1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 // - Insert calls to run-time library before every memory access.
17 // - Optimizations may apply to avoid instrumenting some of the accesses.
18 // - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Instrumentation.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ModuleUtils.h"
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "tsan"
52
53 static cl::opt<bool> ClInstrumentMemoryAccesses(
54 "tsan-instrument-memory-accesses", cl::init(true),
55 cl::desc("Instrument memory accesses"), cl::Hidden);
56 static cl::opt<bool> ClInstrumentFuncEntryExit(
57 "tsan-instrument-func-entry-exit", cl::init(true),
58 cl::desc("Instrument function entry and exit"), cl::Hidden);
59 static cl::opt<bool> ClInstrumentAtomics(
60 "tsan-instrument-atomics", cl::init(true),
61 cl::desc("Instrument atomics"), cl::Hidden);
62 static cl::opt<bool> ClInstrumentMemIntrinsics(
63 "tsan-instrument-memintrinsics", cl::init(true),
64 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
65
66 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
67 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
68 STATISTIC(NumOmittedReadsBeforeWrite,
69 "Number of reads ignored due to following writes");
70 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
71 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
72 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
73 STATISTIC(NumOmittedReadsFromConstantGlobals,
74 "Number of reads from constant globals");
75 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
76 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
77
78 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
79 static const char *const kTsanInitName = "__tsan_init";
80
81 namespace {
82
83 /// ThreadSanitizer: instrument the code in module to find races.
84 struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer__anonfab2d0030111::ThreadSanitizer85 ThreadSanitizer() : FunctionPass(ID) {}
86 const char *getPassName() const override;
87 void getAnalysisUsage(AnalysisUsage &AU) const override;
88 bool runOnFunction(Function &F) override;
89 bool doInitialization(Module &M) override;
90 static char ID; // Pass identification, replacement for typeid.
91
92 private:
93 void initializeCallbacks(Module &M);
94 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
95 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
96 bool instrumentMemIntrinsic(Instruction *I);
97 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
98 SmallVectorImpl<Instruction *> &All,
99 const DataLayout &DL);
100 bool addrPointsToConstantData(Value *Addr);
101 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
102
103 Type *IntptrTy;
104 IntegerType *OrdTy;
105 // Callbacks to run-time library are computed in doInitialization.
106 Function *TsanFuncEntry;
107 Function *TsanFuncExit;
108 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
109 static const size_t kNumberOfAccessSizes = 5;
110 Function *TsanRead[kNumberOfAccessSizes];
111 Function *TsanWrite[kNumberOfAccessSizes];
112 Function *TsanUnalignedRead[kNumberOfAccessSizes];
113 Function *TsanUnalignedWrite[kNumberOfAccessSizes];
114 Function *TsanAtomicLoad[kNumberOfAccessSizes];
115 Function *TsanAtomicStore[kNumberOfAccessSizes];
116 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
117 Function *TsanAtomicCAS[kNumberOfAccessSizes];
118 Function *TsanAtomicThreadFence;
119 Function *TsanAtomicSignalFence;
120 Function *TsanVptrUpdate;
121 Function *TsanVptrLoad;
122 Function *MemmoveFn, *MemcpyFn, *MemsetFn;
123 Function *TsanCtorFunction;
124 };
125 } // namespace
126
127 char ThreadSanitizer::ID = 0;
128 INITIALIZE_PASS_BEGIN(
129 ThreadSanitizer, "tsan",
130 "ThreadSanitizer: detects data races.",
131 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)132 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
133 INITIALIZE_PASS_END(
134 ThreadSanitizer, "tsan",
135 "ThreadSanitizer: detects data races.",
136 false, false)
137
138 const char *ThreadSanitizer::getPassName() const {
139 return "ThreadSanitizer";
140 }
141
getAnalysisUsage(AnalysisUsage & AU) const142 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const {
143 AU.addRequired<TargetLibraryInfoWrapperPass>();
144 }
145
createThreadSanitizerPass()146 FunctionPass *llvm::createThreadSanitizerPass() {
147 return new ThreadSanitizer();
148 }
149
initializeCallbacks(Module & M)150 void ThreadSanitizer::initializeCallbacks(Module &M) {
151 IRBuilder<> IRB(M.getContext());
152 // Initialize the callbacks.
