1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/epoll.h>
28 #include <sys/limits.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/utsname.h>
32 #include <unistd.h>
33
34 #define LOG_TAG "EventHub"
35
36 // #define LOG_NDEBUG 0
37
38 #include "EventHub.h"
39
40 #include <hardware_legacy/power.h>
41
42 #include <cutils/properties.h>
43 #include <openssl/sha.h>
44 #include <utils/Log.h>
45 #include <utils/Timers.h>
46 #include <utils/threads.h>
47 #include <utils/Errors.h>
48
49 #include <input/KeyLayoutMap.h>
50 #include <input/KeyCharacterMap.h>
51 #include <input/VirtualKeyMap.h>
52
53 /* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58 #define test_bit(bit, array) ((array)[(bit)/8] & (1<<((bit)%8)))
59
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits) (((bits) + 7) / 8)
62
63 #define INDENT " "
64 #define INDENT2 " "
65 #define INDENT3 " "
66
67 namespace android {
68
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71
72 /* return the larger integer */
max(int v1,int v2)73 static inline int max(int v1, int v2)
74 {
75 return (v1 > v2) ? v1 : v2;
76 }
77
toString(bool value)78 static inline const char* toString(bool value) {
79 return value ? "true" : "false";
80 }
81
sha1(const String8 & in)82 static String8 sha1(const String8& in) {
83 SHA_CTX ctx;
84 SHA1_Init(&ctx);
85 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86 u_char digest[SHA_DIGEST_LENGTH];
87 SHA1_Final(digest, &ctx);
88
89 String8 out;
90 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
91 out.appendFormat("%02x", digest[i]);
92 }
93 return out;
94 }
95
getLinuxRelease(int * major,int * minor)96 static void getLinuxRelease(int* major, int* minor) {
97 struct utsname info;
98 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
99 *major = 0, *minor = 0;
100 ALOGE("Could not get linux version: %s", strerror(errno));
101 }
102 }
103
104 // --- Global Functions ---
105
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)106 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
107 // Touch devices get dibs on touch-related axes.
108 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
109 switch (axis) {
110 case ABS_X:
111 case ABS_Y:
112 case ABS_PRESSURE:
113 case ABS_TOOL_WIDTH:
114 case ABS_DISTANCE:
115 case ABS_TILT_X:
116 case ABS_TILT_Y:
117 case ABS_MT_SLOT:
118 case ABS_MT_TOUCH_MAJOR:
119 case ABS_MT_TOUCH_MINOR:
120 case ABS_MT_WIDTH_MAJOR:
121 case ABS_MT_WIDTH_MINOR:
122 case ABS_MT_ORIENTATION:
123 case ABS_MT_POSITION_X:
124 case ABS_MT_POSITION_Y:
125 case ABS_MT_TOOL_TYPE:
126 case ABS_MT_BLOB_ID:
127 case ABS_MT_TRACKING_ID:
128 case ABS_MT_PRESSURE:
129 case ABS_MT_DISTANCE:
130 return INPUT_DEVICE_CLASS_TOUCH;
131 }
132 }
133
134 // External stylus gets the pressure axis
135 if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
136 if (axis == ABS_PRESSURE) {
137 return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
138 }
139 }
140
141 // Joystick devices get the rest.
142 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
143 }
144
145 // --- EventHub::Device ---
146
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)147 EventHub::Device::Device(int fd, int32_t id, const String8& path,
148 const InputDeviceIdentifier& identifier) :
149 next(NULL),
150 fd(fd), id(id), path(path), identifier(identifier),
151 classes(0), configuration(NULL), virtualKeyMap(NULL),
152 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
153 timestampOverrideSec(0), timestampOverrideUsec(0), enabled(true),
154 isVirtual(fd < 0) {
155 memset(keyBitmask, 0, sizeof(keyBitmask));
156 memset(absBitmask, 0, sizeof(absBitmask));
157 memset(relBitmask, 0, sizeof(relBitmask));
158 memset(swBitmask, 0, sizeof(swBitmask));
159 memset(ledBitmask, 0, sizeof(ledBitmask));
160 memset(ffBitmask, 0, sizeof(ffBitmask));
161 memset(propBitmask, 0, sizeof(propBitmask));
162 }
163
~Device()164 EventHub::Device::~Device() {
165 close();
166 delete configuration;
167 delete virtualKeyMap;
168 }
169
close()170 void EventHub::Device::close() {
171 if (fd >= 0) {
172 ::close(fd);
173 fd = -1;
174 }
175 }
176
enable()177 status_t EventHub::Device::enable() {
178 fd = open(path, O_RDWR | O_CLOEXEC | O_NONBLOCK);
179 if(fd < 0) {
180 ALOGE("could not open %s, %s\n", path.string(), strerror(errno));
181 return -errno;
182 }
183 enabled = true;
184 return OK;
185 }
186
disable()187 status_t EventHub::Device::disable() {
188 close();
189 enabled = false;
190 return OK;
191 }
192
hasValidFd()193 bool EventHub::Device::hasValidFd() {
194 return !isVirtual && enabled;
195 }
196
197 // --- EventHub ---
198
199 const uint32_t EventHub::EPOLL_ID_INOTIFY;
200 const uint32_t EventHub::EPOLL_ID_WAKE;
201 const int EventHub::EPOLL_SIZE_HINT;
202 const int EventHub::EPOLL_MAX_EVENTS;
203
EventHub(void)204 EventHub::EventHub(void) :
205 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
206 mOpeningDevices(0), mClosingDevices(0),
207 mNeedToSendFinishedDeviceScan(false),
208 mNeedToReopenDevices(false), mNeedToScanDevices(true),
209 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
210 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
211
212 mEpollFd = epoll_create(EPOLL_SIZE_HINT);
213 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
214
215 mINotifyFd = inotify_init();
216 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
217 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d",
218 DEVICE_PATH, errno);
219
220 struct epoll_event eventItem;
221 memset(&eventItem, 0, sizeof(eventItem));
222 eventItem.events = EPOLLIN;
223 eventItem.data.u32 = EPOLL_ID_INOTIFY;
224 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
225 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
226
227 int wakeFds[2];
228 result = pipe(wakeFds);
229 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
230
231 mWakeReadPipeFd = wakeFds[0];
232 mWakeWritePipeFd = wakeFds[1];
233
234 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
235 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
236 errno);
237
238 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
239 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
240 errno);
241
242 eventItem.data.u32 = EPOLL_ID_WAKE;
243 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
244 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
245 errno);
246
247 int major, minor;
248 getLinuxRelease(&major, &minor);
249 // EPOLLWAKEUP was introduced in kernel 3.5
250 mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
251 }
252
~EventHub(void)253 EventHub::~EventHub(void) {
254 closeAllDevicesLocked();
255
256 while (mClosingDevices) {
257 Device* device = mClosingDevices;
258 mClosingDevices = device->next;
259 delete device;
260 }
261
262 ::close(mEpollFd);
263 ::close(mINotifyFd);
264 ::close(mWakeReadPipeFd);
265 ::close(mWakeWritePipeFd);
266
267 release_wake_lock(WAKE_LOCK_ID);
268 }
269
