomicOrdering::Monotonic, Loc,
4553 [&CGF, UpExpr, VD, IPriv, Loc](RValue XRValue) {
4554 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4555 PrivateScope.addPrivate(
4556 VD, [&CGF, VD, XRValue, Loc]() -> Address {
4557 Address LHSTemp = CGF.CreateMemTemp(VD->getType());
4558 CGF.emitOMPSimpleStore(
4559 CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
4560 VD->getType().getNonReferenceType(), Loc);
4561 return LHSTemp;
4562 });
4563 (void)PrivateScope.Privatize();
4564 return CGF.EmitAnyExpr(UpExpr);
4565 });
4566 };
4567 if ((*IPriv)->getType()->isArrayType()) {
4568 // Emit atomic reduction for array section.
4569 auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
4570 EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
4571 AtomicRedGen, XExpr, EExpr, UpExpr);
4572 } else
4573 // Emit atomic reduction for array subscript or single variable.
4574 AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
4575 } else {
4576 // Emit as a critical region.
4577 auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
4578 const Expr *, const Expr *) {
4579 auto &RT = CGF.CGM.getOpenMPRuntime();
4580 RT.emitCriticalRegion(
4581 CGF, ".atomic_reduction",
4582 [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
4583 Action.Enter(CGF);
4584 emitReductionCombiner(CGF, E);
4585 },
4586 Loc);
4587 };
4588 if ((*IPriv)->getType()->isArrayType()) {
4589 auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
4590 auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
4591 EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
4592 CritRedGen);
4593 } else
4594 CritRedGen(CGF, nullptr, nullptr, nullptr);
4595 }
4596 ++ILHS;
4597 ++IRHS;
4598 ++IPriv;
4599 }
4600 };
4601 RegionCodeGenTy AtomicRCG(AtomicCodeGen);
4602 if (!WithNowait) {
4603 // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
4604 llvm::Value *EndArgs[] = {
4605 IdentTLoc, // ident_t *<loc>
4606 ThreadId, // i32 <gtid>
4607 Lock // kmp_critical_name *&<lock>
4608 };
4609 CommonActionTy Action(nullptr, llvm::None,
4610 createRuntimeFunction(OMPRTL__kmpc_end_reduce),
4611 EndArgs);
4612 AtomicRCG.setAction(Action);
4613 AtomicRCG(CGF);
4614 } else
4615 AtomicRCG(CGF);
4616
4617 CGF.EmitBranch(DefaultBB);
4618 CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
4619 }
4620
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)4621 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
4622 SourceLocation Loc) {
4623 if (!CGF.HaveInsertPoint())
4624 return;
4625 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
4626 // global_tid);
4627 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
4628 // Ignore return result until untied tasks are supported.
4629 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
4630 if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
4631 Region->emitUntiedSwitch(CGF);
4632 }
4633
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)4634 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
4635 OpenMPDirectiveKind InnerKind,
4636 const RegionCodeGenTy &CodeGen,
4637 bool HasCancel) {
4638 if (!CGF.HaveInsertPoint())
4639 return;
4640 InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
4641 CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
4642 }
4643
4644 namespace {
4645 enum RTCancelKind {
4646 CancelNoreq = 0,
4647 CancelParallel = 1,
4648 CancelLoop = 2,
4649 CancelSections = 3,
4650 CancelTaskgroup = 4
4651 };
4652 } // anonymous namespace
4653
getCancellationKind(OpenMPDirectiveKind CancelRegion)4654 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
4655 RTCancelKind CancelKind = CancelNoreq;
4656 if (CancelRegion == OMPD_parallel)
4657 CancelKind = CancelParallel;
4658 else if (CancelRegion == OMPD_for)
4659 CancelKind = CancelLoop;
4660 else if (CancelRegion == OMPD_sections)
4661 CancelKind = CancelSections;
4662 else {
4663 assert(CancelRegion == OMPD_taskgroup);
4664 CancelKind = CancelTaskgroup;
4665 }
4666 return CancelKind;
4667 }
4668
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)4669 void CGOpenMPRuntime::emitCancellationPointCall(
4670 CodeGenFunction &CGF, SourceLocation Loc,
4671 OpenMPDirectiveKind CancelRegion) {
4672 if (!CGF.HaveInsertPoint())
4673 return;
4674 // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
4675 // global_tid, kmp_int32 cncl_kind);
4676 if (auto *OMPRegionInfo =
4677 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
4678 if (OMPRegionInfo->hasCancel()) {
4679 llvm::Value *Args[] = {
4680 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
4681 CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
4682 // Ignore return result until untied tasks are supported.
4683 auto *Result = CGF.EmitRuntimeCall(
4684 createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
4685 // if (__kmpc_cancellationpoint()) {
4686 // __kmpc_cancel_barrier();
4687 // exit from construct;
4688 // }
4689 auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
4690 auto *ContBB = CGF.createBasicBlock(".cancel.continue");
4691 auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
4692 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
4693 CGF.EmitBlock(ExitBB);
4694 // __kmpc_cancel_barrier();
4695 emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
4696 // exit from construct;
4697 auto CancelDest =
4698 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
4699 CGF.EmitBranchThroughCleanup(CancelDest);
4700 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
4701 }
4702 }
4703 }
4704
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)4705 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
4706 const Expr *IfCond,
4707 OpenMPDirectiveKind CancelRegion) {
4708 if (!CGF.HaveInsertPoint())
4709 return;
4710 // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
4711 // kmp_int32 cncl_kind);
4712 if (auto *OMPRegionInfo =
4713 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
4714 auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
4715 PrePostActionTy &) {
4716 auto &RT = CGF.CGM.getOpenMPRuntime();
4717 llvm::Value *Args[] = {
4718 RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
4719 CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
4720 // Ignore return result until untied tasks are supported.
4721 auto *Result = CGF.EmitRuntimeCall(
4722 RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
4723 // if (__kmpc_cancel()) {
4724 // __kmpc_cancel_barrier();
4725 // exit from construct;
4726 // }
4727 auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
4728 auto *ContBB = CGF.createBasicBlock(".cancel.continue");
4729 auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
4730 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
4731 CGF.EmitBlock(ExitBB);
4732 // __kmpc_cancel_barrier();
4733 RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
4734 // exit from construct;
4735 auto CancelDest =
4736 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
4737 CGF.EmitBranchThroughCleanup(CancelDest);
4738 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
4739 };
4740 if (IfCond)
4741 emitOMPIfClause(CGF, IfCond, ThenGen,
4742 [](CodeGenFunction &, PrePostActionTy &) {});
4743 else {
4744 RegionCodeGenTy ThenRCG(ThenGen);
4745 ThenRCG(CGF);
4746 }
4747 }
4748 }
4749
4750 /// \brief Obtain information that uniquely identifies a target entry. This
4751 /// consists of the file and device IDs as well as line number associated with
4752 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)4753 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
4754 unsigned &DeviceID, unsigned &FileID,
4755 unsigned &LineNum) {
4756
4757 auto &SM = C.getSourceManager();
4758
4759 // The loc should be always valid and have a file ID (the user cannot use
4760 // #pragma directives in macros)
4761
4762 assert(Loc.isValid() && "Source location is expected to be always valid.");
4763 assert(Loc.isFileID() && "Source location is expected to refer to a file.");
4764
4765 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
4766 assert(PLoc.isValid() && "Source location is expected to be always valid.");
4767
4768 llvm::sys::fs::UniqueID ID;
4769 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
4770 llvm_unreachable("Source file with target region no longer exists!");
4771
4772 DeviceID = ID.getDevice();
4773 FileID = ID.getFile();
4774 LineNum = PLoc.getLine();
4775 }
4776
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)4777 void CGOpenMPRuntime::emitTargetOutlinedFunction(
4778 const OMPExecutableDirective &D, StringRef ParentName,
4779 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
4780 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
4781 assert(!ParentName.empty() && "Invalid target region parent name!");
4782
4783 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
4784 IsOffloadEntry, CodeGen);
4785 }
4786
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)4787 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
4788 const OMPExecutableDirective &D, StringRef ParentName,
4789 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
4790 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
4791 // Create a unique name for the entry function using the source location
4792 // information of the current target region. The name will be something like:
4793 //
4794 // __omp_offloading_DD_FFFF_PP_lBB
4795 //
4796 // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
4797 // mangled name of the function that encloses the target region and BB is the
4798 // line number of the target region.
4799
4800 unsigned DeviceID;
4801 unsigned FileID;
4802 unsigned Line;
4803 getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID,
4804 Line);
4805 SmallString<64> EntryFnName;
4806 {
4807 llvm::raw_svector_ostream OS(EntryFnName);
4808 OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
4809 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
4810 }
4811
4812 const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
4813
4814 CodeGenFunction CGF(CGM, true);
4815 CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
4816 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
4817
4818 OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
4819
4820 // If this target outline function is not an offload entry, we don't need to
4821 // register it.
4822 if (!IsOffloadEntry)
4823 return;
4824
4825 // The target region ID is used by the runtime library to identify the current
4826 // target region, so it only has to be unique and not necessarily point to
4827 // anything. It could be the pointer to the outlined function that implements
4828 // the target region, but we aren't using that so that the compiler doesn't
4829 // need to keep that, and could therefore inline the host function if proven
4830 // worthwhile during optimization. In the other hand, if emitting code for the
4831 // device, the ID has to be the function address so that it can retrieved from
4832 // the offloading entry and launched by the runtime library. We also mark the
4833 // outlined function to have external linkage in case we are emitting code for
4834 // the device, because these functions will be entry points to the device.
4835
4836 if (CGM.getLangOpts().OpenMPIsDevice) {
4837 OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
4838 OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage);
4839 } else
4840 OutlinedFnID = new llvm::GlobalVariable(
4841 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
4842 llvm::GlobalValue::PrivateLinkage,
4843 llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id");
4844
4845 // Register the information for the entry associated with this target region.
