1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_STRING_BUILDER_H_
6 #define V8_STRING_BUILDER_H_
7
8 #include "src/assert-scope.h"
9 #include "src/factory.h"
10 #include "src/handles.h"
11 #include "src/isolate.h"
12 #include "src/objects.h"
13 #include "src/utils.h"
14
15 namespace v8 {
16 namespace internal {
17
18 const int kStringBuilderConcatHelperLengthBits = 11;
19 const int kStringBuilderConcatHelperPositionBits = 19;
20
21 typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
22 StringBuilderSubstringLength;
23 typedef BitField<int, kStringBuilderConcatHelperLengthBits,
24 kStringBuilderConcatHelperPositionBits>
25 StringBuilderSubstringPosition;
26
27
28 template <typename sinkchar>
StringBuilderConcatHelper(String * special,sinkchar * sink,FixedArray * fixed_array,int array_length)29 static inline void StringBuilderConcatHelper(String* special, sinkchar* sink,
30 FixedArray* fixed_array,
31 int array_length) {
32 DisallowHeapAllocation no_gc;
33 int position = 0;
34 for (int i = 0; i < array_length; i++) {
35 Object* element = fixed_array->get(i);
36 if (element->IsSmi()) {
37 // Smi encoding of position and length.
38 int encoded_slice = Smi::cast(element)->value();
39 int pos;
40 int len;
41 if (encoded_slice > 0) {
42 // Position and length encoded in one smi.
43 pos = StringBuilderSubstringPosition::decode(encoded_slice);
44 len = StringBuilderSubstringLength::decode(encoded_slice);
45 } else {
46 // Position and length encoded in two smis.
47 Object* obj = fixed_array->get(++i);
48 DCHECK(obj->IsSmi());
49 pos = Smi::cast(obj)->value();
50 len = -encoded_slice;
51 }
52 String::WriteToFlat(special, sink + position, pos, pos + len);
53 position += len;
54 } else {
55 String* string = String::cast(element);
56 int element_length = string->length();
57 String::WriteToFlat(string, sink + position, 0, element_length);
58 position += element_length;
59 }
60 }
61 }
62
63
64 // Returns the result length of the concatenation.
65 // On illegal argument, -1 is returned.
StringBuilderConcatLength(int special_length,FixedArray * fixed_array,int array_length,bool * one_byte)66 static inline int StringBuilderConcatLength(int special_length,
67 FixedArray* fixed_array,
68 int array_length, bool* one_byte) {
69 DisallowHeapAllocation no_gc;
70 int position = 0;
71 for (int i = 0; i < array_length; i++) {
72 int increment = 0;
73 Object* elt = fixed_array->get(i);
74 if (elt->IsSmi()) {
75 // Smi encoding of position and length.
76 int smi_value = Smi::cast(elt)->value();
77 int pos;
78 int len;
79 if (smi_value > 0) {
80 // Position and length encoded in one smi.
81 pos = StringBuilderSubstringPosition::decode(smi_value);
82 len = StringBuilderSubstringLength::decode(smi_value);
83 } else {
84 // Position and length encoded in two smis.
85 len = -smi_value;
86 // Get the position and check that it is a positive smi.
87 i++;
88 if (i >= array_length) return -1;
89 Object* next_smi = fixed_array->get(i);
90 if (!next_smi->IsSmi()) return -1;
91 pos = Smi::cast(next_smi)->value();
92 if (pos < 0) return -1;
93 }
94 DCHECK(pos >= 0);
95 DCHECK(len >= 0);
96 if (pos > special_length || len > special_length - pos) return -1;
97 increment = len;
98 } else if (elt->IsString()) {
99 String* element = String::cast(elt);
100 int element_length = element->length();
101 increment = element_length;
102 if (*one_byte && !element->HasOnlyOneByteChars()) {
103 *one_byte = false;
104 }
105 } else {
106 return -1;
107 }
108 if (increment > String::kMaxLength - position) {
109 return kMaxInt; // Provoke throw on allocation.