153 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
154 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
155 TsanFuncExit = checkSanitizerInterfaceFunction(
156 M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
157 OrdTy = IRB.getInt32Ty();
158 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
159 const unsigned ByteSize = 1U << i;
160 const unsigned BitSize = ByteSize * 8;
161 std::string ByteSizeStr = utostr(ByteSize);
162 std::string BitSizeStr = utostr(BitSize);
163 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
164 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
165 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
166
167 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
168 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
169 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
170
171 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
172 TsanUnalignedRead[i] =
173 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
174 UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
175
176 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
177 TsanUnalignedWrite[i] =
178 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
179 UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
180
181 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
182 Type *PtrTy = Ty->getPointerTo();
183 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
184 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
185 M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
186
187 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
188 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
189 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
190
191 for (int op = AtomicRMWInst::FIRST_BINOP;
192 op <= AtomicRMWInst::LAST_BINOP; ++op) {
193 TsanAtomicRMW[op][i] = nullptr;
194 const char *NamePart = nullptr;
195 if (op == AtomicRMWInst::Xchg)
196 NamePart = "_exchange";
197 else if (op == AtomicRMWInst::Add)
198 NamePart = "_fetch_add";
199 else if (op == AtomicRMWInst::Sub)
200 NamePart = "_fetch_sub";
201 else if (op == AtomicRMWInst::And)
202 NamePart = "_fetch_and";
203 else if (op == AtomicRMWInst::Or)
204 NamePart = "_fetch_or";
205 else if (op == AtomicRMWInst::Xor)
206 NamePart = "_fetch_xor";
207 else if (op == AtomicRMWInst::Nand)
208 NamePart = "_fetch_nand";
209 else
210 continue;
211 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
212 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
213 M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
214 }
215
216 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
217 "_compare_exchange_val");
218 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
219 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
220 }
221 TsanVptrUpdate = checkSanitizerInterfaceFunction(
222 M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
223 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
224 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
225 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
226 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
227 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
228 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
229 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
230
231 MemmoveFn = checkSanitizerInterfaceFunction(
232 M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
233 IRB.getInt8PtrTy(), IntptrTy, nullptr));
234 MemcpyFn = checkSanitizerInterfaceFunction(
235 M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
236 IRB.getInt8PtrTy(), IntptrTy, nullptr));
237 MemsetFn = checkSanitizerInterfaceFunction(
238 M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
239 IRB.getInt32Ty(), IntptrTy, nullptr));
240 }
241
doInitialization(Module & M)242 bool ThreadSanitizer::doInitialization(Module &M) {
243 const DataLayout &DL = M.getDataLayout();
244 IntptrTy = DL.getIntPtrType(M.getContext());
245 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
246 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
247 /*InitArgs=*/{});
248
249 appendToGlobalCtors(M, TsanCtorFunction, 0);
250
251 return true;
252 }
253
isVtableAccess(Instruction * I)254 static bool isVtableAccess(Instruction *I) {
255 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
256 return Tag->isTBAAVtableAccess();
257 return false;
258 }
259
260 // Do not instrument known races/"benign races" that come from compiler
261 // instrumentatin. The user has no way of suppressing them.
shouldInstrumentReadWriteFromAddress(Value * Addr)262 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) {
263 // Peel off GEPs and BitCasts.
264 Addr = Addr->stripInBoundsOffsets();
265
266 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
267 if (GV->hasSection()) {
268 StringRef SectionName = GV->getSection();
269 // Check if the global is in the PGO counters section.
270 if (SectionName.endswith(getInstrProfCountersSectionName(
271 /*AddSegment=*/false)))
272 return false;
273 }
274
275 // Check if the global is in a GCOV counter array.
276 if (GV->getName().startswith("__llvm_gcov_ctr"))
277 return false;
278 }
279
280 // Do not instrument acesses from different address spaces; we cannot deal
281 // with them.
282 if (Addr) {
283 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
284 if (PtrTy->getPointerAddressSpace() != 0)
285 return false;
286 }
287
288 return true;
289 }
290
addrPointsToConstantData(Value * Addr)291 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
292 // If this is a GEP, just analyze its pointer operand.
293 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
294 Addr = GEP->getPointerOperand();
295
296 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
297 if (GV->isConstant()) {
298 // Reads from constant globals can not race with any writes.
299 NumOmittedReadsFromConstantGlobals++;
300 return true;
301 }
302 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
303 if (isVtableAccess(L)) {
304 // Reads from a vtable pointer can not race with any writes.
305 NumOmittedReadsFromVtable++;
306 return true;
307 }
308 }
309 return false;
310 }
311
312 // Instrumenting some of the accesses may be proven redundant.