4846 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
4847 DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID);
4848 }
4849
4850 /// discard all CompoundStmts intervening between two constructs
ignoreCompoundStmts(const Stmt * Body)4851 static const Stmt *ignoreCompoundStmts(const Stmt *Body) {
4852 while (auto *CS = dyn_cast_or_null<CompoundStmt>(Body))
4853 Body = CS->body_front();
4854
4855 return Body;
4856 }
4857
4858 /// \brief Emit the num_teams clause of an enclosed teams directive at the
4859 /// target region scope. If there is no teams directive associated with the
4860 /// target directive, or if there is no num_teams clause associated with the
4861 /// enclosed teams directive, return nullptr.
4862 static llvm::Value *
emitNumTeamsClauseForTargetDirective(CGOpenMPRuntime & OMPRuntime,CodeGenFunction & CGF,const OMPExecutableDirective & D)4863 emitNumTeamsClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime,
4864 CodeGenFunction &CGF,
4865 const OMPExecutableDirective &D) {
4866
4867 assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
4868 "teams directive expected to be "
4869 "emitted only for the host!");
4870
4871 // FIXME: For the moment we do not support combined directives with target and
4872 // teams, so we do not expect to get any num_teams clause in the provided
4873 // directive. Once we support that, this assertion can be replaced by the
4874 // actual emission of the clause expression.
4875 assert(D.getSingleClause<OMPNumTeamsClause>() == nullptr &&
4876 "Not expecting clause in directive.");
4877
4878 // If the current target region has a teams region enclosed, we need to get
4879 // the number of teams to pass to the runtime function call. This is done
4880 // by generating the expression in a inlined region. This is required because
4881 // the expression is captured in the enclosing target environment when the
4882 // teams directive is not combined with target.
4883
4884 const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
4885
4886 // FIXME: Accommodate other combined directives with teams when they become
4887 // available.
4888 if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
4889 ignoreCompoundStmts(CS.getCapturedStmt()))) {
4890 if (auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) {
4891 CGOpenMPInnerExprInfo CGInfo(CGF, CS);
4892 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
4893 llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams());
4894 return CGF.Builder.CreateIntCast(NumTeams, CGF.Int32Ty,
4895 /*IsSigned=*/true);
4896 }
4897
4898 // If we have an enclosed teams directive but no num_teams clause we use
4899 // the default value 0.
4900 return CGF.Builder.getInt32(0);
4901 }
4902
4903 // No teams associated with the directive.
4904 return nullptr;
4905 }
4906
4907 /// \brief Emit the thread_limit clause of an enclosed teams directive at the
4908 /// target region scope. If there is no teams directive associated with the
4909 /// target directive, or if there is no thread_limit clause associated with the
4910 /// enclosed teams directive, return nullptr.
4911 static llvm::Value *
emitThreadLimitClauseForTargetDirective(CGOpenMPRuntime & OMPRuntime,CodeGenFunction & CGF,const OMPExecutableDirective & D)4912 emitThreadLimitClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime,
4913 CodeGenFunction &CGF,
4914 const OMPExecutableDirective &D) {
4915
4916 assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
4917 "teams directive expected to be "
4918 "emitted only for the host!");
4919
4920 // FIXME: For the moment we do not support combined directives with target and
4921 // teams, so we do not expect to get any thread_limit clause in the provided
4922 // directive. Once we support that, this assertion can be replaced by the
4923 // actual emission of the clause expression.
4924 assert(D.getSingleClause<OMPThreadLimitClause>() == nullptr &&
4925 "Not expecting clause in directive.");
4926
4927 // If the current target region has a teams region enclosed, we need to get
4928 // the thread limit to pass to the runtime function call. This is done
4929 // by generating the expression in a inlined region. This is required because
4930 // the expression is captured in the enclosing target environment when the
4931 // teams directive is not combined with target.
4932
4933 const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
4934
4935 // FIXME: Accommodate other combined directives with teams when they become
4936 // available.
4937 if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
4938 ignoreCompoundStmts(CS.getCapturedStmt()))) {
4939 if (auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) {
4940 CGOpenMPInnerExprInfo CGInfo(CGF, CS);
4941 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
4942 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit());
4943 return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty,
4944 /*IsSigned=*/true);
4945 }
4946
4947 // If we have an enclosed teams directive but no thread_limit clause we use
4948 // the default value 0.
4949 return CGF.Builder.getInt32(0);
4950 }
4951
4952 // No teams associated with the directive.
4953 return nullptr;
4954 }
4955
4956 namespace {
4957 // \brief Utility to handle information from clauses associated with a given
4958 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
4959 // It provides a convenient interface to obtain the information and generate
4960 // code for that information.
4961 class MappableExprsHandler {
4962 public:
4963 /// \brief Values for bit flags used to specify the mapping type for
4964 /// offloading.
4965 enum OpenMPOffloadMappingFlags {
4966 /// \brief Allocate memory on the device and move data from host to device.
4967 OMP_MAP_TO = 0x01,
4968 /// \brief Allocate memory on the device and move data from device to host.
4969 OMP_MAP_FROM = 0x02,
4970 /// \brief Always perform the requested mapping action on the element, even
4971 /// if it was already mapped before.
4972 OMP_MAP_ALWAYS = 0x04,
4973 /// \brief Delete the element from the device environment, ignoring the
4974 /// current reference count associated with the element.
4975 OMP_MAP_DELETE = 0x08,
4976 /// \brief The element being mapped is a pointer, therefore the pointee
4977 /// should be mapped as well.
4978 OMP_MAP_IS_PTR = 0x10,
4979 /// \brief This flags signals that an argument is the first one relating to
4980 /// a map/private clause expression. For some cases a single
4981 /// map/privatization results in multiple arguments passed to the runtime
4982 /// library.
4983 OMP_MAP_FIRST_REF = 0x20,
4984 /// \brief This flag signals that the reference being passed is a pointer to
4985 /// private data.
4986 OMP_MAP_PRIVATE_PTR = 0x80,
4987 /// \brief Pass the element to the device by value.
4988 OMP_MAP_PRIVATE_VAL = 0x100,
4989 };
4990
4991 typedef SmallVector<llvm::Value *, 16> MapValuesArrayTy;
4992 typedef SmallVector<unsigned, 16> MapFlagsArrayTy;
4993
4994 private:
4995 /// \brief Directive from where the map clauses were extracted.
4996 const OMPExecutableDirective &Directive;
4997
4998 /// \brief Function the directive is being generated for.
4999 CodeGenFunction &CGF;
5000
5001 /// \brief Set of all first private variables in the current directive.
5002 llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls;
5003
getExprTypeSize(const Expr * E) const5004 llvm::Value *getExprTypeSize(const Expr *E) const {
5005 auto ExprTy = E->getType().getCanonicalType();
5006
5007 // Reference types are ignored for mapping purposes.
5008 if (auto *RefTy = ExprTy->getAs<ReferenceType>())
5009 ExprTy = RefTy->getPointeeType().getCanonicalType();
5010
5011 // Given that an array section is considered a built-in type, we need to
5012 // do the calculation based on the length of the section instead of relying
5013 // on CGF.getTypeSize(E->getType()).
5014 if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
5015 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
5016 OAE->getBase()->IgnoreParenImpCasts())
5017 .getCanonicalType();
5018
5019 // If there is no length associated with the expression, that means we
5020 // are using the whole length of the base.
5021 if (!OAE->getLength() && OAE->getColonLoc().isValid())
5022 return CGF.getTypeSize(BaseTy);
5023
5024 llvm::Value *ElemSize;
5025 if (auto *PTy = BaseTy->getAs<PointerType>())
5026 ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
5027 else {
5028 auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
5029 assert(ATy && "Expecting array type if not a pointer type.");
5030 ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
5031 }
5032
5033 // If we don't have a length at this point, that is because we have an
5034 // array section with a single element.
5035 if (!OAE->getLength())
5036 return ElemSize;
5037
5038 auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
5039 LengthVal =
5040 CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
5041 return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
5042 }
5043 return CGF.getTypeSize(ExprTy);
5044 }
5045
5046 /// \brief Return the corresponding bits for a given map clause modifier. Add
5047 /// a flag marking the map as a pointer if requested. Add a flag marking the
5048 /// map as the first one of a series of maps that relate to the same map
5049 /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,OpenMPMapClauseKind MapTypeModifier,bool AddPtrFlag,bool AddIsFirstFlag) const5050 unsigned getMapTypeBits(OpenMPMapClauseKind MapType,
5051 OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag,
5052 bool AddIsFirstFlag) const {
5053 unsigned Bits = 0u;
5054 switch (MapType) {
5055 case OMPC_MAP_alloc:
5056 case OMPC_MAP_release:
5057 // alloc and release is the default behavior in the runtime library, i.e.
5058 // if we don't pass any bits alloc/release that is what the runtime is
5059 // going to do. Therefore, we don't need to signal anything for these two
5060 // type modifiers.
5061 break;
5062 case OMPC_MAP_to:
5063 Bits = OMP_MAP_TO;
5064 break;
5065 case OMPC_MAP_from:
5066 Bits = OMP_MAP_FROM;
5067 break;
5068 case OMPC_MAP_tofrom:
5069 Bits = OMP_MAP_TO | OMP_MAP_FROM;
5070 break;
5071 case OMPC_MAP_delete:
5072 Bits = OMP_MAP_DELETE;
5073 break;
5074 default:
5075 llvm_unreachable("Unexpected map type!");
5076 break;
5077 }
5078 if (AddPtrFlag)
5079 Bits |= OMP_MAP_IS_PTR;
5080 if (AddIsFirstFlag)
5081 Bits |= OMP_MAP_FIRST_REF;
5082 if (MapTypeModifier == OMPC_MAP_always)
5083 Bits |= OMP_MAP_ALWAYS;
5084 return Bits;
5085 }
5086
5087 /// \brief Return true if the provided expression is a final array section. A
5088 /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const5089 bool isFinalArraySectionExpression(const Expr *E) const {
5090 auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
5091
5092 // It is not an array section and therefore not a unity-size one.
