1 //--------------------------------------------------------------------*/
2 //--- Massif: a heap profiling tool. ms_main.c ---*/
3 //--------------------------------------------------------------------*/
4
5 /*
6 This file is part of Massif, a Valgrind tool for profiling memory
7 usage of programs.
8
9 Copyright (C) 2003-2017 Nicholas Nethercote
10 njn@valgrind.org
11
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25 02111-1307, USA.
26
27 The GNU General Public License is contained in the file COPYING.
28 */
29
30 //---------------------------------------------------------------------------
31 // XXX:
32 //---------------------------------------------------------------------------
33 // Todo -- nice, but less critical:
34 // - do a graph-drawing test
35 // - make file format more generic. Obstacles:
36 // - unit prefixes are not generic
37 // - preset column widths for stats are not generic
38 // - preset column headers are not generic
39 // - "Massif arguments:" line is not generic
40 // - do snapshots on some specific client requests
41 // - "show me the extra allocations since the last snapshot"
42 // - "start/stop logging" (eg. quickly skip boring bits)
43 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
44 // Give each graph a title. (try to do it generically!)
45 // - make --show-below-main=no work
46 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
47 // don't work in a .valgrindrc file or in $VALGRIND_OPTS.
48 // m_commandline.c:add_args_from_string() needs to respect single quotes.
49 // - With --stack=yes, want to add a stack trace for detailed snapshots so
50 // it's clear where/why the peak is occurring. (Mattieu Castet) Also,
51 // possibly useful even with --stack=no? (Andi Yin)
52 //
53 // Performance:
54 // - To run the benchmarks:
55 //
56 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
57 // time valgrind --tool=massif --depth=100 konqueror
58 //
59 // The other benchmarks don't do much allocation, and so give similar speeds
60 // to Nulgrind.
61 //
62 // Timing results on 'nevermore' (njn's machine) as of r7013:
63 //
64 // heap 0.53s ma:12.4s (23.5x, -----)
65 // tinycc 0.46s ma: 4.9s (10.7x, -----)
66 // many-xpts 0.08s ma: 2.0s (25.0x, -----)
67 // konqueror 29.6s real 0:21.0s user
68 //
69 // [Introduction of --time-unit=i as the default slowed things down by
70 // roughly 0--20%.]
71 //
72 // Todo -- low priority:
73 // - In each XPt, record both bytes and the number of allocations, and
74 // possibly the global number of allocations.
75 // - (Andy Lin) Give a stack trace on detailed snapshots?
76 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
77 // than a certain size! Because: "linux's malloc allows to set a
78 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
79 // be handled directly by the kernel, and are guaranteed to be returned to
80 // the system when freed. So we needed to profile only blocks below this
81 // limit."
82 //
83 // File format working notes:
84
85 #if 0
86 desc: --heap-admin=foo
87 cmd: date
88 time_unit: ms
89 #-----------
90 snapshot=0
91 #-----------
92 time=0
93 mem_heap_B=0
94 mem_heap_admin_B=0
95 mem_stacks_B=0
96 heap_tree=empty
97 #-----------
98 snapshot=1
99 #-----------
100 time=353
101 mem_heap_B=5
102 mem_heap_admin_B=0
103 mem_stacks_B=0
104 heap_tree=detailed
105 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
106 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
107 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
108 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
109 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
110 n1: 5 0x8049821: (within /bin/date)
111 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
112
113
114 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
115 t_events: B
116 n 0 0 0 0 0
117 n 0 0 0 0 0
118 t1: 5 <string...>
119 t1: 6 <string...>
120
121 Ideas:
122 - each snapshot specifies an x-axis value and one or more y-axis values.
123 - can display the y-axis values separately if you like
124 - can completely separate connection between snapshots and trees.
125
126 Challenges:
127 - how to specify and scale/abbreviate units on axes?
128 - how to combine multiple values into the y-axis?
129
130 --------------------------------------------------------------------------------Command: date
131 Massif arguments: --heap-admin=foo
132 ms_print arguments: massif.out
133 --------------------------------------------------------------------------------
134 KB
135 6.472^ :#
136 | :# :: . .
137 ...
138 | ::@ :@ :@ :@:::# :: : ::::
139 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713
140
141 Number of snapshots: 50
142 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
143 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
144 -------------------------------------------------------------------------------- 0 0 0 0 0 0
145 1 345 5 5 0 0
146 2 353 5 5 0 0
147 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
148 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
149 #endif
150
151 //---------------------------------------------------------------------------
152
153 #include "pub_tool_basics.h"
154 #include "pub_tool_vki.h"
155 #include "pub_tool_aspacemgr.h"
156 #include "pub_tool_debuginfo.h"
157 #include "pub_tool_hashtable.h"
158 #include "pub_tool_libcbase.h"
159 #include "pub_tool_libcassert.h"
160 #include "pub_tool_libcfile.h"
161 #include "pub_tool_libcprint.h"
162 #include "pub_tool_libcproc.h"
163 #include "pub_tool_machine.h"
164 #include "pub_tool_mallocfree.h"
165 #include "pub_tool_options.h"
166 #include "pub_tool_poolalloc.h"
167 #include "pub_tool_replacemalloc.h"
168 #include "pub_tool_stacktrace.h"
169 #include "pub_tool_threadstate.h"
170 #include "pub_tool_tooliface.h"
171 #include "pub_tool_xarray.h"
172 #include "pub_tool_xtree.h"
173 #include "pub_tool_xtmemory.h"
174 #include "pub_tool_clientstate.h"
175 #include "pub_tool_gdbserver.h"
176
177 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK
178
179 //------------------------------------------------------------*/
180 //--- Overview of operation ---*/
181 //------------------------------------------------------------*/
182
183 // The size of the stacks and heap is tracked. The heap is tracked in a lot
184 // of detail, enough to tell how many bytes each line of code is responsible
185 // for, more or less. The main data structure is an xtree maintaining the
186 // call tree beneath all the allocation functions like malloc().
187 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
188 // the page level, and each page is treated much like a heap block. We use
189 // "heap" throughout below to cover this case because the concepts are all the
190 // same.)
191 //
192 // "Snapshots" are recordings of the memory usage. There are two basic
193 // kinds:
194 // - Normal: these record the current time, total memory size, total heap
195 // size, heap admin size and stack size.
196 // - Detailed: these record those things in a normal snapshot, plus a very
197 // detailed XTree (see below) indicating how the heap is structured.
198 //
199 // Snapshots are taken every so often. There are two storage classes of
200 // snapshots:
201 // - Temporary: Massif does a temporary snapshot every so often. The idea
202 // is to always have a certain number of temporary snapshots around. So
203 // we take them frequently to begin with, but decreasingly often as the
204 // program continues to run. Also, we remove some old ones after a while.
205 // Overall it's a kind of exponential decay thing. Most of these are
206 // normal snapshots, a small fraction are detailed snapshots.
207 // - Permanent: Massif takes a permanent (detailed) snapshot in some
208 // circumstances. They are:
209 // - Peak snapshot: When the memory usage peak is reached, it takes a
210 // snapshot. It keeps this, unless the peak is subsequently exceeded,
211 // in which case it will overwrite the peak snapshot.
212 // - User-requested snapshots: These are done in response to client
213 // requests. They are always kept.
214
215 // Used for printing things when clo_verbosity > 1.
216 #define VERB(verb, format, args...) \
217 if (UNLIKELY(VG_(clo_verbosity) > verb)) { \
218 VG_(dmsg)("Massif: " format, ##args); \
219 }
220
221 //------------------------------------------------------------//
222 //--- Statistics ---//
223 //------------------------------------------------------------//
224
225 // Konqueror startup, to give an idea of the numbers involved with a biggish
226 // program, with default depth:
227 //
228 // depth=3 depth=40
229 // - 310,000 allocations
230 // - 300,000 frees
231 // - 15,000 XPts 800,000 XPts
232 // - 1,800 top-XPts
233
234 static UInt n_heap_allocs = 0;
235 static UInt n_heap_reallocs = 0;
236 static UInt n_heap_frees = 0;
237 static UInt n_ignored_heap_allocs = 0;
238 static UInt n_ignored_heap_frees = 0;
239 static UInt n_ignored_heap_reallocs = 0;
240 static UInt n_stack_allocs = 0;
241 static UInt n_stack_frees = 0;
242
243 static UInt n_skipped_snapshots = 0;
244 static UInt n_real_snapshots = 0;
245 static UInt n_detailed_snapshots = 0;
246 static UInt n_peak_snapshots = 0;
247 static UInt n_cullings = 0;
248
249 //------------------------------------------------------------//
250 //--- Globals ---//
251 //------------------------------------------------------------//
252
253 // Number of guest instructions executed so far. Only used with
254 // --time-unit=i.
255 static Long guest_instrs_executed = 0;
256
257 static SizeT heap_szB = 0; // Live heap size
258 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
259 static SizeT stacks_szB = 0; // Live stacks size
260
261 // This is the total size from the current peak snapshot, or 0 if no peak
262 // snapshot has been taken yet.
263 static SizeT peak_snapshot_total_szB = 0;
264
265 // Incremented every time memory is allocated/deallocated, by the
266 // allocated/deallocated amount; includes heap, heap-admin and stack
267 // memory. An alternative to milliseconds as a unit of program "time".
268 static ULong total_allocs_deallocs_szB = 0;
269
270 // When running with --heap=yes --pages-as-heap=no, we don't start taking
271 // snapshots until the first basic block is executed, rather than doing it in
272 // ms_post_clo_init (which is the obvious spot), for two reasons.
273 // - It lets us ignore stack events prior to that, because they're not
274 // really proper ones and just would screw things up.