313 // Currently handled:
314 // - read-before-write (within same BB, no calls between)
315 // - not captured variables
316 //
317 // We do not handle some of the patterns that should not survive
318 // after the classic compiler optimizations.
319 // E.g. two reads from the same temp should be eliminated by CSE,
320 // two writes should be eliminated by DSE, etc.
321 //
322 // 'Local' is a vector of insns within the same BB (no calls between).
323 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)324 void ThreadSanitizer::chooseInstructionsToInstrument(
325 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
326 const DataLayout &DL) {
327 SmallSet<Value*, 8> WriteTargets;
328 // Iterate from the end.
329 for (Instruction *I : reverse(Local)) {
330 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
331 Value *Addr = Store->getPointerOperand();
332 if (!shouldInstrumentReadWriteFromAddress(Addr))
333 continue;
334 WriteTargets.insert(Addr);
335 } else {
336 LoadInst *Load = cast<LoadInst>(I);
337 Value *Addr = Load->getPointerOperand();
338 if (!shouldInstrumentReadWriteFromAddress(Addr))
339 continue;
340 if (WriteTargets.count(Addr)) {
341 // We will write to this temp, so no reason to analyze the read.
342 NumOmittedReadsBeforeWrite++;
343 continue;
344 }
345 if (addrPointsToConstantData(Addr)) {
346 // Addr points to some constant data -- it can not race with any writes.
347 continue;
348 }
349 }
350 Value *Addr = isa<StoreInst>(*I)
351 ? cast<StoreInst>(I)->getPointerOperand()
352 : cast<LoadInst>(I)->getPointerOperand();
353 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
354 !PointerMayBeCaptured(Addr, true, true)) {
355 // The variable is addressable but not captured, so it cannot be
356 // referenced from a different thread and participate in a data race
357 // (see llvm/Analysis/CaptureTracking.h for details).
358 NumOmittedNonCaptured++;
359 continue;
360 }
361 All.push_back(I);
362 }
363 Local.clear();
364 }
365
isAtomic(Instruction * I)366 static bool isAtomic(Instruction *I) {
367 if (LoadInst *LI = dyn_cast<LoadInst>(I))
368 return LI->isAtomic() && LI->getSynchScope() == CrossThread;
369 if (StoreInst *SI = dyn_cast<StoreInst>(I))
370 return SI->isAtomic() && SI->getSynchScope() == CrossThread;
371 if (isa<AtomicRMWInst>(I))
372 return true;
373 if (isa<AtomicCmpXchgInst>(I))
374 return true;
375 if (isa<FenceInst>(I))
376 return true;
377 return false;
378 }
379
runOnFunction(Function & F)380 bool ThreadSanitizer::runOnFunction(Function &F) {
381 // This is required to prevent instrumenting call to __tsan_init from within
382 // the module constructor.
383 if (&F == TsanCtorFunction)
384 return false;
385 initializeCallbacks(*F.getParent());
386 SmallVector<Instruction*, 8> RetVec;
387 SmallVector<Instruction*, 8> AllLoadsAndStores;
388 SmallVector<Instruction*, 8> LocalLoadsAndStores;
389 SmallVector<Instruction*, 8> AtomicAccesses;
390 SmallVector<Instruction*, 8> MemIntrinCalls;
391 bool Res = false;
392 bool HasCalls = false;
393 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
394 const DataLayout &DL = F.getParent()->getDataLayout();
395 const TargetLibraryInfo *TLI =
396 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
397
398 // Traverse all instructions, collect loads/stores/returns, check for calls.
399 for (auto &BB : F) {
400 for (auto &Inst : BB) {
401 if (isAtomic(&Inst))
402 AtomicAccesses.push_back(&Inst);
403 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
404 LocalLoadsAndStores.push_back(&Inst);
405 else if (isa<ReturnInst>(Inst))
406 RetVec.push_back(&Inst);
407 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
408 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
409 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
410 if (isa<MemIntrinsic>(Inst))
411 MemIntrinCalls.push_back(&Inst);
412 HasCalls = true;
413 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
414 DL);
415 }
416 }
417 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
418 }
419
420 // We have collected all loads and stores.
421 // FIXME: many of these accesses do not need to be checked for races
422 // (e.g. variables that do not escape, etc).
423
424 // Instrument memory accesses only if we want to report bugs in the function.