5093 if (!OASE)
5094 return false;
5095
5096 // An array section with no colon always refer to a single element.
5097 if (OASE->getColonLoc().isInvalid())
5098 return false;
5099
5100 auto *Length = OASE->getLength();
5101
5102 // If we don't have a length we have to check if the array has size 1
5103 // for this dimension. Also, we should always expect a length if the
5104 // base type is pointer.
5105 if (!Length) {
5106 auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
5107 OASE->getBase()->IgnoreParenImpCasts())
5108 .getCanonicalType();
5109 if (auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
5110 return ATy->getSize().getSExtValue() != 1;
5111 // If we don't have a constant dimension length, we have to consider
5112 // the current section as having any size, so it is not necessarily
5113 // unitary. If it happen to be unity size, that's user fault.
5114 return true;
5115 }
5116
5117 // Check if the length evaluates to 1.
5118 llvm::APSInt ConstLength;
5119 if (!Length->EvaluateAsInt(ConstLength, CGF.getContext()))
5120 return true; // Can have more that size 1.
5121
5122 return ConstLength.getSExtValue() != 1;
5123 }
5124
5125 /// \brief Generate the base pointers, section pointers, sizes and map type
5126 /// bits for the provided map type, map modifier, and expression components.
5127 /// \a IsFirstComponent should be set to true if the provided set of
5128 /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,OpenMPMapClauseKind MapTypeModifier,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,bool IsFirstComponentList) const5129 void generateInfoForComponentList(
5130 OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier,
5131 OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
5132 MapValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
5133 MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
5134 bool IsFirstComponentList) const {
5135
5136 // The following summarizes what has to be generated for each map and the
5137 // types bellow. The generated information is expressed in this order:
5138 // base pointer, section pointer, size, flags
5139 // (to add to the ones that come from the map type and modifier).
5140 //
5141 // double d;
5142 // int i[100];
5143 // float *p;
5144 //
5145 // struct S1 {
5146 // int i;
5147 // float f[50];
5148 // }
5149 // struct S2 {
5150 // int i;
5151 // float f[50];
5152 // S1 s;
5153 // double *p;
5154 // struct S2 *ps;
5155 // }
5156 // S2 s;
5157 // S2 *ps;
5158 //
5159 // map(d)
5160 // &d, &d, sizeof(double), noflags
5161 //
5162 // map(i)
5163 // &i, &i, 100*sizeof(int), noflags
5164 //
5165 // map(i[1:23])
5166 // &i(=&i[0]), &i[1], 23*sizeof(int), noflags
5167 //
5168 // map(p)
5169 // &p, &p, sizeof(float*), noflags
5170 //
5171 // map(p[1:24])
5172 // p, &p[1], 24*sizeof(float), noflags
5173 //
5174 // map(s)
5175 // &s, &s, sizeof(S2), noflags
5176 //
5177 // map(s.i)
5178 // &s, &(s.i), sizeof(int), noflags
5179 //
5180 // map(s.s.f)
5181 // &s, &(s.i.f), 50*sizeof(int), noflags
5182 //
5183 // map(s.p)
5184 // &s, &(s.p), sizeof(double*), noflags
5185 //
5186 // map(s.p[:22], s.a s.b)
5187 // &s, &(s.p), sizeof(double*), noflags
5188 // &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag
5189 //
5190 // map(s.ps)
5191 // &s, &(s.ps), sizeof(S2*), noflags
5192 //
5193 // map(s.ps->s.i)
5194 // &s, &(s.ps), sizeof(S2*), noflags
5195 // &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag
5196 //
5197 // map(s.ps->ps)
5198 // &s, &(s.ps), sizeof(S2*), noflags
5199 // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
5200 //
5201 // map(s.ps->ps->ps)
5202 // &s, &(s.ps), sizeof(S2*), noflags
5203 // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
5204 // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
5205 //
5206 // map(s.ps->ps->s.f[:22])
5207 // &s, &(s.ps), sizeof(S2*), noflags
5208 // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
5209 // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag
5210 //
5211 // map(ps)
5212 // &ps, &ps, sizeof(S2*), noflags
5213 //
5214 // map(ps->i)
5215 // ps, &(ps->i), sizeof(int), noflags
5216 //
5217 // map(ps->s.f)
5218 // ps, &(ps->s.f[0]), 50*sizeof(float), noflags
5219 //
5220 // map(ps->p)
5221 // ps, &(ps->p), sizeof(double*), noflags
5222 //
5223 // map(ps->p[:22])
5224 // ps, &(ps->p), sizeof(double*), noflags
5225 // &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag
5226 //
5227 // map(ps->ps)
5228 // ps, &(ps->ps), sizeof(S2*), noflags
5229 //
5230 // map(ps->ps->s.i)
5231 // ps, &(ps->ps), sizeof(S2*), noflags
5232 // &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag
5233 //
5234 // map(ps->ps->ps)
5235 // ps, &(ps->ps), sizeof(S2*), noflags
5236 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
5237 //
5238 // map(ps->ps->ps->ps)
5239 // ps, &(ps->ps), sizeof(S2*), noflags
5240 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
5241 // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
5242 //
5243 // map(ps->ps->ps->s.f[:22])
5244 // ps, &(ps->ps), sizeof(S2*), noflags
5245 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
5246 // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag +
5247 // extra_flag
5248
5249 // Track if the map information being generated is the first for a capture.
5250 bool IsCaptureFirstInfo = IsFirstComponentList;
5251
5252 // Scan the components from the base to the complete expression.
5253 auto CI = Components.rbegin();
5254 auto CE = Components.rend();
5255 auto I = CI;
5256
5257 // Track if the map information being generated is the first for a list of
5258 // components.
5259 bool IsExpressionFirstInfo = true;
5260 llvm::Value *BP = nullptr;
5261
5262 if (auto *ME = dyn_cast<MemberExpr>(I->getAssociatedExpression())) {
5263 // The base is the 'this' pointer. The content of the pointer is going
5264 // to be the base of the field being mapped.
5265 BP = CGF.EmitScalarExpr(ME->getBase());
5266 } else {
5267 // The base is the reference to the variable.
5268 // BP = &Var.
5269 BP = CGF.EmitLValue(cast<DeclRefExpr>(I->getAssociatedExpression()))
5270 .getPointer();
5271
5272 // If the variable is a pointer and is being dereferenced (i.e. is not
5273 // the last component), the base has to be the pointer itself, not its
5274 // reference.
5275 if (I->getAssociatedDeclaration()->getType()->isAnyPointerType() &&
5276 std::next(I) != CE) {
5277 auto PtrAddr = CGF.MakeNaturalAlignAddrLValue(
5278 BP, I->getAssociatedDeclaration()->getType());
5279 BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(),
5280 I->getAssociatedDeclaration()
5281 ->getType()
5282 ->getAs<PointerType>())
5283 .getPointer();
5284
5285 // We do not need to generate individual map information for the
5286 // pointer, it can be associated with the combined storage.
5287 ++I;
5288 }
5289 }
5290
5291 for (; I != CE; ++I) {
5292 auto Next = std::next(I);
5293
5294 // We need to generate the addresses and sizes if this is the last
5295 // component, if the component is a pointer or if it is an array section
5296 // whose length can't be proved to be one. If this is a pointer, it
5297 // becomes the base address for the following components.
5298
5299 // A final array section, is one whose length can't be proved to be one.
5300 bool IsFinalArraySection =
5301 isFinalArraySectionExpression(I->getAssociatedExpression());
5302
5303 // Get information on whether the element is a pointer. Have to do a
5304 // special treatment for array sections given that they are built-in
5305 // types.
5306 const auto *OASE =
5307 dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
5308 bool IsPointer =
5309 (OASE &&
5310 OMPArraySectionExpr::getBaseOriginalType(OASE)
5311 .getCanonicalType()
5312 ->isAnyPointerType()) ||
5313 I->getAssociatedExpression()->getType()->isAnyPointerType();
5314
5315 if (Next == CE || IsPointer || IsFinalArraySection) {
5316
5317 // If this is not the last component, we expect the pointer to be
5318 // associated with an array expression or member expression.
5319 assert((Next == CE ||
5320 isa<MemberExpr>(Next->getAssociatedExpression()) ||
5321 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
5322 isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
5323 "Unexpected expression");
5324
5325 // Save the base we are currently using.
5326 BasePointers.push_back(BP);
5327
5328 auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer();
5329 auto *Size = getExprTypeSize(I->getAssociatedExpression());
5330
5331 Pointers.push_back(LB);
5332 Sizes.push_back(Size);
5333 // We need to add a pointer flag for each map that comes from the
5334 // same expression except for the first one. We also need to signal
5335 // this map is the first one that relates with the current capture
5336 // (there is a set of entries for each capture).
5337 Types.push_back(getMapTypeBits(MapType, MapTypeModifier,
5338 !IsExpressionFirstInfo,
5339 IsCaptureFirstInfo));
5340
5341 // If we have a final array section, we are done with this expression.
5342 if (IsFinalArraySection)
5343 break;
5344
5345 // The pointer becomes the base for the next element.
5346 if (Next != CE)
5347 BP = LB;
5348
5349 IsExpressionFirstInfo = false;
5350 IsCaptureFirstInfo = false;
5351 continue;
5352 }
5353 }
5354 }
5355
5356 /// \brief Return the adjusted map modifiers if the declaration a capture
5357 /// refers to appears in a first-private clause. This is expected to be used
5358 /// only with directives that start with 'target'.
adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap,unsigned CurrentModifiers)5359 unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap,
5360 unsigned CurrentModifiers) {
5361 assert(Cap.capturesVariable() && "Expected capture by reference only!");
5362
5363 // A first private variable captured by reference will use only the
5364 // 'private ptr' and 'map to' flag. Return the right flags if the captured
5365 // declaration is known as first-private in this handler.
