• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file ast_to_hir.c
26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27  *
28  * During the conversion to HIR, the majority of the symantic checking is
29  * preformed on the program.  This includes:
30  *
31  *    * Symbol table management
32  *    * Type checking
33  *    * Function binding
34  *
35  * The majority of this work could be done during parsing, and the parser could
36  * probably generate HIR directly.  However, this results in frequent changes
37  * to the parser code.  Since we do not assume that every system this complier
38  * is built on will have Flex and Bison installed, we have to store the code
39  * generated by these tools in our version control system.  In other parts of
40  * the system we've seen problems where a parser was changed but the generated
41  * code was not committed, merge conflicts where created because two developers
42  * had slightly different versions of Bison installed, etc.
43  *
44  * I have also noticed that running Bison generated parsers in GDB is very
45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46  * well 'print $1' in GDB.
47  *
48  * As a result, my preference is to put as little C code as possible in the
49  * parser (and lexer) sources.
50  */
51 
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 
62 using namespace ir_builder;
63 
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66                                exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
70 
71 /**
72  * Visitor class that finds the first instance of any write-only variable that
73  * is ever read, if any
74  */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
read_from_write_only_variable_visitor()78    read_from_write_only_variable_visitor() : found(NULL)
79    {
80    }
81 
visit(ir_dereference_variable * ir)82    virtual ir_visitor_status visit(ir_dereference_variable *ir)
83    {
84       if (this->in_assignee)
85          return visit_continue;
86 
87       ir_variable *var = ir->variable_referenced();
88       /* We can have image_write_only set on both images and buffer variables,
89        * but in the former there is a distinction between reads from
90        * the variable itself (write_only) and from the memory they point to
91        * (image_write_only), while in the case of buffer variables there is
92        * no such distinction, that is why this check here is limited to
93        * buffer variables alone.
94        */
95       if (!var || var->data.mode != ir_var_shader_storage)
96          return visit_continue;
97 
98       if (var->data.image_write_only) {
99          found = var;
100          return visit_stop;
101       }
102 
103       return visit_continue;
104    }
105 
get_variable()106    ir_variable *get_variable() {
107       return found;
108    }
109 
visit_enter(ir_expression * ir)110    virtual ir_visitor_status visit_enter(ir_expression *ir)
111    {
112       /* .length() doesn't actually read anything */
113       if (ir->operation == ir_unop_ssbo_unsized_array_length)
114          return visit_continue_with_parent;
115 
116       return visit_continue;
117    }
118 
119 private:
120    ir_variable *found;
121 };
122 
123 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126    _mesa_glsl_initialize_variables(instructions, state);
127 
128    state->symbols->separate_function_namespace = state->language_version == 110;
129 
130    state->current_function = NULL;
131 
132    state->toplevel_ir = instructions;
133 
134    state->gs_input_prim_type_specified = false;
135    state->tcs_output_vertices_specified = false;
136    state->cs_input_local_size_specified = false;
137 
138    /* Section 4.2 of the GLSL 1.20 specification states:
139     * "The built-in functions are scoped in a scope outside the global scope
140     *  users declare global variables in.  That is, a shader's global scope,
141     *  available for user-defined functions and global variables, is nested
142     *  inside the scope containing the built-in functions."
143     *
144     * Since built-in functions like ftransform() access built-in variables,
145     * it follows that those must be in the outer scope as well.
146     *
147     * We push scope here to create this nesting effect...but don't pop.
148     * This way, a shader's globals are still in the symbol table for use
149     * by the linker.
150     */
151    state->symbols->push_scope();
152 
153    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154       ast->hir(instructions, state);
155 
156    detect_recursion_unlinked(state, instructions);
157    detect_conflicting_assignments(state, instructions);
158 
159    state->toplevel_ir = NULL;
160 
161    /* Move all of the variable declarations to the front of the IR list, and
162     * reverse the order.  This has the (intended!) side effect that vertex
163     * shader inputs and fragment shader outputs will appear in the IR in the
164     * same order that they appeared in the shader code.  This results in the
165     * locations being assigned in the declared order.  Many (arguably buggy)
166     * applications depend on this behavior, and it matches what nearly all
167     * other drivers do.
168     */
169    foreach_in_list_safe(ir_instruction, node, instructions) {
170       ir_variable *const var = node->as_variable();
171 
172       if (var == NULL)
173          continue;
174 
175       var->remove();
176       instructions->push_head(var);
177    }
178 
179    /* Figure out if gl_FragCoord is actually used in fragment shader */
180    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181    if (var != NULL)
182       state->fs_uses_gl_fragcoord = var->data.used;
183 
184    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185     *
186     *     If multiple shaders using members of a built-in block belonging to
187     *     the same interface are linked together in the same program, they
188     *     must all redeclare the built-in block in the same way, as described
189     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
190     *     a link error will result.
191     *
192     * The phrase "using members of a built-in block" implies that if two
193     * shaders are linked together and one of them *does not use* any members
194     * of the built-in block, then that shader does not need to have a matching
195     * redeclaration of the built-in block.
196     *
197     * This appears to be a clarification to the behaviour established for
198     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199     * version.
200     *
201     * The definition of "interface" in section 4.3.7 that applies here is as
202     * follows:
203     *
204     *     The boundary between adjacent programmable pipeline stages: This
205     *     spans all the outputs in all compilation units of the first stage
206     *     and all the inputs in all compilation units of the second stage.
207     *
208     * Therefore this rule applies to both inter- and intra-stage linking.
209     *
210     * The easiest way to implement this is to check whether the shader uses
211     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212     * remove all the relevant variable declaration from the IR, so that the
213     * linker won't see them and complain about mismatches.
214     */
215    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217 
218    /* Check that we don't have reads from write-only variables */
219    read_from_write_only_variable_visitor v;
220    v.run(instructions);
221    ir_variable *error_var = v.get_variable();
222    if (error_var) {
223       /* It would be nice to have proper location information, but for that
224        * we would need to check this as we process each kind of AST node
225        */
226       YYLTYPE loc;
227       memset(&loc, 0, sizeof(loc));
228       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229                        error_var->name);
230    }
231 }
232 
233 
234 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236                                   struct _mesa_glsl_parse_state *state)
237 {
238    switch (to->base_type) {
239    case GLSL_TYPE_FLOAT:
240       switch (from->base_type) {
241       case GLSL_TYPE_INT: return ir_unop_i2f;
242       case GLSL_TYPE_UINT: return ir_unop_u2f;
243       default: return (ir_expression_operation)0;
244       }
245 
246    case GLSL_TYPE_UINT:
247       if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248           && !state->MESA_shader_integer_functions_enable)
249          return (ir_expression_operation)0;
250       switch (from->base_type) {
251          case GLSL_TYPE_INT: return ir_unop_i2u;
252          default: return (ir_expression_operation)0;
253       }
254 
255    case GLSL_TYPE_DOUBLE:
256       if (!state->has_double())
257          return (ir_expression_operation)0;
258       switch (from->base_type) {
259       case GLSL_TYPE_INT: return ir_unop_i2d;
260       case GLSL_TYPE_UINT: return ir_unop_u2d;
261       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262       default: return (ir_expression_operation)0;
263       }
264 
265    default: return (ir_expression_operation)0;
266    }
267 }
268 
269 
270 /**
271  * If a conversion is available, convert one operand to a different type
272  *
273  * The \c from \c ir_rvalue is converted "in place".
274  *
275  * \param to     Type that the operand it to be converted to
276  * \param from   Operand that is being converted
277  * \param state  GLSL compiler state
278  *
279  * \return
280  * If a conversion is possible (or unnecessary), \c true is returned.
281  * Otherwise \c false is returned.
282  */
283 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285                           struct _mesa_glsl_parse_state *state)
286 {
287    void *ctx = state;
288    if (to->base_type == from->type->base_type)
289       return true;
290 
291    /* Prior to GLSL 1.20, there are no implicit conversions */
292    if (!state->is_version(120, 0))
293       return false;
294 
295    /* ESSL does not allow implicit conversions */
296    if (state->es_shader)
297       return false;
298 
299    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300     *
301     *    "There are no implicit array or structure conversions. For
302     *    example, an array of int cannot be implicitly converted to an
303     *    array of float.
304     */
305    if (!to->is_numeric() || !from->type->is_numeric())
306       return false;
307 
308    /* We don't actually want the specific type `to`, we want a type
309     * with the same base type as `to`, but the same vector width as
310     * `from`.
311     */
312    to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313                                 from->type->matrix_columns);
314 
315    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316    if (op) {
317       from = new(ctx) ir_expression(op, to, from, NULL);
318       return true;
319    } else {
320       return false;
321    }
322 }
323 
324 
325 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327                        bool multiply,
328                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330    const glsl_type *type_a = value_a->type;
331    const glsl_type *type_b = value_b->type;
332 
333    /* From GLSL 1.50 spec, page 56:
334     *
335     *    "The arithmetic binary operators add (+), subtract (-),
336     *    multiply (*), and divide (/) operate on integer and
337     *    floating-point scalars, vectors, and matrices."
338     */
339    if (!type_a->is_numeric() || !type_b->is_numeric()) {
340       _mesa_glsl_error(loc, state,
341                        "operands to arithmetic operators must be numeric");
342       return glsl_type::error_type;
343    }
344 
345 
346    /*    "If one operand is floating-point based and the other is
347     *    not, then the conversions from Section 4.1.10 "Implicit
348     *    Conversions" are applied to the non-floating-point-based operand."
349     */
350    if (!apply_implicit_conversion(type_a, value_b, state)
351        && !apply_implicit_conversion(type_b, value_a, state)) {
352       _mesa_glsl_error(loc, state,
353                        "could not implicitly convert operands to "
354                        "arithmetic operator");
355       return glsl_type::error_type;
356    }
357    type_a = value_a->type;
358    type_b = value_b->type;
359 
360    /*    "If the operands are integer types, they must both be signed or
361     *    both be unsigned."
362     *
363     * From this rule and the preceeding conversion it can be inferred that
364     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365     * The is_numeric check above already filtered out the case where either
366     * type is not one of these, so now the base types need only be tested for
367     * equality.
368     */
369    if (type_a->base_type != type_b->base_type) {
370       _mesa_glsl_error(loc, state,
371                        "base type mismatch for arithmetic operator");
372       return glsl_type::error_type;
373    }
374 
375    /*    "All arithmetic binary operators result in the same fundamental type
376     *    (signed integer, unsigned integer, or floating-point) as the
377     *    operands they operate on, after operand type conversion. After
378     *    conversion, the following cases are valid
379     *
380     *    * The two operands are scalars. In this case the operation is
381     *      applied, resulting in a scalar."
382     */
383    if (type_a->is_scalar() && type_b->is_scalar())
384       return type_a;
385 
386    /*   "* One operand is a scalar, and the other is a vector or matrix.
387     *      In this case, the scalar operation is applied independently to each
388     *      component of the vector or matrix, resulting in the same size
389     *      vector or matrix."
390     */
391    if (type_a->is_scalar()) {
392       if (!type_b->is_scalar())
393          return type_b;
394    } else if (type_b->is_scalar()) {
395       return type_a;
396    }
397 
398    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400     * handled.
401     */
402    assert(!type_a->is_scalar());
403    assert(!type_b->is_scalar());
404 
405    /*   "* The two operands are vectors of the same size. In this case, the
406     *      operation is done component-wise resulting in the same size
407     *      vector."
408     */
409    if (type_a->is_vector() && type_b->is_vector()) {
410       if (type_a == type_b) {
411          return type_a;
412       } else {
413          _mesa_glsl_error(loc, state,
414                           "vector size mismatch for arithmetic operator");
415          return glsl_type::error_type;
416       }
417    }
418 
419    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421     * <vector, vector> have been handled.  At least one of the operands must
422     * be matrix.  Further, since there are no integer matrix types, the base
423     * type of both operands must be float.
424     */
425    assert(type_a->is_matrix() || type_b->is_matrix());
426    assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427           type_a->base_type == GLSL_TYPE_DOUBLE);
428    assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429           type_b->base_type == GLSL_TYPE_DOUBLE);
430 
431    /*   "* The operator is add (+), subtract (-), or divide (/), and the
432     *      operands are matrices with the same number of rows and the same
433     *      number of columns. In this case, the operation is done component-
434     *      wise resulting in the same size matrix."
435     *    * The operator is multiply (*), where both operands are matrices or
436     *      one operand is a vector and the other a matrix. A right vector
437     *      operand is treated as a column vector and a left vector operand as a
438     *      row vector. In all these cases, it is required that the number of
439     *      columns of the left operand is equal to the number of rows of the
440     *      right operand. Then, the multiply (*) operation does a linear
441     *      algebraic multiply, yielding an object that has the same number of
442     *      rows as the left operand and the same number of columns as the right
443     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
444     *      more detail how vectors and matrices are operated on."
445     */
446    if (! multiply) {
447       if (type_a == type_b)
448          return type_a;
449    } else {
450       const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451 
452       if (type == glsl_type::error_type) {
453          _mesa_glsl_error(loc, state,
454                           "size mismatch for matrix multiplication");
455       }
456 
457       return type;
458    }
459 
460 
461    /*    "All other cases are illegal."
462     */
463    _mesa_glsl_error(loc, state, "type mismatch");
464    return glsl_type::error_type;
465 }
466 
467 
468 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)469 unary_arithmetic_result_type(const struct glsl_type *type,
470                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472    /* From GLSL 1.50 spec, page 57:
473     *
474     *    "The arithmetic unary operators negate (-), post- and pre-increment
475     *     and decrement (-- and ++) operate on integer or floating-point
476     *     values (including vectors and matrices). All unary operators work
477     *     component-wise on their operands. These result with the same type
478     *     they operated on."
479     */
480    if (!type->is_numeric()) {
481       _mesa_glsl_error(loc, state,
482                        "operands to arithmetic operators must be numeric");
483       return glsl_type::error_type;
484    }
485 
486    return type;
487 }
488 
489 /**
490  * \brief Return the result type of a bit-logic operation.
491  *
492  * If the given types to the bit-logic operator are invalid, return
493  * glsl_type::error_type.
494  *
495  * \param value_a LHS of bit-logic op
496  * \param value_b RHS of bit-logic op
497  */
498 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500                       ast_operators op,
501                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503    const glsl_type *type_a = value_a->type;
504    const glsl_type *type_b = value_b->type;
505 
506    if (!state->check_bitwise_operations_allowed(loc)) {
507       return glsl_type::error_type;
508    }
509 
510    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511     *
512     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513     *     (|). The operands must be of type signed or unsigned integers or
514     *     integer vectors."
515     */
516    if (!type_a->is_integer()) {
517       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518                         ast_expression::operator_string(op));
519       return glsl_type::error_type;
520    }
521    if (!type_b->is_integer()) {
522       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523                        ast_expression::operator_string(op));
524       return glsl_type::error_type;
525    }
526 
527    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528     * make sense for bitwise operations, as they don't operate on floats.
529     *
530     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531     * here.  It wasn't clear whether or not we should apply them to bitwise
532     * operations.  However, Khronos has decided that they should in future
533     * language revisions.  Applications also rely on this behavior.  We opt
534     * to apply them in general, but issue a portability warning.
535     *
536     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537     */
538    if (type_a->base_type != type_b->base_type) {
539       if (!apply_implicit_conversion(type_a, value_b, state)
540           && !apply_implicit_conversion(type_b, value_a, state)) {
541          _mesa_glsl_error(loc, state,
542                           "could not implicitly convert operands to "
543                           "`%s` operator",
544                           ast_expression::operator_string(op));
545          return glsl_type::error_type;
546       } else {
547          _mesa_glsl_warning(loc, state,
548                             "some implementations may not support implicit "
549                             "int -> uint conversions for `%s' operators; "
550                             "consider casting explicitly for portability",
551                             ast_expression::operator_string(op));
552       }
553       type_a = value_a->type;
554       type_b = value_b->type;
555    }
556 
557    /*     "The fundamental types of the operands (signed or unsigned) must
558     *     match,"
559     */
560    if (type_a->base_type != type_b->base_type) {
561       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562                        "base type", ast_expression::operator_string(op));
563       return glsl_type::error_type;
564    }
565 
566    /*     "The operands cannot be vectors of differing size." */
567    if (type_a->is_vector() &&
568        type_b->is_vector() &&
569        type_a->vector_elements != type_b->vector_elements) {
570       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571                        "different sizes", ast_expression::operator_string(op));
572       return glsl_type::error_type;
573    }
574 
575    /*     "If one operand is a scalar and the other a vector, the scalar is
576     *     applied component-wise to the vector, resulting in the same type as
577     *     the vector. The fundamental types of the operands [...] will be the
578     *     resulting fundamental type."