getDeviceIdentifier(int32_t deviceId) const270 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
271 AutoMutex _l(mLock);
272 Device* device = getDeviceLocked(deviceId);
273 if (device == NULL) return InputDeviceIdentifier();
274 return device->identifier;
275 }
276
getDeviceClasses(int32_t deviceId) const277 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
278 AutoMutex _l(mLock);
279 Device* device = getDeviceLocked(deviceId);
280 if (device == NULL) return 0;
281 return device->classes;
282 }
283
getDeviceControllerNumber(int32_t deviceId) const284 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
285 AutoMutex _l(mLock);
286 Device* device = getDeviceLocked(deviceId);
287 if (device == NULL) return 0;
288 return device->controllerNumber;
289 }
290
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const291 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
292 AutoMutex _l(mLock);
293 Device* device = getDeviceLocked(deviceId);
294 if (device && device->configuration) {
295 *outConfiguration = *device->configuration;
296 } else {
297 outConfiguration->clear();
298 }
299 }
300
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const301 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
302 RawAbsoluteAxisInfo* outAxisInfo) const {
303 outAxisInfo->clear();
304
305 if (axis >= 0 && axis <= ABS_MAX) {
306 AutoMutex _l(mLock);
307
308 Device* device = getDeviceLocked(deviceId);
309 if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
310 struct input_absinfo info;
311 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
312 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
313 axis, device->identifier.name.string(), device->fd, errno);
314 return -errno;
315 }
316
317 if (info.minimum != info.maximum) {
318 outAxisInfo->valid = true;
319 outAxisInfo->minValue = info.minimum;
320 outAxisInfo->maxValue = info.maximum;
321 outAxisInfo->flat = info.flat;
322 outAxisInfo->fuzz = info.fuzz;
323 outAxisInfo->resolution = info.resolution;
324 }
325 return OK;
326 }
327 }
328 return -1;
329 }
330
hasRelativeAxis(int32_t deviceId,int axis) const331 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
332 if (axis >= 0 && axis <= REL_MAX) {
333 AutoMutex _l(mLock);
334
335 Device* device = getDeviceLocked(deviceId);
336 if (device) {
337 return test_bit(axis, device->relBitmask);
338 }
339 }
340 return false;
341 }
342
hasInputProperty(int32_t deviceId,int property) const343 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
344 if (property >= 0 && property <= INPUT_PROP_MAX) {
345 AutoMutex _l(mLock);
346
347 Device* device = getDeviceLocked(deviceId);
348 if (device) {
349 return test_bit(property, device->propBitmask);
350 }
351 }
352 return false;
353 }
354
getScanCodeState(int32_t deviceId,int32_t scanCode) const355 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
356 if (scanCode >= 0 && scanCode <= KEY_MAX) {
357 AutoMutex _l(mLock);
358
359 Device* device = getDeviceLocked(deviceId);
360 if (device && device->hasValidFd() && test_bit(scanCode, device->keyBitmask)) {
361 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
362 memset(keyState, 0, sizeof(keyState));
363 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
364 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
365 }
366 }
367 }
368 return AKEY_STATE_UNKNOWN;
369 }
370
getKeyCodeState(int32_t deviceId,int32_t keyCode) const371 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
372 AutoMutex _l(mLock);
373
374 Device* device = getDeviceLocked(deviceId);
375 if (device && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
376 Vector<int32_t> scanCodes;
377 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
378 if (scanCodes.size() != 0) {
379 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
380 memset(keyState, 0, sizeof(keyState));
381 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
382 for (size_t i = 0; i < scanCodes.size(); i++) {
383 int32_t sc = scanCodes.itemAt(i);
384 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
385 return AKEY_STATE_DOWN;
386 }
387 }
388 return AKEY_STATE_UP;
389 }
390 }
391 }
392 return AKEY_STATE_UNKNOWN;
393 }
394
getSwitchState(int32_t deviceId,int32_t sw) const395 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
396 if (sw >= 0 && sw <= SW_MAX) {
397 AutoMutex _l(mLock);
398
399 Device* device = getDeviceLocked(deviceId);
400 if (device && device->hasValidFd() && test_bit(sw, device->swBitmask)) {
401 uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
402 memset(swState, 0, sizeof(swState));
403 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
404 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
405 }
406 }
407 }
408 return AKEY_STATE_UNKNOWN;
409 }
410
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const411 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
412 *outValue = 0;
413
414 if (axis >= 0 && axis <= ABS_MAX) {
415 AutoMutex _l(mLock);
416
417 Device* device = getDeviceLocked(deviceId);
418 if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
419 struct input_absinfo info;
420 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
421 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
422 axis, device->identifier.name.string(), device->fd, errno);
423 return -errno;
424 }
425
426 *outValue = info.value;
427 return OK;
428 }
429 }
430 return -1;
431 }
432
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const433 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
434 const int32_t* keyCodes, uint8_t* outFlags) const {
435 AutoMutex _l(mLock);
436
437 Device* device = getDeviceLocked(deviceId);
438 if (device && device->keyMap.haveKeyLayout()) {
439 Vector<int32_t> scanCodes;
440 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
441 scanCodes.clear();
442
443 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
444 keyCodes[codeIndex], &scanCodes);
445 if (! err) {
446 // check the possible scan codes identified by the layout map against the
447 // map of codes actually emitted by the driver
448 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
449 if (test_bit(scanCodes[sc], device->keyBitmask)) {
450 outFlags[codeIndex] = 1;
451 break;
452 }
453 }
454 }
455 }
456 return true;
457 }
458 return false;
459 }
460
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const461 status_t EventHub::mapKey(int32_t deviceId,
462 int32_t scanCode, int32_t usageCode, int32_t metaState,
463 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
464 AutoMutex _l(mLock);
465 Device* device = getDeviceLocked(deviceId);
466 status_t status = NAME_NOT_FOUND;
467
468 if (device) {
469 // Check the key character map first.
470 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
471 if (kcm != NULL) {
472 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
473 *outFlags = 0;
474 status = NO_ERROR;
475 }
476 }
477
478 // Check the key layout next.