275 // - Because there's still some core initialisation to do, and so there
276 // would be an artificial time gap between the first and second snapshots.
277 //
278 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
279 // earlier due to new_mem_startup so this isn't relevant.
280 //
281 static Bool have_started_executing_code = False;
282
283 //------------------------------------------------------------//
284 //--- Alloc fns ---//
285 //------------------------------------------------------------//
286
287 static XArray* alloc_fns;
288 static XArray* ignore_fns;
289
init_alloc_fns(void)290 static void init_alloc_fns(void)
291 {
292 // Create the list, and add the default elements.
293 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
294 VG_(free), sizeof(HChar*));
295 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
296
297 // Ordered roughly according to (presumed) frequency.
298 // Nb: The C++ "operator new*" ones are overloadable. We include them
299 // always anyway, because even if they're overloaded, it would be a
300 // prodigiously stupid overloading that caused them to not allocate
301 // memory.
302 //
303 // XXX: because we don't look at the first stack entry (unless it's a
304 // custom allocation) there's not much point to having all these alloc
305 // functions here -- they should never appear anywhere (I think?) other
306 // than the top stack entry. The only exceptions are those that in
307 // vg_replace_malloc.c are partly or fully implemented in terms of another
308 // alloc function: realloc (which uses malloc); valloc,
309 // malloc_zone_valloc, posix_memalign and memalign_common (which use
310 // memalign).
311 //
312 DO("malloc" );
313 DO("__builtin_new" );
314 DO("operator new(unsigned)" );
315 DO("operator new(unsigned long)" );
316 DO("__builtin_vec_new" );
317 DO("operator new[](unsigned)" );
318 DO("operator new[](unsigned long)" );
319 DO("calloc" );
320 DO("realloc" );
321 DO("memalign" );
322 DO("posix_memalign" );
323 DO("valloc" );
324 DO("operator new(unsigned, std::nothrow_t const&)" );
325 DO("operator new[](unsigned, std::nothrow_t const&)" );
326 DO("operator new(unsigned long, std::nothrow_t const&)" );
327 DO("operator new[](unsigned long, std::nothrow_t const&)");
328 #if defined(VGO_darwin)
329 DO("malloc_zone_malloc" );
330 DO("malloc_zone_calloc" );
331 DO("malloc_zone_realloc" );
332 DO("malloc_zone_memalign" );
333 DO("malloc_zone_valloc" );
334 #endif
335 }
336
init_ignore_fns(void)337 static void init_ignore_fns(void)
338 {
339 // Create the (empty) list.
340 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
341 VG_(free), sizeof(HChar*));
342 }
343
344 //------------------------------------------------------------//
345 //--- Command line args ---//
346 //------------------------------------------------------------//
347
348 #define MAX_DEPTH 200
349
350 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
351
TimeUnit_to_string(TimeUnit time_unit)352 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
353 {
354 switch (time_unit) {
355 case TimeI: return "i";
356 case TimeMS: return "ms";
357 case TimeB: return "B";
358 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
359 }
360 }
361
362 static Bool clo_heap = True;
363 // clo_heap_admin is deliberately a word-sized type. At one point it was
364 // a UInt, but this caused problems on 64-bit machines when it was
365 // multiplied by a small negative number and then promoted to a
366 // word-sized type -- it ended up with a value of 4.2 billion. Sigh.
367 static SSizeT clo_heap_admin = 8;
368 static Bool clo_pages_as_heap = False;
369 static Bool clo_stacks = False;
370 static Int clo_depth = 30;
371 static double clo_threshold = 1.0; // percentage
372 static double clo_peak_inaccuracy = 1.0; // percentage
373 static Int clo_time_unit = TimeI;
374 static Int clo_detailed_freq = 10;
375 static Int clo_max_snapshots = 100;
376 static const HChar* clo_massif_out_file = "massif.out.%p";
377
378 static XArray* args_for_massif;
379
ms_process_cmd_line_option(const HChar * arg)380 static Bool ms_process_cmd_line_option(const HChar* arg)
381 {
382 const HChar* tmp_str;
383
384 // Remember the arg for later use.
385 VG_(addToXA)(args_for_massif, &arg);
386
387 if VG_BOOL_CLO(arg, "--heap", clo_heap) {}
388 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {}
389
390 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {}
391
392 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {}
393
394 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {}
395
396 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) {
397 VG_(addToXA)(alloc_fns, &tmp_str);
398 }
399 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) {
400 VG_(addToXA)(ignore_fns, &tmp_str);
401 }
402
403 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) {
404 if (clo_threshold < 0 || clo_threshold > 100) {
405 VG_(fmsg_bad_option)(arg,
406 "--threshold must be between 0.0 and 100.0\n");
407 }
408 }
409
410 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
411
412 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {}
413 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {}
414 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {}
415
416 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {}
417
418 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {}
419
420 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
421
422 else
423 return VG_(replacement_malloc_process_cmd_line_option)(arg);
424
425 return True;
426 }
427
ms_print_usage(void)428 static void ms_print_usage(void)
429 {
430 VG_(printf)(
431 " --heap=no|yes profile heap blocks [yes]\n"
432 " --heap-admin=<size> average admin bytes per heap block;\n"
433 " ignored if --heap=no [8]\n"
434 " --stacks=no|yes profile stack(s) [no]\n"
435 " --pages-as-heap=no|yes profile memory at the page level [no]\n"
436 " --depth=<number> depth of contexts [30]\n"
437 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n"
438 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n"
439 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n"
440 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n"
441 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n"
442 " or heap bytes alloc'd/dealloc'd [i]\n"
443 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n"
444 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n"
445 " --massif-out-file=<file> output file name [massif.out.%%p]\n"
446 );
447 }
448
ms_print_debug_usage(void)449 static void ms_print_debug_usage(void)
450 {
451 VG_(printf)(
452 " (none)\n"
453 );
454 }
455
456
457 //------------------------------------------------------------//
458 //--- XTrees ---//
459 //------------------------------------------------------------//
460
461 // The details of the heap are represented by a single XTree.
462 // This XTree maintains the nr of allocated bytes for each
463 // stacktrace/execontext.
464 //
465 // The root of the Xtree will be output as a top node 'alloc functions',
466 // which represents all allocation functions, eg:
467 // - malloc/calloc/realloc/memalign/new/new[];
468 // - user-specified allocation functions (using --alloc-fn);
469 // - custom allocation (MALLOCLIKE) points
470 static XTree* heap_xt;
471 /* heap_xt contains a SizeT: the nr of allocated bytes by this execontext. */
init_szB(void * value)472 static void init_szB(void* value)
473 {
474 *((SizeT*)value) = 0;
475 }
add_szB(void * to,const void * value)476 static void add_szB(void* to, const void* value)
477 {
478 *((SizeT*)to) += *((const SizeT*)value);
479 }
sub_szB(void * from,const void * value)480 static void sub_szB(void* from, const void* value)
481 {
482 *((SizeT*)from) -= *((const SizeT*)value);
483 }
alloc_szB(const void * value)484 static ULong alloc_szB(const void* value)
485 {
486 return (ULong)*((const SizeT*)value);
487 }
488
489
490 //------------------------------------------------------------//
491 //--- XTree Operations ---//
492 //------------------------------------------------------------//
493
494 // This is the limit on the number of filtered alloc-fns that can be in a
495 // single stacktrace.
496 #define MAX_OVERESTIMATE 50
497 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE)
498
499 // filtering out uninteresting entries:
500 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
501 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
502 // becomes: a / b / main
503 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
504 // as an alloc-fn. This is ok.
505 static
filter_IPs(Addr * ips,Int n_ips,UInt * top,UInt * n_ips_sel)506 void filter_IPs (Addr* ips, Int n_ips,
507 UInt* top, UInt* n_ips_sel)
508 {
509 Int i;
510 Bool top_has_fnname;
511 const HChar *fnname;
512
513 *top = 0;
514 *n_ips_sel = n_ips;
515
516 // Advance *top as long as we find alloc functions
517 // PW Nov 2016 xtree work:
518 // old massif code was doing something really strange(?buggy):
519 // 'sliding' a bunch of functions without names by removing an
520 // alloc function 'inside' a stacktrace e.g.
521 // 0x1 0x2 0x3 alloc func1 main
522 // becomes 0x1 0x2 0x3 func1 main
523 for (i = *top; i < n_ips; i++) {
524 top_has_fnname = VG_(get_fnname)(ips[*top], &fnname);
525 if (top_has_fnname && VG_(strIsMemberXA)(alloc_fns, fnname)) {
526 VERB(4, "filtering alloc fn %s\n", fnname);
527 (*top)++;
528 (*n_ips_sel)--;
529 } else {
530 break;
531 }
532 }
533
534 // filter the whole stacktrace if this allocation has to be ignored.
535 if (*n_ips_sel > 0
536 && top_has_fnname
537 && VG_(strIsMemberXA)(ignore_fns, fnname)) {
538 VERB(4, "ignored allocation from fn %s\n", fnname);
539 *top = n_ips;
540 *n_ips_sel = 0;
541 }
542
543
544 if (!VG_(clo_show_below_main) && *n_ips_sel > 0 ) {
545 Int mbm = VG_(XT_offset_main_or_below_main)(ips, n_ips);
546
547 if (mbm < *top) {
548 // Special case: the first main (or below main) function is an
549 // alloc function.