110 }
111 position += increment;
112 }
113 return position;
114 }
115
116
117 class FixedArrayBuilder {
118 public:
FixedArrayBuilder(Isolate * isolate,int initial_capacity)119 explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
120 : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
121 length_(0),
122 has_non_smi_elements_(false) {
123 // Require a non-zero initial size. Ensures that doubling the size to
124 // extend the array will work.
125 DCHECK(initial_capacity > 0);
126 }
127
FixedArrayBuilder(Handle<FixedArray> backing_store)128 explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
129 : array_(backing_store), length_(0), has_non_smi_elements_(false) {
130 // Require a non-zero initial size. Ensures that doubling the size to
131 // extend the array will work.
132 DCHECK(backing_store->length() > 0);
133 }
134
HasCapacity(int elements)135 bool HasCapacity(int elements) {
136 int length = array_->length();
137 int required_length = length_ + elements;
138 return (length >= required_length);
139 }
140
EnsureCapacity(int elements)141 void EnsureCapacity(int elements) {
142 int length = array_->length();
143 int required_length = length_ + elements;
144 if (length < required_length) {
145 int new_length = length;
146 do {
147 new_length *= 2;
148 } while (new_length < required_length);
149 Handle<FixedArray> extended_array =
150 array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
151 array_->CopyTo(0, *extended_array, 0, length_);
152 array_ = extended_array;
153 }
154 }
155
Add(Object * value)156 void Add(Object* value) {
157 DCHECK(!value->IsSmi());
158 DCHECK(length_ < capacity());
159 array_->set(length_, value);
160 length_++;
161 has_non_smi_elements_ = true;
162 }
163
Add(Smi * value)164 void Add(Smi* value) {
165 DCHECK(value->IsSmi());
166 DCHECK(length_ < capacity());
167 array_->set(length_, value);
168 length_++;
169 }
170
array()171 Handle<FixedArray> array() { return array_; }
172
length()173 int length() { return length_; }
174
capacity()175 int capacity() { return array_->length(); }
176
ToJSArray(Handle<JSArray> target_array)177 Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
178 JSArray::SetContent(target_array, array_);
179 target_array->set_length(Smi::FromInt(length_));
180 return target_array;
181 }
182
183 private:
184 Handle<FixedArray> array_;
185 int length_;
186 bool has_non_smi_elements_;
187 };
188
189
190 class ReplacementStringBuilder {
191 public:
ReplacementStringBuilder(Heap * heap,Handle<String> subject,int estimated_part_count)192 ReplacementStringBuilder(Heap* heap, Handle<String> subject,
193 int estimated_part_count)
194 : heap_(heap),
195 array_builder_(heap->isolate(), estimated_part_count),
196 subject_(subject),
197 character_count_(0),
198 is_one_byte_(subject->IsOneByteRepresentation()) {
199 // Require a non-zero initial size. Ensures that doubling the size to
200 // extend the array will work.
201 DCHECK(estimated_part_count > 0);
202 }
203
AddSubjectSlice(FixedArrayBuilder * builder,int from,int to)204 static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from,
205 int to) {
206 DCHECK(from >= 0);
207 int length = to - from;
208 DCHECK(length > 0);
209 if (StringBuilderSubstringLength::is_valid(length) &&
210 StringBuilderSubstringPosition::is_valid(from)) {
211 int encoded_slice = StringBuilderSubstringLength::encode(length) |
212 StringBuilderSubstringPosition::encode(from);
213 builder->Add(Smi::FromInt(encoded_slice));
214 } else {
215 // Otherwise encode as two smis.