479 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
480 if (!device->keyMap.keyLayoutMap->mapKey(
481 scanCode, usageCode, outKeycode, outFlags)) {
482 status = NO_ERROR;
483 }
484 }
485
486 if (status == NO_ERROR) {
487 if (kcm != NULL) {
488 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
489 } else {
490 *outMetaState = metaState;
491 }
492 }
493 }
494
495 if (status != NO_ERROR) {
496 *outKeycode = 0;
497 *outFlags = 0;
498 *outMetaState = metaState;
499 }
500
501 return status;
502 }
503
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const504 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
505 AutoMutex _l(mLock);
506 Device* device = getDeviceLocked(deviceId);
507
508 if (device && device->keyMap.haveKeyLayout()) {
509 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
510 if (err == NO_ERROR) {
511 return NO_ERROR;
512 }
513 }
514
515 return NAME_NOT_FOUND;
516 }
517
setExcludedDevices(const Vector<String8> & devices)518 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
519 AutoMutex _l(mLock);
520
521 mExcludedDevices = devices;
522 }
523
hasScanCode(int32_t deviceId,int32_t scanCode) const524 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
525 AutoMutex _l(mLock);
526 Device* device = getDeviceLocked(deviceId);
527 if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
528 if (test_bit(scanCode, device->keyBitmask)) {
529 return true;
530 }
531 }
532 return false;
533 }
534
hasLed(int32_t deviceId,int32_t led) const535 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
536 AutoMutex _l(mLock);
537 Device* device = getDeviceLocked(deviceId);
538 int32_t sc;
539 if (device && mapLed(device, led, &sc) == NO_ERROR) {
540 if (test_bit(sc, device->ledBitmask)) {
541 return true;
542 }
543 }
544 return false;
545 }
546
setLedState(int32_t deviceId,int32_t led,bool on)547 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
548 AutoMutex _l(mLock);
549 Device* device = getDeviceLocked(deviceId);
550 setLedStateLocked(device, led, on);
551 }
552
setLedStateLocked(Device * device,int32_t led,bool on)553 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
554 int32_t sc;
555 if (device && device->hasValidFd() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
556 struct input_event ev;
557 ev.time.tv_sec = 0;
558 ev.time.tv_usec = 0;
559 ev.type = EV_LED;
560 ev.code = sc;
561 ev.value = on ? 1 : 0;
562
563 ssize_t nWrite;
564 do {
565 nWrite = write(device->fd, &ev, sizeof(struct input_event));
566 } while (nWrite == -1 && errno == EINTR);
567 }
568 }
569
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const570 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
571 Vector<VirtualKeyDefinition>& outVirtualKeys) const {
572 outVirtualKeys.clear();
573
574 AutoMutex _l(mLock);
575 Device* device = getDeviceLocked(deviceId);
576 if (device && device->virtualKeyMap) {
577 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
578 }
579 }
580
getKeyCharacterMap(int32_t deviceId) const581 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
582 AutoMutex _l(mLock);
583 Device* device = getDeviceLocked(deviceId);
584 if (device) {
585 return device->getKeyCharacterMap();
586 }
587 return NULL;
588 }
589
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)590 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
591 const sp<KeyCharacterMap>& map) {
592 AutoMutex _l(mLock);
593 Device* device = getDeviceLocked(deviceId);
594 if (device) {
595 if (map != device->overlayKeyMap) {
596 device->overlayKeyMap = map;
597 device->combinedKeyMap = KeyCharacterMap::combine(
598 device->keyMap.keyCharacterMap, map);
599 return true;
600 }
601 }
602 return false;
603 }
604
generateDescriptor(InputDeviceIdentifier & identifier)605 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
606 String8 rawDescriptor;
607 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
608 identifier.product);
609 // TODO add handling for USB devices to not uniqueify kbs that show up twice
610 if (!identifier.uniqueId.isEmpty()) {
611 rawDescriptor.append("uniqueId:");
612 rawDescriptor.append(identifier.uniqueId);
613 } else if (identifier.nonce != 0) {
614 rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
615 }
616
617 if (identifier.vendor == 0 && identifier.product == 0) {
618 // If we don't know the vendor and product id, then the device is probably
619 // built-in so we need to rely on other information to uniquely identify
620 // the input device. Usually we try to avoid relying on the device name or
621 // location but for built-in input device, they are unlikely to ever change.
622 if (!identifier.name.isEmpty()) {
623 rawDescriptor.append("name:");
624 rawDescriptor.append(identifier.name);
625 } else if (!identifier.location.isEmpty()) {
626 rawDescriptor.append("location:");
627 rawDescriptor.append(identifier.location);
628 }
629 }
630 identifier.descriptor = sha1(rawDescriptor);
631 return rawDescriptor;
632 }
633
assignDescriptorLocked(InputDeviceIdentifier & identifier)634 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
635 // Compute a device descriptor that uniquely identifies the device.
636 // The descriptor is assumed to be a stable identifier. Its value should not
637 // change between reboots, reconnections, firmware updates or new releases
638 // of Android. In practice we sometimes get devices that cannot be uniquely
639 // identified. In this case we enforce uniqueness between connected devices.
640 // Ideally, we also want the descriptor to be short and relatively opaque.
641
642 identifier.nonce = 0;
643 String8 rawDescriptor = generateDescriptor(identifier);
644 if (identifier.uniqueId.isEmpty()) {
645 // If it didn't have a unique id check for conflicts and enforce
646 // uniqueness if necessary.
647 while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
648 identifier.nonce++;
649 rawDescriptor = generateDescriptor(identifier);
650 }
651 }
652 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
653 identifier.descriptor.string());
654 }
655
vibrate(int32_t deviceId,nsecs_t duration)656 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
657 AutoMutex _l(mLock);
658 Device* device = getDeviceLocked(deviceId);
659 if (device && device->hasValidFd()) {
660 ff_effect effect;
661 memset(&effect, 0, sizeof(effect));
662 effect.type = FF_RUMBLE;
663 effect.id = device->ffEffectId;
664 effect.u.rumble.strong_magnitude = 0xc000;
665 effect.u.rumble.weak_magnitude = 0xc000;
666 effect.replay.length = (duration + 999999LL) / 1000000LL;
667 effect.replay.delay = 0;
668 if (ioctl(device->fd, EVIOCSFF, &effect)) {
669 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
670 device->identifier.name.string(), errno);
671 return;
672 }
673 device->ffEffectId = effect.id;
674
675 struct input_event ev;
676 ev.time.tv_sec = 0;
677 ev.time.tv_usec = 0;
678 ev.type = EV_FF;
679 ev.code = device->ffEffectId;
680 ev.value = 1;
681 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
682 ALOGW("Could not start force feedback effect on device %s due to error %d.",
683 device->identifier.name.string(), errno);
684 return;
685 }
686 device->ffEffectPlaying = true;
687 }
688 }
689
cancelVibrate(int32_t deviceId)690 void EventHub::cancelVibrate(int32_t deviceId) {
691 AutoMutex _l(mLock);
692 Device* device = getDeviceLocked(deviceId);
693 if (device && device->hasValidFd()) {
694 if (device->ffEffectPlaying) {
695 device->ffEffectPlaying = false;
696
697 struct input_event ev;
698 ev.time.tv_sec = 0;
699 ev.time.tv_usec = 0;
700 ev.type = EV_FF;
701 ev.code = device->ffEffectId;
702 ev.value = 0;
703 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
704 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
705 device->identifier.name.string(), errno);
706 return;
707 }
708 }
709 }
710 }
711
getDeviceByDescriptorLocked(String8 & descriptor) const712 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
713 size_t size = mDevices.size();
714 for (size_t i = 0; i < size; i++) {
715 Device* device = mDevices.valueAt(i);
716 if (descriptor.compare(device->identifier.descriptor) == 0) {
717 return device;
718 }
719 }
720 return NULL;
721 }
722
getDeviceLocked(int32_t deviceId) const723 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
724 if (deviceId == BUILT_IN_KEYBOARD_ID) {
725 deviceId = mBuiltInKeyboardId;
726 }
727 ssize_t index = mDevices.indexOfKey(deviceId);
728 return index >= 0 ? mDevices.valueAt(index) : NULL;
729 }
730
getDeviceByPathLocked(const char * devicePath) const731 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
732 for (size_t i = 0; i < mDevices.size(); i++) {
733 Device* device = mDevices.valueAt(i);
734 if (device->path == devicePath) {
735 return device;
736 }
737 }
738 return NULL;
739 }
740
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)741 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
742 ALOG_ASSERT(bufferSize >= 1);
743
744 AutoMutex _l(mLock);
745
746 struct input_event readBuffer[bufferSize];
747
748 RawEvent* event = buffer;
749 size_t capacity = bufferSize;
750 bool awoken = false;
751 for (;;) {
752 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
753
754 // Reopen input devices if needed.