5366 if (FirstPrivateDecls.count(Cap.getCapturedVar()))
5367 return MappableExprsHandler::OMP_MAP_PRIVATE_PTR |
5368 MappableExprsHandler::OMP_MAP_TO;
5369
5370 // We didn't modify anything.
5371 return CurrentModifiers;
5372 }
5373
5374 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)5375 MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
5376 : Directive(Dir), CGF(CGF) {
5377 // Extract firstprivate clause information.
5378 for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
5379 for (const auto *D : C->varlists())
5380 FirstPrivateDecls.insert(
5381 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
5382 }
5383
5384 /// \brief Generate all the base pointers, section pointers, sizes and map
5385 /// types for the extracted mappable expressions.
generateAllInfo(MapValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const5386 void generateAllInfo(MapValuesArrayTy &BasePointers,
5387 MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
5388 MapFlagsArrayTy &Types) const {
5389 BasePointers.clear();
5390 Pointers.clear();
5391 Sizes.clear();
5392 Types.clear();
5393
5394 struct MapInfo {
5395 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
5396 OpenMPMapClauseKind MapType;
5397 OpenMPMapClauseKind MapTypeModifier;
5398 };
5399
5400 // We have to process the component lists that relate with the same
5401 // declaration in a single chunk so that we can generate the map flags
5402 // correctly. Therefore, we organize all lists in a map.
5403 llvm::DenseMap<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
5404
5405 // Helper function to fill the information map for the different supported
5406 // clauses.
5407 auto &&InfoGen =
5408 [&Info](const ValueDecl *D,
5409 OMPClauseMappableExprCommon::MappableExprComponentListRef L,
5410 OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier) {
5411 const ValueDecl *VD =
5412 D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
5413 Info[VD].push_back({L, MapType, MapModifier});
5414 };
5415
5416 for (auto *C : Directive.getClausesOfKind<OMPMapClause>())
5417 for (auto L : C->component_lists())
5418 InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier());
5419 for (auto *C : Directive.getClausesOfKind<OMPToClause>())
5420 for (auto L : C->component_lists())
5421 InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown);
5422 for (auto *C : Directive.getClausesOfKind<OMPFromClause>())
5423 for (auto L : C->component_lists())
5424 InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown);
5425
5426 for (auto &M : Info) {
5427 // We need to know when we generate information for the first component
5428 // associated with a capture, because the mapping flags depend on it.
5429 bool IsFirstComponentList = true;
5430 for (MapInfo &L : M.second) {
5431 assert(!L.Components.empty() &&
5432 "Not expecting declaration with no component lists.");
5433 generateInfoForComponentList(L.MapType, L.MapTypeModifier, L.Components,
5434 BasePointers, Pointers, Sizes, Types,
5435 IsFirstComponentList);
5436 IsFirstComponentList = false;
5437 }
5438 }
5439 }
5440
5441 /// \brief Generate the base pointers, section pointers, sizes and map types
5442 /// associated to a given capture.
generateInfoForCapture(const CapturedStmt::Capture * Cap,MapValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const5443 void generateInfoForCapture(const CapturedStmt::Capture *Cap,
5444 MapValuesArrayTy &BasePointers,
5445 MapValuesArrayTy &Pointers,
5446 MapValuesArrayTy &Sizes,
5447 MapFlagsArrayTy &Types) const {
5448 assert(!Cap->capturesVariableArrayType() &&
5449 "Not expecting to generate map info for a variable array type!");
5450
5451 BasePointers.clear();
5452 Pointers.clear();
5453 Sizes.clear();
5454 Types.clear();
5455
5456 const ValueDecl *VD =
5457 Cap->capturesThis()
5458 ? nullptr
5459 : cast<ValueDecl>(Cap->getCapturedVar()->getCanonicalDecl());
5460
5461 // We need to know when we generating information for the first component
5462 // associated with a capture, because the mapping flags depend on it.
5463 bool IsFirstComponentList = true;
5464 for (auto *C : Directive.getClausesOfKind<OMPMapClause>())
5465 for (auto L : C->decl_component_lists(VD)) {
5466 assert(L.first == VD &&
5467 "We got information for the wrong declaration??");
5468 assert(!L.second.empty() &&
5469 "Not expecting declaration with no component lists.");
5470 generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(),
5471 L.second, BasePointers, Pointers, Sizes,
5472 Types, IsFirstComponentList);
5473 IsFirstComponentList = false;
5474 }
5475
5476 return;
5477 }
5478
5479 /// \brief Generate the default map information for a given capture \a CI,
5480 /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MappableExprsHandler::MapValuesArrayTy & CurBasePointers,MappableExprsHandler::MapValuesArrayTy & CurPointers,MappableExprsHandler::MapValuesArrayTy & CurSizes,MappableExprsHandler::MapFlagsArrayTy & CurMapTypes)5481 void generateDefaultMapInfo(
5482 const CapturedStmt::Capture &CI, const FieldDecl &RI, llvm::Value *CV,
5483 MappableExprsHandler::MapValuesArrayTy &CurBasePointers,
5484 MappableExprsHandler::MapValuesArrayTy &CurPointers,
5485 MappableExprsHandler::MapValuesArrayTy &CurSizes,
5486 MappableExprsHandler::MapFlagsArrayTy &CurMapTypes) {
5487
5488 // Do the default mapping.
5489 if (CI.capturesThis()) {
5490 CurBasePointers.push_back(CV);
5491 CurPointers.push_back(CV);
5492 const PointerType *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
5493 CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType()));
5494 // Default map type.
5495 CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_TO |
5496 MappableExprsHandler::OMP_MAP_FROM);
5497 } else if (CI.capturesVariableByCopy()) {
5498 CurBasePointers.push_back(CV);
5499 CurPointers.push_back(CV);
5500 if (!RI.getType()->isAnyPointerType()) {
5501 // We have to signal to the runtime captures passed by value that are
5502 // not pointers.
5503 CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL);
5504 CurSizes.push_back(CGF.getTypeSize(RI.getType()));
5505 } else {
5506 // Pointers are implicitly mapped with a zero size and no flags
5507 // (other than first map that is added for all implicit maps).
5508 CurMapTypes.push_back(0u);
5509 CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy));
5510 }
5511 } else {
5512 assert(CI.capturesVariable() && "Expected captured reference.");
5513 CurBasePointers.push_back(CV);
5514 CurPointers.push_back(CV);
5515
5516 const ReferenceType *PtrTy =
5517 cast<ReferenceType>(RI.getType().getTypePtr());
5518 QualType ElementType = PtrTy->getPointeeType();
5519 CurSizes.push_back(CGF.getTypeSize(ElementType));
5520 // The default map type for a scalar/complex type is 'to' because by
5521 // default the value doesn't have to be retrieved. For an aggregate
5522 // type, the default is 'tofrom'.
5523 CurMapTypes.push_back(ElementType->isAggregateType()
5524 ? (MappableExprsHandler::OMP_MAP_TO |
5525 MappableExprsHandler::OMP_MAP_FROM)
5526 : MappableExprsHandler::OMP_MAP_TO);
5527
5528 // If we have a capture by reference we may need to add the private
5529 // pointer flag if the base declaration shows in some first-private
5530 // clause.
5531 CurMapTypes.back() =
5532 adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back());
5533 }
5534 // Every default map produces a single argument, so, it is always the
5535 // first one.
5536 CurMapTypes.back() |= MappableExprsHandler::OMP_MAP_FIRST_REF;
5537 }
5538 };
5539
5540 enum OpenMPOffloadingReservedDeviceIDs {
5541 /// \brief Device ID if the device was not defined, runtime should get it
5542 /// from environment variables in the spec.
5543 OMP_DEVICEID_UNDEF = -1,
5544 };
5545 } // anonymous namespace
5546
5547 /// \brief Emit the arrays used to pass the captures and map information to the
5548 /// offloading runtime library. If there is no map or capture information,
5549 /// return nullptr by reference.
5550 static void
emitOffloadingArrays(CodeGenFunction & CGF,llvm::Value * & BasePointersArray,llvm::Value * & PointersArray,llvm::Value * & SizesArray,llvm::Value * & MapTypesArray,MappableExprsHandler::MapValuesArrayTy & BasePointers,MappableExprsHandler::MapValuesArrayTy & Pointers,MappableExprsHandler::MapValuesArrayTy & Sizes,MappableExprsHandler::MapFlagsArrayTy & MapTypes)5551 emitOffloadingArrays(CodeGenFunction &CGF, llvm::Value *&BasePointersArray,
5552 llvm::Value *&PointersArray, llvm::Value *&SizesArray,
5553 llvm::Value *&MapTypesArray,
5554 MappableExprsHandler::MapValuesArrayTy &BasePointers,
5555 MappableExprsHandler::MapValuesArrayTy &Pointers,
5556 MappableExprsHandler::MapValuesArrayTy &Sizes,
5557 MappableExprsHandler::MapFlagsArrayTy &MapTypes) {
5558 auto &CGM = CGF.CGM;
5559 auto &Ctx = CGF.getContext();
5560
5561 BasePointersArray = PointersArray = SizesArray = MapTypesArray = nullptr;
5562
5563 if (unsigned PointerNumVal = BasePointers.size()) {
5564 // Detect if we have any capture size requiring runtime evaluation of the
5565 // size so that a constant array could be eventually used.