579     */
580    if (type_a->is_scalar())
581        return type_b;
582    else
583        return type_a;
584 }
585 
586 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590    const glsl_type *type_a = value_a->type;
591    const glsl_type *type_b = value_b->type;
592 
593    if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594       return glsl_type::error_type;
595    }
596 
597    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598     *
599     *    "The operator modulus (%) operates on signed or unsigned integers or
600     *    integer vectors."
601     */
602    if (!type_a->is_integer()) {
603       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604       return glsl_type::error_type;
605    }
606    if (!type_b->is_integer()) {
607       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608       return glsl_type::error_type;
609    }
610 
611    /*    "If the fundamental types in the operands do not match, then the
612     *    conversions from section 4.1.10 "Implicit Conversions" are applied
613     *    to create matching types."
614     *
615     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616     * int -> uint conversion rules.  Prior to that, there were no implicit
617     * conversions.  So it's harmless to apply them universally - no implicit
618     * conversions will exist.  If the types don't match, we'll receive false,
619     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620     *
621     *    "The operand types must both be signed or unsigned."
622     */
623    if (!apply_implicit_conversion(type_a, value_b, state) &&
624        !apply_implicit_conversion(type_b, value_a, state)) {
625       _mesa_glsl_error(loc, state,
626                        "could not implicitly convert operands to "
627                        "modulus (%%) operator");
628       return glsl_type::error_type;
629    }
630    type_a = value_a->type;
631    type_b = value_b->type;
632 
633    /*    "The operands cannot be vectors of differing size. If one operand is
634     *    a scalar and the other vector, then the scalar is applied component-
635     *    wise to the vector, resulting in the same type as the vector. If both
636     *    are vectors of the same size, the result is computed component-wise."
637     */
638    if (type_a->is_vector()) {
639       if (!type_b->is_vector()
640           || (type_a->vector_elements == type_b->vector_elements))
641       return type_a;
642    } else
643       return type_b;
644 
645    /*    "The operator modulus (%) is not defined for any other data types
646     *    (non-integer types)."
647     */
648    _mesa_glsl_error(loc, state, "type mismatch");
649    return glsl_type::error_type;
650 }
651 
652 
653 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657    const glsl_type *type_a = value_a->type;
658    const glsl_type *type_b = value_b->type;
659 
660    /* From GLSL 1.50 spec, page 56:
661     *    "The relational operators greater than (>), less than (<), greater
662     *    than or equal (>=), and less than or equal (<=) operate only on
663     *    scalar integer and scalar floating-point expressions."
664     */
665    if (!type_a->is_numeric()
666        || !type_b->is_numeric()
667        || !type_a->is_scalar()
668        || !type_b->is_scalar()) {
669       _mesa_glsl_error(loc, state,
670                        "operands to relational operators must be scalar and "
671                        "numeric");
672       return glsl_type::error_type;
673    }
674 
675    /*    "Either the operands' types must match, or the conversions from
676     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
677     *    operand, after which the types must match."
678     */
679    if (!apply_implicit_conversion(type_a, value_b, state)
680        && !apply_implicit_conversion(type_b, value_a, state)) {
681       _mesa_glsl_error(loc, state,
682                        "could not implicitly convert operands to "
683                        "relational operator");
684       return glsl_type::error_type;
685    }
686    type_a = value_a->type;
687    type_b = value_b->type;
688 
689    if (type_a->base_type != type_b->base_type) {
690       _mesa_glsl_error(loc, state, "base type mismatch");
691       return glsl_type::error_type;
692    }
693 
694    /*    "The result is scalar Boolean."
695     */
696    return glsl_type::bool_type;
697 }
698 
699 /**
700  * \brief Return the result type of a bit-shift operation.
701  *
702  * If the given types to the bit-shift operator are invalid, return
703  * glsl_type::error_type.
704  *
705  * \param type_a Type of LHS of bit-shift op
706  * \param type_b Type of RHS of bit-shift op
707  */
708 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)709 shift_result_type(const struct glsl_type *type_a,
710                   const struct glsl_type *type_b,
711                   ast_operators op,
712                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714    if (!state->check_bitwise_operations_allowed(loc)) {
715       return glsl_type::error_type;
716    }
717 
718    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719     *
720     *     "The shift operators (<<) and (>>). For both operators, the operands
721     *     must be signed or unsigned integers or integer vectors. One operand
722     *     can be signed while the other is unsigned."
723     */
724    if (!type_a->is_integer()) {
725       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726                        "integer vector", ast_expression::operator_string(op));
727      return glsl_type::error_type;
728 
729    }
730    if (!type_b->is_integer()) {
731       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732                        "integer vector", ast_expression::operator_string(op));
733      return glsl_type::error_type;
734    }
735 
736    /*     "If the first operand is a scalar, the second operand has to be
737     *     a scalar as well."
738     */
739    if (type_a->is_scalar() && !type_b->is_scalar()) {
740       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741                        "second must be scalar as well",
742                        ast_expression::operator_string(op));
743      return glsl_type::error_type;
744    }
745 
746    /* If both operands are vectors, check that they have same number of
747     * elements.
748     */
749    if (type_a->is_vector() &&
750       type_b->is_vector() &&
751       type_a->vector_elements != type_b->vector_elements) {
752       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753                        "have same number of elements",
754                        ast_expression::operator_string(op));
755      return glsl_type::error_type;
756    }
757 
758    /*     "In all cases, the resulting type will be the same type as the left
759     *     operand."
760     */
761    return type_a;
762 }
763 
764 /**
765  * Returns the innermost array index expression in an rvalue tree.
766  * This is the largest indexing level -- if an array of blocks, then
767  * it is the block index rather than an indexing expression for an
768  * array-typed member of an array of blocks.
769  */
770 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)771 find_innermost_array_index(ir_rvalue *rv)
772 {
773    ir_dereference_array *last = NULL;
774    while (rv) {
775       if (rv->as_dereference_array()) {
776          last = rv->as_dereference_array();
777          rv = last->array;
778       } else if (rv->as_dereference_record())
779          rv = rv->as_dereference_record()->record;
780       else if (rv->as_swizzle())
781          rv = rv->as_swizzle()->val;
782       else
783          rv = NULL;
784    }
785 
786    if (last)
787       return last->array_index;
788 
789    return NULL;
790 }
791 
792 /**
793  * Validates that a value can be assigned to a location with a specified type
794  *
795  * Validates that \c rhs can be assigned to some location.  If the types are
796  * not an exact match but an automatic conversion is possible, \c rhs will be
797  * converted.
798  *
799  * \return
800  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801  * Otherwise the actual RHS to be assigned will be returned.  This may be
802  * \c rhs, or it may be \c rhs after some type conversion.
803  *
804  * \note
805  * In addition to being used for assignments, this function is used to
806  * type-check return values.
807  */
808 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)809 validate_assignment(struct _mesa_glsl_parse_state *state,
810                     YYLTYPE loc, ir_rvalue *lhs,
811                     ir_rvalue *rhs, bool is_initializer)
812 {
813    /* If there is already some error in the RHS, just return it.  Anything
814     * else will lead to an avalanche of error message back to the user.
815     */
816    if (rhs->type->is_error())
817       return rhs;
818 
819    /* In the Tessellation Control Shader:
820     * If a per-vertex output variable is used as an l-value, it is an error
821     * if the expression indicating the vertex number is not the identifier
822     * `gl_InvocationID`.
823     */
824    if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825       ir_variable *var = lhs->variable_referenced();
826       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827          ir_rvalue *index = find_innermost_array_index(lhs);
828          ir_variable *index_var = index ? index->variable_referenced() : NULL;
829          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830             _mesa_glsl_error(&loc, state,
831                              "Tessellation control shader outputs can only "
832                              "be indexed by gl_InvocationID");
833             return NULL;
834          }
835       }
836    }
837 
838    /* If the types are identical, the assignment can trivially proceed.
839     */
840    if (rhs->type == lhs->type)
841       return rhs;
842 
843    /* If the array element types are the same and the LHS is unsized,
844     * the assignment is okay for initializers embedded in variable
845     * declarations.
846     *
847     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848     * is handled by ir_dereference::is_lvalue.
849     */
850    const glsl_type *lhs_t = lhs->type;
851    const glsl_type *rhs_t = rhs->type;
852    bool unsized_array = false;
853    while(lhs_t->is_array()) {
854       if (rhs_t == lhs_t)
855          break; /* the rest of the inner arrays match so break out early */
856       if (!rhs_t->is_array()) {
857          unsized_array = false;
858          break; /* number of dimensions mismatch */
859       }
860       if (lhs_t->length == rhs_t->length) {
861          lhs_t = lhs_t->fields.array;
862          rhs_t = rhs_t->fields.array;
863          continue;
864       } else if (lhs_t->is_unsized_array()) {
865          unsized_array = true;
866       } else {
867          unsized_array = false;
868          break; /* sized array mismatch */
869       }
870       lhs_t = lhs_t->fields.array;
871       rhs_t = rhs_t->fields.array;
872    }
873    if (unsized_array) {
874       if (is_initializer) {
875          return rhs;
876       } else {
877          _mesa_glsl_error(&loc, state,
878                           "implicitly sized arrays cannot be assigned");
879          return NULL;
880       }
881    }
882 
883    /* Check for implicit conversion in GLSL 1.20 */
884    if (apply_implicit_conversion(lhs->type, rhs, state)) {
885       if (rhs->type == lhs->type)
886          return rhs;
887    }
888 
889    _mesa_glsl_error(&loc, state,
890                     "%s of type %s cannot be assigned to "
891                     "variable of type %s",
892                     is_initializer ? "initializer" : "value",
893                     rhs->type->name, lhs->type->name);
894 
895    return NULL;
896 }
897 
898 static void
mark_whole_array_access(ir_rvalue * access)899 mark_whole_array_access(ir_rvalue *access)
900 {
901    ir_dereference_variable *deref = access->as_dereference_variable();
902 
903    if (deref && deref->var) {
904       deref->var->data.max_array_access = deref->type->length - 1;
905    }
906 }
907 
908 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910               const char *non_lvalue_description,
911               ir_rvalue *lhs, ir_rvalue *rhs,
912               ir_rvalue **out_rvalue, bool needs_rvalue,
913               bool is_initializer,
914               YYLTYPE lhs_loc)
915 {
916    void *ctx = state;
917    bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918 
919    ir_variable *lhs_var = lhs->variable_referenced();
920    if (lhs_var)
921       lhs_var->data.assigned = true;
922 
923    if (!error_emitted) {
924       if (non_lvalue_description != NULL) {
925          _mesa_glsl_error(&lhs_loc, state,
926                           "assignment to %s",
927                           non_lvalue_description);
928          error_emitted = true;
929       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930                  (lhs_var->data.mode == ir_var_shader_storage &&
931                   lhs_var->data.image_read_only))) {
932          /* We can have image_read_only set on both images and buffer variables,
933           * but in the former there is a distinction between assignments to
934           * the variable itself (read_only) and to the memory they point to
935           * (image_read_only), while in the case of buffer variables there is
936           * no such distinction, that is why this check here is limited to
937           * buffer variables alone.
938           */
939          _mesa_glsl_error(&lhs_loc, state,
940                           "assignment to read-only variable '%s'",
941                           lhs_var->name);
942          error_emitted = true;
943       } else if (lhs->type->is_array() &&
944                  !state->check_version(120, 300, &lhs_loc,
945                                        "whole array assignment forbidden")) {
946          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947           *
948           *    "Other binary or unary expressions, non-dereferenced
949           *     arrays, function names, swizzles with repeated fields,
950           *     and constants cannot be l-values."
951           *
952           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953           */
954          error_emitted = true;
955       } else if (!lhs->is_lvalue()) {
956          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957          error_emitted = true;
958       }
959    }
960 
961    ir_rvalue *new_rhs =
962       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963    if (new_rhs != NULL) {
964       rhs = new_rhs;
965 
966       /* If the LHS array was not declared with a size, it takes it size from
967        * the RHS.  If the LHS is an l-value and a whole array, it must be a
968        * dereference of a variable.  Any other case would require that the LHS
969        * is either not an l-value or not a whole array.
970        */
971       if (lhs->type->is_unsized_array()) {
972          ir_dereference *const d = lhs->as_dereference();
973 
974          assert(d != NULL);
975 
976          ir_variable *const var = d->variable_referenced();
977 
978          assert(var != NULL);
979 
980          if (var->data.max_array_access >= rhs->type->array_size()) {
981             /* FINISHME: This should actually log the location of the RHS. */
982             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983                              "previous access",
984                              var->data.max_array_access);
985          }
986 
987          var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988                                                    rhs->type->array_size());
989          d->type = var->type;
990       }
991       if (lhs->type->is_array()) {
992          mark_whole_array_access(rhs);
993          mark_whole_array_access(lhs);
994       }
995    }
996 
997    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998     * but not post_inc) need the converted assigned value as an rvalue
999     * to handle things like:
1000     *
1001     * i = j += 1;
1002     */
1003    if (needs_rvalue) {
1004       ir_rvalue *rvalue;
1005       if (!error_emitted) {
1006          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1007                                                  ir_var_temporary);
1008          instructions->push_tail(var);
1009          instructions->push_tail(assign(var, rhs));
1010 
1011          ir_dereference_variable *deref_var =
1012             new(ctx) ir_dereference_variable(var);
1013          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1014          rvalue = new(ctx) ir_dereference_variable(var);
1015       } else {
1016          rvalue = ir_rvalue::error_value(ctx);
1017       }
1018       *out_rvalue = rvalue;
1019    } else {
1020       if (!error_emitted)
1021          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1022       *out_rvalue = NULL;
1023    }
1024 
1025    return error_emitted;
1026 }
1027 
1028 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1029 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1030 {
1031    void *ctx = ralloc_parent(lvalue);
1032    ir_variable *var;
1033 
1034    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1035                               ir_var_temporary);
1036    instructions->push_tail(var);
1037 
1038    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1039                                                   lvalue));
1040 
1041    return new(ctx) ir_dereference_variable(var);
1042 }
1043 
1044 
1045 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1046 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1047 {
1048    (void) instructions;
1049    (void) state;
1050 
1051    return NULL;
1052 }
1053 
1054 bool
has_sequence_subexpression() const1055 ast_node::has_sequence_subexpression() const
1056 {
1057    return false;
1058 }
1059 
1060 void
set_is_lhs(bool)1061 ast_node::set_is_lhs(bool /* new_value */)
1062 {
1063 }
1064 
1065 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1066 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1067                                        struct _mesa_glsl_parse_state *state)
1068 {
1069    (void)hir(instructions, state);
1070 }
1071 
1072 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1073 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1074                                          struct _mesa_glsl_parse_state *state)
1075 {
1076    (void)hir(instructions, state);
1077 }
1078 
1079 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1080 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1081 {
1082    int join_op;
1083    ir_rvalue *cmp = NULL;
1084 
1085    if (operation == ir_binop_all_equal)
1086       join_op = ir_binop_logic_and;
1087    else
1088       join_op = ir_binop_logic_or;
1089 
1090    switch (op0->type->base_type) {
1091    case GLSL_TYPE_FLOAT:
1092    case GLSL_TYPE_UINT:
1093    case GLSL_TYPE_INT:
1094    case GLSL_TYPE_BOOL:
1095    case GLSL_TYPE_DOUBLE:
1096       return new(mem_ctx) ir_expression(operation, op0, op1);
1097 
1098    case GLSL_TYPE_ARRAY: {
1099       for (unsigned int i = 0; i < op0->type->length; i++) {
1100          ir_rvalue *e0, *e1, *result;
1101 
1102          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1103                                                 new(mem_ctx) ir_constant(i));
1104          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1105                                                 new(mem_ctx) ir_constant(i));
1106          result = do_comparison(mem_ctx, operation, e0, e1);
1107 
1108          if (cmp) {
1109             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1110          } else {
1111             cmp = result;
1112          }
1113       }
1114 
1115       mark_whole_array_access(op0);
1116       mark_whole_array_access(op1);
1117       break;
1118    }
1119 
1120    case GLSL_TYPE_STRUCT: {
1121       for (unsigned int i = 0; i < op0->type->length; i++) {
1122          ir_rvalue *e0, *e1, *result;
1123          const char *field_name = op0->type->fields.structure[i].name;
1124 
1125          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1126                                                  field_name);
1127          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1128                                                  field_name);
1129          result = do_comparison(mem_ctx, operation, e0, e1);
1130 
1131          if (cmp) {
1132             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133          } else {
1134             cmp = result;
1135          }
1136       }
1137       break;
1138    }
1139 
1140    case GLSL_TYPE_ERROR:
1141    case GLSL_TYPE_VOID:
1142    case GLSL_TYPE_SAMPLER:
1143    case GLSL_TYPE_IMAGE:
1144    case GLSL_TYPE_INTERFACE:
1145    case GLSL_TYPE_ATOMIC_UINT:
1146    case GLSL_TYPE_SUBROUTINE:
1147    case GLSL_TYPE_FUNCTION:
1148       /* I assume a comparison of a struct containing a sampler just
1149        * ignores the sampler present in the type.