550 *n_ips_sel = 1;
551 VERB(4, "main/below main: keeping 1 fn\n");
552 } else {
553 *n_ips_sel -= n_ips - mbm - 1;
554 VERB(4, "main/below main: filtering %d\n", n_ips - mbm - 1);
555 }
556 }
557
558 // filter the frames if we have more than clo_depth
559 if (*n_ips_sel > clo_depth) {
560 VERB(4, "filtering IPs above clo_depth\n");
561 *n_ips_sel = clo_depth;
562 }
563 }
564
565 // Capture a stacktrace, and make an ec of it, without the first entry
566 // if exclude_first_entry is True.
make_ec(ThreadId tid,Bool exclude_first_entry)567 static ExeContext* make_ec(ThreadId tid, Bool exclude_first_entry)
568 {
569 static Addr ips[MAX_IPS];
570
571 // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
572 Int n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + MAX_OVERESTIMATE,
573 NULL/*array to dump SP values in*/,
574 NULL/*array to dump FP values in*/,
575 0/*first_ip_delta*/ );
576 if (exclude_first_entry && n_ips > 0) {
577 const HChar *fnname;
578 VERB(4, "removing top fn %s from stacktrace\n",
579 VG_(get_fnname)(ips[0], &fnname) ? fnname : "???");
580 return VG_(make_ExeContext_from_StackTrace)(ips+1, n_ips-1);
581 } else
582 return VG_(make_ExeContext_from_StackTrace)(ips, n_ips);
583 }
584
585 // Create (or update) in heap_xt an xec corresponding to the stacktrace of tid.
586 // req_szB is added to the xec (unless ec is fully filtered).
587 // Returns the correspding XTree xec.
588 // exclude_first_entry is an optimisation: if True, automatically removes
589 // the top level IP from the stacktrace. Should be set to True if it is known
590 // that this is an alloc fn. The top function presumably will be something like
591 // malloc or __builtin_new that we're sure to filter out).
add_heap_xt(ThreadId tid,SizeT req_szB,Bool exclude_first_entry)592 static Xecu add_heap_xt( ThreadId tid, SizeT req_szB, Bool exclude_first_entry)
593 {
594 ExeContext *ec = make_ec(tid, exclude_first_entry);
595
596 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full))
597 VG_(XTMemory_Full_alloc)(req_szB, ec);
598 return VG_(XT_add_to_ec) (heap_xt, ec, &req_szB);
599 }
600
601 // Substract req_szB from the heap_xt where.
sub_heap_xt(Xecu where,SizeT req_szB,Bool exclude_first_entry)602 static void sub_heap_xt(Xecu where, SizeT req_szB, Bool exclude_first_entry)
603 {
604 tl_assert(clo_heap);
605
606 if (0 == req_szB)
607 return;
608
609 VG_(XT_sub_from_xecu) (heap_xt, where, &req_szB);
610 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full)) {
611 ExeContext *ec_free = make_ec(VG_(get_running_tid)(),
612 exclude_first_entry);
613 VG_(XTMemory_Full_free)(req_szB,
614 VG_(XT_get_ec_from_xecu)(heap_xt, where),
615 ec_free);
616 }
617 }
618
619
620 //------------------------------------------------------------//
621 //--- Snapshots ---//
622 //------------------------------------------------------------//
623
624 // Snapshots are done in a way so that we always have a reasonable number of
625 // them. We start by taking them quickly. Once we hit our limit, we cull
626 // some (eg. half), and start taking them more slowly. Once we hit the
627 // limit again, we again cull and then take them even more slowly, and so
628 // on.
629
630 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number.
631
632 typedef
633 enum {
634 Normal = 77,
635 Peak,
636 Unused
637 }
638 SnapshotKind;
639
640 typedef
641 struct {
642 SnapshotKind kind;
643 Time time;
644 SizeT heap_szB;
645 SizeT heap_extra_szB;// Heap slop + admin bytes.
646 SizeT stacks_szB;
647 XTree* xt; // Snapshot of heap_xt, if a detailed snapshot,
648 } // otherwise NULL.
649 Snapshot;
650
651 static UInt next_snapshot_i = 0; // Index of where next snapshot will go.
652 static Snapshot* snapshots; // Array of snapshots.
653
is_snapshot_in_use(Snapshot * snapshot)654 static Bool is_snapshot_in_use(Snapshot* snapshot)
655 {
656 if (Unused == snapshot->kind) {
657 // If snapshot is unused, check all the fields are unset.
658 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME);
659 tl_assert(snapshot->heap_extra_szB == 0);
660 tl_assert(snapshot->heap_szB == 0);
661 tl_assert(snapshot->stacks_szB == 0);
662 tl_assert(snapshot->xt == NULL);
663 return False;
664 } else {
665 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME);
666 return True;
667 }
668 }
669
is_detailed_snapshot(Snapshot * snapshot)670 static Bool is_detailed_snapshot(Snapshot* snapshot)
671 {
672 return (snapshot->xt ? True : False);
673 }
674
is_uncullable_snapshot(Snapshot * snapshot)675 static Bool is_uncullable_snapshot(Snapshot* snapshot)
676 {
677 return &snapshots[0] == snapshot // First snapshot
678 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot
679 || snapshot->kind == Peak; // Peak snapshot
680 }
681
sanity_check_snapshot(Snapshot * snapshot)682 static void sanity_check_snapshot(Snapshot* snapshot)
683 {
684 // Not much we can sanity check.
685 tl_assert(snapshot->xt == NULL || snapshot->kind != Unused);
686 }
687
688 // All the used entries should look used, all the unused ones should be clear.
sanity_check_snapshots_array(void)689 static void sanity_check_snapshots_array(void)
690 {
691 Int i;
692 for (i = 0; i < next_snapshot_i; i++) {
693 tl_assert( is_snapshot_in_use( & snapshots[i] ));
694 }
695 for ( ; i < clo_max_snapshots; i++) {
696 tl_assert(!is_snapshot_in_use( & snapshots[i] ));
697 }
698 }
699
700 // This zeroes all the fields in the snapshot, but does not free the xt
701 // XTree if present. It also does a sanity check unless asked not to; we
702 // can't sanity check at startup when clearing the initial snapshots because
703 // they're full of junk.
clear_snapshot(Snapshot * snapshot,Bool do_sanity_check)704 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
705 {
706 if (do_sanity_check) sanity_check_snapshot(snapshot);
707 snapshot->kind = Unused;
708 snapshot->time = UNUSED_SNAPSHOT_TIME;
709 snapshot->heap_extra_szB = 0;
710 snapshot->heap_szB = 0;
711 snapshot->stacks_szB = 0;
712 snapshot->xt = NULL;
713 }
714
715 // This zeroes all the fields in the snapshot, and frees the heap XTree xt if
716 // present.
delete_snapshot(Snapshot * snapshot)717 static void delete_snapshot(Snapshot* snapshot)
718 {
719 // Nb: if there's an XTree, we free it after calling clear_snapshot,
720 // because clear_snapshot does a sanity check which includes checking the
721 // XTree.
722 XTree* tmp_xt = snapshot->xt;
723 clear_snapshot(snapshot, /*do_sanity_check*/True);
724 if (tmp_xt) {
725 VG_(XT_delete)(tmp_xt);
726 }
727 }
728
VERB_snapshot(Int verbosity,const HChar * prefix,Int i)729 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
730 {
731 Snapshot* snapshot = &snapshots[i];
732 const HChar* suffix;
733 switch (snapshot->kind) {
734 case Peak: suffix = "p"; break;
735 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
736 case Unused: suffix = "u"; break;
737 default:
738 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
739 }
740 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
741 prefix, suffix, i,
742 snapshot->time,
743 snapshot->heap_szB,
744 snapshot->heap_extra_szB,
745 snapshot->stacks_szB
746 );
747 }
748
749 // Cull half the snapshots; we choose those that represent the smallest
750 // time-spans, because that gives us the most even distribution of snapshots
751 // over time. (It's possible to lose interesting spikes, however.)
752 //
753 // Algorithm for N snapshots: We find the snapshot representing the smallest
754 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone.
755 // We have to do this one snapshot at a time, rather than finding the (N/2)
756 // smallest snapshots in one hit, because when a snapshot is removed, its
757 // neighbours immediately cover greater timespans. So it's O(N^2), but N is
758 // small, and it's not done very often.
759 //
760 // Once we're done, we return the new smallest interval between snapshots.
761 // That becomes our minimum time interval.
cull_snapshots(void)762 static UInt cull_snapshots(void)
763 {
764 Int i, jp, j, jn, min_timespan_i;
765 Int n_deleted = 0;
766 Time min_timespan;
767
768 n_cullings++;
769
770 // Sets j to the index of the first not-yet-removed snapshot at or after i
771 #define FIND_SNAPSHOT(i, j) \
772 for (j = i; \
773 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
774 j++) { }
775
776 VERB(2, "Culling...\n");
777
778 // First we remove enough snapshots by clearing them in-place. Once
779 // that's done, we can slide the remaining ones down.
780 for (i = 0; i < clo_max_snapshots/2; i++) {
781 // Find the snapshot representing the smallest timespan. The timespan
782 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
783 // snapshot A and B. We don't consider the first and last snapshots for
784 // removal.
785 Snapshot* min_snapshot;
786 Int min_j;
787
788 // Initial triple: (prev, curr, next) == (jp, j, jn)
789 // Initial min_timespan is the first one.
790 jp = 0;
791 FIND_SNAPSHOT(1, j);
792 FIND_SNAPSHOT(j+1, jn);
793 min_timespan = 0x7fffffffffffffffLL;
794 min_j = -1;
795 while (jn < clo_max_snapshots) {
796 Time timespan = snapshots[jn].time - snapshots[jp].time;
797 tl_assert(timespan >= 0);
798 // Nb: We never cull the peak snapshot.