216 builder->Add(Smi::FromInt(-length));
217 builder->Add(Smi::FromInt(from));
218 }
219 }
220
221
EnsureCapacity(int elements)222 void EnsureCapacity(int elements) { array_builder_.EnsureCapacity(elements); }
223
224
AddSubjectSlice(int from,int to)225 void AddSubjectSlice(int from, int to) {
226 AddSubjectSlice(&array_builder_, from, to);
227 IncrementCharacterCount(to - from);
228 }
229
230
AddString(Handle<String> string)231 void AddString(Handle<String> string) {
232 int length = string->length();
233 DCHECK(length > 0);
234 AddElement(*string);
235 if (!string->IsOneByteRepresentation()) {
236 is_one_byte_ = false;
237 }
238 IncrementCharacterCount(length);
239 }
240
241
242 MaybeHandle<String> ToString();
243
244
IncrementCharacterCount(int by)245 void IncrementCharacterCount(int by) {
246 if (character_count_ > String::kMaxLength - by) {
247 STATIC_ASSERT(String::kMaxLength < kMaxInt);
248 character_count_ = kMaxInt;
249 } else {
250 character_count_ += by;
251 }
252 }
253
254 private:
AddElement(Object * element)255 void AddElement(Object* element) {
256 DCHECK(element->IsSmi() || element->IsString());
257 DCHECK(array_builder_.capacity() > array_builder_.length());
258 array_builder_.Add(element);
259 }
260
261 Heap* heap_;
262 FixedArrayBuilder array_builder_;
263 Handle<String> subject_;
264 int character_count_;
265 bool is_one_byte_;
266 };
267
268
269 class IncrementalStringBuilder {
270 public:
271 explicit IncrementalStringBuilder(Isolate* isolate);
272
INLINE(String::Encoding CurrentEncoding ())273 INLINE(String::Encoding CurrentEncoding()) { return encoding_; }
274
275 template <typename SrcChar, typename DestChar>
276 INLINE(void Append(SrcChar c));
277
INLINE(void AppendCharacter (uint8_t c))278 INLINE(void AppendCharacter(uint8_t c)) {
279 if (encoding_ == String::ONE_BYTE_ENCODING) {
280 Append<uint8_t, uint8_t>(c);
281 } else {
282 Append<uint8_t, uc16>(c);
283 }
284 }
285
INLINE(void AppendCString (const char * s))286 INLINE(void AppendCString(const char* s)) {
287 const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
288 if (encoding_ == String::ONE_BYTE_ENCODING) {
289 while (*u != '\0') Append<uint8_t, uint8_t>(*(u++));
290 } else {
291 while (*u != '\0') Append<uint8_t, uc16>(*(u++));
292 }
293 }
294
INLINE(void AppendCString (const uc16 * s))295 INLINE(void AppendCString(const uc16* s)) {
296 if (encoding_ == String::ONE_BYTE_ENCODING) {
297 while (*s != '\0') Append<uc16, uint8_t>(*(s++));
298 } else {
299 while (*s != '\0') Append<uc16, uc16>(*(s++));
300 }
301 }
302
INLINE(bool CurrentPartCanFit (int length))303 INLINE(bool CurrentPartCanFit(int length)) {
304 return part_length_ - current_index_ > length;
305 }
306
307 void AppendString(Handle<String> string);
308
309 MaybeHandle<String> Finish();
310
INLINE(bool HasOverflowed ())311 INLINE(bool HasOverflowed()) const { return overflowed_; }
312
INLINE(int Length ())313 INLINE(int Length()) const { return accumulator_->length() + current_index_; }
314
315 // Change encoding to two-byte.