1150        */
1151       break;
1152    }
1153 
1154    if (cmp == NULL)
1155       cmp = new(mem_ctx) ir_constant(true);
1156 
1157    return cmp;
1158 }
1159 
1160 /* For logical operations, we want to ensure that the operands are
1161  * scalar booleans.  If it isn't, emit an error and return a constant
1162  * boolean to avoid triggering cascading error messages.
1163  */
1164 ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1165 get_scalar_boolean_operand(exec_list *instructions,
1166                            struct _mesa_glsl_parse_state *state,
1167                            ast_expression *parent_expr,
1168                            int operand,
1169                            const char *operand_name,
1170                            bool *error_emitted)
1171 {
1172    ast_expression *expr = parent_expr->subexpressions[operand];
1173    void *ctx = state;
1174    ir_rvalue *val = expr->hir(instructions, state);
1175 
1176    if (val->type->is_boolean() && val->type->is_scalar())
1177       return val;
1178 
1179    if (!*error_emitted) {
1180       YYLTYPE loc = expr->get_location();
1181       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1182                        operand_name,
1183                        parent_expr->operator_string(parent_expr->oper));
1184       *error_emitted = true;
1185    }
1186 
1187    return new(ctx) ir_constant(true);
1188 }
1189 
1190 /**
1191  * If name refers to a builtin array whose maximum allowed size is less than
1192  * size, report an error and return true.  Otherwise return false.
1193  */
1194 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1195 check_builtin_array_max_size(const char *name, unsigned size,
1196                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1197 {
1198    if ((strcmp("gl_TexCoord", name) == 0)
1199        && (size > state->Const.MaxTextureCoords)) {
1200       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1201        *
1202        *     "The size [of gl_TexCoord] can be at most
1203        *     gl_MaxTextureCoords."
1204        */
1205       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1206                        "be larger than gl_MaxTextureCoords (%u)",
1207                        state->Const.MaxTextureCoords);
1208    } else if (strcmp("gl_ClipDistance", name) == 0) {
1209       state->clip_dist_size = size;
1210       if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1211          /* From section 7.1 (Vertex Shader Special Variables) of the
1212           * GLSL 1.30 spec:
1213           *
1214           *   "The gl_ClipDistance array is predeclared as unsized and
1215           *   must be sized by the shader either redeclaring it with a
1216           *   size or indexing it only with integral constant
1217           *   expressions. ... The size can be at most
1218           *   gl_MaxClipDistances."
1219           */
1220          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1221                           "be larger than gl_MaxClipDistances (%u)",
1222                           state->Const.MaxClipPlanes);
1223       }
1224    } else if (strcmp("gl_CullDistance", name) == 0) {
1225       state->cull_dist_size = size;
1226       if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1227          /* From the ARB_cull_distance spec:
1228           *
1229           *   "The gl_CullDistance array is predeclared as unsized and
1230           *    must be sized by the shader either redeclaring it with
1231           *    a size or indexing it only with integral constant
1232           *    expressions. The size determines the number and set of
1233           *    enabled cull distances and can be at most
1234           *    gl_MaxCullDistances."
1235           */
1236          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1237                           "be larger than gl_MaxCullDistances (%u)",
1238                           state->Const.MaxClipPlanes);
1239       }
1240    }
1241 }
1242 
1243 /**
1244  * Create the constant 1, of a which is appropriate for incrementing and
1245  * decrementing values of the given GLSL type.  For example, if type is vec4,
1246  * this creates a constant value of 1.0 having type float.
1247  *
1248  * If the given type is invalid for increment and decrement operators, return
1249  * a floating point 1--the error will be detected later.
1250  */
1251 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1252 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1253 {
1254    switch (type->base_type) {
1255    case GLSL_TYPE_UINT:
1256       return new(ctx) ir_constant((unsigned) 1);
1257    case GLSL_TYPE_INT:
1258       return new(ctx) ir_constant(1);
1259    default:
1260    case GLSL_TYPE_FLOAT:
1261       return new(ctx) ir_constant(1.0f);
1262    }
1263 }
1264 
1265 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1266 ast_expression::hir(exec_list *instructions,
1267                     struct _mesa_glsl_parse_state *state)
1268 {
1269    return do_hir(instructions, state, true);
1270 }
1271 
1272 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1273 ast_expression::hir_no_rvalue(exec_list *instructions,
1274                               struct _mesa_glsl_parse_state *state)
1275 {
1276    do_hir(instructions, state, false);
1277 }
1278 
1279 void
set_is_lhs(bool new_value)1280 ast_expression::set_is_lhs(bool new_value)
1281 {
1282    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1283     * if we lack an identifier we can just skip it.
1284     */
1285    if (this->primary_expression.identifier == NULL)
1286       return;
1287 
1288    this->is_lhs = new_value;
1289 
1290    /* We need to go through the subexpressions tree to cover cases like
1291     * ast_field_selection
1292     */
1293    if (this->subexpressions[0] != NULL)
1294       this->subexpressions[0]->set_is_lhs(new_value);
1295 }
1296 
1297 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1298 ast_expression::do_hir(exec_list *instructions,
1299                        struct _mesa_glsl_parse_state *state,
1300                        bool needs_rvalue)
1301 {
1302    void *ctx = state;
1303    static const int operations[AST_NUM_OPERATORS] = {
1304       -1,               /* ast_assign doesn't convert to ir_expression. */
1305       -1,               /* ast_plus doesn't convert to ir_expression. */
1306       ir_unop_neg,
1307       ir_binop_add,
1308       ir_binop_sub,
1309       ir_binop_mul,
1310       ir_binop_div,
1311       ir_binop_mod,
1312       ir_binop_lshift,
1313       ir_binop_rshift,
1314       ir_binop_less,
1315       ir_binop_greater,
1316       ir_binop_lequal,
1317       ir_binop_gequal,
1318       ir_binop_all_equal,
1319       ir_binop_any_nequal,
1320       ir_binop_bit_and,
1321       ir_binop_bit_xor,
1322       ir_binop_bit_or,
1323       ir_unop_bit_not,
1324       ir_binop_logic_and,
1325       ir_binop_logic_xor,
1326       ir_binop_logic_or,
1327       ir_unop_logic_not,
1328 
1329       /* Note: The following block of expression types actually convert
1330        * to multiple IR instructions.
1331        */
1332       ir_binop_mul,     /* ast_mul_assign */
1333       ir_binop_div,     /* ast_div_assign */
1334       ir_binop_mod,     /* ast_mod_assign */
1335       ir_binop_add,     /* ast_add_assign */
1336       ir_binop_sub,     /* ast_sub_assign */
1337       ir_binop_lshift,  /* ast_ls_assign */
1338       ir_binop_rshift,  /* ast_rs_assign */
1339       ir_binop_bit_and, /* ast_and_assign */
1340       ir_binop_bit_xor, /* ast_xor_assign */
1341       ir_binop_bit_or,  /* ast_or_assign */
1342 
1343       -1,               /* ast_conditional doesn't convert to ir_expression. */
1344       ir_binop_add,     /* ast_pre_inc. */
1345       ir_binop_sub,     /* ast_pre_dec. */
1346       ir_binop_add,     /* ast_post_inc. */
1347       ir_binop_sub,     /* ast_post_dec. */
1348       -1,               /* ast_field_selection doesn't conv to ir_expression. */
1349       -1,               /* ast_array_index doesn't convert to ir_expression. */
1350       -1,               /* ast_function_call doesn't conv to ir_expression. */
1351       -1,               /* ast_identifier doesn't convert to ir_expression. */
1352       -1,               /* ast_int_constant doesn't convert to ir_expression. */
1353       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1354       -1,               /* ast_float_constant doesn't conv to ir_expression. */
1355       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1356       -1,               /* ast_sequence doesn't convert to ir_expression. */
1357       -1,               /* ast_aggregate shouldn't ever even get here. */
1358    };
1359    ir_rvalue *result = NULL;
1360    ir_rvalue *op[3];
1361    const struct glsl_type *type, *orig_type;
1362    bool error_emitted = false;
1363    YYLTYPE loc;
1364 
1365    loc = this->get_location();
1366 
1367    switch (this->oper) {
1368    case ast_aggregate:
1369       assert(!"ast_aggregate: Should never get here.");
1370       break;
1371 
1372    case ast_assign: {
1373       this->subexpressions[0]->set_is_lhs(true);
1374       op[0] = this->subexpressions[0]->hir(instructions, state);
1375       op[1] = this->subexpressions[1]->hir(instructions, state);
1376 
1377       error_emitted =
1378          do_assignment(instructions, state,
1379                        this->subexpressions[0]->non_lvalue_description,
1380                        op[0], op[1], &result, needs_rvalue, false,
1381                        this->subexpressions[0]->get_location());
1382       break;
1383    }
1384 
1385    case ast_plus:
1386       op[0] = this->subexpressions[0]->hir(instructions, state);
1387 
1388       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389 
1390       error_emitted = type->is_error();
1391 
1392       result = op[0];
1393       break;
1394 
1395    case ast_neg:
1396       op[0] = this->subexpressions[0]->hir(instructions, state);
1397 
1398       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1399 
1400       error_emitted = type->is_error();
1401 
1402       result = new(ctx) ir_expression(operations[this->oper], type,
1403                                       op[0], NULL);
1404       break;
1405 
1406    case ast_add:
1407    case ast_sub:
1408    case ast_mul:
1409    case ast_div:
1410       op[0] = this->subexpressions[0]->hir(instructions, state);
1411       op[1] = this->subexpressions[1]->hir(instructions, state);
1412 
1413       type = arithmetic_result_type(op[0], op[1],
1414                                     (this->oper == ast_mul),
1415                                     state, & loc);
1416       error_emitted = type->is_error();
1417 
1418       result = new(ctx) ir_expression(operations[this->oper], type,
1419                                       op[0], op[1]);
1420       break;
1421 
1422    case ast_mod:
1423       op[0] = this->subexpressions[0]->hir(instructions, state);
1424       op[1] = this->subexpressions[1]->hir(instructions, state);
1425 
1426       type = modulus_result_type(op[0], op[1], state, &loc);
1427 
1428       assert(operations[this->oper] == ir_binop_mod);
1429 
1430       result = new(ctx) ir_expression(operations[this->oper], type,
1431                                       op[0], op[1]);
1432       error_emitted = type->is_error();
1433       break;
1434 
1435    case ast_lshift:
1436    case ast_rshift:
1437        if (!state->check_bitwise_operations_allowed(&loc)) {
1438           error_emitted = true;
1439        }
1440 
1441        op[0] = this->subexpressions[0]->hir(instructions, state);
1442        op[1] = this->subexpressions[1]->hir(instructions, state);
1443        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1444                                 &loc);
1445        result = new(ctx) ir_expression(operations[this->oper], type,
1446                                        op[0], op[1]);
1447        error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1448        break;
1449 
1450    case ast_less:
1451    case ast_greater:
1452    case ast_lequal:
1453    case ast_gequal:
1454       op[0] = this->subexpressions[0]->hir(instructions, state);
1455       op[1] = this->subexpressions[1]->hir(instructions, state);
1456 
1457       type = relational_result_type(op[0], op[1], state, & loc);
1458 
1459       /* The relational operators must either generate an error or result
1460        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1461        */
1462       assert(type->is_error()
1463              || ((type->base_type == GLSL_TYPE_BOOL)
1464                  && type->is_scalar()));
1465 
1466       result = new(ctx) ir_expression(operations[this->oper], type,
1467                                       op[0], op[1]);
1468       error_emitted = type->is_error();
1469       break;
1470 
1471    case ast_nequal:
1472    case ast_equal:
1473       op[0] = this->subexpressions[0]->hir(instructions, state);
1474       op[1] = this->subexpressions[1]->hir(instructions, state);
1475 
1476       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1477        *
1478        *    "The equality operators equal (==), and not equal (!=)
1479        *    operate on all types. They result in a scalar Boolean. If
1480        *    the operand types do not match, then there must be a
1481        *    conversion from Section 4.1.10 "Implicit Conversions"
1482        *    applied to one operand that can make them match, in which
1483        *    case this conversion is done."
1484        */
1485 
1486       if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1487          _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1488                          "no operation `%1$s' exists that takes a left-hand "
1489                          "operand of type 'void' or a right operand of type "
1490                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
1491          error_emitted = true;
1492       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1493            && !apply_implicit_conversion(op[1]->type, op[0], state))
1494           || (op[0]->type != op[1]->type)) {
1495          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1496                           "type", (this->oper == ast_equal) ? "==" : "!=");
1497          error_emitted = true;
1498       } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1499                  !state->check_version(120, 300, &loc,
1500                                        "array comparisons forbidden")) {
1501          error_emitted = true;
1502       } else if ((op[0]->type->contains_subroutine() ||
1503                   op[1]->type->contains_subroutine())) {
1504          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1505          error_emitted = true;
1506       } else if ((op[0]->type->contains_opaque() ||
1507                   op[1]->type->contains_opaque())) {
1508          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1509          error_emitted = true;
1510       }
1511 
1512       if (error_emitted) {
1513          result = new(ctx) ir_constant(false);
1514       } else {
1515          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1516          assert(result->type == glsl_type::bool_type);
1517       }
1518       break;
1519 
1520    case ast_bit_and:
1521    case ast_bit_xor:
1522    case ast_bit_or:
1523       op[0] = this->subexpressions[0]->hir(instructions, state);
1524       op[1] = this->subexpressions[1]->hir(instructions, state);
1525       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1526       result = new(ctx) ir_expression(operations[this->oper], type,
1527                                       op[0], op[1]);
1528       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1529       break;
1530 
1531    case ast_bit_not:
1532       op[0] = this->subexpressions[0]->hir(instructions, state);
1533 
1534       if (!state->check_bitwise_operations_allowed(&loc)) {
1535          error_emitted = true;
1536       }
1537 
1538       if (!op[0]->type->is_integer()) {
1539          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1540          error_emitted = true;
1541       }
1542 
1543       type = error_emitted ? glsl_type::error_type : op[0]->type;
1544       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1545       break;
1546 
1547    case ast_logic_and: {
1548       exec_list rhs_instructions;
1549       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1550                                          "LHS", &error_emitted);
1551       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1552                                          "RHS", &error_emitted);
1553 
1554       if (rhs_instructions.is_empty()) {
1555          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1556          type = result->type;
1557       } else {
1558          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1559                                                        "and_tmp",
1560                                                        ir_var_temporary);
1561          instructions->push_tail(tmp);
1562 
1563          ir_if *const stmt = new(ctx) ir_if(op[0]);
1564          instructions->push_tail(stmt);
1565 
1566          stmt->then_instructions.append_list(&rhs_instructions);
1567          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1568          ir_assignment *const then_assign =
1569             new(ctx) ir_assignment(then_deref, op[1]);
1570          stmt->then_instructions.push_tail(then_assign);
1571 
1572          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1573          ir_assignment *const else_assign =
1574             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1575          stmt->else_instructions.push_tail(else_assign);
1576 
1577          result = new(ctx) ir_dereference_variable(tmp);
1578          type = tmp->type;
1579       }
1580       break;
1581    }
1582 
1583    case ast_logic_or: {
1584       exec_list rhs_instructions;
1585       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586                                          "LHS", &error_emitted);
1587       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588                                          "RHS", &error_emitted);
1589 
1590       if (rhs_instructions.is_empty()) {
1591          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1592          type = result->type;
1593       } else {
1594          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1595                                                        "or_tmp",
1596                                                        ir_var_temporary);
1597          instructions->push_tail(tmp);
1598 
1599          ir_if *const stmt = new(ctx) ir_if(op[0]);
1600          instructions->push_tail(stmt);
1601 
1602          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603          ir_assignment *const then_assign =
1604             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1605          stmt->then_instructions.push_tail(then_assign);
1606 
1607          stmt->else_instructions.append_list(&rhs_instructions);
1608          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1609          ir_assignment *const else_assign =
1610             new(ctx) ir_assignment(else_deref, op[1]);
1611          stmt->else_instructions.push_tail(else_assign);
1612 
1613          result = new(ctx) ir_dereference_variable(tmp);
1614          type = tmp->type;
1615       }
1616       break;
1617    }
1618 
1619    case ast_logic_xor:
1620       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1621        *
1622        *    "The logical binary operators and (&&), or ( | | ), and
1623        *     exclusive or (^^). They operate only on two Boolean
1624        *     expressions and result in a Boolean expression."