425 if (ClInstrumentMemoryAccesses && SanitizeFunction)
426 for (auto Inst : AllLoadsAndStores) {
427 Res |= instrumentLoadOrStore(Inst, DL);
428 }
429
430 // Instrument atomic memory accesses in any case (they can be used to
431 // implement synchronization).
432 if (ClInstrumentAtomics)
433 for (auto Inst : AtomicAccesses) {
434 Res |= instrumentAtomic(Inst, DL);
435 }
436
437 if (ClInstrumentMemIntrinsics && SanitizeFunction)
438 for (auto Inst : MemIntrinCalls) {
439 Res |= instrumentMemIntrinsic(Inst);
440 }
441
442 // Instrument function entry/exit points if there were instrumented accesses.
443 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
444 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
445 Value *ReturnAddress = IRB.CreateCall(
446 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
447 IRB.getInt32(0));
448 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
449 for (auto RetInst : RetVec) {
450 IRBuilder<> IRBRet(RetInst);
451 IRBRet.CreateCall(TsanFuncExit, {});
452 }
453 Res = true;
454 }
455 return Res;
456 }
457
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)458 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
459 const DataLayout &DL) {
460 IRBuilder<> IRB(I);
461 bool IsWrite = isa<StoreInst>(*I);
462 Value *Addr = IsWrite
463 ? cast<StoreInst>(I)->getPointerOperand()
464 : cast<LoadInst>(I)->getPointerOperand();
465 int Idx = getMemoryAccessFuncIndex(Addr, DL);
466 if (Idx < 0)
467 return false;
468 if (IsWrite && isVtableAccess(I)) {
469 DEBUG(dbgs() << " VPTR : " << *I << "\n");
470 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
471 // StoredValue may be a vector type if we are storing several vptrs at once.
472 // In this case, just take the first element of the vector since this is
473 // enough to find vptr races.
474 if (isa<VectorType>(StoredValue->getType()))
475 StoredValue = IRB.CreateExtractElement(
476 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
477 if (StoredValue->getType()->isIntegerTy())
478 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
479 // Call TsanVptrUpdate.
480 IRB.CreateCall(TsanVptrUpdate,
481 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
482 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
483 NumInstrumentedVtableWrites++;
484 return true;
485 }
486 if (!IsWrite && isVtableAccess(I)) {
487 IRB.CreateCall(TsanVptrLoad,
488 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
489 NumInstrumentedVtableReads++;
490 return true;
491 }
492 const unsigned Alignment = IsWrite
493 ? cast<StoreInst>(I)->getAlignment()
494 : cast<LoadInst>(I)->getAlignment();
495 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
496 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
497 Value *OnAccessFunc = nullptr;
498 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
499 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
500 else
501 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
502 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
503 if (IsWrite) NumInstrumentedWrites++;
504 else NumInstrumentedReads++;
505 return true;
506 }
507
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)508 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
509 uint32_t v = 0;
510 switch (ord) {
511 case AtomicOrdering::NotAtomic:
512 llvm_unreachable("unexpected atomic ordering!");
513 case AtomicOrdering::Unordered: // Fall-through.
514 case AtomicOrdering::Monotonic: v = 0; break;
515 // Not specified yet:
516 // case AtomicOrdering::Consume: v = 1; break;
517 case AtomicOrdering::Acquire: v = 2; break;
518 case AtomicOrdering::Release: v = 3; break;
519 case AtomicOrdering::AcquireRelease: v = 4; break;
520 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
521 }
522 return IRB->getInt32(v);
523 }
524
525 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
526 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
527 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
528 // instead we simply replace them with regular function calls, which are then
529 // intercepted by the run-time.
530 // Since tsan is running after everyone else, the calls should not be
531 // replaced back with intrinsics. If that becomes wrong at some point,
532 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)533 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
534 IRBuilder<> IRB(I);
535 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
536 IRB.CreateCall(
537 MemsetFn,
538 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
539 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
540 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
541 I->eraseFromParent();
542 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
543 IRB.CreateCall(
544 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
545 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
546 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
547 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
548 I->eraseFromParent();
549 }
550 return false;
551 }
552
createIntOrPtrToIntCast(Value * V,Type * Ty,IRBuilder<> & IRB)553 static Value *createIntOrPtrToIntCast(Value *V, Type* Ty, IRBuilder<> &IRB) {
554 return isa<PointerType>(V->getType()) ?