ChangeEncoding()316 void ChangeEncoding() {
317 DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
318 ShrinkCurrentPart();
319 encoding_ = String::TWO_BYTE_ENCODING;
320 Extend();
321 }
322
323 template <typename DestChar>
324 class NoExtend {
325 public:
NoExtend(Handle<String> string,int offset)326 explicit NoExtend(Handle<String> string, int offset) {
327 DCHECK(string->IsSeqOneByteString() || string->IsSeqTwoByteString());
328 if (sizeof(DestChar) == 1) {
329 start_ = reinterpret_cast<DestChar*>(
330 Handle<SeqOneByteString>::cast(string)->GetChars() + offset);
331 } else {
332 start_ = reinterpret_cast<DestChar*>(
333 Handle<SeqTwoByteString>::cast(string)->GetChars() + offset);
334 }
335 cursor_ = start_;
336 }
337
INLINE(void Append (DestChar c))338 INLINE(void Append(DestChar c)) { *(cursor_++) = c; }
INLINE(void AppendCString (const char * s))339 INLINE(void AppendCString(const char* s)) {
340 const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
341 while (*u != '\0') Append(*(u++));
342 }
343
written()344 int written() { return static_cast<int>(cursor_ - start_); }
345
346 private:
347 DestChar* start_;
348 DestChar* cursor_;
349 DisallowHeapAllocation no_gc_;
350 };
351
352 template <typename DestChar>
353 class NoExtendString : public NoExtend<DestChar> {
354 public:
NoExtendString(Handle<String> string,int required_length)355 NoExtendString(Handle<String> string, int required_length)
356 : NoExtend<DestChar>(string, 0), string_(string) {
357 DCHECK(string->length() >= required_length);
358 }
359
Finalize()360 Handle<String> Finalize() {
361 Handle<SeqString> string = Handle<SeqString>::cast(string_);
362 int length = NoExtend<DestChar>::written();
363 Handle<String> result = SeqString::Truncate(string, length);
364 string_ = Handle<String>();
365 return result;
366 }
367
368 private:
369 Handle<String> string_;
370 };
371
372 template <typename DestChar>
373 class NoExtendBuilder : public NoExtend<DestChar> {
374 public:
NoExtendBuilder(IncrementalStringBuilder * builder,int required_length)375 NoExtendBuilder(IncrementalStringBuilder* builder, int required_length)
376 : NoExtend<DestChar>(builder->current_part(), builder->current_index_),
377 builder_(builder) {
378 DCHECK(builder->CurrentPartCanFit(required_length));
379 }
380
~NoExtendBuilder()381 ~NoExtendBuilder() {
382 builder_->current_index_ += NoExtend<DestChar>::written();
383 }
384
385 private:
386 IncrementalStringBuilder* builder_;
387 };
388
389 private:
factory()390 Factory* factory() { return isolate_->factory(); }
391
INLINE(Handle<String> accumulator ())392 INLINE(Handle<String> accumulator()) { return accumulator_; }
393
INLINE(void set_accumulator (Handle<String> string))394 INLINE(void set_accumulator(Handle<String> string)) {
395 *accumulator_.location() = *string;
396 }
397
INLINE(Handle<String> current_part ())398 INLINE(Handle<String> current_part()) { return current_part_; }
399
INLINE(void set_current_part (Handle<String> string))400 INLINE(void set_current_part(Handle<String> string)) {
401 *current_part_.location() = *string;
402 }
403
404 // Add the current part to the accumulator.
405 void Accumulate(Handle<String> new_part);
406
407 // Finish the current part and allocate a new part.
408 void Extend();
409
410 // Shrink current part to the right size.
ShrinkCurrentPart()411 void ShrinkCurrentPart() {
412 DCHECK(current_index_ < part_length_);
413 set_current_part(SeqString::Truncate(
414 Handle<SeqString>::cast(current_part()), current_index_));
415 }
416
417 static const int kInitialPartLength = 32;
418 static const int kMaxPartLength = 16 * 1024;
419 static const int kPartLengthGrowthFactor = 2;
420
421 Isolate* isolate_;
422 String::Encoding encoding_;
423 bool overflowed_;
424 int part_length_;
425 int current_index_;
426 Handle<String> accumulator_;
427 Handle<String> current_part_;
428 };
429
430
431 template <typename SrcChar, typename DestChar>
Append(SrcChar c)432 void IncrementalStringBuilder::Append(SrcChar c) {
433 DCHECK_EQ(encoding_ == String::ONE_BYTE_ENCODING, sizeof(DestChar) == 1);
434 if (sizeof(DestChar) == 1) {
435 DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
436 SeqOneByteString::cast(*current_part_)
437 ->SeqOneByteStringSet(current_index_++, c);
438 } else {
439 DCHECK_EQ(String::TWO_BYTE_ENCODING, encoding_);
440 SeqTwoByteString::cast(*current_part_)
441 ->SeqTwoByteStringSet(current_index_++, c);
442 }
443 if (current_index_ == part_length_) Extend();
444 }
445 } // namespace internal
446 } // namespace v8
447
448 #endif // V8_STRING_BUILDER_H_
449