5566 bool hasRuntimeEvaluationCaptureSize = false;
5567 for (auto *S : Sizes)
5568 if (!isa<llvm::Constant>(S)) {
5569 hasRuntimeEvaluationCaptureSize = true;
5570 break;
5571 }
5572
5573 llvm::APInt PointerNumAP(32, PointerNumVal, /*isSigned=*/true);
5574 QualType PointerArrayType =
5575 Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
5576 /*IndexTypeQuals=*/0);
5577
5578 BasePointersArray =
5579 CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
5580 PointersArray =
5581 CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
5582
5583 // If we don't have any VLA types or other types that require runtime
5584 // evaluation, we can use a constant array for the map sizes, otherwise we
5585 // need to fill up the arrays as we do for the pointers.
5586 if (hasRuntimeEvaluationCaptureSize) {
5587 QualType SizeArrayType = Ctx.getConstantArrayType(
5588 Ctx.getSizeType(), PointerNumAP, ArrayType::Normal,
5589 /*IndexTypeQuals=*/0);
5590 SizesArray =
5591 CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
5592 } else {
5593 // We expect all the sizes to be constant, so we collect them to create
5594 // a constant array.
5595 SmallVector<llvm::Constant *, 16> ConstSizes;
5596 for (auto S : Sizes)
5597 ConstSizes.push_back(cast<llvm::Constant>(S));
5598
5599 auto *SizesArrayInit = llvm::ConstantArray::get(
5600 llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
5601 auto *SizesArrayGbl = new llvm::GlobalVariable(
5602 CGM.getModule(), SizesArrayInit->getType(),
5603 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
5604 SizesArrayInit, ".offload_sizes");
5605 SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5606 SizesArray = SizesArrayGbl;
5607 }
5608
5609 // The map types are always constant so we don't need to generate code to
5610 // fill arrays. Instead, we create an array constant.
5611 llvm::Constant *MapTypesArrayInit =
5612 llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes);
5613 auto *MapTypesArrayGbl = new llvm::GlobalVariable(
5614 CGM.getModule(), MapTypesArrayInit->getType(),
5615 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
5616 MapTypesArrayInit, ".offload_maptypes");
5617 MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5618 MapTypesArray = MapTypesArrayGbl;
5619
5620 for (unsigned i = 0; i < PointerNumVal; ++i) {
5621 llvm::Value *BPVal = BasePointers[i];
5622 if (BPVal->getType()->isPointerTy())
5623 BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy);
5624 else {
5625 assert(BPVal->getType()->isIntegerTy() &&
5626 "If not a pointer, the value type must be an integer.");
5627 BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy);
5628 }
5629 llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
5630 llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), BasePointersArray,
5631 0, i);
5632 Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
5633 CGF.Builder.CreateStore(BPVal, BPAddr);
5634
5635 llvm::Value *PVal = Pointers[i];
5636 if (PVal->getType()->isPointerTy())
5637 PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy);
5638 else {
5639 assert(PVal->getType()->isIntegerTy() &&
5640 "If not a pointer, the value type must be an integer.");
5641 PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy);
5642 }
5643 llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
5644 llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), PointersArray, 0,
5645 i);
5646 Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
5647 CGF.Builder.CreateStore(PVal, PAddr);
5648
5649 if (hasRuntimeEvaluationCaptureSize) {
5650 llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
5651 llvm::ArrayType::get(CGM.SizeTy, PointerNumVal), SizesArray,
5652 /*Idx0=*/0,
5653 /*Idx1=*/i);
5654 Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType()));
5655 CGF.Builder.CreateStore(
5656 CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true),
5657 SAddr);
5658 }
5659 }
5660 }
5661 }
5662 /// \brief Emit the arguments to be passed to the runtime library based on the
5663 /// arrays of pointers, sizes and map types.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,llvm::Value * BasePointersArray,llvm::Value * PointersArray,llvm::Value * SizesArray,llvm::Value * MapTypesArray,unsigned NumElems)5664 static void emitOffloadingArraysArgument(
5665 CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
5666 llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
5667 llvm::Value *&MapTypesArrayArg, llvm::Value *BasePointersArray,
5668 llvm::Value *PointersArray, llvm::Value *SizesArray,
5669 llvm::Value *MapTypesArray, unsigned NumElems) {
5670 auto &CGM = CGF.CGM;
5671 if (NumElems) {
5672 BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
5673 llvm::ArrayType::get(CGM.VoidPtrTy, NumElems), BasePointersArray,
5674 /*Idx0=*/0, /*Idx1=*/0);
5675 PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
5676 llvm::ArrayType::get(CGM.VoidPtrTy, NumElems), PointersArray,
5677 /*Idx0=*/0,
5678 /*Idx1=*/0);
5679 SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
5680 llvm::ArrayType::get(CGM.SizeTy, NumElems), SizesArray,
5681 /*Idx0=*/0, /*Idx1=*/0);
5682 MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
5683 llvm::ArrayType::get(CGM.Int32Ty, NumElems), MapTypesArray,
5684 /*Idx0=*/0,
5685 /*Idx1=*/0);
5686 } else {
5687 BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
5688 PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
5689 SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
5690 MapTypesArrayArg =
5691 llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo());
5692 }
5693 }
5694
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,const Expr * Device,ArrayRef<llvm::Value * > CapturedVars)5695 void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
5696 const OMPExecutableDirective &D,
5697 llvm::Value *OutlinedFn,
5698 llvm::Value *OutlinedFnID,
5699 const Expr *IfCond, const Expr *Device,
5700 ArrayRef<llvm::Value *> CapturedVars) {
5701 if (!CGF.HaveInsertPoint())
5702 return;
5703
5704 assert(OutlinedFn && "Invalid outlined function!");
5705
5706 auto &Ctx = CGF.getContext();
5707
5708 // Fill up the arrays with all the captured variables.
5709 MappableExprsHandler::MapValuesArrayTy KernelArgs;
5710 MappableExprsHandler::MapValuesArrayTy BasePointers;
5711 MappableExprsHandler::MapValuesArrayTy Pointers;
5712 MappableExprsHandler::MapValuesArrayTy Sizes;
5713 MappableExprsHandler::MapFlagsArrayTy MapTypes;
5714
5715 MappableExprsHandler::MapValuesArrayTy CurBasePointers;
5716 MappableExprsHandler::MapValuesArrayTy CurPointers;
5717 MappableExprsHandler::MapValuesArrayTy CurSizes;
5718 MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
5719
5720 // Get mappable expression information.
5721 MappableExprsHandler MEHandler(D, CGF);
5722
5723 const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
5724 auto RI = CS.getCapturedRecordDecl()->field_begin();
5725 auto CV = CapturedVars.begin();
5726 for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
5727 CE = CS.capture_end();
5728 CI != CE; ++CI, ++RI, ++CV) {
5729 StringRef Name;
5730 QualType Ty;
5731
5732 CurBasePointers.clear();
5733 CurPointers.clear();
5734 CurSizes.clear();
5735 CurMapTypes.clear();
5736
5737 // VLA sizes are passed to the outlined region by copy and do not have map
5738 // information associated.
5739 if (CI->capturesVariableArrayType()) {
5740 CurBasePointers.push_back(*CV);
5741 CurPointers.push_back(*CV);
5742 CurSizes.push_back(CGF.getTypeSize(RI->getType()));
5743 // Copy to the device as an argument. No need to retrieve it.
5744 CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL |
5745 MappableExprsHandler::OMP_MAP_FIRST_REF);
5746 } else {
5747 // If we have any information in the map clause, we use it, otherwise we
5748 // just do a default mapping.
5749 MEHandler.generateInfoForCapture(CI, CurBasePointers, CurPointers,
5750 CurSizes, CurMapTypes);
5751 if (CurBasePointers.empty())
5752 MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
5753 CurPointers, CurSizes, CurMapTypes);
5754 }
5755 // We expect to have at least an element of information for this capture.
5756 assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!");
5757 assert(CurBasePointers.size() == CurPointers.size() &&
5758 CurBasePointers.size() == CurSizes.size() &&
5759 CurBasePointers.size() == CurMapTypes.size() &&
5760 "Inconsistent map information sizes!");
5761
5762 // The kernel args are always the first elements of the base pointers
5763 // associated with a capture.
5764 KernelArgs.push_back(CurBasePointers.front());
5765 // We need to append the results of this capture to what we already have.
5766 BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
5767 Pointers.append(CurPointers.begin(), CurPointers.end());
5768 Sizes.append(CurSizes.begin(), CurSizes.end());
5769 MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
5770 }
5771
5772 // Keep track on whether the host function has to be executed.
5773 auto OffloadErrorQType =
5774 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true);
5775 auto OffloadError = CGF.MakeAddrLValue(
5776 CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"),
5777 OffloadErrorQType);
5778 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty),
5779 OffloadError);
5780
5781 // Fill up the pointer arrays and transfer execution to the device.
5782 auto &&ThenGen = [&Ctx, &BasePointers, &Pointers, &Sizes, &MapTypes, Device,
5783 OutlinedFnID, OffloadError, OffloadErrorQType,
5784 &D](CodeGenFunction &CGF, PrePostActionTy &) {
5785 auto &RT = CGF.CGM.getOpenMPRuntime();
5786 // Emit the offloading arrays.
5787 llvm::Value *BasePointersArray;
5788 llvm::Value *PointersArray;
5789 llvm::Value *SizesArray;
5790 llvm::Value *MapTypesArray;
5791 emitOffloadingArrays(CGF, BasePointersArray, PointersArray, SizesArray,
5792 MapTypesArray, BasePointers, Pointers, Sizes,
5793 MapTypes);
5794 emitOffloadingArraysArgument(CGF, BasePointersArray, PointersArray,
5795 SizesArray, MapTypesArray, BasePointersArray,
5796 PointersArray, SizesArray, MapTypesArray,
5797 BasePointers.size());
5798
5799 // On top of the arrays that were filled up, the target offloading call
5800 // takes as arguments the device id as well as the host pointer. The host
5801 // pointer is used by the runtime library to identify the current target
5802 // region, so it only has to be unique and not necessarily point to
5803 // anything. It could be the pointer to the outlined function that
5804 // implements the target region, but we aren't using that so that the
5805 // compiler doesn't need to keep that, and could therefore inline the host
5806 // function if proven worthwhile during optimization.