799 if (Peak != snapshots[j].kind && timespan < min_timespan) {
800 min_timespan = timespan;
801 min_j = j;
802 }
803 // Move on to next triple
804 jp = j;
805 j = jn;
806 FIND_SNAPSHOT(jn+1, jn);
807 }
808 // We've found the least important snapshot, now delete it. First
809 // print it if necessary.
810 tl_assert(-1 != min_j); // Check we found a minimum.
811 min_snapshot = & snapshots[ min_j ];
812 if (VG_(clo_verbosity) > 1) {
813 HChar buf[64]; // large enough
814 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
815 VERB_snapshot(2, buf, min_j);
816 }
817 delete_snapshot(min_snapshot);
818 n_deleted++;
819 }
820
821 // Slide down the remaining snapshots over the removed ones. First set i
822 // to point to the first empty slot, and j to the first full slot after
823 // i. Then slide everything down.
824 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { }
825 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
826 for ( ; j < clo_max_snapshots; j++) {
827 if (is_snapshot_in_use( &snapshots[j] )) {
828 snapshots[i++] = snapshots[j];
829 clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
830 }
831 }
832 next_snapshot_i = i;
833
834 // Check snapshots array looks ok after changes.
835 sanity_check_snapshots_array();
836
837 // Find the minimum timespan remaining; that will be our new minimum
838 // time interval. Note that above we were finding timespans by measuring
839 // two intervals around a snapshot that was under consideration for
840 // deletion. Here we only measure single intervals because all the
841 // deletions have occurred.
842 //
843 // But we have to be careful -- some snapshots (eg. snapshot 0, and the
844 // peak snapshot) are uncullable. If two uncullable snapshots end up
845 // next to each other, they'll never be culled (assuming the peak doesn't
846 // change), and the time gap between them will not change. However, the
847 // time between the remaining cullable snapshots will grow ever larger.
848 // This means that the min_timespan found will always be that between the
849 // two uncullable snapshots, and it will be much smaller than it should
850 // be. To avoid this problem, when computing the minimum timespan, we
851 // ignore any timespans between two uncullable snapshots.
852 tl_assert(next_snapshot_i > 1);
853 min_timespan = 0x7fffffffffffffffLL;
854 min_timespan_i = -1;
855 for (i = 1; i < next_snapshot_i; i++) {
856 if (is_uncullable_snapshot(&snapshots[i]) &&
857 is_uncullable_snapshot(&snapshots[i-1]))
858 {
859 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
860 } else {
861 Time timespan = snapshots[i].time - snapshots[i-1].time;
862 tl_assert(timespan >= 0);
863 if (timespan < min_timespan) {
864 min_timespan = timespan;
865 min_timespan_i = i;
866 }
867 }
868 }
869 tl_assert(-1 != min_timespan_i); // Check we found a minimum.
870
871 // Print remaining snapshots, if necessary.
872 if (VG_(clo_verbosity) > 1) {
873 VERB(2, "Finished culling (%3d of %3d deleted)\n",
874 n_deleted, clo_max_snapshots);
875 for (i = 0; i < next_snapshot_i; i++) {
876 VERB_snapshot(2, " post-cull", i);
877 }
878 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
879 min_timespan, min_timespan_i-1, min_timespan_i);
880 }
881
882 return min_timespan;
883 }
884
get_time(void)885 static Time get_time(void)
886 {
887 // Get current time, in whatever time unit we're using.
888 if (clo_time_unit == TimeI) {
889 return guest_instrs_executed;
890 } else if (clo_time_unit == TimeMS) {
891 // Some stuff happens between the millisecond timer being initialised
892 // to zero and us taking our first snapshot. We determine that time
893 // gap so we can subtract it from all subsequent times so that our
894 // first snapshot is considered to be at t = 0ms. Unfortunately, a
895 // bunch of symbols get read after the first snapshot is taken but
896 // before the second one (which is triggered by the first allocation),
897 // so when the time-unit is 'ms' we always have a big gap between the
898 // first two snapshots. But at least users won't have to wonder why
899 // the first snapshot isn't at t=0.
900 static Bool is_first_get_time = True;
901 static Time start_time_ms;
902 if (is_first_get_time) {
903 start_time_ms = VG_(read_millisecond_timer)();
904 is_first_get_time = False;
905 return 0;
906 } else {
907 return VG_(read_millisecond_timer)() - start_time_ms;
908 }
909 } else if (clo_time_unit == TimeB) {
910 return total_allocs_deallocs_szB;
911 } else {
912 tl_assert2(0, "bad --time-unit value");
913 }
914 }
915
916 // Take a snapshot, and only that -- decisions on whether to take a
917 // snapshot, or what kind of snapshot, are made elsewhere.
918 // Nb: we call the arg "my_time" because "time" shadows a global declaration
919 // in /usr/include/time.h on Darwin.
920 static void
take_snapshot(Snapshot * snapshot,SnapshotKind kind,Time my_time,Bool is_detailed)921 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
922 Bool is_detailed)
923 {
924 tl_assert(!is_snapshot_in_use(snapshot));
925 if (!clo_pages_as_heap) {
926 tl_assert(have_started_executing_code);
927 }
928
929 // Heap and heap admin.
930 if (clo_heap) {
931 snapshot->heap_szB = heap_szB;
932 if (is_detailed) {
933 snapshot->xt = VG_(XT_snapshot)(heap_xt);
934 }
935 snapshot->heap_extra_szB = heap_extra_szB;
936 }
937
938 // Stack(s).
939 if (clo_stacks) {
940 snapshot->stacks_szB = stacks_szB;
941 }
942
943 // Rest of snapshot.
944 snapshot->kind = kind;
945 snapshot->time = my_time;
946 sanity_check_snapshot(snapshot);
947
948 // Update stats.
949 if (Peak == kind) n_peak_snapshots++;
950 if (is_detailed) n_detailed_snapshots++;
951 n_real_snapshots++;
952 }
953
954
955 // Take a snapshot, if it's time, or if we've hit a peak.
956 static void
maybe_take_snapshot(SnapshotKind kind,const HChar * what)957 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
958 {
959 // 'min_time_interval' is the minimum time interval between snapshots.
960 // If we try to take a snapshot and less than this much time has passed,
961 // we don't take it. It gets larger as the program runs longer. It's
962 // initialised to zero so that we begin by taking snapshots as quickly as
963 // possible.
964 static Time min_time_interval = 0;
965 // Zero allows startup snapshot.
966 static Time earliest_possible_time_of_next_snapshot = 0;
967 static Int n_snapshots_since_last_detailed = 0;
968 static Int n_skipped_snapshots_since_last_snapshot = 0;
969
970 Snapshot* snapshot;
971 Bool is_detailed;
972 // Nb: we call this variable "my_time" because "time" shadows a global
973 // declaration in /usr/include/time.h on Darwin.
974 Time my_time = get_time();
975
976 switch (kind) {
977 case Normal:
978 // Only do a snapshot if it's time.
979 if (my_time < earliest_possible_time_of_next_snapshot) {
980 n_skipped_snapshots++;
981 n_skipped_snapshots_since_last_snapshot++;
982 return;
983 }
984 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
985 break;
986
987 case Peak: {
988 // Because we're about to do a deallocation, we're coming down from a
989 // local peak. If it is (a) actually a global peak, and (b) a certain
990 // amount bigger than the previous peak, then we take a peak snapshot.
991 // By not taking a snapshot for every peak, we save a lot of effort --
992 // because many peaks remain peak only for a short time.
993 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
994 SizeT excess_szB_for_new_peak =
995 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
996 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
997 return;
998 }
999 is_detailed = True;
1000 break;
1001 }
1002
1003 default:
1004 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1005 }
1006
1007 // Take the snapshot.
1008 snapshot = & snapshots[next_snapshot_i];
1009 take_snapshot(snapshot, kind, my_time, is_detailed);
1010
1011 // Record if it was detailed.
1012 if (is_detailed) {
1013 n_snapshots_since_last_detailed = 0;
1014 } else {
1015 n_snapshots_since_last_detailed++;
1016 }
1017
1018 // Update peak data, if it's a Peak snapshot.
1019 if (Peak == kind) {
1020 Int i, number_of_peaks_snapshots_found = 0;
1021
1022 // Sanity check the size, then update our recorded peak.
1023 SizeT snapshot_total_szB =
1024 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1025 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1026 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1027 peak_snapshot_total_szB = snapshot_total_szB;
1028
1029 // Find the old peak snapshot, if it exists, and mark it as normal.
1030 for (i = 0; i < next_snapshot_i; i++) {
1031 if (Peak == snapshots[i].kind) {
1032 snapshots[i].kind = Normal;
1033 number_of_peaks_snapshots_found++;
1034 }
1035 }
1036 tl_assert(number_of_peaks_snapshots_found <= 1);
1037 }
1038
1039 // Finish up verbosity and stats stuff.
1040 if (n_skipped_snapshots_since_last_snapshot > 0) {
1041 VERB(2, " (skipped %d snapshot%s)\n",
1042 n_skipped_snapshots_since_last_snapshot,
1043 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1044 }
1045 VERB_snapshot(2, what, next_snapshot_i);
1046 n_skipped_snapshots_since_last_snapshot = 0;
1047
1048 // Cull the entries, if our snapshot table is full.
1049 next_snapshot_i++;
1050 if (clo_max_snapshots == next_snapshot_i) {
1051 min_time_interval = cull_snapshots();
1052 }
1053
1054 // Work out the earliest time when the next snapshot can happen.
1055 earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1056 }
1057
1058
1059 //------------------------------------------------------------//
1060 //--- Sanity checking ---//
1061 //------------------------------------------------------------//
1062
ms_cheap_sanity_check(void)1063 static Bool ms_cheap_sanity_check ( void )
1064 {
1065 return True; // Nothing useful we can cheaply check.