755 if (mNeedToReopenDevices) {
756 mNeedToReopenDevices = false;
757
758 ALOGI("Reopening all input devices due to a configuration change.");
759
760 closeAllDevicesLocked();
761 mNeedToScanDevices = true;
762 break; // return to the caller before we actually rescan
763 }
764
765 // Report any devices that had last been added/removed.
766 while (mClosingDevices) {
767 Device* device = mClosingDevices;
768 ALOGV("Reporting device closed: id=%d, name=%s\n",
769 device->id, device->path.string());
770 mClosingDevices = device->next;
771 event->when = now;
772 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
773 event->type = DEVICE_REMOVED;
774 event += 1;
775 delete device;
776 mNeedToSendFinishedDeviceScan = true;
777 if (--capacity == 0) {
778 break;
779 }
780 }
781
782 if (mNeedToScanDevices) {
783 mNeedToScanDevices = false;
784 scanDevicesLocked();
785 mNeedToSendFinishedDeviceScan = true;
786 }
787
788 while (mOpeningDevices != NULL) {
789 Device* device = mOpeningDevices;
790 ALOGV("Reporting device opened: id=%d, name=%s\n",
791 device->id, device->path.string());
792 mOpeningDevices = device->next;
793 event->when = now;
794 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
795 event->type = DEVICE_ADDED;
796 event += 1;
797 mNeedToSendFinishedDeviceScan = true;
798 if (--capacity == 0) {
799 break;
800 }
801 }
802
803 if (mNeedToSendFinishedDeviceScan) {
804 mNeedToSendFinishedDeviceScan = false;
805 event->when = now;
806 event->type = FINISHED_DEVICE_SCAN;
807 event += 1;
808 if (--capacity == 0) {
809 break;
810 }
811 }
812
813 // Grab the next input event.
814 bool deviceChanged = false;
815 while (mPendingEventIndex < mPendingEventCount) {
816 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
817 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
818 if (eventItem.events & EPOLLIN) {
819 mPendingINotify = true;
820 } else {
821 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
822 }
823 continue;
824 }
825
826 if (eventItem.data.u32 == EPOLL_ID_WAKE) {
827 if (eventItem.events & EPOLLIN) {
828 ALOGV("awoken after wake()");
829 awoken = true;
830 char buffer[16];
831 ssize_t nRead;
832 do {
833 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
834 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
835 } else {
836 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
837 eventItem.events);
838 }
839 continue;
840 }
841
842 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
843 if (deviceIndex < 0) {
844 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
845 eventItem.events, eventItem.data.u32);
846 continue;
847 }
848
849 Device* device = mDevices.valueAt(deviceIndex);
850 if (eventItem.events & EPOLLIN) {
851 int32_t readSize = read(device->fd, readBuffer,
852 sizeof(struct input_event) * capacity);
853 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
854 // Device was removed before INotify noticed.
855 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
856 " bufferSize: %zu capacity: %zu errno: %d)\n",
857 device->fd, readSize, bufferSize, capacity, errno);
858 deviceChanged = true;
859 closeDeviceLocked(device);
860 } else if (readSize < 0) {
861 if (errno != EAGAIN && errno != EINTR) {
862 ALOGW("could not get event (errno=%d)", errno);
863 }
864 } else if ((readSize % sizeof(struct input_event)) != 0) {
865 ALOGE("could not get event (wrong size: %d)", readSize);
866 } else {
867 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
868
869 size_t count = size_t(readSize) / sizeof(struct input_event);
870 for (size_t i = 0; i < count; i++) {
871 struct input_event& iev = readBuffer[i];
872 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
873 device->path.string(),
874 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
875 iev.type, iev.code, iev.value);
876
877 // Some input devices may have a better concept of the time
878 // when an input event was actually generated than the kernel
879 // which simply timestamps all events on entry to evdev.
880 // This is a custom Android extension of the input protocol
881 // mainly intended for use with uinput based device drivers.
882 if (iev.type == EV_MSC) {
883 if (iev.code == MSC_ANDROID_TIME_SEC) {
884 device->timestampOverrideSec = iev.value;
885 continue;
886 } else if (iev.code == MSC_ANDROID_TIME_USEC) {
887 device->timestampOverrideUsec = iev.value;
888 continue;
889 }
890 }
891 if (device->timestampOverrideSec || device->timestampOverrideUsec) {
892 iev.time.tv_sec = device->timestampOverrideSec;
893 iev.time.tv_usec = device->timestampOverrideUsec;
894 if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
895 device->timestampOverrideSec = 0;
896 device->timestampOverrideUsec = 0;
897 }
898 ALOGV("applied override time %d.%06d",
899 int(iev.time.tv_sec), int(iev.time.tv_usec));
900 }
901
902 // Use the time specified in the event instead of the current time
903 // so that downstream code can get more accurate estimates of
904 // event dispatch latency from the time the event is enqueued onto
905 // the evdev client buffer.
906 //
907 // The event's timestamp fortuitously uses the same monotonic clock
908 // time base as the rest of Android. The kernel event device driver
909 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
910 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
911 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
912 // system call that also queries ktime_get_ts().
913 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
914 + nsecs_t(iev.time.tv_usec) * 1000LL;
915 ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
916
917 // Bug 7291243: Add a guard in case the kernel generates timestamps
918 // that appear to be far into the future because they were generated
919 // using the wrong clock source.