1625        */
1626       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1627                                          &error_emitted);
1628       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1629                                          &error_emitted);
1630 
1631       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1632                                       op[0], op[1]);
1633       break;
1634 
1635    case ast_logic_not:
1636       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637                                          "operand", &error_emitted);
1638 
1639       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1640                                       op[0], NULL);
1641       break;
1642 
1643    case ast_mul_assign:
1644    case ast_div_assign:
1645    case ast_add_assign:
1646    case ast_sub_assign: {
1647       this->subexpressions[0]->set_is_lhs(true);
1648       op[0] = this->subexpressions[0]->hir(instructions, state);
1649       op[1] = this->subexpressions[1]->hir(instructions, state);
1650 
1651       orig_type = op[0]->type;
1652       type = arithmetic_result_type(op[0], op[1],
1653                                     (this->oper == ast_mul_assign),
1654                                     state, & loc);
1655 
1656       if (type != orig_type) {
1657          _mesa_glsl_error(& loc, state,
1658                           "could not implicitly convert "
1659                           "%s to %s", type->name, orig_type->name);
1660          type = glsl_type::error_type;
1661       }
1662 
1663       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1664                                                    op[0], op[1]);
1665 
1666       error_emitted =
1667          do_assignment(instructions, state,
1668                        this->subexpressions[0]->non_lvalue_description,
1669                        op[0]->clone(ctx, NULL), temp_rhs,
1670                        &result, needs_rvalue, false,
1671                        this->subexpressions[0]->get_location());
1672 
1673       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1674        * explicitly test for this because none of the binary expression
1675        * operators allow array operands either.
1676        */
1677 
1678       break;
1679    }
1680 
1681    case ast_mod_assign: {
1682       this->subexpressions[0]->set_is_lhs(true);
1683       op[0] = this->subexpressions[0]->hir(instructions, state);
1684       op[1] = this->subexpressions[1]->hir(instructions, state);
1685 
1686       orig_type = op[0]->type;
1687       type = modulus_result_type(op[0], op[1], state, &loc);
1688 
1689       if (type != orig_type) {
1690          _mesa_glsl_error(& loc, state,
1691                           "could not implicitly convert "
1692                           "%s to %s", type->name, orig_type->name);
1693          type = glsl_type::error_type;
1694       }
1695 
1696       assert(operations[this->oper] == ir_binop_mod);
1697 
1698       ir_rvalue *temp_rhs;
1699       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1700                                         op[0], op[1]);
1701 
1702       error_emitted =
1703          do_assignment(instructions, state,
1704                        this->subexpressions[0]->non_lvalue_description,
1705                        op[0]->clone(ctx, NULL), temp_rhs,
1706                        &result, needs_rvalue, false,
1707                        this->subexpressions[0]->get_location());
1708       break;
1709    }
1710 
1711    case ast_ls_assign:
1712    case ast_rs_assign: {
1713       this->subexpressions[0]->set_is_lhs(true);
1714       op[0] = this->subexpressions[0]->hir(instructions, state);
1715       op[1] = this->subexpressions[1]->hir(instructions, state);
1716       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1717                                &loc);
1718       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1719                                                    type, op[0], op[1]);
1720       error_emitted =
1721          do_assignment(instructions, state,
1722                        this->subexpressions[0]->non_lvalue_description,
1723                        op[0]->clone(ctx, NULL), temp_rhs,
1724                        &result, needs_rvalue, false,
1725                        this->subexpressions[0]->get_location());
1726       break;
1727    }
1728 
1729    case ast_and_assign:
1730    case ast_xor_assign:
1731    case ast_or_assign: {
1732       this->subexpressions[0]->set_is_lhs(true);
1733       op[0] = this->subexpressions[0]->hir(instructions, state);
1734       op[1] = this->subexpressions[1]->hir(instructions, state);
1735 
1736       orig_type = op[0]->type;
1737       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1738 
1739       if (type != orig_type) {
1740          _mesa_glsl_error(& loc, state,
1741                           "could not implicitly convert "
1742                           "%s to %s", type->name, orig_type->name);
1743          type = glsl_type::error_type;
1744       }
1745 
1746       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1747                                                    type, op[0], op[1]);
1748       error_emitted =
1749          do_assignment(instructions, state,
1750                        this->subexpressions[0]->non_lvalue_description,
1751                        op[0]->clone(ctx, NULL), temp_rhs,
1752                        &result, needs_rvalue, false,
1753                        this->subexpressions[0]->get_location());
1754       break;
1755    }
1756 
1757    case ast_conditional: {
1758       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1759        *
1760        *    "The ternary selection operator (?:). It operates on three
1761        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1762        *    first expression, which must result in a scalar Boolean."
1763        */
1764       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1765                                          "condition", &error_emitted);
1766 
1767       /* The :? operator is implemented by generating an anonymous temporary
1768        * followed by an if-statement.  The last instruction in each branch of
1769        * the if-statement assigns a value to the anonymous temporary.  This
1770        * temporary is the r-value of the expression.
1771        */
1772       exec_list then_instructions;
1773       exec_list else_instructions;
1774 
1775       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1776       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1777 
1778       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1779        *
1780        *     "The second and third expressions can be any type, as
1781        *     long their types match, or there is a conversion in
1782        *     Section 4.1.10 "Implicit Conversions" that can be applied
1783        *     to one of the expressions to make their types match. This
1784        *     resulting matching type is the type of the entire
1785        *     expression."
1786        */
1787       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1788           && !apply_implicit_conversion(op[2]->type, op[1], state))
1789           || (op[1]->type != op[2]->type)) {
1790          YYLTYPE loc = this->subexpressions[1]->get_location();
1791 
1792          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1793                           "operator must have matching types");
1794          error_emitted = true;
1795          type = glsl_type::error_type;
1796       } else {
1797          type = op[1]->type;
1798       }
1799 
1800       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1801        *
1802        *    "The second and third expressions must be the same type, but can
1803        *    be of any type other than an array."
1804        */
1805       if (type->is_array() &&
1806           !state->check_version(120, 300, &loc,
1807                                 "second and third operands of ?: operator "
1808                                 "cannot be arrays")) {
1809          error_emitted = true;
1810       }
1811 
1812       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1813        *
1814        *  "Except for array indexing, structure member selection, and
1815        *   parentheses, opaque variables are not allowed to be operands in
1816        *   expressions; such use results in a compile-time error."
1817        */
1818       if (type->contains_opaque()) {
1819          _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1820                           "of the ?: operator");
1821          error_emitted = true;
1822       }
1823 
1824       ir_constant *cond_val = op[0]->constant_expression_value();
1825 
1826       if (then_instructions.is_empty()
1827           && else_instructions.is_empty()
1828           && cond_val != NULL) {
1829          result = cond_val->value.b[0] ? op[1] : op[2];
1830       } else {
1831          /* The copy to conditional_tmp reads the whole array. */
1832          if (type->is_array()) {
1833             mark_whole_array_access(op[1]);
1834             mark_whole_array_access(op[2]);
1835          }
1836 
1837          ir_variable *const tmp =
1838             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1839          instructions->push_tail(tmp);
1840 
1841          ir_if *const stmt = new(ctx) ir_if(op[0]);
1842          instructions->push_tail(stmt);
1843 
1844          then_instructions.move_nodes_to(& stmt->then_instructions);
1845          ir_dereference *const then_deref =
1846             new(ctx) ir_dereference_variable(tmp);
1847          ir_assignment *const then_assign =
1848             new(ctx) ir_assignment(then_deref, op[1]);
1849          stmt->then_instructions.push_tail(then_assign);
1850 
1851          else_instructions.move_nodes_to(& stmt->else_instructions);
1852          ir_dereference *const else_deref =
1853             new(ctx) ir_dereference_variable(tmp);
1854          ir_assignment *const else_assign =
1855             new(ctx) ir_assignment(else_deref, op[2]);
1856          stmt->else_instructions.push_tail(else_assign);
1857 
1858          result = new(ctx) ir_dereference_variable(tmp);
1859       }
1860       break;
1861    }
1862 
1863    case ast_pre_inc:
1864    case ast_pre_dec: {
1865       this->non_lvalue_description = (this->oper == ast_pre_inc)
1866          ? "pre-increment operation" : "pre-decrement operation";
1867 
1868       op[0] = this->subexpressions[0]->hir(instructions, state);
1869       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1870 
1871       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1872 
1873       ir_rvalue *temp_rhs;
1874       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1875                                         op[0], op[1]);
1876 
1877       error_emitted =
1878          do_assignment(instructions, state,
1879                        this->subexpressions[0]->non_lvalue_description,
1880                        op[0]->clone(ctx, NULL), temp_rhs,
1881                        &result, needs_rvalue, false,
1882                        this->subexpressions[0]->get_location());
1883       break;
1884    }
1885 
1886    case ast_post_inc:
1887    case ast_post_dec: {
1888       this->non_lvalue_description = (this->oper == ast_post_inc)
1889          ? "post-increment operation" : "post-decrement operation";
1890       op[0] = this->subexpressions[0]->hir(instructions, state);
1891       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1892 
1893       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1894 
1895       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896 
1897       ir_rvalue *temp_rhs;
1898       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899                                         op[0], op[1]);
1900 
1901       /* Get a temporary of a copy of the lvalue before it's modified.
1902        * This may get thrown away later.
1903        */
1904       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1905 
1906       ir_rvalue *junk_rvalue;
1907       error_emitted =
1908          do_assignment(instructions, state,
1909                        this->subexpressions[0]->non_lvalue_description,
1910                        op[0]->clone(ctx, NULL), temp_rhs,
1911                        &junk_rvalue, false, false,
1912                        this->subexpressions[0]->get_location());
1913 
1914       break;
1915    }
1916 
1917    case ast_field_selection:
1918       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1919       break;
1920 
1921    case ast_array_index: {
1922       YYLTYPE index_loc = subexpressions[1]->get_location();
1923 
1924       /* Getting if an array is being used uninitialized is beyond what we get
1925        * from ir_value.data.assigned. Setting is_lhs as true would force to
1926        * not raise a uninitialized warning when using an array
1927        */
1928       subexpressions[0]->set_is_lhs(true);
1929       op[0] = subexpressions[0]->hir(instructions, state);
1930       op[1] = subexpressions[1]->hir(instructions, state);
1931 
1932       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1933                                             loc, index_loc);
1934 
1935       if (result->type->is_error())
1936          error_emitted = true;
1937 
1938       break;
1939    }
1940 
1941    case ast_unsized_array_dim:
1942       assert(!"ast_unsized_array_dim: Should never get here.");
1943       break;
1944 
1945    case ast_function_call:
1946       /* Should *NEVER* get here.  ast_function_call should always be handled
1947        * by ast_function_expression::hir.
1948        */
1949       assert(0);
1950       break;
1951 
1952    case ast_identifier: {
1953       /* ast_identifier can appear several places in a full abstract syntax
1954        * tree.  This particular use must be at location specified in the grammar
1955        * as 'variable_identifier'.
1956        */
1957       ir_variable *var =
1958          state->symbols->get_variable(this->primary_expression.identifier);
1959 
1960       if (var == NULL) {
1961          /* the identifier might be a subroutine name */
1962          char *sub_name;
1963          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1964          var = state->symbols->get_variable(sub_name);
1965          ralloc_free(sub_name);
1966       }
1967 
1968       if (var != NULL) {
1969          var->data.used = true;
1970          result = new(ctx) ir_dereference_variable(var);
1971 
1972          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1973              && !this->is_lhs
1974              && result->variable_referenced()->data.assigned != true
1975              && !is_gl_identifier(var->name)) {
1976             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1977                                this->primary_expression.identifier);
1978          }
1979       } else {
1980          _mesa_glsl_error(& loc, state, "`%s' undeclared",
1981                           this->primary_expression.identifier);
1982 
1983          result = ir_rvalue::error_value(ctx);
1984          error_emitted = true;
1985       }
1986       break;
1987    }
1988 
1989    case ast_int_constant:
1990       result = new(ctx) ir_constant(this->primary_expression.int_constant);
1991       break;
1992 
1993    case ast_uint_constant:
1994       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1995       break;
1996 
1997    case ast_float_constant:
1998       result = new(ctx) ir_constant(this->primary_expression.float_constant);
1999       break;
2000 
2001    case ast_bool_constant:
2002       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2003       break;
2004 
2005    case ast_double_constant:
2006       result = new(ctx) ir_constant(this->primary_expression.double_constant);
2007       break;
2008 
2009    case ast_sequence: {
2010       /* It should not be possible to generate a sequence in the AST without
2011        * any expressions in it.
2012        */
2013       assert(!this->expressions.is_empty());
2014 
2015       /* The r-value of a sequence is the last expression in the sequence.  If
2016        * the other expressions in the sequence do not have side-effects (and
2017        * therefore add instructions to the instruction list), they get dropped
2018        * on the floor.
2019        */
2020       exec_node *previous_tail = NULL;
2021       YYLTYPE previous_operand_loc = loc;
2022 
2023       foreach_list_typed (ast_node, ast, link, &this->expressions) {
2024          /* If one of the operands of comma operator does not generate any
2025           * code, we want to emit a warning.  At each pass through the loop
2026           * previous_tail will point to the last instruction in the stream
2027           * *before* processing the previous operand.  Naturally,
2028           * instructions->get_tail_raw() will point to the last instruction in
2029           * the stream *after* processing the previous operand.  If the two
2030           * pointers match, then the previous operand had no effect.
2031           *
2032           * The warning behavior here differs slightly from GCC.  GCC will
2033           * only emit a warning if none of the left-hand operands have an
2034           * effect.  However, it will emit a warning for each.  I believe that
2035           * there are some cases in C (especially with GCC extensions) where
2036           * it is useful to have an intermediate step in a sequence have no
2037           * effect, but I don't think these cases exist in GLSL.  Either way,
2038           * it would be a giant hassle to replicate that behavior.
2039           */
2040          if (previous_tail == instructions->get_tail_raw()) {
2041             _mesa_glsl_warning(&previous_operand_loc, state,
2042                                "left-hand operand of comma expression has "
2043                                "no effect");
2044          }
2045 
2046          /* The tail is directly accessed instead of using the get_tail()
2047           * method for performance reasons.  get_tail() has extra code to
2048           * return NULL when the list is empty.  We don't care about that
2049           * here, so using get_tail_raw() is fine.
2050           */
2051          previous_tail = instructions->get_tail_raw();
2052          previous_operand_loc = ast->get_location();
2053 
2054          result = ast->hir(instructions, state);
2055       }
2056 
2057       /* Any errors should have already been emitted in the loop above.
2058        */
2059       error_emitted = true;
2060       break;
2061    }
2062    }
2063    type = NULL; /* use result->type, not type. */
2064    assert(result != NULL || !needs_rvalue);
2065 
2066    if (result && result->type->is_error() && !error_emitted)
2067       _mesa_glsl_error(& loc, state, "type mismatch");
2068 
2069    return result;
2070 }
2071 
2072 bool
has_sequence_subexpression() const2073 ast_expression::has_sequence_subexpression() const
2074 {
2075    switch (this->oper) {
2076    case ast_plus:
2077    case ast_neg:
2078    case ast_bit_not:
2079    case ast_logic_not:
2080    case ast_pre_inc:
2081    case ast_pre_dec:
2082    case ast_post_inc:
2083    case ast_post_dec:
2084       return this->subexpressions[0]->has_sequence_subexpression();
2085 
2086    case ast_assign:
2087    case ast_add:
2088    case ast_sub:
2089    case ast_mul:
2090    case ast_div:
2091    case ast_mod:
2092    case ast_lshift:
2093    case ast_rshift:
2094    case ast_less:
2095    case ast_greater:
2096    case ast_lequal:
2097    case ast_gequal:
2098    case ast_nequal:
2099    case ast_equal:
2100    case ast_bit_and:
2101    case ast_bit_xor:
2102    case ast_bit_or:
2103    case ast_logic_and:
2104    case ast_logic_or:
2105    case ast_logic_xor:
2106    case ast_array_index:
2107    case ast_mul_assign:
2108    case ast_div_assign:
2109    case ast_add_assign:
2110    case ast_sub_assign:
2111    case ast_mod_assign:
2112    case ast_ls_assign:
2113    case ast_rs_assign:
2114    case ast_and_assign:
2115    case ast_xor_assign:
2116    case ast_or_assign:
2117       return this->subexpressions[0]->has_sequence_subexpression() ||
2118              this->subexpressions[1]->has_sequence_subexpression();
2119 
2120    case ast_conditional:
2121       return this->subexpressions[0]->has_sequence_subexpression() ||
2122              this->subexpressions[1]->has_sequence_subexpression() ||
2123              this->subexpressions[2]->has_sequence_subexpression();
2124 
2125    case ast_sequence:
2126       return true;
2127 
2128    case ast_field_selection:
2129    case ast_identifier:
2130    case ast_int_constant:
2131    case ast_uint_constant:
2132    case ast_float_constant:
2133    case ast_bool_constant:
2134    case ast_double_constant:
2135       return false;
2136 
2137    case ast_aggregate:
2138       return false;
2139 
2140    case ast_function_call:
2141       unreachable("should be handled by ast_function_expression::hir");
2142 
2143    case ast_unsized_array_dim:
2144       unreachable("ast_unsized_array_dim: Should never get here.");
2145    }
2146 
2147    return false;
2148 }
2149 
2150 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2151 ast_expression_statement::hir(exec_list *instructions,
2152                               struct _mesa_glsl_parse_state *state)
2153 {
2154    /* It is possible to have expression statements that don't have an
2155     * expression.  This is the solitary semicolon:
2156     *
2157     * for (i = 0; i < 5; i++)
2158     *     ;
2159     *
2160     * In this case the expression will be NULL.  Test for NULL and don't do
2161     * anything in that case.