5807
5808 // From this point on, we need to have an ID of the target region defined.
5809 assert(OutlinedFnID && "Invalid outlined function ID!");
5810
5811 // Emit device ID if any.
5812 llvm::Value *DeviceID;
5813 if (Device)
5814 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
5815 CGF.Int32Ty, /*isSigned=*/true);
5816 else
5817 DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
5818
5819 // Emit the number of elements in the offloading arrays.
5820 llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size());
5821
5822 // Return value of the runtime offloading call.
5823 llvm::Value *Return;
5824
5825 auto *NumTeams = emitNumTeamsClauseForTargetDirective(RT, CGF, D);
5826 auto *ThreadLimit = emitThreadLimitClauseForTargetDirective(RT, CGF, D);
5827
5828 // If we have NumTeams defined this means that we have an enclosed teams
5829 // region. Therefore we also expect to have ThreadLimit defined. These two
5830 // values should be defined in the presence of a teams directive, regardless
5831 // of having any clauses associated. If the user is using teams but no
5832 // clauses, these two values will be the default that should be passed to
5833 // the runtime library - a 32-bit integer with the value zero.
5834 if (NumTeams) {
5835 assert(ThreadLimit && "Thread limit expression should be available along "
5836 "with number of teams.");
5837 llvm::Value *OffloadingArgs[] = {
5838 DeviceID, OutlinedFnID, PointerNum,
5839 BasePointersArray, PointersArray, SizesArray,
5840 MapTypesArray, NumTeams, ThreadLimit};
5841 Return = CGF.EmitRuntimeCall(
5842 RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs);
5843 } else {
5844 llvm::Value *OffloadingArgs[] = {
5845 DeviceID, OutlinedFnID, PointerNum, BasePointersArray,
5846 PointersArray, SizesArray, MapTypesArray};
5847 Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target),
5848 OffloadingArgs);
5849 }
5850
5851 CGF.EmitStoreOfScalar(Return, OffloadError);
5852 };
5853
5854 // Notify that the host version must be executed.
5855 auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) {
5856 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u),
5857 OffloadError);
5858 };
5859
5860 // If we have a target function ID it means that we need to support
5861 // offloading, otherwise, just execute on the host. We need to execute on host
5862 // regardless of the conditional in the if clause if, e.g., the user do not
5863 // specify target triples.
5864 if (OutlinedFnID) {
5865 if (IfCond)
5866 emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
5867 else {
5868 RegionCodeGenTy ThenRCG(ThenGen);
5869 ThenRCG(CGF);
5870 }
5871 } else {
5872 RegionCodeGenTy ElseRCG(ElseGen);
5873 ElseRCG(CGF);
5874 }
5875
5876 // Check the error code and execute the host version if required.
5877 auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed");
5878 auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont");
5879 auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation());
5880 auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal);
5881 CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
5882
5883 CGF.EmitBlock(OffloadFailedBlock);
5884 CGF.Builder.CreateCall(OutlinedFn, KernelArgs);
5885 CGF.EmitBranch(OffloadContBlock);
5886
5887 CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
5888 }
5889
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)5890 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
5891 StringRef ParentName) {
5892 if (!S)
5893 return;
5894
5895 // If we find a OMP target directive, codegen the outline function and
5896 // register the result.
5897 // FIXME: Add other directives with target when they become supported.
5898 bool isTargetDirective = isa<OMPTargetDirective>(S);
5899
5900 if (isTargetDirective) {
5901 auto *E = cast<OMPExecutableDirective>(S);
5902 unsigned DeviceID;
5903 unsigned FileID;
5904 unsigned Line;
5905 getTargetEntryUniqueInfo(CGM.getContext(), E->getLocStart(), DeviceID,
5906 FileID, Line);
5907
5908 // Is this a target region that should not be emitted as an entry point? If
5909 // so just signal we are done with this target region.
5910 if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
5911 ParentName, Line))
5912 return;
5913
5914 llvm::Function *Fn;
5915 llvm::Constant *Addr;
5916 std::tie(Fn, Addr) =
5917 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
5918 CGM, cast<OMPTargetDirective>(*E), ParentName,
5919 /*isOffloadEntry=*/true);
5920 assert(Fn && Addr && "Target region emission failed.");
5921 return;
5922 }
5923
5924 if (const OMPExecutableDirective *E = dyn_cast<OMPExecutableDirective>(S)) {
5925 if (!E->hasAssociatedStmt())
5926 return;
5927
5928 scanForTargetRegionsFunctions(
5929 cast<CapturedStmt>(E->getAssociatedStmt())->getCapturedStmt(),
5930 ParentName);
5931 return;
5932 }
5933
5934 // If this is a lambda function, look into its body.
5935 if (auto *L = dyn_cast<LambdaExpr>(S))
5936 S = L->getBody();
5937
5938 // Keep looking for target regions recursively.
5939 for (auto *II : S->children())
5940 scanForTargetRegionsFunctions(II, ParentName);
5941 }
5942
emitTargetFunctions(GlobalDecl GD)5943 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
5944 auto &FD = *cast<FunctionDecl>(GD.getDecl());
5945
5946 // If emitting code for the host, we do not process FD here. Instead we do
5947 // the normal code generation.
5948 if (!CGM.getLangOpts().OpenMPIsDevice)
5949 return false;
5950
5951 // Try to detect target regions in the function.
5952 scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD));
5953
5954 // We should not emit any function othen that the ones created during the
5955 // scanning. Therefore, we signal that this function is completely dealt
5956 // with.
5957 return true;
5958 }
5959
emitTargetGlobalVariable(GlobalDecl GD)5960 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
5961 if (!CGM.getLangOpts().OpenMPIsDevice)
5962 return false;
5963
5964 // Check if there are Ctors/Dtors in this declaration and look for target
5965 // regions in it. We use the complete variant to produce the kernel name
5966 // mangling.
5967 QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
5968 if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
5969 for (auto *Ctor : RD->ctors()) {
5970 StringRef ParentName =
5971 CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
5972 scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
5973 }
5974 auto *Dtor = RD->getDestructor();
5975 if (Dtor) {
5976 StringRef ParentName =
5977 CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
5978 scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
5979 }
5980 }
5981
5982 // If we are in target mode we do not emit any global (declare target is not
5983 // implemented yet). Therefore we signal that GD was processed in this case.
5984 return true;
5985 }
5986
emitTargetGlobal(GlobalDecl GD)5987 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
5988 auto *VD = GD.getDecl();
5989 if (isa<FunctionDecl>(VD))
5990 return emitTargetFunctions(GD);
5991
5992 return emitTargetGlobalVariable(GD);
5993 }
5994
emitRegistrationFunction()5995 llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
5996 // If we have offloading in the current module, we need to emit the entries
5997 // now and register the offloading descriptor.
5998 createOffloadEntriesAndInfoMetadata();
5999
6000 // Create and register the offloading binary descriptors. This is the main
6001 // entity that captures all the information about offloading in the current
6002 // compilation unit.
6003 return createOffloadingBinaryDescriptorRegistration();
6004 }
6005
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Value * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)6006 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
6007 const OMPExecutableDirective &D,
6008 SourceLocation Loc,
6009 llvm::Value *OutlinedFn,
6010 ArrayRef<llvm::Value *> CapturedVars) {
6011 if (!CGF.HaveInsertPoint())
6012 return;
6013
6014 auto *RTLoc = emitUpdateLocation(CGF, Loc);
6015 CodeGenFunction::RunCleanupsScope Scope(CGF);
6016
6017 // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
6018 llvm::Value *Args[] = {
6019 RTLoc,
6020 CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
6021 CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
6022 llvm::SmallVector<llvm::Value *, 16> RealArgs;
6023 RealArgs.append(std::begin(Args), std::end(Args));
6024 RealArgs.append(CapturedVars.begin(), CapturedVars.end());
6025
6026 auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
6027 CGF.EmitRuntimeCall(RTLFn, RealArgs);
6028 }
6029
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)6030 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
6031 const Expr *NumTeams,
6032 const Expr *ThreadLimit,
6033 SourceLocation Loc) {
6034 if (!CGF.HaveInsertPoint())
6035 return;
6036
6037 auto *RTLoc = emitUpdateLocation(CGF, Loc);
6038
6039 llvm::Value *NumTeamsVal =
6040 (NumTeams)
6041 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
6042 CGF.CGM.Int32Ty, /* isSigned = */ true)
6043 : CGF.Builder.getInt32(0);
6044
6045 llvm::Value *ThreadLimitVal =
6046 (ThreadLimit)
6047 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
6048 CGF.CGM.Int32Ty, /* isSigned = */ true)
6049 : CGF.Builder.getInt32(0);
6050
6051 // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
6052 llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
6053 ThreadLimitVal};
6054 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
6055 PushNumTeamsArgs);
6056 }
6057
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen)6058 void CGOpenMPRuntime::emitTargetDataCalls(CodeGenFunction &CGF,
6059 const OMPExecutableDirective &D,
6060 const Expr *IfCond,
6061 const Expr *Device,
6062 const RegionCodeGenTy &CodeGen) {
6063
6064 if (!CGF.HaveInsertPoint())
6065 return;
6066
6067 llvm::Value *BasePointersArray = nullptr;
6068 llvm::Value *PointersArray = nullptr;
6069 llvm::Value *SizesArray = nullptr;
6070 llvm::Value *MapTypesArray = nullptr;
6071 unsigned NumOfPtrs = 0;
6072
6073 // Generate the code for the opening of the data environment. Capture all the
6074 // arguments of the runtime call by reference because they are used in the
6075 // closing of the region.