920 //
921 // This can happen because when the input device is initially opened
922 // it has a default clock source of CLOCK_REALTIME. Any input events
923 // enqueued right after the device is opened will have timestamps
924 // generated using CLOCK_REALTIME. We later set the clock source
925 // to CLOCK_MONOTONIC but it is already too late.
926 //
927 // Invalid input event timestamps can result in ANRs, crashes and
928 // and other issues that are hard to track down. We must not let them
929 // propagate through the system.
930 //
931 // Log a warning so that we notice the problem and recover gracefully.
932 if (event->when >= now + 10 * 1000000000LL) {
933 // Double-check. Time may have moved on.
934 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
935 if (event->when > time) {
936 ALOGW("An input event from %s has a timestamp that appears to "
937 "have been generated using the wrong clock source "
938 "(expected CLOCK_MONOTONIC): "
939 "event time %" PRId64 ", current time %" PRId64
940 ", call time %" PRId64 ". "
941 "Using current time instead.",
942 device->path.string(), event->when, time, now);
943 event->when = time;
944 } else {
945 ALOGV("Event time is ok but failed the fast path and required "
946 "an extra call to systemTime: "
947 "event time %" PRId64 ", current time %" PRId64
948 ", call time %" PRId64 ".",
949 event->when, time, now);
950 }
951 }
952 event->deviceId = deviceId;
953 event->type = iev.type;
954 event->code = iev.code;
955 event->value = iev.value;
956 event += 1;
957 capacity -= 1;
958 }
959 if (capacity == 0) {
960 // The result buffer is full. Reset the pending event index
961 // so we will try to read the device again on the next iteration.
962 mPendingEventIndex -= 1;
963 break;
964 }
965 }
966 } else if (eventItem.events & EPOLLHUP) {
967 ALOGI("Removing device %s due to epoll hang-up event.",
968 device->identifier.name.string());
969 deviceChanged = true;
970 closeDeviceLocked(device);
971 } else {
972 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
973 eventItem.events, device->identifier.name.string());
974 }
975 }
976
977 // readNotify() will modify the list of devices so this must be done after
978 // processing all other events to ensure that we read all remaining events
979 // before closing the devices.
980 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
981 mPendingINotify = false;
982 readNotifyLocked();
983 deviceChanged = true;
984 }
985
986 // Report added or removed devices immediately.
987 if (deviceChanged) {
988 continue;
989 }
990
991 // Return now if we have collected any events or if we were explicitly awoken.
992 if (event != buffer || awoken) {
993 break;
994 }
995
996 // Poll for events. Mind the wake lock dance!
997 // We hold a wake lock at all times except during epoll_wait(). This works due to some
998 // subtle choreography. When a device driver has pending (unread) events, it acquires
999 // a kernel wake lock. However, once the last pending event has been read, the device
1000 // driver will release the kernel wake lock. To prevent the system from going to sleep
1001 // when this happens, the EventHub holds onto its own user wake lock while the client
1002 // is processing events. Thus the system can only sleep if there are no events
1003 // pending or currently being processed.
1004 //
1005 // The timeout is advisory only. If the device is asleep, it will not wake just to
1006 // service the timeout.
1007 mPendingEventIndex = 0;
1008
1009 mLock.unlock(); // release lock before poll, must be before release_wake_lock
1010 release_wake_lock(WAKE_LOCK_ID);
1011
1012 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
1013
1014 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
1015 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
1016
1017 if (pollResult == 0) {
1018 // Timed out.
1019 mPendingEventCount = 0;
1020 break;
1021 }
1022
1023 if (pollResult < 0) {
1024 // An error occurred.
1025 mPendingEventCount = 0;
1026
1027 // Sleep after errors to avoid locking up the system.
1028 // Hopefully the error is transient.
1029 if (errno != EINTR) {
1030 ALOGW("poll failed (errno=%d)\n", errno);
1031 usleep(100000);
1032 }
1033 } else {
1034 // Some events occurred.
1035 mPendingEventCount = size_t(pollResult);
1036 }
1037 }
1038
1039 // All done, return the number of events we read.
1040 return event - buffer;
1041 }
1042
wake()1043 void EventHub::wake() {
1044 ALOGV("wake() called");
1045
1046 ssize_t nWrite;
1047 do {
1048 nWrite = write(mWakeWritePipeFd, "W", 1);
1049 } while (nWrite == -1 && errno == EINTR);
1050
1051 if (nWrite != 1 && errno != EAGAIN) {
1052 ALOGW("Could not write wake signal, errno=%d", errno);
1053 }
1054 }
1055
scanDevicesLocked()1056 void EventHub::scanDevicesLocked() {
1057 status_t res = scanDirLocked(DEVICE_PATH);
1058 if(res < 0) {
1059 ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1060 }
1061 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1062 createVirtualKeyboardLocked();
1063 }
1064 }
1065
1066 // ----------------------------------------------------------------------------
1067
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)1068 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1069 const uint8_t* end = array + endIndex;
1070 array += startIndex;
1071 while (array != end) {
1072 if (*(array++) != 0) {
1073 return true;
1074 }
1075 }
1076 return false;
1077 }
1078
1079 static const int32_t GAMEPAD_KEYCODES[] = {
1080 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1081 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1082 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1083 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1084 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1085 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1086 };
1087
registerDeviceForEpollLocked(Device * device)1088 status_t EventHub::registerDeviceForEpollLocked(Device* device) {
1089 struct epoll_event eventItem;
1090 memset(&eventItem, 0, sizeof(eventItem));
1091 eventItem.events = EPOLLIN;
1092 if (mUsingEpollWakeup) {
1093 eventItem.events |= EPOLLWAKEUP;
1094 }
1095 eventItem.data.u32 = device->id;
1096 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, device->fd, &eventItem)) {
1097 ALOGE("Could not add device fd to epoll instance. errno=%d", errno);
1098 return -errno;
1099 }
1100 return OK;
1101 }
1102
unregisterDeviceFromEpollLocked(Device * device)1103 status_t EventHub::unregisterDeviceFromEpollLocked(Device* device) {
1104 if (device->hasValidFd()) {
1105 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1106 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno);
1107 return -errno;
1108 }
1109 }
1110 return OK;
1111 }
1112
openDeviceLocked(const char * devicePath)1113 status_t EventHub::openDeviceLocked(const char *devicePath) {
1114 char buffer[80];
1115
1116 ALOGV("Opening device: %s", devicePath);
1117
1118 int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK);
1119 if(fd < 0) {
1120 ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1121 return -1;
1122 }
1123
1124 InputDeviceIdentifier identifier;
1125
1126 // Get device name.