2162     */
2163    if (expression != NULL)
2164       expression->hir_no_rvalue(instructions, state);
2165 
2166    /* Statements do not have r-values.
2167     */
2168    return NULL;
2169 }
2170 
2171 
2172 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2173 ast_compound_statement::hir(exec_list *instructions,
2174                             struct _mesa_glsl_parse_state *state)
2175 {
2176    if (new_scope)
2177       state->symbols->push_scope();
2178 
2179    foreach_list_typed (ast_node, ast, link, &this->statements)
2180       ast->hir(instructions, state);
2181 
2182    if (new_scope)
2183       state->symbols->pop_scope();
2184 
2185    /* Compound statements do not have r-values.
2186     */
2187    return NULL;
2188 }
2189 
2190 /**
2191  * Evaluate the given exec_node (which should be an ast_node representing
2192  * a single array dimension) and return its integer value.
2193  */
2194 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2195 process_array_size(exec_node *node,
2196                    struct _mesa_glsl_parse_state *state)
2197 {
2198    exec_list dummy_instructions;
2199 
2200    ast_node *array_size = exec_node_data(ast_node, node, link);
2201 
2202    /**
2203     * Dimensions other than the outermost dimension can by unsized if they
2204     * are immediately sized by a constructor or initializer.
2205     */
2206    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2207       return 0;
2208 
2209    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2210    YYLTYPE loc = array_size->get_location();
2211 
2212    if (ir == NULL) {
2213       _mesa_glsl_error(& loc, state,
2214                        "array size could not be resolved");
2215       return 0;
2216    }
2217 
2218    if (!ir->type->is_integer()) {
2219       _mesa_glsl_error(& loc, state,
2220                        "array size must be integer type");
2221       return 0;
2222    }
2223 
2224    if (!ir->type->is_scalar()) {
2225       _mesa_glsl_error(& loc, state,
2226                        "array size must be scalar type");
2227       return 0;
2228    }
2229 
2230    ir_constant *const size = ir->constant_expression_value();
2231    if (size == NULL ||
2232        (state->is_version(120, 300) &&
2233         array_size->has_sequence_subexpression())) {
2234       _mesa_glsl_error(& loc, state, "array size must be a "
2235                        "constant valued expression");
2236       return 0;
2237    }
2238 
2239    if (size->value.i[0] <= 0) {
2240       _mesa_glsl_error(& loc, state, "array size must be > 0");
2241       return 0;
2242    }
2243 
2244    assert(size->type == ir->type);
2245 
2246    /* If the array size is const (and we've verified that
2247     * it is) then no instructions should have been emitted
2248     * when we converted it to HIR. If they were emitted,
2249     * then either the array size isn't const after all, or
2250     * we are emitting unnecessary instructions.
2251     */
2252    assert(dummy_instructions.is_empty());
2253 
2254    return size->value.u[0];
2255 }
2256 
2257 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2258 process_array_type(YYLTYPE *loc, const glsl_type *base,
2259                    ast_array_specifier *array_specifier,
2260                    struct _mesa_glsl_parse_state *state)
2261 {
2262    const glsl_type *array_type = base;
2263 
2264    if (array_specifier != NULL) {
2265       if (base->is_array()) {
2266 
2267          /* From page 19 (page 25) of the GLSL 1.20 spec:
2268           *
2269           * "Only one-dimensional arrays may be declared."
2270           */
2271          if (!state->check_arrays_of_arrays_allowed(loc)) {
2272             return glsl_type::error_type;
2273          }
2274       }
2275 
2276       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2277            !node->is_head_sentinel(); node = node->prev) {
2278          unsigned array_size = process_array_size(node, state);
2279          array_type = glsl_type::get_array_instance(array_type, array_size);
2280       }
2281    }
2282 
2283    return array_type;
2284 }
2285 
2286 static bool
precision_qualifier_allowed(const glsl_type * type)2287 precision_qualifier_allowed(const glsl_type *type)
2288 {
2289    /* Precision qualifiers apply to floating point, integer and opaque
2290     * types.
2291     *
2292     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2293     *    "Any floating point or any integer declaration can have the type
2294     *    preceded by one of these precision qualifiers [...] Literal
2295     *    constants do not have precision qualifiers. Neither do Boolean
2296     *    variables.
2297     *
2298     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2299     * spec also says:
2300     *
2301     *     "Precision qualifiers are added for code portability with OpenGL
2302     *     ES, not for functionality. They have the same syntax as in OpenGL
2303     *     ES."
2304     *
2305     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2306     *
2307     *     "uniform lowp sampler2D sampler;
2308     *     highp vec2 coord;
2309     *     ...
2310     *     lowp vec4 col = texture2D (sampler, coord);
2311     *                                            // texture2D returns lowp"
2312     *
2313     * From this, we infer that GLSL 1.30 (and later) should allow precision
2314     * qualifiers on sampler types just like float and integer types.
2315     */
2316    const glsl_type *const t = type->without_array();
2317 
2318    return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2319           !t->is_record();
2320 }
2321 
2322 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2323 ast_type_specifier::glsl_type(const char **name,
2324                               struct _mesa_glsl_parse_state *state) const
2325 {
2326    const struct glsl_type *type;
2327 
2328    type = state->symbols->get_type(this->type_name);
2329    *name = this->type_name;
2330 
2331    YYLTYPE loc = this->get_location();
2332    type = process_array_type(&loc, type, this->array_specifier, state);
2333 
2334    return type;
2335 }
2336 
2337 /**
2338  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2339  *
2340  * "The precision statement
2341  *
2342  *    precision precision-qualifier type;
2343  *
2344  *  can be used to establish a default precision qualifier. The type field can
2345  *  be either int or float or any of the sampler types, (...) If type is float,
2346  *  the directive applies to non-precision-qualified floating point type
2347  *  (scalar, vector, and matrix) declarations. If type is int, the directive
2348  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2349  *  and unsigned) declarations."
2350  *
2351  * We use the symbol table to keep the values of the default precisions for
2352  * each 'type' in each scope and we use the 'type' string from the precision
2353  * statement as key in the symbol table. When we want to retrieve the default
2354  * precision associated with a given glsl_type we need to know the type string
2355  * associated with it. This is what this function returns.
2356  */
2357 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2358 get_type_name_for_precision_qualifier(const glsl_type *type)
2359 {
2360    switch (type->base_type) {
2361    case GLSL_TYPE_FLOAT:
2362       return "float";
2363    case GLSL_TYPE_UINT:
2364    case GLSL_TYPE_INT:
2365       return "int";
2366    case GLSL_TYPE_ATOMIC_UINT:
2367       return "atomic_uint";
2368    case GLSL_TYPE_IMAGE:
2369    /* fallthrough */
2370    case GLSL_TYPE_SAMPLER: {
2371       const unsigned type_idx =
2372          type->sampler_array + 2 * type->sampler_shadow;
2373       const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2374       assert(type_idx < 4);
2375       switch (type->sampled_type) {
2376       case GLSL_TYPE_FLOAT:
2377          switch (type->sampler_dimensionality) {
2378          case GLSL_SAMPLER_DIM_1D: {
2379             assert(type->base_type == GLSL_TYPE_SAMPLER);
2380             static const char *const names[4] = {
2381               "sampler1D", "sampler1DArray",
2382               "sampler1DShadow", "sampler1DArrayShadow"
2383             };
2384             return names[type_idx];
2385          }
2386          case GLSL_SAMPLER_DIM_2D: {
2387             static const char *const names[8] = {
2388               "sampler2D", "sampler2DArray",
2389               "sampler2DShadow", "sampler2DArrayShadow",
2390               "image2D", "image2DArray", NULL, NULL
2391             };
2392             return names[offset + type_idx];
2393          }
2394          case GLSL_SAMPLER_DIM_3D: {
2395             static const char *const names[8] = {
2396               "sampler3D", NULL, NULL, NULL,
2397               "image3D", NULL, NULL, NULL
2398             };
2399             return names[offset + type_idx];
2400          }
2401          case GLSL_SAMPLER_DIM_CUBE: {
2402             static const char *const names[8] = {
2403               "samplerCube", "samplerCubeArray",
2404               "samplerCubeShadow", "samplerCubeArrayShadow",
2405               "imageCube", NULL, NULL, NULL
2406             };
2407             return names[offset + type_idx];
2408          }
2409          case GLSL_SAMPLER_DIM_MS: {
2410             assert(type->base_type == GLSL_TYPE_SAMPLER);
2411             static const char *const names[4] = {
2412               "sampler2DMS", "sampler2DMSArray", NULL, NULL
2413             };
2414             return names[type_idx];
2415          }
2416          case GLSL_SAMPLER_DIM_RECT: {
2417             assert(type->base_type == GLSL_TYPE_SAMPLER);
2418             static const char *const names[4] = {
2419               "samplerRect", NULL, "samplerRectShadow", NULL
2420             };
2421             return names[type_idx];
2422          }
2423          case GLSL_SAMPLER_DIM_BUF: {
2424             static const char *const names[8] = {
2425               "samplerBuffer", NULL, NULL, NULL,
2426               "imageBuffer", NULL, NULL, NULL
2427             };
2428             return names[offset + type_idx];
2429          }
2430          case GLSL_SAMPLER_DIM_EXTERNAL: {
2431             assert(type->base_type == GLSL_TYPE_SAMPLER);
2432             static const char *const names[4] = {
2433               "samplerExternalOES", NULL, NULL, NULL
2434             };
2435             return names[type_idx];
2436          }
2437          default:
2438             unreachable("Unsupported sampler/image dimensionality");
2439          } /* sampler/image float dimensionality */
2440          break;
2441       case GLSL_TYPE_INT:
2442          switch (type->sampler_dimensionality) {
2443          case GLSL_SAMPLER_DIM_1D: {
2444             assert(type->base_type == GLSL_TYPE_SAMPLER);
2445             static const char *const names[4] = {
2446               "isampler1D", "isampler1DArray", NULL, NULL
2447             };
2448             return names[type_idx];
2449          }
2450          case GLSL_SAMPLER_DIM_2D: {
2451             static const char *const names[8] = {
2452               "isampler2D", "isampler2DArray", NULL, NULL,
2453               "iimage2D", "iimage2DArray", NULL, NULL
2454             };
2455             return names[offset + type_idx];
2456          }
2457          case GLSL_SAMPLER_DIM_3D: {
2458             static const char *const names[8] = {
2459               "isampler3D", NULL, NULL, NULL,
2460               "iimage3D", NULL, NULL, NULL
2461             };
2462             return names[offset + type_idx];
2463          }
2464          case GLSL_SAMPLER_DIM_CUBE: {
2465             static const char *const names[8] = {
2466               "isamplerCube", "isamplerCubeArray", NULL, NULL,
2467               "iimageCube", NULL, NULL, NULL
2468             };
2469             return names[offset + type_idx];
2470          }
2471          case GLSL_SAMPLER_DIM_MS: {
2472             assert(type->base_type == GLSL_TYPE_SAMPLER);
2473             static const char *const names[4] = {
2474               "isampler2DMS", "isampler2DMSArray", NULL, NULL
2475             };
2476             return names[type_idx];
2477          }
2478          case GLSL_SAMPLER_DIM_RECT: {
2479             assert(type->base_type == GLSL_TYPE_SAMPLER);
2480             static const char *const names[4] = {
2481               "isamplerRect", NULL, "isamplerRectShadow", NULL
2482             };
2483             return names[type_idx];
2484          }
2485          case GLSL_SAMPLER_DIM_BUF: {
2486             static const char *const names[8] = {
2487               "isamplerBuffer", NULL, NULL, NULL,
2488               "iimageBuffer", NULL, NULL, NULL
2489             };
2490             return names[offset + type_idx];
2491          }
2492          default:
2493             unreachable("Unsupported isampler/iimage dimensionality");
2494          } /* sampler/image int dimensionality */
2495          break;
2496       case GLSL_TYPE_UINT:
2497          switch (type->sampler_dimensionality) {
2498          case GLSL_SAMPLER_DIM_1D: {
2499             assert(type->base_type == GLSL_TYPE_SAMPLER);
2500             static const char *const names[4] = {
2501               "usampler1D", "usampler1DArray", NULL, NULL
2502             };
2503             return names[type_idx];
2504          }
2505          case GLSL_SAMPLER_DIM_2D: {
2506             static const char *const names[8] = {
2507               "usampler2D", "usampler2DArray", NULL, NULL,
2508               "uimage2D", "uimage2DArray", NULL, NULL
2509             };
2510             return names[offset + type_idx];
2511          }
2512          case GLSL_SAMPLER_DIM_3D: {
2513             static const char *const names[8] = {
2514               "usampler3D", NULL, NULL, NULL,
2515               "uimage3D", NULL, NULL, NULL
2516             };
2517             return names[offset + type_idx];
2518          }
2519          case GLSL_SAMPLER_DIM_CUBE: {
2520             static const char *const names[8] = {
2521               "usamplerCube", "usamplerCubeArray", NULL, NULL,
2522               "uimageCube", NULL, NULL, NULL
2523             };
2524             return names[offset + type_idx];
2525          }
2526          case GLSL_SAMPLER_DIM_MS: {
2527             assert(type->base_type == GLSL_TYPE_SAMPLER);
2528             static const char *const names[4] = {
2529               "usampler2DMS", "usampler2DMSArray", NULL, NULL
2530             };
2531             return names[type_idx];
2532          }
2533          case GLSL_SAMPLER_DIM_RECT: {
2534             assert(type->base_type == GLSL_TYPE_SAMPLER);
2535             static const char *const names[4] = {
2536               "usamplerRect", NULL, "usamplerRectShadow", NULL
2537             };
2538             return names[type_idx];
2539          }
2540          case GLSL_SAMPLER_DIM_BUF: {
2541             static const char *const names[8] = {
2542               "usamplerBuffer", NULL, NULL, NULL,
2543               "uimageBuffer", NULL, NULL, NULL
2544             };
2545             return names[offset + type_idx];
2546          }
2547          default:
2548             unreachable("Unsupported usampler/uimage dimensionality");
2549          } /* sampler/image uint dimensionality */
2550          break;
2551       default:
2552          unreachable("Unsupported sampler/image type");
2553       } /* sampler/image type */
2554       break;
2555    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2556    break;
2557    default:
2558       unreachable("Unsupported type");
2559    } /* base type */
2560 }
2561 
2562 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2563 select_gles_precision(unsigned qual_precision,
2564                       const glsl_type *type,
2565                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2566 {
2567    /* Precision qualifiers do not have any meaning in Desktop GLSL.
2568     * In GLES we take the precision from the type qualifier if present,
2569     * otherwise, if the type of the variable allows precision qualifiers at
2570     * all, we look for the default precision qualifier for that type in the
2571     * current scope.
2572     */
2573    assert(state->es_shader);
2574 
2575    unsigned precision = GLSL_PRECISION_NONE;
2576    if (qual_precision) {
2577       precision = qual_precision;
2578    } else if (precision_qualifier_allowed(type)) {
2579       const char *type_name =
2580          get_type_name_for_precision_qualifier(type->without_array());
2581       assert(type_name != NULL);
2582 
2583       precision =
2584          state->symbols->get_default_precision_qualifier(type_name);
2585       if (precision == ast_precision_none) {
2586          _mesa_glsl_error(loc, state,
2587                           "No precision specified in this scope for type `%s'",
2588                           type->name);
2589       }
2590    }
2591 
2592 
2593    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2594     *
2595     *    "The default precision of all atomic types is highp. It is an error to
2596     *    declare an atomic type with a different precision or to specify the
2597     *    default precision for an atomic type to be lowp or mediump."