555 IRB.CreatePtrToInt(V, Ty) : IRB.CreateIntCast(V, Ty, false);
556 }
557
558 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
559 // standards. For background see C++11 standard. A slightly older, publicly
560 // available draft of the standard (not entirely up-to-date, but close enough
561 // for casual browsing) is available here:
562 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
563 // The following page contains more background information:
564 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
565
instrumentAtomic(Instruction * I,const DataLayout & DL)566 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
567 IRBuilder<> IRB(I);
568 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
569 Value *Addr = LI->getPointerOperand();
570 int Idx = getMemoryAccessFuncIndex(Addr, DL);
571 if (Idx < 0)
572 return false;
573 const unsigned ByteSize = 1U << Idx;
574 const unsigned BitSize = ByteSize * 8;
575 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
576 Type *PtrTy = Ty->getPointerTo();
577 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
578 createOrdering(&IRB, LI->getOrdering())};
579 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
580 if (Ty == OrigTy) {
581 Instruction *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
582 ReplaceInstWithInst(I, C);
583 } else {
584 // We are loading a pointer, so we need to cast the return value.
585 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
586 Instruction *Cast = CastInst::Create(Instruction::IntToPtr, C, OrigTy);
587 ReplaceInstWithInst(I, Cast);
588 }
589 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
590 Value *Addr = SI->getPointerOperand();
591 int Idx = getMemoryAccessFuncIndex(Addr, DL);
592 if (Idx < 0)
593 return false;
594 const unsigned ByteSize = 1U << Idx;
595 const unsigned BitSize = ByteSize * 8;
596 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
597 Type *PtrTy = Ty->getPointerTo();
598 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
599 createIntOrPtrToIntCast(SI->getValueOperand(), Ty, IRB),
600 createOrdering(&IRB, SI->getOrdering())};
601 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
602 ReplaceInstWithInst(I, C);
603 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
604 Value *Addr = RMWI->getPointerOperand();
605 int Idx = getMemoryAccessFuncIndex(Addr, DL);
606 if (Idx < 0)
607 return false;
608 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
609 if (!F)
610 return false;
611 const unsigned ByteSize = 1U << Idx;
612 const unsigned BitSize = ByteSize * 8;
613 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
614 Type *PtrTy = Ty->getPointerTo();
615 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
616 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
617 createOrdering(&IRB, RMWI->getOrdering())};
618 CallInst *C = CallInst::Create(F, Args);
619 ReplaceInstWithInst(I, C);
620 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
621 Value *Addr = CASI->getPointerOperand();
622 int Idx = getMemoryAccessFuncIndex(Addr, DL);
623 if (Idx < 0)
624 return false;
625 const unsigned ByteSize = 1U << Idx;
626 const unsigned BitSize = ByteSize * 8;
627 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
628 Type *PtrTy = Ty->getPointerTo();
629 Value *CmpOperand =
630 createIntOrPtrToIntCast(CASI->getCompareOperand(), Ty, IRB);
631 Value *NewOperand =
632 createIntOrPtrToIntCast(CASI->getNewValOperand(), Ty, IRB);
633 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
634 CmpOperand,
635 NewOperand,
636 createOrdering(&IRB, CASI->getSuccessOrdering()),
637 createOrdering(&IRB, CASI->getFailureOrdering())};
638 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
639 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
640 Value *OldVal = C;
641 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
642 if (Ty != OrigOldValTy) {
643 // The value is a pointer, so we need to cast the return value.
644 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
645 }
646
647 Value *Res =
648 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
649 Res = IRB.CreateInsertValue(Res, Success, 1);
650
651 I->replaceAllUsesWith(Res);
652 I->eraseFromParent();
653 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
654 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
655 Function *F = FI->getSynchScope() == SingleThread ?
656 TsanAtomicSignalFence : TsanAtomicThreadFence;
657 CallInst *C = CallInst::Create(F, Args);
658 ReplaceInstWithInst(I, C);
659 }
660 return true;
661 }
662
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)663 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
664 const DataLayout &DL) {
665 Type *OrigPtrTy = Addr->getType();
666 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
667 assert(OrigTy->isSized());
668 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
669 if (TypeSize != 8 && TypeSize != 16 &&
670 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
671 NumAccessesWithBadSize++;
672 // Ignore all unusual sizes.
673 return -1;
674 }
675 size_t Idx = countTrailingZeros(TypeSize / 8);
676 assert(Idx < kNumberOfAccessSizes);
677 return Idx;
678 }
679