1127 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1128 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1129 } else {
1130 buffer[sizeof(buffer) - 1] = '\0';
1131 identifier.name.setTo(buffer);
1132 }
1133
1134 // Check to see if the device is on our excluded list
1135 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1136 const String8& item = mExcludedDevices.itemAt(i);
1137 if (identifier.name == item) {
1138 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1139 close(fd);
1140 return -1;
1141 }
1142 }
1143
1144 // Get device driver version.
1145 int driverVersion;
1146 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1147 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1148 close(fd);
1149 return -1;
1150 }
1151
1152 // Get device identifier.
1153 struct input_id inputId;
1154 if(ioctl(fd, EVIOCGID, &inputId)) {
1155 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1156 close(fd);
1157 return -1;
1158 }
1159 identifier.bus = inputId.bustype;
1160 identifier.product = inputId.product;
1161 identifier.vendor = inputId.vendor;
1162 identifier.version = inputId.version;
1163
1164 // Get device physical location.
1165 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1166 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1167 } else {
1168 buffer[sizeof(buffer) - 1] = '\0';
1169 identifier.location.setTo(buffer);
1170 }
1171
1172 // Get device unique id.
1173 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1174 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1175 } else {
1176 buffer[sizeof(buffer) - 1] = '\0';
1177 identifier.uniqueId.setTo(buffer);
1178 }
1179
1180 // Fill in the descriptor.
1181 assignDescriptorLocked(identifier);
1182
1183 // Allocate device. (The device object takes ownership of the fd at this point.)
1184 int32_t deviceId = mNextDeviceId++;
1185 Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1186
1187 ALOGV("add device %d: %s\n", deviceId, devicePath);
1188 ALOGV(" bus: %04x\n"
1189 " vendor %04x\n"
1190 " product %04x\n"
1191 " version %04x\n",
1192 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1193 ALOGV(" name: \"%s\"\n", identifier.name.string());
1194 ALOGV(" location: \"%s\"\n", identifier.location.string());
1195 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string());
1196 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string());
1197 ALOGV(" driver: v%d.%d.%d\n",
1198 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1199
1200 // Load the configuration file for the device.
1201 loadConfigurationLocked(device);
1202
1203 // Figure out the kinds of events the device reports.
1204 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1205 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1206 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1207 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1208 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1209 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1210 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1211
1212 // See if this is a keyboard. Ignore everything in the button range except for
1213 // joystick and gamepad buttons which are handled like keyboards for the most part.
1214 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1215 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1216 sizeof_bit_array(KEY_MAX + 1));
1217 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1218 sizeof_bit_array(BTN_MOUSE))
1219 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1220 sizeof_bit_array(BTN_DIGI));
1221 if (haveKeyboardKeys || haveGamepadButtons) {
1222 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1223 }
1224
1225 // See if this is a cursor device such as a trackball or mouse.
1226 if (test_bit(BTN_MOUSE, device->keyBitmask)
1227 && test_bit(REL_X, device->relBitmask)
1228 && test_bit(REL_Y, device->relBitmask)) {
1229 device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1230 }
1231
1232 // See if this is a rotary encoder type device.
1233 String8 deviceType = String8();
1234 if (device->configuration &&
1235 device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
1236 if (!deviceType.compare(String8("rotaryEncoder"))) {
1237 device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER;
1238 }
1239 }
1240
1241 // See if this is a touch pad.
1242 // Is this a new modern multi-touch driver?
1243 if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1244 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1245 // Some joysticks such as the PS3 controller report axes that conflict
1246 // with the ABS_MT range. Try to confirm that the device really is
1247 // a touch screen.
1248 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1249 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1250 }
1251 // Is this an old style single-touch driver?
1252 } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1253 && test_bit(ABS_X, device->absBitmask)
1254 && test_bit(ABS_Y, device->absBitmask)) {
1255 device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1256 // Is this a BT stylus?
1257 } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1258 test_bit(BTN_TOUCH, device->keyBitmask))
1259 && !test_bit(ABS_X, device->absBitmask)
1260 && !test_bit(ABS_Y, device->absBitmask)) {
1261 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1262 // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1263 // can fuse it with the touch screen data, so just take them back. Note this means an
1264 // external stylus cannot also be a keyboard device.
1265 device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1266 }
1267
1268 // See if this device is a joystick.
1269 // Assumes that joysticks always have gamepad buttons in order to distinguish them
1270 // from other devices such as accelerometers that also have absolute axes.
1271 if (haveGamepadButtons) {
1272 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1273 for (int i = 0; i <= ABS_MAX; i++) {
1274 if (test_bit(i, device->absBitmask)
1275 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1276 device->classes = assumedClasses;
1277 break;
1278 }
1279 }
1280 }
1281
1282 // Check whether this device has switches.
1283 for (int i = 0; i <= SW_MAX; i++) {
1284 if (test_bit(i, device->swBitmask)) {
1285 device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1286 break;
1287 }
1288 }
1289
1290 // Check whether this device supports the vibrator.
1291 if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1292 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1293 }
1294
1295 // Configure virtual keys.
1296 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1297 // Load the virtual keys for the touch screen, if any.
1298 // We do this now so that we can make sure to load the keymap if necessary.
1299 status_t status = loadVirtualKeyMapLocked(device);
1300 if (!status) {
1301 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1302 }
1303 }
1304
1305 // Load the key map.
1306 // We need to do this for joysticks too because the key layout may specify axes.
1307 status_t keyMapStatus = NAME_NOT_FOUND;
1308 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1309 // Load the keymap for the device.
1310 keyMapStatus = loadKeyMapLocked(device);
1311 }
1312
1313 // Configure the keyboard, gamepad or virtual keyboard.
1314 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1315 // Register the keyboard as a built-in keyboard if it is eligible.
1316 if (!keyMapStatus
1317 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1318 && isEligibleBuiltInKeyboard(device->identifier,
1319 device->configuration, &device->keyMap)) {
1320 mBuiltInKeyboardId = device->id;
1321 }
1322
1323 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1324 if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1325 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1326 }
1327
1328 // See if this device has a DPAD.
1329 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1330 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1331 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1332 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1333 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1334 device->classes |= INPUT_DEVICE_CLASS_DPAD;
1335 }
1336
1337 // See if this device has a gamepad.
1338 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1339 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1340 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1341 break;
1342 }
1343 }
1344 }
1345
1346 // If the device isn't recognized as something we handle, don't monitor it.
1347 if (device->classes == 0) {
1348 ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1349 deviceId, devicePath, device->identifier.name.string());
1350 delete device;
1351 return -1;
1352 }
1353
1354 // Determine whether the device has a mic.
1355 if (deviceHasMicLocked(device)) {
1356 device->classes |= INPUT_DEVICE_CLASS_MIC;
1357 }
1358
1359 // Determine whether the device is external or internal.