2598     */
2599    if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2600        precision != ast_precision_high) {
2601       _mesa_glsl_error(loc, state,
2602                        "atomic_uint can only have highp precision qualifier");
2603    }
2604 
2605    return precision;
2606 }
2607 
2608 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2609 ast_fully_specified_type::glsl_type(const char **name,
2610                                     struct _mesa_glsl_parse_state *state) const
2611 {
2612    return this->specifier->glsl_type(name, state);
2613 }
2614 
2615 /**
2616  * Determine whether a toplevel variable declaration declares a varying.  This
2617  * function operates by examining the variable's mode and the shader target,
2618  * so it correctly identifies linkage variables regardless of whether they are
2619  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2620  *
2621  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2622  * this function will produce undefined results.
2623  */
2624 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2625 is_varying_var(ir_variable *var, gl_shader_stage target)
2626 {
2627    switch (target) {
2628    case MESA_SHADER_VERTEX:
2629       return var->data.mode == ir_var_shader_out;
2630    case MESA_SHADER_FRAGMENT:
2631       return var->data.mode == ir_var_shader_in;
2632    default:
2633       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2634    }
2635 }
2636 
2637 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2638 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2639 {
2640    if (is_varying_var(var, state->stage))
2641       return true;
2642 
2643    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2644     * "Only variables output from a vertex shader can be candidates
2645     * for invariance".
2646     */
2647    if (!state->is_version(130, 0))
2648       return false;
2649 
2650    /*
2651     * Later specs remove this language - so allowed invariant
2652     * on fragment shader outputs as well.
2653     */
2654    if (state->stage == MESA_SHADER_FRAGMENT &&
2655        var->data.mode == ir_var_shader_out)
2656       return true;
2657    return false;
2658 }
2659 
2660 /**
2661  * Matrix layout qualifiers are only allowed on certain types
2662  */
2663 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2664 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2665                                 YYLTYPE *loc,
2666                                 const glsl_type *type,
2667                                 ir_variable *var)
2668 {
2669    if (var && !var->is_in_buffer_block()) {
2670       /* Layout qualifiers may only apply to interface blocks and fields in
2671        * them.
2672        */
2673       _mesa_glsl_error(loc, state,
2674                        "uniform block layout qualifiers row_major and "
2675                        "column_major may not be applied to variables "
2676                        "outside of uniform blocks");
2677    } else if (!type->without_array()->is_matrix()) {
2678       /* The OpenGL ES 3.0 conformance tests did not originally allow
2679        * matrix layout qualifiers on non-matrices.  However, the OpenGL
2680        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2681        * amended to specifically allow these layouts on all types.  Emit
2682        * a warning so that people know their code may not be portable.
2683        */
2684       _mesa_glsl_warning(loc, state,
2685                          "uniform block layout qualifiers row_major and "
2686                          "column_major applied to non-matrix types may "
2687                          "be rejected by older compilers");
2688    }
2689 }
2690 
2691 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2692 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2693                               struct _mesa_glsl_parse_state *state,
2694                               unsigned xfb_buffer) {
2695    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2696       _mesa_glsl_error(loc, state,
2697                        "invalid xfb_buffer specified %d is larger than "
2698                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2699                        xfb_buffer,
2700                        state->Const.MaxTransformFeedbackBuffers - 1);
2701       return false;
2702    }
2703 
2704    return true;
2705 }
2706 
2707 /* From the ARB_enhanced_layouts spec:
2708  *
2709  *    "Variables and block members qualified with *xfb_offset* can be
2710  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2711  *    The offset must be a multiple of the size of the first component of
2712  *    the first qualified variable or block member, or a compile-time error
2713  *    results.  Further, if applied to an aggregate containing a double,
2714  *    the offset must also be a multiple of 8, and the space taken in the
2715  *    buffer will be a multiple of 8.
2716  */
2717 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2718 validate_xfb_offset_qualifier(YYLTYPE *loc,
2719                               struct _mesa_glsl_parse_state *state,
2720                               int xfb_offset, const glsl_type *type,
2721                               unsigned component_size) {
2722   const glsl_type *t_without_array = type->without_array();
2723 
2724    if (xfb_offset != -1 && type->is_unsized_array()) {
2725       _mesa_glsl_error(loc, state,
2726                        "xfb_offset can't be used with unsized arrays.");
2727       return false;
2728    }
2729 
2730    /* Make sure nested structs don't contain unsized arrays, and validate
2731     * any xfb_offsets on interface members.
2732     */
2733    if (t_without_array->is_record() || t_without_array->is_interface())
2734       for (unsigned int i = 0; i < t_without_array->length; i++) {
2735          const glsl_type *member_t = t_without_array->fields.structure[i].type;
2736 
2737          /* When the interface block doesn't have an xfb_offset qualifier then
2738           * we apply the component size rules at the member level.
2739           */
2740          if (xfb_offset == -1)
2741             component_size = member_t->contains_double() ? 8 : 4;
2742 
2743          int xfb_offset = t_without_array->fields.structure[i].offset;
2744          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2745                                        component_size);
2746       }
2747 
2748   /* Nested structs or interface block without offset may not have had an
2749    * offset applied yet so return.
2750    */
2751    if (xfb_offset == -1) {
2752      return true;
2753    }
2754 
2755    if (xfb_offset % component_size) {
2756       _mesa_glsl_error(loc, state,
2757                        "invalid qualifier xfb_offset=%d must be a multiple "
2758                        "of the first component size of the first qualified "
2759                        "variable or block member. Or double if an aggregate "
2760                        "that contains a double (%d).",
2761                        xfb_offset, component_size);
2762       return false;
2763    }
2764 
2765    return true;
2766 }
2767 
2768 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)2769 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2770                           unsigned stream)
2771 {
2772    if (stream >= state->ctx->Const.MaxVertexStreams) {
2773       _mesa_glsl_error(loc, state,
2774                        "invalid stream specified %d is larger than "
2775                        "MAX_VERTEX_STREAMS - 1 (%d).",
2776                        stream, state->ctx->Const.MaxVertexStreams - 1);
2777       return false;
2778    }
2779 
2780    return true;
2781 }
2782 
2783 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)2784 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2785                        YYLTYPE *loc,
2786                        ir_variable *var,
2787                        const glsl_type *type,
2788                        const ast_type_qualifier *qual)
2789 {
2790    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2791       _mesa_glsl_error(loc, state,
2792                        "the \"binding\" qualifier only applies to uniforms and "
2793                        "shader storage buffer objects");
2794       return;
2795    }
2796 
2797    unsigned qual_binding;
2798    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2799                                    &qual_binding)) {
2800       return;
2801    }
2802 
2803    const struct gl_context *const ctx = state->ctx;
2804    unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2805    unsigned max_index = qual_binding + elements - 1;
2806    const glsl_type *base_type = type->without_array();
2807 
2808    if (base_type->is_interface()) {
2809       /* UBOs.  From page 60 of the GLSL 4.20 specification:
2810        * "If the binding point for any uniform block instance is less than zero,
2811        *  or greater than or equal to the implementation-dependent maximum
2812        *  number of uniform buffer bindings, a compilation error will occur.
2813        *  When the binding identifier is used with a uniform block instanced as
2814        *  an array of size N, all elements of the array from binding through
2815        *  binding + N – 1 must be within this range."
2816        *
2817        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2818        */
2819       if (qual->flags.q.uniform &&
2820          max_index >= ctx->Const.MaxUniformBufferBindings) {
2821          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2822                           "the maximum number of UBO binding points (%d)",
2823                           qual_binding, elements,
2824                           ctx->Const.MaxUniformBufferBindings);
2825          return;
2826       }
2827 
2828       /* SSBOs. From page 67 of the GLSL 4.30 specification:
2829        * "If the binding point for any uniform or shader storage block instance
2830        *  is less than zero, or greater than or equal to the
2831        *  implementation-dependent maximum number of uniform buffer bindings, a
2832        *  compile-time error will occur. When the binding identifier is used
2833        *  with a uniform or shader storage block instanced as an array of size
2834        *  N, all elements of the array from binding through binding + N – 1 must
2835        *  be within this range."
2836        */
2837       if (qual->flags.q.buffer &&
2838          max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2839          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2840                           "the maximum number of SSBO binding points (%d)",
2841                           qual_binding, elements,
2842                           ctx->Const.MaxShaderStorageBufferBindings);
2843          return;
2844       }
2845    } else if (base_type->is_sampler()) {
2846       /* Samplers.  From page 63 of the GLSL 4.20 specification:
2847        * "If the binding is less than zero, or greater than or equal to the
2848        *  implementation-dependent maximum supported number of units, a
2849        *  compilation error will occur. When the binding identifier is used
2850        *  with an array of size N, all elements of the array from binding
2851        *  through binding + N - 1 must be within this range."
2852        */
2853       unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2854 
2855       if (max_index >= limit) {
2856          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2857                           "exceeds the maximum number of texture image units "
2858                           "(%u)", qual_binding, elements, limit);
2859 
2860          return;
2861       }
2862    } else if (base_type->contains_atomic()) {
2863       assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2864       if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2865          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2866                           " maximum number of atomic counter buffer bindings"
2867                           "(%u)", qual_binding,
2868                           ctx->Const.MaxAtomicBufferBindings);
2869 
2870          return;
2871       }
2872    } else if ((state->is_version(420, 310) ||
2873                state->ARB_shading_language_420pack_enable) &&
2874               base_type->is_image()) {
2875       assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2876       if (max_index >= ctx->Const.MaxImageUnits) {
2877          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2878                           " maximum number of image units (%d)", max_index,
2879                           ctx->Const.MaxImageUnits);
2880          return;
2881       }
2882 
2883    } else {
2884       _mesa_glsl_error(loc, state,
2885                        "the \"binding\" qualifier only applies to uniform "
2886                        "blocks, opaque variables, or arrays thereof");
2887       return;
2888    }
2889 
2890    var->data.explicit_binding = true;
2891    var->data.binding = qual_binding;
2892 
2893    return;
2894 }
2895 
2896 
2897 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)2898 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2899                                  YYLTYPE *loc,
2900                                  const glsl_interp_mode interpolation,
2901                                  const struct ast_type_qualifier *qual,
2902                                  const struct glsl_type *var_type,
2903                                  ir_variable_mode mode)
2904 {
2905    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2906     * not to vertex shader inputs nor fragment shader outputs.
2907     *
2908     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2909     *    "Outputs from a vertex shader (out) and inputs to a fragment
2910     *    shader (in) can be further qualified with one or more of these
2911     *    interpolation qualifiers"
2912     *    ...
2913     *    "These interpolation qualifiers may only precede the qualifiers in,
2914     *    centroid in, out, or centroid out in a declaration. They do not apply
2915     *    to the deprecated storage qualifiers varying or centroid
2916     *    varying. They also do not apply to inputs into a vertex shader or
2917     *    outputs from a fragment shader."
2918     *
2919     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2920     *    "Outputs from a shader (out) and inputs to a shader (in) can be
2921     *    further qualified with one of these interpolation qualifiers."
2922     *    ...
2923     *    "These interpolation qualifiers may only precede the qualifiers
2924     *    in, centroid in, out, or centroid out in a declaration. They do
2925     *    not apply to inputs into a vertex shader or outputs from a
2926     *    fragment shader."
2927     */
2928    if (state->is_version(130, 300)
2929        && interpolation != INTERP_MODE_NONE) {
2930       const char *i = interpolation_string(interpolation);
2931       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2932          _mesa_glsl_error(loc, state,
2933                           "interpolation qualifier `%s' can only be applied to "
2934                           "shader inputs or outputs.", i);
2935 
2936       switch (state->stage) {
2937       case MESA_SHADER_VERTEX:
2938          if (mode == ir_var_shader_in) {
2939             _mesa_glsl_error(loc, state,
2940                              "interpolation qualifier '%s' cannot be applied to "
2941                              "vertex shader inputs", i);
2942          }
2943          break;
2944       case MESA_SHADER_FRAGMENT:
2945          if (mode == ir_var_shader_out) {
2946             _mesa_glsl_error(loc, state,
2947                              "interpolation qualifier '%s' cannot be applied to "
2948                              "fragment shader outputs", i);
2949          }
2950          break;
2951       default:
2952          break;
2953       }
2954    }
2955 
2956    /* Interpolation qualifiers cannot be applied to 'centroid' and
2957     * 'centroid varying'.
2958     *
2959     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2960     *    "interpolation qualifiers may only precede the qualifiers in,
2961     *    centroid in, out, or centroid out in a declaration. They do not apply
2962     *    to the deprecated storage qualifiers varying or centroid varying."
2963     *
2964     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2965     */
2966    if (state->is_version(130, 0)
2967        && interpolation != INTERP_MODE_NONE
2968        && qual->flags.q.varying) {
2969 
2970       const char *i = interpolation_string(interpolation);
2971       const char *s;
2972       if (qual->flags.q.centroid)
2973          s = "centroid varying";
2974       else
2975          s = "varying";
2976 
2977       _mesa_glsl_error(loc, state,
2978                        "qualifier '%s' cannot be applied to the "
2979                        "deprecated storage qualifier '%s'", i, s);
2980    }
2981 
2982    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
2983     * so must integer vertex outputs.
2984     *
2985     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2986     *    "Fragment shader inputs that are signed or unsigned integers or
2987     *    integer vectors must be qualified with the interpolation qualifier
2988     *    flat."
2989     *
2990     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2991     *    "Fragment shader inputs that are, or contain, signed or unsigned
2992     *    integers or integer vectors must be qualified with the
2993     *    interpolation qualifier flat."
2994     *
2995     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2996     *    "Vertex shader outputs that are, or contain, signed or unsigned
2997     *    integers or integer vectors must be qualified with the
2998     *    interpolation qualifier flat."
2999     *
3000     * Note that prior to GLSL 1.50, this requirement applied to vertex
3001     * outputs rather than fragment inputs.  That creates problems in the
3002     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3003     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3004     * apply the restriction to both vertex outputs and fragment inputs.
3005     *
3006     * Note also that the desktop GLSL specs are missing the text "or
3007     * contain"; this is presumably an oversight, since there is no
3008     * reasonable way to interpolate a fragment shader input that contains
3009     * an integer. See Khronos bug #15671.
3010     */
3011    if (state->is_version(130, 300)
3012        && var_type->contains_integer()
3013        && interpolation != INTERP_MODE_FLAT
3014        && state->stage == MESA_SHADER_FRAGMENT
3015        && mode == ir_var_shader_in) {
3016       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3017                        "an integer, then it must be qualified with 'flat'");
3018    }
3019 
3020    /* Double fragment inputs must be qualified with 'flat'.
3021     *
3022     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3023     *    "This extension does not support interpolation of double-precision
3024     *    values; doubles used as fragment shader inputs must be qualified as
3025     *    "flat"."
3026     *
3027     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3028     *    "Fragment shader inputs that are signed or unsigned integers, integer
3029     *    vectors, or any double-precision floating-point type must be
3030     *    qualified with the interpolation qualifier flat."
3031     *
3032     * Note that the GLSL specs are missing the text "or contain"; this is
3033     * presumably an oversight. See Khronos bug #15671.
3034     *
3035     * The 'double' type does not exist in GLSL ES so far.
3036     */
3037    if (state->has_double()
3038        && var_type->contains_double()
3039        && interpolation != INTERP_MODE_FLAT
3040        && state->stage == MESA_SHADER_FRAGMENT
3041        && mode == ir_var_shader_in) {
3042       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3043                        "a double, then it must be qualified with 'flat'");
3044    }
3045 }
3046 
3047 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3048 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3049                                   const struct glsl_type *var_type,
3050                                   ir_variable_mode mode,
3051                                   struct _mesa_glsl_parse_state *state,
3052                                   YYLTYPE *loc)
3053 {
3054    glsl_interp_mode interpolation;
3055    if (qual->flags.q.flat)
3056       interpolation = INTERP_MODE_FLAT;
3057    else if (qual->flags.q.noperspective)
3058       interpolation = INTERP_MODE_NOPERSPECTIVE;
3059    else if (qual->flags.q.smooth)
3060       interpolation = INTERP_MODE_SMOOTH;
3061    else if (state->es_shader &&
3062             ((mode == ir_var_shader_in &&
3063               state->stage != MESA_SHADER_VERTEX) ||
3064              (mode == ir_var_shader_out &&
3065               state->stage != MESA_SHADER_FRAGMENT)))
3066       /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3067        *
3068        *    "When no interpolation qualifier is present, smooth interpolation
3069        *    is used."