6076 auto &&BeginThenGen = [&D, &CGF, &BasePointersArray, &PointersArray,
6077 &SizesArray, &MapTypesArray, Device,
6078 &NumOfPtrs](CodeGenFunction &CGF, PrePostActionTy &) {
6079 // Fill up the arrays with all the mapped variables.
6080 MappableExprsHandler::MapValuesArrayTy BasePointers;
6081 MappableExprsHandler::MapValuesArrayTy Pointers;
6082 MappableExprsHandler::MapValuesArrayTy Sizes;
6083 MappableExprsHandler::MapFlagsArrayTy MapTypes;
6084
6085 // Get map clause information.
6086 MappableExprsHandler MCHandler(D, CGF);
6087 MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
6088 NumOfPtrs = BasePointers.size();
6089
6090 // Fill up the arrays and create the arguments.
6091 emitOffloadingArrays(CGF, BasePointersArray, PointersArray, SizesArray,
6092 MapTypesArray, BasePointers, Pointers, Sizes,
6093 MapTypes);
6094
6095 llvm::Value *BasePointersArrayArg = nullptr;
6096 llvm::Value *PointersArrayArg = nullptr;
6097 llvm::Value *SizesArrayArg = nullptr;
6098 llvm::Value *MapTypesArrayArg = nullptr;
6099 emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
6100 SizesArrayArg, MapTypesArrayArg,
6101 BasePointersArray, PointersArray, SizesArray,
6102 MapTypesArray, NumOfPtrs);
6103
6104 // Emit device ID if any.
6105 llvm::Value *DeviceID = nullptr;
6106 if (Device)
6107 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
6108 CGF.Int32Ty, /*isSigned=*/true);
6109 else
6110 DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
6111
6112 // Emit the number of elements in the offloading arrays.
6113 auto *PointerNum = CGF.Builder.getInt32(NumOfPtrs);
6114
6115 llvm::Value *OffloadingArgs[] = {
6116 DeviceID, PointerNum, BasePointersArrayArg,
6117 PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
6118 auto &RT = CGF.CGM.getOpenMPRuntime();
6119 CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin),
6120 OffloadingArgs);
6121 };
6122
6123 // Generate code for the closing of the data region.
6124 auto &&EndThenGen = [&CGF, &BasePointersArray, &PointersArray, &SizesArray,
6125 &MapTypesArray, Device,
6126 &NumOfPtrs](CodeGenFunction &CGF, PrePostActionTy &) {
6127 assert(BasePointersArray && PointersArray && SizesArray && MapTypesArray &&
6128 NumOfPtrs && "Invalid data environment closing arguments.");
6129
6130 llvm::Value *BasePointersArrayArg = nullptr;
6131 llvm::Value *PointersArrayArg = nullptr;
6132 llvm::Value *SizesArrayArg = nullptr;
6133 llvm::Value *MapTypesArrayArg = nullptr;
6134 emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
6135 SizesArrayArg, MapTypesArrayArg,
6136 BasePointersArray, PointersArray, SizesArray,
6137 MapTypesArray, NumOfPtrs);
6138
6139 // Emit device ID if any.
6140 llvm::Value *DeviceID = nullptr;
6141 if (Device)
6142 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
6143 CGF.Int32Ty, /*isSigned=*/true);
6144 else
6145 DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
6146
6147 // Emit the number of elements in the offloading arrays.
6148 auto *PointerNum = CGF.Builder.getInt32(NumOfPtrs);
6149
6150 llvm::Value *OffloadingArgs[] = {
6151 DeviceID, PointerNum, BasePointersArrayArg,
6152 PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
6153 auto &RT = CGF.CGM.getOpenMPRuntime();
6154 CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end),
6155 OffloadingArgs);
6156 };
6157
6158 // In the event we get an if clause, we don't have to take any action on the
6159 // else side.
6160 auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
6161
6162 if (IfCond) {
6163 emitOMPIfClause(CGF, IfCond, BeginThenGen, ElseGen);
6164 } else {
6165 RegionCodeGenTy BeginThenRCG(BeginThenGen);
6166 BeginThenRCG(CGF);
6167 }
6168
6169 CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, CodeGen);
6170
6171 if (IfCond) {
6172 emitOMPIfClause(CGF, IfCond, EndThenGen, ElseGen);
6173 } else {
6174 RegionCodeGenTy EndThenRCG(EndThenGen);
6175 EndThenRCG(CGF);
6176 }
6177 }
6178
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)6179 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
6180 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
6181 const Expr *Device) {
6182 if (!CGF.HaveInsertPoint())
6183 return;
6184
6185 assert((isa<OMPTargetEnterDataDirective>(D) ||
6186 isa<OMPTargetExitDataDirective>(D) ||
6187 isa<OMPTargetUpdateDirective>(D)) &&
6188 "Expecting either target enter, exit data, or update directives.");
6189
6190 // Generate the code for the opening of the data environment.
6191 auto &&ThenGen = [&D, &CGF, Device](CodeGenFunction &CGF, PrePostActionTy &) {
6192 // Fill up the arrays with all the mapped variables.
6193 MappableExprsHandler::MapValuesArrayTy BasePointers;
6194 MappableExprsHandler::MapValuesArrayTy Pointers;
6195 MappableExprsHandler::MapValuesArrayTy Sizes;
6196 MappableExprsHandler::MapFlagsArrayTy MapTypes;
6197
6198 // Get map clause information.
6199 MappableExprsHandler MEHandler(D, CGF);
6200 MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
6201
6202 llvm::Value *BasePointersArrayArg = nullptr;
6203 llvm::Value *PointersArrayArg = nullptr;
6204 llvm::Value *SizesArrayArg = nullptr;
6205 llvm::Value *MapTypesArrayArg = nullptr;
6206
6207 // Fill up the arrays and create the arguments.
6208 emitOffloadingArrays(CGF, BasePointersArrayArg, PointersArrayArg,
6209 SizesArrayArg, MapTypesArrayArg, BasePointers,
6210 Pointers, Sizes, MapTypes);
6211 emitOffloadingArraysArgument(
6212 CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg,
6213 MapTypesArrayArg, BasePointersArrayArg, PointersArrayArg, SizesArrayArg,
6214 MapTypesArrayArg, BasePointers.size());
6215
6216 // Emit device ID if any.
6217 llvm::Value *DeviceID = nullptr;
6218 if (Device)
6219 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
6220 CGF.Int32Ty, /*isSigned=*/true);
6221 else
6222 DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
6223
6224 // Emit the number of elements in the offloading arrays.
6225 auto *PointerNum = CGF.Builder.getInt32(BasePointers.size());
6226
6227 llvm::Value *OffloadingArgs[] = {
6228 DeviceID, PointerNum, BasePointersArrayArg,
6229 PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
6230
6231 auto &RT = CGF.CGM.getOpenMPRuntime();
6232 // Select the right runtime function call for each expected standalone
6233 // directive.
6234 OpenMPRTLFunction RTLFn;
6235 switch (D.getDirectiveKind()) {
6236 default:
6237 llvm_unreachable("Unexpected standalone target data directive.");
6238 break;
6239 case OMPD_target_enter_data:
6240 RTLFn = OMPRTL__tgt_target_data_begin;
6241 break;
6242 case OMPD_target_exit_data:
6243 RTLFn = OMPRTL__tgt_target_data_end;
6244 break;
6245 case OMPD_target_update:
6246 RTLFn = OMPRTL__tgt_target_data_update;
6247 break;
6248 }
6249 CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs);
6250 };
6251
6252 // In the event we get an if clause, we don't have to take any action on the
6253 // else side.
6254 auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
6255
6256 if (IfCond) {
6257 emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
6258 } else {
6259 RegionCodeGenTy ThenGenRCG(ThenGen);
6260 ThenGenRCG(CGF);
6261 }
6262 }
6263
6264 namespace {
6265 /// Kind of parameter in a function with 'declare simd' directive.
6266 enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
6267 /// Attribute set of the parameter.
6268 struct ParamAttrTy {
6269 ParamKindTy Kind = Vector;
6270 llvm::APSInt StrideOrArg;
6271 llvm::APSInt Alignment;
6272 };
6273 } // namespace
6274
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)6275 static unsigned evaluateCDTSize(const FunctionDecl *FD,
6276 ArrayRef<ParamAttrTy> ParamAttrs) {
6277 // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
6278 // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
6279 // of that clause. The VLEN value must be power of 2.
6280 // In other case the notion of the function`s "characteristic data type" (CDT)
6281 // is used to compute the vector length.
6282 // CDT is defined in the following order:
6283 // a) For non-void function, the CDT is the return type.
6284 // b) If the function has any non-uniform, non-linear parameters, then the
6285 // CDT is the type of the first such parameter.
6286 // c) If the CDT determined by a) or b) above is struct, union, or class
6287 // type which is pass-by-value (except for the type that maps to the
6288 // built-in complex data type), the characteristic data type is int.
6289 // d) If none of the above three cases is applicable, the CDT is int.
6290 // The VLEN is then determined based on the CDT and the size of vector
6291 // register of that ISA for which current vector version is generated. The
6292 // VLEN is computed using the formula below:
6293 // VLEN = sizeof(vector_register) / sizeof(CDT),
6294 // where vector register size specified in section 3.2.1 Registers and the
6295 // Stack Frame of original AMD64 ABI document.