1360 if (isExternalDeviceLocked(device)) {
1361 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1362 }
1363
1364 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1365 && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1366 device->controllerNumber = getNextControllerNumberLocked(device);
1367 setLedForControllerLocked(device);
1368 }
1369
1370
1371 if (registerDeviceForEpollLocked(device) != OK) {
1372 delete device;
1373 return -1;
1374 }
1375
1376 configureFd(device);
1377
1378 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1379 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
1380 deviceId, fd, devicePath, device->identifier.name.string(),
1381 device->classes,
1382 device->configurationFile.string(),
1383 device->keyMap.keyLayoutFile.string(),
1384 device->keyMap.keyCharacterMapFile.string(),
1385 toString(mBuiltInKeyboardId == deviceId));
1386
1387 addDeviceLocked(device);
1388 return OK;
1389 }
1390
configureFd(Device * device)1391 void EventHub::configureFd(Device* device) {
1392 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
1393 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1394 // Disable kernel key repeat since we handle it ourselves
1395 unsigned int repeatRate[] = {0, 0};
1396 if (ioctl(device->fd, EVIOCSREP, repeatRate)) {
1397 ALOGW("Unable to disable kernel key repeat for %s: %s",
1398 device->path.string(), strerror(errno));
1399 }
1400 }
1401
1402 String8 wakeMechanism("EPOLLWAKEUP");
1403 if (!mUsingEpollWakeup) {
1404 #ifndef EVIOCSSUSPENDBLOCK
1405 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1406 // will use an epoll flag instead, so as long as we want to support
1407 // this feature, we need to be prepared to define the ioctl ourselves.
1408 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1409 #endif
1410 if (ioctl(device->fd, EVIOCSSUSPENDBLOCK, 1)) {
1411 wakeMechanism = "<none>";
1412 } else {
1413 wakeMechanism = "EVIOCSSUSPENDBLOCK";
1414 }
1415 }
1416 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1417 // associated with input events. This is important because the input system
1418 // uses the timestamps extensively and assumes they were recorded using the monotonic
1419 // clock.
1420 int clockId = CLOCK_MONOTONIC;
1421 bool usingClockIoctl = !ioctl(device->fd, EVIOCSCLOCKID, &clockId);
1422 ALOGI("wakeMechanism=%s, usingClockIoctl=%s", wakeMechanism.string(),
1423 toString(usingClockIoctl));
1424 }
1425
isDeviceEnabled(int32_t deviceId)1426 bool EventHub::isDeviceEnabled(int32_t deviceId) {
1427 AutoMutex _l(mLock);
1428 Device* device = getDeviceLocked(deviceId);
1429 if (device == NULL) {
1430 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1431 return false;
1432 }
1433 return device->enabled;
1434 }
1435
enableDevice(int32_t deviceId)1436 status_t EventHub::enableDevice(int32_t deviceId) {
1437 AutoMutex _l(mLock);
1438 Device* device = getDeviceLocked(deviceId);
1439 if (device == NULL) {
1440 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1441 return BAD_VALUE;
1442 }
1443 if (device->enabled) {
1444 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
1445 return OK;
1446 }
1447 status_t result = device->enable();
1448 if (result != OK) {
1449 ALOGE("Failed to enable device %" PRId32, deviceId);
1450 return result;
1451 }
1452
1453 configureFd(device);
1454
1455 return registerDeviceForEpollLocked(device);
1456 }
1457
disableDevice(int32_t deviceId)1458 status_t EventHub::disableDevice(int32_t deviceId) {
1459 AutoMutex _l(mLock);
1460 Device* device = getDeviceLocked(deviceId);
1461 if (device == NULL) {
1462 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1463 return BAD_VALUE;
1464 }
1465 if (!device->enabled) {
1466 ALOGW("Duplicate call to %s, input device already disabled", __func__);
1467 return OK;
1468 }
1469 unregisterDeviceFromEpollLocked(device);
1470 return device->disable();
1471 }
1472
createVirtualKeyboardLocked()1473 void EventHub::createVirtualKeyboardLocked() {
1474 InputDeviceIdentifier identifier;
1475 identifier.name = "Virtual";
1476 identifier.uniqueId = "<virtual>";
1477 assignDescriptorLocked(identifier);
1478
1479 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1480 device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1481 | INPUT_DEVICE_CLASS_ALPHAKEY
1482 | INPUT_DEVICE_CLASS_DPAD
1483 | INPUT_DEVICE_CLASS_VIRTUAL;
1484 loadKeyMapLocked(device);
1485 addDeviceLocked(device);
1486 }
1487
addDeviceLocked(Device * device)1488 void EventHub::addDeviceLocked(Device* device) {
1489 mDevices.add(device->id, device);
1490 device->next = mOpeningDevices;
1491 mOpeningDevices = device;
1492 }
1493
loadConfigurationLocked(Device * device)1494 void EventHub::loadConfigurationLocked(Device* device) {
1495 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1496 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1497 if (device->configurationFile.isEmpty()) {
1498 ALOGD("No input device configuration file found for device '%s'.",
1499 device->identifier.name.string());
1500 } else {
1501 status_t status = PropertyMap::load(device->configurationFile,
1502 &device->configuration);
1503 if (status) {
1504 ALOGE("Error loading input device configuration file for device '%s'. "
1505 "Using default configuration.",
1506 device->identifier.name.string());
1507 }
1508 }
1509 }
1510
loadVirtualKeyMapLocked(Device * device)1511 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1512 // The virtual key map is supplied by the kernel as a system board property file.