3070        */
3071       interpolation = INTERP_MODE_SMOOTH;
3072    else
3073       interpolation = INTERP_MODE_NONE;
3074 
3075    validate_interpolation_qualifier(state, loc,
3076                                     interpolation,
3077                                     qual, var_type, mode);
3078 
3079    return interpolation;
3080 }
3081 
3082 
3083 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3084 apply_explicit_location(const struct ast_type_qualifier *qual,
3085                         ir_variable *var,
3086                         struct _mesa_glsl_parse_state *state,
3087                         YYLTYPE *loc)
3088 {
3089    bool fail = false;
3090 
3091    unsigned qual_location;
3092    if (!process_qualifier_constant(state, loc, "location", qual->location,
3093                                    &qual_location)) {
3094       return;
3095    }
3096 
3097    /* Checks for GL_ARB_explicit_uniform_location. */
3098    if (qual->flags.q.uniform) {
3099       if (!state->check_explicit_uniform_location_allowed(loc, var))
3100          return;
3101 
3102       const struct gl_context *const ctx = state->ctx;
3103       unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3104 
3105       if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3106          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3107                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3108                           ctx->Const.MaxUserAssignableUniformLocations);
3109          return;
3110       }
3111 
3112       var->data.explicit_location = true;
3113       var->data.location = qual_location;
3114       return;
3115    }
3116 
3117    /* Between GL_ARB_explicit_attrib_location an
3118     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3119     * stage can be assigned explicit locations.  The checking here associates
3120     * the correct extension with the correct stage's input / output:
3121     *
3122     *                     input            output
3123     *                     -----            ------
3124     * vertex              explicit_loc     sso
3125     * tess control        sso              sso
3126     * tess eval           sso              sso
3127     * geometry            sso              sso
3128     * fragment            sso              explicit_loc
3129     */
3130    switch (state->stage) {
3131    case MESA_SHADER_VERTEX:
3132       if (var->data.mode == ir_var_shader_in) {
3133          if (!state->check_explicit_attrib_location_allowed(loc, var))
3134             return;
3135 
3136          break;
3137       }
3138 
3139       if (var->data.mode == ir_var_shader_out) {
3140          if (!state->check_separate_shader_objects_allowed(loc, var))
3141             return;
3142 
3143          break;
3144       }
3145 
3146       fail = true;
3147       break;
3148 
3149    case MESA_SHADER_TESS_CTRL:
3150    case MESA_SHADER_TESS_EVAL:
3151    case MESA_SHADER_GEOMETRY:
3152       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3153          if (!state->check_separate_shader_objects_allowed(loc, var))
3154             return;
3155 
3156          break;
3157       }
3158 
3159       fail = true;
3160       break;
3161 
3162    case MESA_SHADER_FRAGMENT:
3163       if (var->data.mode == ir_var_shader_in) {
3164          if (!state->check_separate_shader_objects_allowed(loc, var))
3165             return;
3166 
3167          break;
3168       }
3169 
3170       if (var->data.mode == ir_var_shader_out) {
3171          if (!state->check_explicit_attrib_location_allowed(loc, var))
3172             return;
3173 
3174          break;
3175       }
3176 
3177       fail = true;
3178       break;
3179 
3180    case MESA_SHADER_COMPUTE:
3181       _mesa_glsl_error(loc, state,
3182                        "compute shader variables cannot be given "
3183                        "explicit locations");
3184       return;
3185    };
3186 
3187    if (fail) {
3188       _mesa_glsl_error(loc, state,
3189                        "%s cannot be given an explicit location in %s shader",
3190                        mode_string(var),
3191       _mesa_shader_stage_to_string(state->stage));
3192    } else {
3193       var->data.explicit_location = true;
3194 
3195       switch (state->stage) {
3196       case MESA_SHADER_VERTEX:
3197          var->data.location = (var->data.mode == ir_var_shader_in)
3198             ? (qual_location + VERT_ATTRIB_GENERIC0)
3199             : (qual_location + VARYING_SLOT_VAR0);
3200          break;
3201 
3202       case MESA_SHADER_TESS_CTRL:
3203       case MESA_SHADER_TESS_EVAL:
3204       case MESA_SHADER_GEOMETRY:
3205          if (var->data.patch)
3206             var->data.location = qual_location + VARYING_SLOT_PATCH0;
3207          else
3208             var->data.location = qual_location + VARYING_SLOT_VAR0;
3209          break;
3210 
3211       case MESA_SHADER_FRAGMENT:
3212          var->data.location = (var->data.mode == ir_var_shader_out)
3213             ? (qual_location + FRAG_RESULT_DATA0)
3214             : (qual_location + VARYING_SLOT_VAR0);
3215          break;
3216       case MESA_SHADER_COMPUTE:
3217          assert(!"Unexpected shader type");
3218          break;
3219       }
3220 
3221       /* Check if index was set for the uniform instead of the function */
3222       if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3223          _mesa_glsl_error(loc, state, "an index qualifier can only be "
3224                           "used with subroutine functions");
3225          return;
3226       }
3227 
3228       unsigned qual_index;
3229       if (qual->flags.q.explicit_index &&
3230           process_qualifier_constant(state, loc, "index", qual->index,
3231                                      &qual_index)) {
3232          /* From the GLSL 4.30 specification, section 4.4.2 (Output
3233           * Layout Qualifiers):
3234           *
3235           * "It is also a compile-time error if a fragment shader
3236           *  sets a layout index to less than 0 or greater than 1."
3237           *
3238           * Older specifications don't mandate a behavior; we take
3239           * this as a clarification and always generate the error.
3240           */
3241          if (qual_index > 1) {
3242             _mesa_glsl_error(loc, state,
3243                              "explicit index may only be 0 or 1");
3244          } else {
3245             var->data.explicit_index = true;
3246             var->data.index = qual_index;
3247          }
3248       }
3249    }
3250 }
3251 
3252 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3253 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3254                                   ir_variable *var,
3255                                   struct _mesa_glsl_parse_state *state,
3256                                   YYLTYPE *loc)
3257 {
3258    const glsl_type *base_type = var->type->without_array();
3259 
3260    if (base_type->is_image()) {
3261       if (var->data.mode != ir_var_uniform &&
3262           var->data.mode != ir_var_function_in) {
3263          _mesa_glsl_error(loc, state, "image variables may only be declared as "
3264                           "function parameters or uniform-qualified "
3265                           "global variables");
3266       }
3267 
3268       var->data.image_read_only |= qual->flags.q.read_only;
3269       var->data.image_write_only |= qual->flags.q.write_only;
3270       var->data.image_coherent |= qual->flags.q.coherent;
3271       var->data.image_volatile |= qual->flags.q._volatile;
3272       var->data.image_restrict |= qual->flags.q.restrict_flag;
3273       var->data.read_only = true;
3274 
3275       if (qual->flags.q.explicit_image_format) {
3276          if (var->data.mode == ir_var_function_in) {
3277             _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3278                              "used on image function parameters");
3279          }
3280 
3281          if (qual->image_base_type != base_type->sampled_type) {
3282             _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3283                              "base data type of the image");
3284          }
3285 
3286          var->data.image_format = qual->image_format;
3287       } else {
3288          if (var->data.mode == ir_var_uniform) {
3289             if (state->es_shader) {
3290                _mesa_glsl_error(loc, state, "all image uniforms "
3291                                 "must have a format layout qualifier");
3292 
3293             } else if (!qual->flags.q.write_only) {
3294                _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3295                                 "`writeonly' must have a format layout "
3296                                 "qualifier");
3297             }
3298          }
3299 
3300          var->data.image_format = GL_NONE;
3301       }
3302 
3303       /* From page 70 of the GLSL ES 3.1 specification:
3304        *
3305        * "Except for image variables qualified with the format qualifiers
3306        *  r32f, r32i, and r32ui, image variables must specify either memory
3307        *  qualifier readonly or the memory qualifier writeonly."
3308        */
3309       if (state->es_shader &&
3310           var->data.image_format != GL_R32F &&
3311           var->data.image_format != GL_R32I &&
3312           var->data.image_format != GL_R32UI &&
3313           !var->data.image_read_only &&
3314           !var->data.image_write_only) {
3315          _mesa_glsl_error(loc, state, "image variables of format other than "
3316                           "r32f, r32i or r32ui must be qualified `readonly' or "
3317                           "`writeonly'");
3318       }
3319 
3320    } else if (qual->flags.q.read_only ||
3321               qual->flags.q.write_only ||
3322               qual->flags.q.coherent ||
3323               qual->flags.q._volatile ||
3324               qual->flags.q.restrict_flag ||
3325               qual->flags.q.explicit_image_format) {
3326       _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3327                        "images");
3328    }
3329 }
3330 
3331 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3332 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3333 {
3334    if (origin_upper_left && pixel_center_integer)
3335       return "origin_upper_left, pixel_center_integer";
3336    else if (origin_upper_left)
3337       return "origin_upper_left";
3338    else if (pixel_center_integer)
3339       return "pixel_center_integer";
3340    else
3341       return " ";
3342 }
3343 
3344 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3345 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3346                                        const struct ast_type_qualifier *qual)
3347 {
3348    /* If gl_FragCoord was previously declared, and the qualifiers were
3349     * different in any way, return true.
3350     */
3351    if (state->fs_redeclares_gl_fragcoord) {
3352       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3353          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3354    }
3355 
3356    return false;
3357 }
3358 
3359 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3360 validate_array_dimensions(const glsl_type *t,
3361                           struct _mesa_glsl_parse_state *state,
3362                           YYLTYPE *loc) {
3363    if (t->is_array()) {
3364       t = t->fields.array;
3365       while (t->is_array()) {
3366          if (t->is_unsized_array()) {
3367             _mesa_glsl_error(loc, state,
3368                              "only the outermost array dimension can "
3369                              "be unsized",
3370                              t->name);
3371             break;
3372          }
3373          t = t->fields.array;
3374       }
3375    }
3376 }
3377 
3378 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3379 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3380                                    ir_variable *var,
3381                                    struct _mesa_glsl_parse_state *state,
3382                                    YYLTYPE *loc)
3383 {
3384    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3385 
3386       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3387        *
3388        *    "Within any shader, the first redeclarations of gl_FragCoord
3389        *     must appear before any use of gl_FragCoord."
3390        *
3391        * Generate a compiler error if above condition is not met by the
3392        * fragment shader.
3393        */
3394       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3395       if (earlier != NULL &&
3396           earlier->data.used &&
3397           !state->fs_redeclares_gl_fragcoord) {
3398          _mesa_glsl_error(loc, state,
3399                           "gl_FragCoord used before its first redeclaration "
3400                           "in fragment shader");
3401       }
3402 
3403       /* Make sure all gl_FragCoord redeclarations specify the same layout
3404        * qualifiers.
3405        */
3406       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3407          const char *const qual_string =
3408             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3409                                         qual->flags.q.pixel_center_integer);
3410 
3411          const char *const state_string =
3412             get_layout_qualifier_string(state->fs_origin_upper_left,
3413                                         state->fs_pixel_center_integer);
3414 
3415          _mesa_glsl_error(loc, state,
3416                           "gl_FragCoord redeclared with different layout "
3417                           "qualifiers (%s) and (%s) ",
3418                           state_string,
3419                           qual_string);
3420       }
3421       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3422       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3423       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3424          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3425       state->fs_redeclares_gl_fragcoord =
3426          state->fs_origin_upper_left ||
3427          state->fs_pixel_center_integer ||
3428          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3429    }
3430 
3431    var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3432    var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3433    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3434        && (strcmp(var->name, "gl_FragCoord") != 0)) {
3435       const char *const qual_string = (qual->flags.q.origin_upper_left)
3436          ? "origin_upper_left" : "pixel_center_integer";
3437 
3438       _mesa_glsl_error(loc, state,
3439                        "layout qualifier `%s' can only be applied to "
3440                        "fragment shader input `gl_FragCoord'",
3441                        qual_string);
3442    }
3443 
3444    if (qual->flags.q.explicit_location) {
3445       apply_explicit_location(qual, var, state, loc);
3446 
3447       if (qual->flags.q.explicit_component) {
3448          unsigned qual_component;
3449          if (process_qualifier_constant(state, loc, "component",
3450                                         qual->component, &qual_component)) {
3451             const glsl_type *type = var->type->without_array();
3452             unsigned components = type->component_slots();
3453 
3454             if (type->is_matrix() || type->is_record()) {
3455                _mesa_glsl_error(loc, state, "component layout qualifier "
3456                                 "cannot be applied to a matrix, a structure, "
3457                                 "a block, or an array containing any of "
3458                                 "these.");
3459             } else if (qual_component != 0 &&
3460                 (qual_component + components - 1) > 3) {
3461                _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3462                                 (qual_component + components - 1));
3463             } else if (qual_component == 1 && type->is_64bit()) {
3464                /* We don't bother checking for 3 as it should be caught by the
3465                 * overflow check above.
3466                 */
3467                _mesa_glsl_error(loc, state, "doubles cannot begin at "
3468                                 "component 1 or 3");
3469             } else {
3470                var->data.explicit_component = true;
3471                var->data.location_frac = qual_component;
3472             }
3473          }
3474       }
3475    } else if (qual->flags.q.explicit_index) {
3476       if (!qual->flags.q.subroutine_def)
3477          _mesa_glsl_error(loc, state,
3478                           "explicit index requires explicit location");
3479    } else if (qual->flags.q.explicit_component) {
3480       _mesa_glsl_error(loc, state,
3481                        "explicit component requires explicit location");
3482    }
3483 
3484    if (qual->flags.q.explicit_binding) {
3485       apply_explicit_binding(state, loc, var, var->type, qual);
3486    }
3487 
3488    if (state->stage == MESA_SHADER_GEOMETRY &&
3489        qual->flags.q.out && qual->flags.q.stream) {
3490       unsigned qual_stream;
3491       if (process_qualifier_constant(state, loc, "stream", qual->stream,
3492                                      &qual_stream) &&
3493           validate_stream_qualifier(loc, state, qual_stream)) {
3494          var->data.stream = qual_stream;
3495       }
3496    }
3497 
3498    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3499       unsigned qual_xfb_buffer;
3500       if (process_qualifier_constant(state, loc, "xfb_buffer",
3501                                      qual->xfb_buffer, &qual_xfb_buffer) &&
3502           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3503          var->data.xfb_buffer = qual_xfb_buffer;
3504          if (qual->flags.q.explicit_xfb_buffer)
3505             var->data.explicit_xfb_buffer = true;
3506       }
3507    }
3508 
3509    if (qual->flags.q.explicit_xfb_offset) {
3510       unsigned qual_xfb_offset;
3511       unsigned component_size = var->type->contains_double() ? 8 : 4;
3512 
3513       if (process_qualifier_constant(state, loc, "xfb_offset",
3514                                      qual->offset, &qual_xfb_offset) &&
3515           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3516                                         var->type, component_size)) {
3517          var->data.offset = qual_xfb_offset;
3518          var->data.explicit_xfb_offset = true;
3519       }
3520    }
3521 
3522    if (qual->flags.q.explicit_xfb_stride) {
3523       unsigned qual_xfb_stride;
3524       if (process_qualifier_constant(state, loc, "xfb_stride",
3525                                      qual->xfb_stride, &qual_xfb_stride)) {
3526          var->data.xfb_stride = qual_xfb_stride;
3527          var->data.explicit_xfb_stride = true;
3528       }
3529    }
3530 
3531    if (var->type->contains_atomic()) {
3532       if (var->data.mode == ir_var_uniform) {
3533          if (var->data.explicit_binding) {
3534             unsigned *offset =
3535                &state->atomic_counter_offsets[var->data.binding];
3536 
3537             if (*offset % ATOMIC_COUNTER_SIZE)
3538                _mesa_glsl_error(loc, state,
3539                                 "misaligned atomic counter offset");
3540 
3541             var->data.offset = *offset;
3542             *offset += var->type->atomic_size();
3543 
3544          } else {
3545             _mesa_glsl_error(loc, state,
3546                              "atomic counters require explicit binding point");
3547          }
3548       } else if (var->data.mode != ir_var_function_in) {
3549          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3550                           "function parameters or uniform-qualified "
3551                           "global variables");
3552       }
3553    }
3554 
3555    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3556     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3557     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3558     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3559     * These extensions and all following extensions that add the 'layout'
3560     * keyword have been modified to require the use of 'in' or 'out'.
3561     *
3562     * The following extension do not allow the deprecated keywords:
3563     *
3564     *    GL_AMD_conservative_depth
3565     *    GL_ARB_conservative_depth
3566     *    GL_ARB_gpu_shader5
3567     *    GL_ARB_separate_shader_objects
3568     *    GL_ARB_tessellation_shader
3569     *    GL_ARB_transform_feedback3
3570     *    GL_ARB_uniform_buffer_object
3571     *
3572     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3573     * allow layout with the deprecated keywords.