1066 }
1067
ms_expensive_sanity_check(void)1068 static Bool ms_expensive_sanity_check ( void )
1069 {
1070 tl_assert(heap_xt);
1071 sanity_check_snapshots_array();
1072 return True;
1073 }
1074
1075
1076 //------------------------------------------------------------//
1077 //--- Heap management ---//
1078 //------------------------------------------------------------//
1079
1080 // Metadata for heap blocks. Each one contains an Xecu,
1081 // which identifies the XTree ec at which it was allocated. From
1082 // HP_Chunks, XTree ec 'space' field is incremented (at allocation) and
1083 // decremented (at deallocation).
1084 //
1085 // Nb: first two fields must match core's VgHashNode.
1086 typedef
1087 struct _HP_Chunk {
1088 struct _HP_Chunk* next;
1089 Addr data; // Ptr to actual block
1090 SizeT req_szB; // Size requested
1091 SizeT slop_szB; // Extra bytes given above those requested
1092 Xecu where; // Where allocated; XTree xecu from heap_xt
1093 }
1094 HP_Chunk;
1095
1096 /* Pool allocator for HP_Chunk. */
1097 static PoolAlloc *HP_chunk_poolalloc = NULL;
1098
1099 static VgHashTable *malloc_list = NULL; // HP_Chunks
1100
update_alloc_stats(SSizeT szB_delta)1101 static void update_alloc_stats(SSizeT szB_delta)
1102 {
1103 // Update total_allocs_deallocs_szB.
1104 if (szB_delta < 0) szB_delta = -szB_delta;
1105 total_allocs_deallocs_szB += szB_delta;
1106 }
1107
update_heap_stats(SSizeT heap_szB_delta,Int heap_extra_szB_delta)1108 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1109 {
1110 if (heap_szB_delta < 0)
1111 tl_assert(heap_szB >= -heap_szB_delta);
1112 if (heap_extra_szB_delta < 0)
1113 tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1114
1115 heap_extra_szB += heap_extra_szB_delta;
1116 heap_szB += heap_szB_delta;
1117
1118 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1119 }
1120
1121 static
record_block(ThreadId tid,void * p,SizeT req_szB,SizeT slop_szB,Bool exclude_first_entry,Bool maybe_snapshot)1122 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1123 Bool exclude_first_entry, Bool maybe_snapshot )
1124 {
1125 // Make new HP_Chunk node, add to malloc_list
1126 HP_Chunk* hc = VG_(allocEltPA)(HP_chunk_poolalloc);
1127 hc->req_szB = req_szB;
1128 hc->slop_szB = slop_szB;
1129 hc->data = (Addr)p;
1130 hc->where = 0;
1131 VG_(HT_add_node)(malloc_list, hc);
1132
1133 if (clo_heap) {
1134 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1135
1136 hc->where = add_heap_xt( tid, req_szB, exclude_first_entry);
1137
1138 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1139 // Update statistics.
1140 n_heap_allocs++;
1141
1142 // Update heap stats.
1143 update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1144
1145 // Maybe take a snapshot.
1146 if (maybe_snapshot) {
1147 maybe_take_snapshot(Normal, " alloc");
1148 }
1149
1150 } else {
1151 // Ignored allocation.
1152 n_ignored_heap_allocs++;
1153
1154 VERB(3, "(ignored)\n");
1155 }
1156
1157 VERB(3, ">>>\n");
1158 }
1159
1160 return p;
1161 }
1162
1163 static __inline__
alloc_and_record_block(ThreadId tid,SizeT req_szB,SizeT req_alignB,Bool is_zeroed)1164 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1165 Bool is_zeroed )
1166 {
1167 SizeT actual_szB, slop_szB;
1168 void* p;
1169
1170 if ((SSizeT)req_szB < 0) return NULL;
1171
1172 // Allocate and zero if necessary.
1173 p = VG_(cli_malloc)( req_alignB, req_szB );
1174 if (!p) {
1175 return NULL;
1176 }
1177 if (is_zeroed) VG_(memset)(p, 0, req_szB);
1178 actual_szB = VG_(cli_malloc_usable_size)(p);
1179 tl_assert(actual_szB >= req_szB);
1180 slop_szB = actual_szB - req_szB;
1181
1182 // Record block.
1183 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1184 /*maybe_snapshot*/True);
1185
1186 return p;
1187 }
1188
1189 static __inline__
unrecord_block(void * p,Bool maybe_snapshot,Bool exclude_first_entry)1190 void unrecord_block ( void* p, Bool maybe_snapshot, Bool exclude_first_entry )
1191 {
1192 // Remove HP_Chunk from malloc_list
1193 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1194 if (NULL == hc) {
1195 return; // must have been a bogus free()
1196 }
1197
1198 if (clo_heap) {
1199 VERB(3, "<<< unrecord_block\n");
1200
1201 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1202 // Update statistics.
1203 n_heap_frees++;
1204
1205 // Maybe take a peak snapshot, since it's a deallocation.
1206 if (maybe_snapshot) {
1207 maybe_take_snapshot(Peak, "de-PEAK");
1208 }
1209
1210 // Update heap stats.
1211 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1212
1213 // Update XTree.
1214 sub_heap_xt(hc->where, hc->req_szB, exclude_first_entry);
1215
1216 // Maybe take a snapshot.
1217 if (maybe_snapshot) {
1218 maybe_take_snapshot(Normal, "dealloc");
1219 }
1220
1221 } else {
1222 n_ignored_heap_frees++;
1223
1224 VERB(3, "(ignored)\n");
1225 }
1226
1227 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1228 }
1229
1230 // Actually free the chunk, and the heap block (if necessary)
1231 VG_(freeEltPA) (HP_chunk_poolalloc, hc); hc = NULL;
1232 }
1233
1234 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was
1235 // ignored, but the realloc is not requested to be ignored, and we are
1236 // shrinking the block, then we have to ignore the realloc -- otherwise we
1237 // could end up with negative heap sizes. This isn't a danger if we are
1238 // growing such a block, but for consistency (it also simplifies things) we
1239 // ignore such reallocs as well.
1240 // PW Nov 2016 xtree work: why can't we just consider that a realloc of an
1241 // ignored alloc is just a new alloc (i.e. do not remove the old sz from the
1242 // stats). Then everything would be fine, and a non ignored realloc would be
1243 // counted properly.
1244 static __inline__
realloc_block(ThreadId tid,void * p_old,SizeT new_req_szB)1245 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1246 {
1247 HP_Chunk* hc;
1248 void* p_new;
1249 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1250 Xecu old_where;
1251 Bool is_ignored = False;
1252
1253 // Remove the old block
1254 hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1255 if (hc == NULL) {
1256 return NULL; // must have been a bogus realloc()
1257 }
1258
1259 old_req_szB = hc->req_szB;
1260 old_slop_szB = hc->slop_szB;
1261
1262 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes.
1263 if (clo_heap) {
1264 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1265
1266 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1267 // Update statistics.
1268 n_heap_reallocs++;
1269
1270 // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1271 if (new_req_szB < old_req_szB) {
1272 maybe_take_snapshot(Peak, "re-PEAK");
1273 }
1274 } else {
1275 // The original malloc was ignored, so we have to ignore the
1276 // realloc as well.
1277 is_ignored = True;
1278 }
1279 }
1280
1281 // Actually do the allocation, if necessary.
1282 if (new_req_szB <= old_req_szB + old_slop_szB) {
1283 // New size is smaller or same; block not moved.
1284 p_new = p_old;
1285 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1286
1287 } else {
1288 // New size is bigger; make new block, copy shared contents, free old.
1289 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1290 if (!p_new) {
1291 // Nb: if realloc fails, NULL is returned but the old block is not
1292 // touched. What an awful function.
1293 return NULL;
1294 }
1295 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1296 VG_(cli_free)(p_old);
1297 new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1298 tl_assert(new_actual_szB >= new_req_szB);
1299 new_slop_szB = new_actual_szB - new_req_szB;
1300 }
1301
1302 if (p_new) {
1303 // Update HP_Chunk.
1304 hc->data = (Addr)p_new;
1305 hc->req_szB = new_req_szB;
1306 hc->slop_szB = new_slop_szB;
1307 old_where = hc->where;
1308 hc->where = 0;
1309
1310 // Update XTree.
1311 if (clo_heap) {
1312 hc->where = add_heap_xt( tid, new_req_szB,
1313 /*exclude_first_entry*/True);
1314 if (!is_ignored && VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1315 sub_heap_xt(old_where, old_req_szB, /*exclude_first_entry*/True);
1316 } else {
1317 // The realloc itself is ignored.
1318 is_ignored = True;
1319
1320 /* XTREE??? hack to have something compatible with pre
1321 m_xtree massif: if the previous alloc/realloc was
1322 ignored, and this one is not ignored, then keep the
1323 previous where, to continue marking this memory as
1324 ignored. */
1325 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0
1326 && VG_(XT_n_ips_sel)(heap_xt, old_where) == 0)
1327 hc->where = old_where;
1328
1329 // Update statistics.
1330 n_ignored_heap_reallocs++;
1331 }
1332 }
1333 }
1334
1335 // Now insert the new hc (with a possibly new 'data' field) into
1336 // malloc_list. If this realloc() did not increase the memory size, we
1337 // will have removed and then re-added hc unnecessarily. But that's ok
1338 // because shrinking a block with realloc() is (presumably) much rarer
1339 // than growing it, and this way simplifies the growing case.
1340 VG_(HT_add_node)(malloc_list, hc);
1341
1342 if (clo_heap) {
1343 if (!is_ignored) {
1344 // Update heap stats.