1513 String8 path;
1514 path.append("/sys/board_properties/virtualkeys.");
1515 path.append(device->identifier.name);
1516 if (access(path.string(), R_OK)) {
1517 return NAME_NOT_FOUND;
1518 }
1519 return VirtualKeyMap::load(path, &device->virtualKeyMap);
1520 }
1521
loadKeyMapLocked(Device * device)1522 status_t EventHub::loadKeyMapLocked(Device* device) {
1523 return device->keyMap.load(device->identifier, device->configuration);
1524 }
1525
isExternalDeviceLocked(Device * device)1526 bool EventHub::isExternalDeviceLocked(Device* device) {
1527 if (device->configuration) {
1528 bool value;
1529 if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1530 return !value;
1531 }
1532 }
1533 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1534 }
1535
deviceHasMicLocked(Device * device)1536 bool EventHub::deviceHasMicLocked(Device* device) {
1537 if (device->configuration) {
1538 bool value;
1539 if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1540 return value;
1541 }
1542 }
1543 return false;
1544 }
1545
getNextControllerNumberLocked(Device * device)1546 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1547 if (mControllerNumbers.isFull()) {
1548 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1549 device->identifier.name.string());
1550 return 0;
1551 }
1552 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1553 // one
1554 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1555 }
1556
releaseControllerNumberLocked(Device * device)1557 void EventHub::releaseControllerNumberLocked(Device* device) {
1558 int32_t num = device->controllerNumber;
1559 device->controllerNumber= 0;
1560 if (num == 0) {
1561 return;
1562 }
1563 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1564 }
1565
setLedForControllerLocked(Device * device)1566 void EventHub::setLedForControllerLocked(Device* device) {
1567 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1568 setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1569 }
1570 }
1571
hasKeycodeLocked(Device * device,int keycode) const1572 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1573 if (!device->keyMap.haveKeyLayout()) {
1574 return false;
1575 }
1576
1577 Vector<int32_t> scanCodes;
1578 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1579 const size_t N = scanCodes.size();
1580 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1581 int32_t sc = scanCodes.itemAt(i);
1582 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1583 return true;
1584 }
1585 }
1586
1587 return false;
1588 }
1589
mapLed(Device * device,int32_t led,int32_t * outScanCode) const1590 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1591 if (!device->keyMap.haveKeyLayout()) {
1592 return NAME_NOT_FOUND;
1593 }
1594
1595 int32_t scanCode;
1596 if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1597 if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1598 *outScanCode = scanCode;
1599 return NO_ERROR;
1600 }
1601 }
1602 return NAME_NOT_FOUND;
1603 }
1604
closeDeviceByPathLocked(const char * devicePath)1605 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1606 Device* device = getDeviceByPathLocked(devicePath);
1607 if (device) {
1608 closeDeviceLocked(device);
1609 return 0;
1610 }
1611 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1612 return -1;
1613 }
1614
closeAllDevicesLocked()1615 void EventHub::closeAllDevicesLocked() {
1616 while (mDevices.size() > 0) {
1617 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1618 }
1619 }
1620
closeDeviceLocked(Device * device)1621 void EventHub::closeDeviceLocked(Device* device) {
1622 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1623 device->path.string(), device->identifier.name.string(), device->id,
1624 device->fd, device->classes);
1625
1626 if (device->id == mBuiltInKeyboardId) {
1627 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1628 device->path.string(), mBuiltInKeyboardId);
1629 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1630 }
1631
1632 unregisterDeviceFromEpollLocked(device);
1633
1634 releaseControllerNumberLocked(device);
1635
1636 mDevices.removeItem(device->id);
1637 device->close();
1638
1639 // Unlink for opening devices list if it is present.
1640 Device* pred = NULL;
1641 bool found = false;
1642 for (Device* entry = mOpeningDevices; entry != NULL; ) {
1643 if (entry == device) {
1644 found = true;
1645 break;
1646 }
1647 pred = entry;
1648 entry = entry->next;
1649 }
1650 if (found) {
1651 // Unlink the device from the opening devices list then delete it.
1652 // We don't need to tell the client that the device was closed because
1653 // it does not even know it was opened in the first place.
1654 ALOGI("Device %s was immediately closed after opening.", device->path.string());
1655 if (pred) {
1656 pred->next = device->next;
1657 } else {
1658 mOpeningDevices = device->next;
1659 }
1660 delete device;
1661 } else {
1662 // Link into closing devices list.
1663 // The device will be deleted later after we have informed the client.
1664 device->next = mClosingDevices;
1665 mClosingDevices = device;
1666 }
1667 }
1668
readNotifyLocked()1669 status_t EventHub::readNotifyLocked() {
1670 int res;
1671 char devname[PATH_MAX];
1672 char *filename;
1673 char event_buf[512];
1674 int event_size;
1675 int event_pos = 0;
1676 struct inotify_event *event;
1677
1678 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1679 res = read(mINotifyFd, event_buf, sizeof(event_buf));
1680 if(res < (int)sizeof(*event)) {
1681 if(errno == EINTR)
1682 return 0;
1683 ALOGW("could not get event, %s\n", strerror(errno));
1684 return -1;
1685 }
1686 //printf("got %d bytes of event information\n", res);
1687
1688 strcpy(devname, DEVICE_PATH);
1689 filename = devname + strlen(devname);
1690 *filename++ = '/';
1691
1692 while(res >= (int)sizeof(*event)) {
1693 event = (struct inotify_event *)(event_buf + event_pos);
1694 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1695 if(event->len) {
1696 strcpy(filename, event->name);
1697 if(event->mask & IN_CREATE) {
1698 openDeviceLocked(devname);
1699 } else {
1700 ALOGI("Removing device '%s' due to inotify event\n", devname);
1701 closeDeviceByPathLocked(devname);
1702 }
1703 }
1704 event_size = sizeof(*event) + event->len;
1705 res -= event_size;
1706 event_pos += event_size;
1707 }
1708 return 0;
1709 }
1710
scanDirLocked(const char * dirname)1711 status_t EventHub::scanDirLocked(const char *dirname)
1712 {
1713 char devname[PATH_MAX];
1714 char *filename;
1715 DIR *dir;
1716 struct dirent *de;
1717 dir = opendir(dirname);
1718 if(dir == NULL)
1719 return -1;
1720 strcpy(devname, dirname);
1721 filename = devname + strlen(devname);
1722 *filename++ = '/';
1723 while((de = readdir(dir))) {
1724 if(de->d_name[0] == '.' &&
1725 (de->d_name[1] == '\0' ||
1726 (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1727 continue;
1728 strcpy(filename, de->d_name);
1729 openDeviceLocked(devname);
1730 }
1731 closedir(dir);
1732 return 0;
1733 }
1734
requestReopenDevices()1735 void EventHub::requestReopenDevices() {
1736 ALOGV("requestReopenDevices() called");
1737
1738 AutoMutex _l(mLock);
1739 mNeedToReopenDevices = true;
1740 }
1741
dump(String8 & dump)1742 void EventHub::dump(String8& dump) {
1743 dump.append("Event Hub State:\n");
1744
1745 { // acquire lock
1746 AutoMutex _l(mLock);
1747
1748 dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1749
1750 dump.append(INDENT "Devices:\n");
1751
1752 for (size_t i = 0; i < mDevices.size(); i++) {
1753 const Device* device = mDevices.valueAt(i);
1754 if (mBuiltInKeyboardId == device->id) {
1755 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1756 device->id, device->identifier.name.string());
1757 } else {
1758 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1759 device->identifier.name.string());
1760 }
1761 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1762 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1763 dump.appendFormat(INDENT3 "Enabled: %s\n", toString(device->enabled));
1764 dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1765 dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1766 dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1767 dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1768 dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1769 "product=0x%04x, version=0x%04x\n",
1770 device->identifier.bus, device->identifier.vendor,
1771 device->identifier.product, device->identifier.version);
1772 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1773 device->keyMap.keyLayoutFile.string());
1774 dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1775 device->keyMap.keyCharacterMapFile.string());
1776 dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1777 device->configurationFile.string());
1778 dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1779 toString(device->overlayKeyMap != NULL));
1780 }
1781 } // release lock
1782 }
1783
monitor()1784 void EventHub::monitor() {
1785 // Acquire and release the lock to ensure that the event hub has not deadlocked.
1786 mLock.lock();
1787 mLock.unlock();
1788 }
1789
1790
1791 }; // namespace android
1792