6296 QualType RetType = FD->getReturnType();
6297 if (RetType.isNull())
6298 return 0;
6299 ASTContext &C = FD->getASTContext();
6300 QualType CDT;
6301 if (!RetType.isNull() && !RetType->isVoidType())
6302 CDT = RetType;
6303 else {
6304 unsigned Offset = 0;
6305 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6306 if (ParamAttrs[Offset].Kind == Vector)
6307 CDT = C.getPointerType(C.getRecordType(MD->getParent()));
6308 ++Offset;
6309 }
6310 if (CDT.isNull()) {
6311 for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
6312 if (ParamAttrs[I + Offset].Kind == Vector) {
6313 CDT = FD->getParamDecl(I)->getType();
6314 break;
6315 }
6316 }
6317 }
6318 }
6319 if (CDT.isNull())
6320 CDT = C.IntTy;
6321 CDT = CDT->getCanonicalTypeUnqualified();
6322 if (CDT->isRecordType() || CDT->isUnionType())
6323 CDT = C.IntTy;
6324 return C.getTypeSize(CDT);
6325 }
6326
6327 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,llvm::APSInt VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)6328 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
6329 llvm::APSInt VLENVal,
6330 ArrayRef<ParamAttrTy> ParamAttrs,
6331 OMPDeclareSimdDeclAttr::BranchStateTy State) {
6332 struct ISADataTy {
6333 char ISA;
6334 unsigned VecRegSize;
6335 };
6336 ISADataTy ISAData[] = {
6337 {
6338 'b', 128
6339 }, // SSE
6340 {
6341 'c', 256
6342 }, // AVX
6343 {
6344 'd', 256
6345 }, // AVX2
6346 {
6347 'e', 512
6348 }, // AVX512
6349 };
6350 llvm::SmallVector<char, 2> Masked;
6351 switch (State) {
6352 case OMPDeclareSimdDeclAttr::BS_Undefined:
6353 Masked.push_back('N');
6354 Masked.push_back('M');
6355 break;
6356 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
6357 Masked.push_back('N');
6358 break;
6359 case OMPDeclareSimdDeclAttr::BS_Inbranch:
6360 Masked.push_back('M');
6361 break;
6362 }
6363 for (auto Mask : Masked) {
6364 for (auto &Data : ISAData) {
6365 SmallString<256> Buffer;
6366 llvm::raw_svector_ostream Out(Buffer);
6367 Out << "_ZGV" << Data.ISA << Mask;
6368 if (!VLENVal) {
6369 Out << llvm::APSInt::getUnsigned(Data.VecRegSize /
6370 evaluateCDTSize(FD, ParamAttrs));
6371 } else
6372 Out << VLENVal;
6373 for (auto &ParamAttr : ParamAttrs) {
6374 switch (ParamAttr.Kind){
6375 case LinearWithVarStride:
6376 Out << 's' << ParamAttr.StrideOrArg;
6377 break;
6378 case Linear:
6379 Out << 'l';
6380 if (!!ParamAttr.StrideOrArg)
6381 Out << ParamAttr.StrideOrArg;
6382 break;
6383 case Uniform:
6384 Out << 'u';
6385 break;
6386 case Vector:
6387 Out << 'v';
6388 break;
6389 }
6390 if (!!ParamAttr.Alignment)
6391 Out << 'a' << ParamAttr.Alignment;
6392 }
6393 Out << '_' << Fn->getName();
6394 Fn->addFnAttr(Out.str());
6395 }
6396 }
6397 }
6398
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)6399 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
6400 llvm::Function *Fn) {
6401 ASTContext &C = CGM.getContext();
6402 FD = FD->getCanonicalDecl();
6403 // Map params to their positions in function decl.
6404 llvm::DenseMap<const Decl *, unsigned> ParamPositions;
6405 if (isa<CXXMethodDecl>(FD))
6406 ParamPositions.insert({FD, 0});
6407 unsigned ParamPos = ParamPositions.size();
6408 for (auto *P : FD->parameters()) {
6409 ParamPositions.insert({P->getCanonicalDecl(), ParamPos});
6410 ++ParamPos;
6411 }
6412 for (auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
6413 llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
6414 // Mark uniform parameters.
6415 for (auto *E : Attr->uniforms()) {
6416 E = E->IgnoreParenImpCasts();
6417 unsigned Pos;
6418 if (isa<CXXThisExpr>(E))
6419 Pos = ParamPositions[FD];
6420 else {
6421 auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
6422 ->getCanonicalDecl();
6423 Pos = ParamPositions[PVD];
6424 }
6425 ParamAttrs[Pos].Kind = Uniform;
6426 }
6427 // Get alignment info.
6428 auto NI = Attr->alignments_begin();
6429 for (auto *E : Attr->aligneds()) {
6430 E = E->IgnoreParenImpCasts();
6431 unsigned Pos;
6432 QualType ParmTy;
6433 if (isa<CXXThisExpr>(E)) {
6434 Pos = ParamPositions[FD];
6435 ParmTy = E->getType();
6436 } else {
6437 auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
6438 ->getCanonicalDecl();
6439 Pos = ParamPositions[PVD];
6440 ParmTy = PVD->getType();
6441 }
6442 ParamAttrs[Pos].Alignment =
6443 (*NI) ? (*NI)->EvaluateKnownConstInt(C)
6444 : llvm::APSInt::getUnsigned(
6445 C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
6446 .getQuantity());
6447 ++NI;
6448 }
6449 // Mark linear parameters.
6450 auto SI = Attr->steps_begin();
6451 auto MI = Attr->modifiers_begin();
6452 for (auto *E : Attr->linears()) {
6453 E = E->IgnoreParenImpCasts();
6454 unsigned Pos;
6455 if (isa<CXXThisExpr>(E))
6456 Pos = ParamPositions[FD];
6457 else {
6458 auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
6459 ->getCanonicalDecl();
6460 Pos = ParamPositions[PVD];
6461 }
6462 auto &ParamAttr = ParamAttrs[Pos];
6463 ParamAttr.Kind = Linear;
6464 if (*SI) {
6465 if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C,
6466 Expr::SE_AllowSideEffects)) {
6467 if (auto *DRE = cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
6468 if (auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
6469 ParamAttr.Kind = LinearWithVarStride;
6470 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
6471 ParamPositions[StridePVD->getCanonicalDecl()]);
6472 }
6473 }
6474 }
6475 }
6476 ++SI;
6477 ++MI;
6478 }
6479 llvm::APSInt VLENVal;
6480 if (const Expr *VLEN = Attr->getSimdlen())
6481 VLENVal = VLEN->EvaluateKnownConstInt(C);
6482 OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
6483 if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
6484 CGM.getTriple().getArch() == llvm::Triple::x86_64)
6485 emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
6486 }
6487 }
6488
6489 namespace {
6490 /// Cleanup action for doacross support.
6491 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
6492 public:
6493 static const int DoacrossFinArgs = 2;
6494
6495 private:
6496 llvm::Value *RTLFn;
6497 llvm::Value *Args[DoacrossFinArgs];
6498
6499 public:
DoacrossCleanupTy(llvm::Value * RTLFn,ArrayRef<llvm::Value * > CallArgs)6500 DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs)
6501 : RTLFn(RTLFn) {
6502 assert(CallArgs.size() == DoacrossFinArgs);
6503 std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
6504 }
Emit(CodeGenFunction & CGF,Flags)6505 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
6506 if (!CGF.HaveInsertPoint())
6507 return;
6508 CGF.EmitRuntimeCall(RTLFn, Args);
6509 }
6510 };
6511 } // namespace
6512
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D)6513 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
6514 const OMPLoopDirective &D) {
6515 if (!CGF.HaveInsertPoint())
6516 return;
6517
6518 ASTContext &C = CGM.getContext();
6519 QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
6520 RecordDecl *RD;
6521 if (KmpDimTy.isNull()) {
6522 // Build struct kmp_dim { // loop bounds info casted to kmp_int64
6523 // kmp_int64 lo; // lower
6524 // kmp_int64 up; // upper
6525 // kmp_int64 st; // stride
6526 // };
6527 RD = C.buildImplicitRecord("kmp_dim");
6528 RD->startDefinition();
6529 addFieldToRecordDecl(C, RD, Int64Ty);
6530 addFieldToRecordDecl(C, RD, Int64Ty);
6531 addFieldToRecordDecl(C, RD, Int64Ty);
6532 RD->completeDefinition();
6533 KmpDimTy = C.getRecordType(RD);
6534 } else
6535 RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
6536
6537 Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims");
6538 CGF.EmitNullInitialization(DimsAddr, KmpDimTy);
6539 enum { LowerFD = 0, UpperFD, StrideFD };
6540 // Fill dims with data.
6541 LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy);
6542 // dims.upper = num_iterations;
6543 LValue UpperLVal =
6544 CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD));
6545 llvm::Value *NumIterVal = CGF.EmitScalarConversion(
6546 CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(),
6547 Int64Ty, D.getNumIterations()->getExprLoc());
6548 CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
6549 // dims.stride = 1;
6550 LValue StrideLVal =
6551 CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD));
6552 CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
6553 StrideLVal);
6554
6555 // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
6556 // kmp_int32 num_dims, struct kmp_dim * dims);
6557 llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()),
6558 getThreadID(CGF, D.getLocStart()),
6559 llvm::ConstantInt::getSigned(CGM.Int32Ty, 1),
6560 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6561 DimsAddr.getPointer(), CGM.VoidPtrTy)};
6562
6563 llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init);
6564 CGF.EmitRuntimeCall(RTLFn, Args);
6565 llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
6566 emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())};
6567 llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
6568 CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
6569 llvm::makeArrayRef(FiniArgs));
6570 }
6571
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)6572 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
6573 const OMPDependClause *C) {
6574 QualType Int64Ty =
6575 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
6576 const Expr *CounterVal = C->getCounterValue();
6577 assert(CounterVal);
6578 llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal),
6579 CounterVal->getType(), Int64Ty,
6580 CounterVal->getExprLoc());
6581 Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr");
6582 CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty);
6583 llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()),
6584 getThreadID(CGF, C->getLocStart()),
6585 CntAddr.getPointer()};
6586 llvm::Value *RTLFn;
6587 if (C->getDependencyKind() == OMPC_DEPEND_source)
6588 RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
6589 else {
6590 assert(C->getDependencyKind() == OMPC_DEPEND_sink);
6591 RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
6592 }
6593 CGF.EmitRuntimeCall(RTLFn, Args);
6594 }
6595
6596