1345 update_heap_stats(new_req_szB - old_req_szB,
1346 new_slop_szB - old_slop_szB);
1347
1348 // Maybe take a snapshot.
1349 maybe_take_snapshot(Normal, "realloc");
1350 } else {
1351
1352 VERB(3, "(ignored)\n");
1353 }
1354
1355 VERB(3, ">>> (%ld, %ld)\n",
1356 (SSizeT)(new_req_szB - old_req_szB),
1357 (SSizeT)(new_slop_szB - old_slop_szB));
1358 }
1359
1360 return p_new;
1361 }
1362
1363
1364 //------------------------------------------------------------//
1365 //--- malloc() et al replacement wrappers ---//
1366 //------------------------------------------------------------//
1367
ms_malloc(ThreadId tid,SizeT szB)1368 static void* ms_malloc ( ThreadId tid, SizeT szB )
1369 {
1370 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1371 }
1372
ms___builtin_new(ThreadId tid,SizeT szB)1373 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1374 {
1375 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1376 }
1377
ms___builtin_vec_new(ThreadId tid,SizeT szB)1378 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1379 {
1380 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1381 }
1382
ms_calloc(ThreadId tid,SizeT m,SizeT szB)1383 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1384 {
1385 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1386 }
1387
ms_memalign(ThreadId tid,SizeT alignB,SizeT szB)1388 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1389 {
1390 return alloc_and_record_block( tid, szB, alignB, False );
1391 }
1392
ms_free(ThreadId tid,void * p)1393 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1394 {
1395 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1396 VG_(cli_free)(p);
1397 }
1398
ms___builtin_delete(ThreadId tid,void * p)1399 static void ms___builtin_delete ( ThreadId tid, void* p )
1400 {
1401 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1402 VG_(cli_free)(p);
1403 }
1404
ms___builtin_vec_delete(ThreadId tid,void * p)1405 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1406 {
1407 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1408 VG_(cli_free)(p);
1409 }
1410
ms_realloc(ThreadId tid,void * p_old,SizeT new_szB)1411 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1412 {
1413 return realloc_block(tid, p_old, new_szB);
1414 }
1415
ms_malloc_usable_size(ThreadId tid,void * p)1416 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1417 {
1418 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1419
1420 return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1421 }
1422
1423 //------------------------------------------------------------//
1424 //--- Page handling ---//
1425 //------------------------------------------------------------//
1426
1427 static
ms_record_page_mem(Addr a,SizeT len)1428 void ms_record_page_mem ( Addr a, SizeT len )
1429 {
1430 ThreadId tid = VG_(get_running_tid)();
1431 Addr end;
1432 tl_assert(VG_IS_PAGE_ALIGNED(len));
1433 tl_assert(len >= VKI_PAGE_SIZE);
1434 // Record the first N-1 pages as blocks, but don't do any snapshots.
1435 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1436 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1437 /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1438 }
1439 // Record the last page as a block, and maybe do a snapshot afterwards.
1440 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1441 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1442 }
1443
1444 static
ms_unrecord_page_mem(Addr a,SizeT len)1445 void ms_unrecord_page_mem( Addr a, SizeT len )
1446 {
1447 Addr end;
1448 tl_assert(VG_IS_PAGE_ALIGNED(len));
1449 tl_assert(len >= VKI_PAGE_SIZE);
1450 // Unrecord the first page. This might be the peak, so do a snapshot.
1451 unrecord_block((void*)a, /*maybe_snapshot*/True,
1452 /*exclude_first_entry*/False);
1453 a += VKI_PAGE_SIZE;
1454 // Then unrecord the remaining pages, but without snapshots.
1455 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1456 unrecord_block((void*)a, /*maybe_snapshot*/False,
1457 /*exclude_first_entry*/False);
1458 }
1459 }
1460
1461 //------------------------------------------------------------//
1462
1463 static
ms_new_mem_mmap(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1464 void ms_new_mem_mmap ( Addr a, SizeT len,
1465 Bool rr, Bool ww, Bool xx, ULong di_handle )
1466 {
1467 tl_assert(VG_IS_PAGE_ALIGNED(len));
1468 ms_record_page_mem(a, len);
1469 }
1470
1471 static
ms_new_mem_startup(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1472 void ms_new_mem_startup( Addr a, SizeT len,
1473 Bool rr, Bool ww, Bool xx, ULong di_handle )
1474 {
1475 // startup maps are always be page-sized, except the trampoline page is
1476 // marked by the core as only being the size of the trampoline itself,
1477 // which is something like 57 bytes. Round it up to page size.
1478 len = VG_PGROUNDUP(len);
1479 ms_record_page_mem(a, len);
1480 }
1481
1482 static
ms_new_mem_brk(Addr a,SizeT len,ThreadId tid)1483 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1484 {
1485 // brk limit is not necessarily aligned on a page boundary.
1486 // If new memory being brk-ed implies to allocate a new page,
1487 // then call ms_record_page_mem with page aligned parameters
1488 // otherwise just ignore.
1489 Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1490 Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1491 if (old_bottom_page != new_top_page)
1492 ms_record_page_mem(VG_PGROUNDDN(a),
1493 (new_top_page - old_bottom_page));
1494 }
1495
1496 static
ms_copy_mem_remap(Addr from,Addr to,SizeT len)1497 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1498 {
1499 tl_assert(VG_IS_PAGE_ALIGNED(len));
1500 ms_unrecord_page_mem(from, len);
1501 ms_record_page_mem(to, len);
1502 }
1503
1504 static
ms_die_mem_munmap(Addr a,SizeT len)1505 void ms_die_mem_munmap( Addr a, SizeT len )
1506 {
1507 tl_assert(VG_IS_PAGE_ALIGNED(len));
1508 ms_unrecord_page_mem(a, len);
1509 }
1510
1511 static
ms_die_mem_brk(Addr a,SizeT len)1512 void ms_die_mem_brk( Addr a, SizeT len )
1513 {
1514 // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1515 // See ms_new_mem_brk for more details.
1516 Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1517 Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1518 if (old_top_page != new_bottom_page)
1519 ms_unrecord_page_mem(VG_PGROUNDDN(a),
1520 (old_top_page - new_bottom_page));
1521
1522 }
1523
1524 //------------------------------------------------------------//
1525 //--- Stacks ---//
1526 //------------------------------------------------------------//
1527
1528 // We really want the inlining to occur...
1529 #define INLINE inline __attribute__((always_inline))
1530
update_stack_stats(SSizeT stack_szB_delta)1531 static void update_stack_stats(SSizeT stack_szB_delta)
1532 {
1533 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1534 stacks_szB += stack_szB_delta;
1535
1536 update_alloc_stats(stack_szB_delta);
1537 }
1538
new_mem_stack_2(SizeT len,const HChar * what)1539 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1540 {
1541 if (have_started_executing_code) {
1542 VERB(3, "<<< new_mem_stack (%lu)\n", len);
1543 n_stack_allocs++;
1544 update_stack_stats(len);
1545 maybe_take_snapshot(Normal, what);
1546 VERB(3, ">>>\n");
1547 }
1548 }
1549
die_mem_stack_2(SizeT len,const HChar * what)1550 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1551 {
1552 if (have_started_executing_code) {
1553 VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1554 n_stack_frees++;
1555 maybe_take_snapshot(Peak, "stkPEAK");
1556 update_stack_stats(-len);
1557 maybe_take_snapshot(Normal, what);
1558 VERB(3, ">>>\n");
1559 }
1560 }
1561
new_mem_stack(Addr a,SizeT len)1562 static void new_mem_stack(Addr a, SizeT len)
1563 {
1564 new_mem_stack_2(len, "stk-new");
1565 }
1566
die_mem_stack(Addr a,SizeT len)1567 static void die_mem_stack(Addr a, SizeT len)
1568 {
1569 die_mem_stack_2(len, "stk-die");
1570 }
1571
new_mem_stack_signal(Addr a,SizeT len,ThreadId tid)1572 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1573 {
1574 new_mem_stack_2(len, "sig-new");
1575 }
1576
die_mem_stack_signal(Addr a,SizeT len)1577 static void die_mem_stack_signal(Addr a, SizeT len)
1578 {
1579 die_mem_stack_2(len, "sig-die");
1580 }
1581
1582
1583 //------------------------------------------------------------//
1584 //--- Client Requests ---//
1585 //------------------------------------------------------------//
1586
print_monitor_help(void)1587 static void print_monitor_help ( void )
1588 {
1589 VG_(gdb_printf) (
1590 "\n"
1591 "massif monitor commands:\n"
1592 " snapshot [<filename>]\n"
1593 " detailed_snapshot [<filename>]\n"
1594 " takes a snapshot (or a detailed snapshot)\n"
1595 " and saves it in <filename>\n"
1596 " default <filename> is massif.vgdb.out\n"
1597 " all_snapshots [<filename>]\n"
1598 " saves all snapshot(s) taken so far in <filename>\n"
1599 " default <filename> is massif.vgdb.out\n"
1600 " xtmemory [<filename>]\n"
1601 " dump xtree memory profile in <filename> (default xtmemory.kcg)\n"
1602 "\n");
1603 }
1604
1605
1606 /* Forward declaration.
1607 return True if request recognised, False otherwise */
1608 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
ms_handle_client_request(ThreadId tid,UWord * argv,UWord * ret)1609 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1610 {
1611 switch (argv[0]) {
1612 case VG_USERREQ__MALLOCLIKE_BLOCK: {
1613 void* p = (void*)argv[1];
1614 SizeT szB = argv[2];
1615 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1616 /*maybe_snapshot*/True );
1617 *ret = 0;
1618 return True;
1619 }
1620 case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1621 void* p = (void*)argv[1];
1622 SizeT newSizeB = argv[3];
1623
1624 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1625 record_block(tid, p, newSizeB, /*slop_szB*/0,
1626 /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1627 return True;
1628 }
1629 case VG_USERREQ__FREELIKE_BLOCK: {
1630 void* p = (void*)argv[1];
1631 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1632 *ret = 0;
1633 return True;
1634 }
1635 case VG_USERREQ__GDB_MONITOR_COMMAND: {
1636 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1637 if (handled)
1638 *ret = 1;
1639 else
1640 *ret = 0;
1641 return handled;
1642 }
1643
1644 default:
1645 *ret = 0;
1646 return False;
1647 }
1648 }
1649
1650 //------------------------------------------------------------//
1651 //--- Instrumentation ---//
1652 //------------------------------------------------------------//
1653
add_counter_update(IRSB * sbOut,Int n)1654 static void add_counter_update(IRSB* sbOut, Int n)
1655 {
1656 #if defined(VG_BIGENDIAN)
1657 # define END Iend_BE
1658 #elif defined(VG_LITTLEENDIAN)
1659 # define END Iend_LE
1660 #else
1661 # error "Unknown endianness"
1662 #endif
1663 // Add code to increment 'guest_instrs_executed' by 'n', like this:
1664 // WrTmp(t1, Load64(&guest_instrs_executed))
1665 // WrTmp(t2, Add64(RdTmp(t1), Const(n)))
1666 // Store(&guest_instrs_executed, t2)
1667 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
1668 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
1669 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
1670
1671 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
1672 IRStmt* st2 =
1673 IRStmt_WrTmp(t2,
1674 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
1675 IRExpr_Const(IRConst_U64(n))));
1676 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
1677
1678 addStmtToIRSB( sbOut, st1 );
1679 addStmtToIRSB( sbOut, st2 );
1680 addStmtToIRSB( sbOut, st3 );
1681 }
1682
ms_instrument2(IRSB * sbIn)1683 static IRSB* ms_instrument2( IRSB* sbIn )
1684 {
1685 Int i, n = 0;
1686 IRSB* sbOut;
1687
1688 // We increment the instruction count in two places:
1689 // - just before any Ist_Exit statements;
1690 // - just before the IRSB's end.
1691 // In the former case, we zero 'n' and then continue instrumenting.
1692
1693 sbOut = deepCopyIRSBExceptStmts(sbIn);
1694
1695 for (i = 0; i < sbIn->stmts_used; i++) {
1696 IRStmt* st = sbIn->stmts[i];
1697
1698 if (!st || st->tag == Ist_NoOp) continue;
1699
1700 if (st->tag == Ist_IMark) {
1701 n++;
1702 } else if (st->tag == Ist_Exit) {
1703 if (n > 0) {
1704 // Add an increment before the Exit statement, then reset 'n'.
1705 add_counter_update(sbOut, n);
1706 n = 0;
1707 }
1708 }
1709 addStmtToIRSB( sbOut, st );
1710 }
1711
1712 if (n > 0) {
1713 // Add an increment before the SB end.
1714 add_counter_update(sbOut, n);
1715 }
1716 return sbOut;
1717 }
1718
1719 static
ms_instrument(VgCallbackClosure * closure,IRSB * sbIn,const VexGuestLayout * layout,const VexGuestExtents * vge,const VexArchInfo * archinfo_host,IRType gWordTy,IRType hWordTy)1720 IRSB* ms_instrument ( VgCallbackClosure* closure,
1721 IRSB* sbIn,
1722 const VexGuestLayout* layout,
1723 const VexGuestExtents* vge,
1724 const VexArchInfo* archinfo_host,
1725 IRType gWordTy, IRType hWordTy )
1726 {
1727 if (! have_started_executing_code) {
1728 // Do an initial sample to guarantee that we have at least one.
1729 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
1730 // 'maybe_take_snapshot's internal static variables are initialised.
1731 have_started_executing_code = True;
1732 maybe_take_snapshot(Normal, "startup");
1733 }
1734
1735 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); }
1736 else if (clo_time_unit == TimeMS) { return sbIn; }
1737 else if (clo_time_unit == TimeB) { return sbIn; }
1738 else { tl_assert2(0, "bad --time-unit value"); }
1739 }
1740
1741
1742 //------------------------------------------------------------//
1743 //--- Writing snapshots ---//
1744 //------------------------------------------------------------//
1745
pp_snapshot(MsFile * fp,Snapshot * snapshot,Int snapshot_n)1746 static void pp_snapshot(MsFile *fp, Snapshot* snapshot, Int snapshot_n)
1747 {
1748 const Massif_Header header = (Massif_Header) {
1749 .snapshot_n = snapshot_n,
1750 .time = snapshot->time,
1751 .sz_B = snapshot->heap_szB,
1752 .extra_B = snapshot->heap_extra_szB,
1753 .stacks_B = snapshot->stacks_szB,
1754 .detailed = is_detailed_snapshot(snapshot),
1755 .peak = Peak == snapshot->kind,
1756 .top_node_desc = clo_pages_as_heap ?
1757 "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
1758 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc.",
1759 .sig_threshold = clo_threshold
1760 };
1761
1762 sanity_check_snapshot(snapshot);
1763
1764 VG_(XT_massif_print)(fp, snapshot->xt, &header, alloc_szB);
1765 }
1766
write_snapshots_to_file(const HChar * massif_out_file,Snapshot snapshots_array[],Int nr_elements)1767 static void write_snapshots_to_file(const HChar* massif_out_file,
1768 Snapshot snapshots_array[],
1769 Int nr_elements)
1770 {
1771 Int i;
1772 MsFile *fp;
1773
1774 fp = VG_(XT_massif_open)(massif_out_file,
1775 NULL,
1776 args_for_massif,
1777 TimeUnit_to_string(clo_time_unit));
1778 if (fp == NULL)
1779 return; // Error reported by VG_(XT_massif_open)
1780
1781 for (i = 0; i < nr_elements; i++) {
1782 Snapshot* snapshot = & snapshots_array[i];
1783 pp_snapshot(fp, snapshot, i); // Detailed snapshot!
1784 }
1785 VG_(XT_massif_close) (fp);
1786 }
1787
write_snapshots_array_to_file(void)1788 static void write_snapshots_array_to_file(void)
1789 {
1790 // Setup output filename. Nb: it's important to do this now, ie. as late
1791 // as possible. If we do it at start-up and the program forks and the
1792 // output file format string contains a %p (pid) specifier, both the
1793 // parent and child will incorrectly write to the same file; this
1794 // happened in 3.3.0.
1795 HChar* massif_out_file =
1796 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
1797 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
1798 VG_(free)(massif_out_file);
1799 }
1800
handle_snapshot_monitor_command(const HChar * filename,Bool detailed)1801 static void handle_snapshot_monitor_command (const HChar *filename,
1802 Bool detailed)
1803 {
1804 Snapshot snapshot;
1805
1806 if (!clo_pages_as_heap && !have_started_executing_code) {
1807 // See comments of variable have_started_executing_code.
1808 VG_(gdb_printf)
1809 ("error: cannot take snapshot before execution has started\n");
1810 return;
1811 }
1812
1813 clear_snapshot(&snapshot, /* do_sanity_check */ False);
1814 take_snapshot(&snapshot, Normal, get_time(), detailed);
1815 write_snapshots_to_file ((filename == NULL) ?
1816 "massif.vgdb.out" : filename,
1817 &snapshot,
1818 1);
1819 delete_snapshot(&snapshot);
1820 }
1821
handle_all_snapshots_monitor_command(const HChar * filename)1822 static void handle_all_snapshots_monitor_command (const HChar *filename)
1823 {
1824 if (!clo_pages_as_heap && !have_started_executing_code) {
1825 // See comments of variable have_started_executing_code.
1826 VG_(gdb_printf)
1827 ("error: cannot take snapshot before execution has started\n");
1828 return;
1829 }
1830
1831 write_snapshots_to_file ((filename == NULL) ?
1832 "massif.vgdb.out" : filename,
1833 snapshots, next_snapshot_i);
1834 }
1835
xtmemory_report_next_block(XT_Allocs * xta,ExeContext ** ec_alloc)1836 static void xtmemory_report_next_block(XT_Allocs* xta, ExeContext** ec_alloc)
1837 {
1838 const HP_Chunk* hc = VG_(HT_Next)(malloc_list);
1839 if (hc) {
1840 xta->nbytes = hc->req_szB;
1841 xta->nblocks = 1;
1842 *ec_alloc = VG_(XT_get_ec_from_xecu)(heap_xt, hc->where);
1843 } else
1844 xta->nblocks = 0;
1845 }
ms_xtmemory_report(const HChar * filename,Bool fini)1846 static void ms_xtmemory_report ( const HChar* filename, Bool fini )
1847 {
1848 // Make xtmemory_report_next_block ready to be called.
1849 VG_(HT_ResetIter)(malloc_list);
1850 VG_(XTMemory_report)(filename, fini, xtmemory_report_next_block,
1851 VG_(XT_filter_maybe_below_main));
1852 /* As massif already filters one top function, use as filter
1853 VG_(XT_filter_maybe_below_main). */
1854 }
1855
handle_gdb_monitor_command(ThreadId tid,HChar * req)1856 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
1857 {
1858 HChar* wcmd;
1859 HChar s[VG_(strlen)(req) + 1]; /* copy for strtok_r */
1860 HChar *ssaveptr;
1861
1862 VG_(strcpy) (s, req);
1863
1864 wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
1865 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots"
1866 " xtmemory",
1867 wcmd, kwd_report_duplicated_matches)) {
1868 case -2: /* multiple matches */
1869 return True;
1870 case -1: /* not found */
1871 return False;
1872 case 0: /* help */
1873 print_monitor_help();
1874 return True;
1875 case 1: { /* snapshot */
1876 HChar* filename;
1877 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1878 handle_snapshot_monitor_command (filename, False /* detailed */);
1879 return True;
1880 }
1881 case 2: { /* detailed_snapshot */
1882 HChar* filename;
1883 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1884 handle_snapshot_monitor_command (filename, True /* detailed */);
1885 return True;
1886 }
1887 case 3: { /* all_snapshots */
1888 HChar* filename;
1889 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1890 handle_all_snapshots_monitor_command (filename);
1891 return True;
1892 }
1893 case 4: { /* xtmemory */
1894 HChar* filename;
1895 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1896 ms_xtmemory_report (filename, False);
1897 return True;
1898 }
1899 default:
1900 tl_assert(0);
1901 return False;
1902 }
1903 }
1904
ms_print_stats(void)1905 static void ms_print_stats (void)
1906 {
1907 #define STATS(format, args...) \
1908 VG_(dmsg)("Massif: " format, ##args)
1909
1910 STATS("heap allocs: %u\n", n_heap_allocs);
1911 STATS("heap reallocs: %u\n", n_heap_reallocs);
1912 STATS("heap frees: %u\n", n_heap_frees);
1913 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs);
1914 STATS("ignored heap frees: %u\n", n_ignored_heap_frees);
1915 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
1916 STATS("stack allocs: %u\n", n_stack_allocs);
1917 STATS("skipped snapshots: %u\n", n_skipped_snapshots);
1918 STATS("real snapshots: %u\n", n_real_snapshots);
1919 STATS("detailed snapshots: %u\n", n_detailed_snapshots);
1920 STATS("peak snapshots: %u\n", n_peak_snapshots);
1921 STATS("cullings: %u\n", n_cullings);
1922 #undef STATS
1923 }
1924
1925
1926 //------------------------------------------------------------//
1927 //--- Finalisation ---//
1928 //------------------------------------------------------------//
1929
ms_fini(Int exit_status)1930 static void ms_fini(Int exit_status)
1931 {
1932 ms_xtmemory_report(VG_(clo_xtree_memory_file), True);
1933
1934 // Output.
1935 write_snapshots_array_to_file();
1936
1937 if (VG_(clo_stats))
1938 ms_print_stats();
1939 }
1940
1941
1942 //------------------------------------------------------------//
1943 //--- Initialisation ---//
1944 //------------------------------------------------------------//
1945
ms_post_clo_init(void)1946 static void ms_post_clo_init(void)
1947 {
1948 Int i;
1949 HChar* LD_PRELOAD_val;
1950
1951 /* We will record execontext up to clo_depth + overestimate and
1952 we will store this as ec => we need to increase the backtrace size
1953 if smaller than what we will store. */
1954 if (VG_(clo_backtrace_size) < clo_depth + MAX_OVERESTIMATE)
1955 VG_(clo_backtrace_size) = clo_depth + MAX_OVERESTIMATE;
1956
1957 // Check options.
1958 if (clo_pages_as_heap) {
1959 if (clo_stacks) {
1960 VG_(fmsg_bad_option)("--pages-as-heap=yes",
1961 "Cannot be used together with --stacks=yes");
1962 }
1963 }
1964 if (!clo_heap) {
1965 clo_pages_as_heap = False;
1966 }
1967
1968 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we
1969 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
1970 // platform-equivalent). This is a bit of a hack, but LD_PRELOAD is setup
1971 // well before tool initialisation, so this seems the best way to do it.
1972 if (clo_pages_as_heap) {
1973 HChar* s1;
1974 HChar* s2;
1975
1976 clo_heap_admin = 0; // No heap admin on pages.
1977
1978 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
1979 tl_assert(LD_PRELOAD_val);
1980
1981 VERB(2, "clo_pages_as_heap orig LD_PRELOAD '%s'\n", LD_PRELOAD_val);
1982
1983 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
1984 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
1985 tl_assert(s1);
1986
1987 // Now find the vgpreload_massif-$PLATFORM entry.
1988 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
1989 tl_assert(s1);
1990 s2 = s1;
1991
1992 // Position s1 on the previous ':', which must be there because
1993 // of the preceding vgpreload_core-$PLATFORM entry.
1994 for (; *s1 != ':'; s1--)
1995 ;
1996
1997 // Position s2 on the next ':' or \0
1998 for (; *s2 != ':' && *s2 != '\0'; s2++)
1999 ;
2000
2001 // Move all characters from s2 to s1
2002 while ((*s1++ = *s2++))
2003 ;
2004
2005 VERB(2, "clo_pages_as_heap cleaned LD_PRELOAD '%s'\n", LD_PRELOAD_val);
2006 }
2007
2008 // Print alloc-fns and ignore-fns, if necessary.
2009 if (VG_(clo_verbosity) > 1) {
2010 VERB(1, "alloc-fns:\n");
2011 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2012 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2013 VERB(1, " %s\n", *fn_ptr);
2014 }
2015
2016 VERB(1, "ignore-fns:\n");
2017 if (0 == VG_(sizeXA)(ignore_fns)) {
2018 VERB(1, " <empty>\n");
2019 }
2020 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2021 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2022 VERB(1, " %d: %s\n", i, *fn_ptr);
2023 }
2024 }
2025
2026 // Events to track.
2027 if (clo_stacks) {
2028 VG_(track_new_mem_stack) ( new_mem_stack );
2029 VG_(track_die_mem_stack) ( die_mem_stack );
2030 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2031 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2032 }
2033
2034 if (clo_pages_as_heap) {
2035 VG_(track_new_mem_startup) ( ms_new_mem_startup );
2036 VG_(track_new_mem_brk) ( ms_new_mem_brk );
2037 VG_(track_new_mem_mmap) ( ms_new_mem_mmap );
2038
2039 VG_(track_copy_mem_remap) ( ms_copy_mem_remap );
2040
2041 VG_(track_die_mem_brk) ( ms_die_mem_brk );
2042 VG_(track_die_mem_munmap) ( ms_die_mem_munmap );
2043 }
2044
2045 // Initialise snapshot array, and sanity-check it.
2046 snapshots = VG_(malloc)("ms.main.mpoci.1",
2047 sizeof(Snapshot) * clo_max_snapshots);
2048 // We don't want to do snapshot sanity checks here, because they're
2049 // currently uninitialised.
2050 for (i = 0; i < clo_max_snapshots; i++) {
2051 clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2052 }
2053 sanity_check_snapshots_array();
2054
2055 if (VG_(clo_xtree_memory) == Vg_XTMemory_Full)
2056 // Activate full xtree memory profiling.
2057 // As massif already filters one top function, use as filter
2058 // VG_(XT_filter_maybe_below_main).
2059 VG_(XTMemory_Full_init)(VG_(XT_filter_maybe_below_main));
2060
2061 }
2062
ms_pre_clo_init(void)2063 static void ms_pre_clo_init(void)
2064 {
2065 VG_(details_name) ("Massif");
2066 VG_(details_version) (NULL);
2067 VG_(details_description) ("a heap profiler");
2068 VG_(details_copyright_author)(
2069 "Copyright (C) 2003-2017, and GNU GPL'd, by Nicholas Nethercote");
2070 VG_(details_bug_reports_to) (VG_BUGS_TO);
2071
2072 VG_(details_avg_translation_sizeB) ( 330 );
2073
2074 VG_(clo_vex_control).iropt_register_updates_default
2075 = VG_(clo_px_file_backed)
2076 = VexRegUpdSpAtMemAccess; // overridable by the user.
2077
2078 // Basic functions.
2079 VG_(basic_tool_funcs) (ms_post_clo_init,
2080 ms_instrument,
2081 ms_fini);
2082
2083 // Needs.
2084 VG_(needs_libc_freeres)();
2085 VG_(needs_cxx_freeres)();
2086 VG_(needs_command_line_options)(ms_process_cmd_line_option,
2087 ms_print_usage,
2088 ms_print_debug_usage);
2089 VG_(needs_client_requests) (ms_handle_client_request);
2090 VG_(needs_sanity_checks) (ms_cheap_sanity_check,
2091 ms_expensive_sanity_check);
2092 VG_(needs_print_stats) (ms_print_stats);
2093 VG_(needs_malloc_replacement) (ms_malloc,
2094 ms___builtin_new,
2095 ms___builtin_vec_new,
2096 ms_memalign,
2097 ms_calloc,
2098 ms_free,
2099 ms___builtin_delete,
2100 ms___builtin_vec_delete,
2101 ms_realloc,
2102 ms_malloc_usable_size,
2103 0 );
2104
2105 // HP_Chunks.
2106 HP_chunk_poolalloc = VG_(newPA)
2107 (sizeof(HP_Chunk),
2108 1000,
2109 VG_(malloc),
2110 "massif MC_Chunk pool",
2111 VG_(free));
2112 malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2113
2114 // Heap XTree
2115 heap_xt = VG_(XT_create)(VG_(malloc),
2116 "ms.xtrees",
2117 VG_(free),
2118 sizeof(SizeT),
2119 init_szB, add_szB, sub_szB,
2120 filter_IPs);
2121
2122 // Initialise alloc_fns and ignore_fns.
2123 init_alloc_fns();
2124 init_ignore_fns();
2125
2126 // Initialise args_for_massif.
2127 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2128 VG_(free), sizeof(HChar*));
2129 }
2130
2131 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2132
2133 //--------------------------------------------------------------------//
2134 //--- end ---//
2135 //--------------------------------------------------------------------//
2136