3574     */
3575    const bool relaxed_layout_qualifier_checking =
3576       state->ARB_fragment_coord_conventions_enable;
3577 
3578    const bool uses_deprecated_qualifier = qual->flags.q.attribute
3579       || qual->flags.q.varying;
3580    if (qual->has_layout() && uses_deprecated_qualifier) {
3581       if (relaxed_layout_qualifier_checking) {
3582          _mesa_glsl_warning(loc, state,
3583                             "`layout' qualifier may not be used with "
3584                             "`attribute' or `varying'");
3585       } else {
3586          _mesa_glsl_error(loc, state,
3587                           "`layout' qualifier may not be used with "
3588                           "`attribute' or `varying'");
3589       }
3590    }
3591 
3592    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3593     * AMD_conservative_depth.
3594     */
3595    int depth_layout_count = qual->flags.q.depth_any
3596       + qual->flags.q.depth_greater
3597       + qual->flags.q.depth_less
3598       + qual->flags.q.depth_unchanged;
3599    if (depth_layout_count > 0
3600        && !state->is_version(420, 0)
3601        && !state->AMD_conservative_depth_enable
3602        && !state->ARB_conservative_depth_enable) {
3603        _mesa_glsl_error(loc, state,
3604                         "extension GL_AMD_conservative_depth or "
3605                         "GL_ARB_conservative_depth must be enabled "
3606                         "to use depth layout qualifiers");
3607    } else if (depth_layout_count > 0
3608               && strcmp(var->name, "gl_FragDepth") != 0) {
3609        _mesa_glsl_error(loc, state,
3610                         "depth layout qualifiers can be applied only to "
3611                         "gl_FragDepth");
3612    } else if (depth_layout_count > 1
3613               && strcmp(var->name, "gl_FragDepth") == 0) {
3614       _mesa_glsl_error(loc, state,
3615                        "at most one depth layout qualifier can be applied to "
3616                        "gl_FragDepth");
3617    }
3618    if (qual->flags.q.depth_any)
3619       var->data.depth_layout = ir_depth_layout_any;
3620    else if (qual->flags.q.depth_greater)
3621       var->data.depth_layout = ir_depth_layout_greater;
3622    else if (qual->flags.q.depth_less)
3623       var->data.depth_layout = ir_depth_layout_less;
3624    else if (qual->flags.q.depth_unchanged)
3625        var->data.depth_layout = ir_depth_layout_unchanged;
3626    else
3627        var->data.depth_layout = ir_depth_layout_none;
3628 
3629    if (qual->flags.q.std140 ||
3630        qual->flags.q.std430 ||
3631        qual->flags.q.packed ||
3632        qual->flags.q.shared) {
3633       _mesa_glsl_error(loc, state,
3634                        "uniform and shader storage block layout qualifiers "
3635                        "std140, std430, packed, and shared can only be "
3636                        "applied to uniform or shader storage blocks, not "
3637                        "members");
3638    }
3639 
3640    if (qual->flags.q.row_major || qual->flags.q.column_major) {
3641       validate_matrix_layout_for_type(state, loc, var->type, var);
3642    }
3643 
3644    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3645     * Inputs):
3646     *
3647     *  "Fragment shaders also allow the following layout qualifier on in only
3648     *   (not with variable declarations)
3649     *     layout-qualifier-id
3650     *        early_fragment_tests
3651     *   [...]"
3652     */
3653    if (qual->flags.q.early_fragment_tests) {
3654       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3655                        "valid in fragment shader input layout declaration.");
3656    }
3657 
3658    if (qual->flags.q.inner_coverage) {
3659       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3660                        "valid in fragment shader input layout declaration.");
3661    }
3662 
3663    if (qual->flags.q.post_depth_coverage) {
3664       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3665                        "valid in fragment shader input layout declaration.");
3666    }
3667 }
3668 
3669 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)3670 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3671                                  ir_variable *var,
3672                                  struct _mesa_glsl_parse_state *state,
3673                                  YYLTYPE *loc,
3674                                  bool is_parameter)
3675 {
3676    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3677 
3678    if (qual->flags.q.invariant) {
3679       if (var->data.used) {
3680          _mesa_glsl_error(loc, state,
3681                           "variable `%s' may not be redeclared "
3682                           "`invariant' after being used",
3683                           var->name);
3684       } else {
3685          var->data.invariant = 1;
3686       }
3687    }
3688 
3689    if (qual->flags.q.precise) {
3690       if (var->data.used) {
3691          _mesa_glsl_error(loc, state,
3692                           "variable `%s' may not be redeclared "
3693                           "`precise' after being used",
3694                           var->name);
3695       } else {
3696          var->data.precise = 1;
3697       }
3698    }
3699 
3700    if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3701       _mesa_glsl_error(loc, state,
3702                        "`subroutine' may only be applied to uniforms, "
3703                        "subroutine type declarations, or function definitions");
3704    }
3705 
3706    if (qual->flags.q.constant || qual->flags.q.attribute
3707        || qual->flags.q.uniform
3708        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3709       var->data.read_only = 1;
3710 
3711    if (qual->flags.q.centroid)
3712       var->data.centroid = 1;
3713 
3714    if (qual->flags.q.sample)
3715       var->data.sample = 1;
3716 
3717    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3718    if (state->es_shader) {
3719       var->data.precision =
3720          select_gles_precision(qual->precision, var->type, state, loc);
3721    }
3722 
3723    if (qual->flags.q.patch)
3724       var->data.patch = 1;
3725 
3726    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3727       var->type = glsl_type::error_type;
3728       _mesa_glsl_error(loc, state,
3729                        "`attribute' variables may not be declared in the "
3730                        "%s shader",
3731                        _mesa_shader_stage_to_string(state->stage));
3732    }
3733 
3734    /* Disallow layout qualifiers which may only appear on layout declarations. */
3735    if (qual->flags.q.prim_type) {
3736       _mesa_glsl_error(loc, state,
3737                        "Primitive type may only be specified on GS input or output "
3738                        "layout declaration, not on variables.");
3739    }
3740 
3741    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3742     *
3743     *     "However, the const qualifier cannot be used with out or inout."
3744     *
3745     * The same section of the GLSL 4.40 spec further clarifies this saying:
3746     *
3747     *     "The const qualifier cannot be used with out or inout, or a
3748     *     compile-time error results."
3749     */
3750    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3751       _mesa_glsl_error(loc, state,
3752                        "`const' may not be applied to `out' or `inout' "
3753                        "function parameters");
3754    }
3755 
3756    /* If there is no qualifier that changes the mode of the variable, leave
3757     * the setting alone.
3758     */
3759    assert(var->data.mode != ir_var_temporary);
3760    if (qual->flags.q.in && qual->flags.q.out)
3761       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3762    else if (qual->flags.q.in)
3763       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3764    else if (qual->flags.q.attribute
3765             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3766       var->data.mode = ir_var_shader_in;
3767    else if (qual->flags.q.out)
3768       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3769    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3770       var->data.mode = ir_var_shader_out;
3771    else if (qual->flags.q.uniform)
3772       var->data.mode = ir_var_uniform;
3773    else if (qual->flags.q.buffer)
3774       var->data.mode = ir_var_shader_storage;
3775    else if (qual->flags.q.shared_storage)
3776       var->data.mode = ir_var_shader_shared;
3777 
3778    var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3779                                qual->flags.q.in && qual->flags.q.out;
3780 
3781    if (!is_parameter && is_varying_var(var, state->stage)) {
3782       /* User-defined ins/outs are not permitted in compute shaders. */
3783       if (state->stage == MESA_SHADER_COMPUTE) {
3784          _mesa_glsl_error(loc, state,
3785                           "user-defined input and output variables are not "
3786                           "permitted in compute shaders");
3787       }
3788 
3789       /* This variable is being used to link data between shader stages (in
3790        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
3791        * that is allowed for such purposes.
3792        *
3793        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3794        *
3795        *     "The varying qualifier can be used only with the data types
3796        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3797        *     these."
3798        *
3799        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
3800        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3801        *
3802        *     "Fragment inputs can only be signed and unsigned integers and
3803        *     integer vectors, float, floating-point vectors, matrices, or
3804        *     arrays of these. Structures cannot be input.
3805        *
3806        * Similar text exists in the section on vertex shader outputs.
3807        *
3808        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3809        * 3.00 spec allows structs as well.  Varying structs are also allowed
3810        * in GLSL 1.50.
3811        */
3812       switch (var->type->get_scalar_type()->base_type) {
3813       case GLSL_TYPE_FLOAT:
3814          /* Ok in all GLSL versions */
3815          break;
3816       case GLSL_TYPE_UINT:
3817       case GLSL_TYPE_INT:
3818          if (state->is_version(130, 300))
3819             break;
3820          _mesa_glsl_error(loc, state,
3821                           "varying variables must be of base type float in %s",
3822                           state->get_version_string());
3823          break;
3824       case GLSL_TYPE_STRUCT:
3825          if (state->is_version(150, 300))
3826             break;
3827          _mesa_glsl_error(loc, state,
3828                           "varying variables may not be of type struct");
3829          break;
3830       case GLSL_TYPE_DOUBLE:
3831          break;
3832       default:
3833          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3834          break;
3835       }
3836    }
3837 
3838    if (state->all_invariant && (state->current_function == NULL)) {
3839       switch (state->stage) {
3840       case MESA_SHADER_VERTEX:
3841          if (var->data.mode == ir_var_shader_out)
3842             var->data.invariant = true;
3843          break;
3844       case MESA_SHADER_TESS_CTRL:
3845       case MESA_SHADER_TESS_EVAL:
3846       case MESA_SHADER_GEOMETRY:
3847          if ((var->data.mode == ir_var_shader_in)
3848              || (var->data.mode == ir_var_shader_out))
3849             var->data.invariant = true;
3850          break;
3851       case MESA_SHADER_FRAGMENT:
3852          if (var->data.mode == ir_var_shader_in)
3853             var->data.invariant = true;
3854          break;
3855       case MESA_SHADER_COMPUTE:
3856          /* Invariance isn't meaningful in compute shaders. */
3857          break;
3858       }
3859    }
3860 
3861    var->data.interpolation =
3862       interpret_interpolation_qualifier(qual, var->type,
3863                                         (ir_variable_mode) var->data.mode,
3864                                         state, loc);
3865 
3866    /* Does the declaration use the deprecated 'attribute' or 'varying'
3867     * keywords?
3868     */
3869    const bool uses_deprecated_qualifier = qual->flags.q.attribute
3870       || qual->flags.q.varying;
3871 
3872 
3873    /* Validate auxiliary storage qualifiers */
3874 
3875    /* From section 4.3.4 of the GLSL 1.30 spec:
3876     *    "It is an error to use centroid in in a vertex shader."
3877     *
3878     * From section 4.3.4 of the GLSL ES 3.00 spec:
3879     *    "It is an error to use centroid in or interpolation qualifiers in
3880     *    a vertex shader input."
3881     */
3882 
3883    /* Section 4.3.6 of the GLSL 1.30 specification states:
3884     * "It is an error to use centroid out in a fragment shader."
3885     *
3886     * The GL_ARB_shading_language_420pack extension specification states:
3887     * "It is an error to use auxiliary storage qualifiers or interpolation
3888     *  qualifiers on an output in a fragment shader."
3889     */
3890    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3891       _mesa_glsl_error(loc, state,
3892                        "sample qualifier may only be used on `in` or `out` "
3893                        "variables between shader stages");
3894    }
3895    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3896       _mesa_glsl_error(loc, state,
3897                        "centroid qualifier may only be used with `in', "
3898                        "`out' or `varying' variables between shader stages");
3899    }
3900 
3901    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3902       _mesa_glsl_error(loc, state,
3903                        "the shared storage qualifiers can only be used with "
3904                        "compute shaders");
3905    }
3906 
3907    apply_image_qualifier_to_variable(qual, var, state, loc);
3908 }
3909 
3910 /**
3911  * Get the variable that is being redeclared by this declaration
3912  *
3913  * Semantic checks to verify the validity of the redeclaration are also
3914  * performed.  If semantic checks fail, compilation error will be emitted via
3915  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3916  *
3917  * \returns
3918  * A pointer to an existing variable in the current scope if the declaration
3919  * is a redeclaration, \c NULL otherwise.
3920  */
3921 static ir_variable *
get_variable_being_redeclared(ir_variable * var,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations)3922 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3923                               struct _mesa_glsl_parse_state *state,
3924                               bool allow_all_redeclarations)
3925 {
3926    /* Check if this declaration is actually a re-declaration, either to
3927     * resize an array or add qualifiers to an existing variable.
3928     *
3929     * This is allowed for variables in the current scope, or when at
3930     * global scope (for built-ins in the implicit outer scope).
3931     */
3932    ir_variable *earlier = state->symbols->get_variable(var->name);
3933    if (earlier == NULL ||
3934        (state->current_function != NULL &&
3935        !state->symbols->name_declared_this_scope(var->name))) {
3936       return NULL;
3937    }
3938 
3939 
3940    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3941     *
3942     * "It is legal to declare an array without a size and then
3943     *  later re-declare the same name as an array of the same
3944     *  type and specify a size."
3945     */
3946    if (earlier->type->is_unsized_array() && var->type->is_array()
3947        && (var->type->fields.array == earlier->type->fields.array)) {
3948       /* FINISHME: This doesn't match the qualifiers on the two
3949        * FINISHME: declarations.  It's not 100% clear whether this is
3950        * FINISHME: required or not.
3951        */
3952 
3953       const int size = var->type->array_size();
3954       check_builtin_array_max_size(var->name, size, loc, state);
3955       if ((size > 0) && (size <= earlier->data.max_array_access)) {
3956          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3957                           "previous access",
3958                           earlier->data.max_array_access);
3959       }
3960 
3961       earlier->type = var->type;
3962       delete var;
3963       var = NULL;
3964    } else if ((state->ARB_fragment_coord_conventions_enable ||
3965               state->is_version(150, 0))
3966               && strcmp(var->name, "gl_FragCoord") == 0
3967               && earlier->type == var->type
3968               && var->data.mode == ir_var_shader_in) {
3969       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3970        * qualifiers.
3971        */
3972       earlier->data.origin_upper_left = var->data.origin_upper_left;
3973       earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3974 
3975       /* According to section 4.3.7 of the GLSL 1.30 spec,
3976        * the following built-in varaibles can be redeclared with an
3977        * interpolation qualifier:
3978        *    * gl_FrontColor
3979        *    * gl_BackColor
3980        *    * gl_FrontSecondaryColor
3981        *    * gl_BackSecondaryColor
3982        *    * gl_Color
3983        *    * gl_SecondaryColor
3984        */
3985    } else if (state->is_version(130, 0)
3986               && (strcmp(var->name, "gl_FrontColor") == 0
3987                   || strcmp(var->name, "gl_BackColor") == 0
3988                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3989                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
3990                   || strcmp(var->name, "gl_Color") == 0
3991                   || strcmp(var->name, "gl_SecondaryColor") == 0)
3992               && earlier->type == var->type
3993               && earlier->data.mode == var->data.mode) {
3994       earlier->data.interpolation = var->data.interpolation;
3995 
3996       /* Layout qualifiers for gl_FragDepth. */
3997    } else if ((state->is_version(420, 0) ||
3998                state->AMD_conservative_depth_enable ||
3999                state->ARB_conservative_depth_enable)
4000               && strcmp(var->name, "gl_FragDepth") == 0
4001               && earlier->type == var->type
4002               && earlier->data.mode == var->data.mode) {
4003 
4004       /** From the AMD_conservative_depth spec:
4005        *     Within any shader, the first redeclarations of gl_FragDepth
4006        *     must appear before any use of gl_FragDepth.
4007        */
4008       if (earlier->data.used) {
4009          _mesa_glsl_error(&loc, state,
4010                           "the first redeclaration of gl_FragDepth "
4011                           "must appear before any use of gl_FragDepth");
4012       }
4013 
4014       /* Prevent inconsistent redeclaration of depth layout qualifier. */
4015       if (earlier->data.depth_layout != ir_depth_layout_none
4016           && earlier->data.depth_layout != var->data.depth_layout) {
4017             _mesa_glsl_error(&loc, state,
4018                              "gl_FragDepth: depth layout is declared here "
4019                              "as '%s, but it was previously declared as "
4020                              "'%s'",
4021                              depth_layout_string(var->data.depth_layout),
4022                              depth_layout_string(earlier->data.depth_layout));
4023       }
4024 
4025       earlier->data.depth_layout = var->data.depth_layout;
4026 
4027    } else if (state->has_framebuffer_fetch() &&
4028               strcmp(var->name, "gl_LastFragData") == 0 &&
4029               var->type == earlier->type &&
4030               var->data.mode == ir_var_auto) {
4031       /* According to the EXT_shader_framebuffer_fetch spec:
4032        *
4033        *   "By default, gl_LastFragData is declared with the mediump precision
4034        *    qualifier. This can be changed by redeclaring the corresponding
4035        *    variables with the desired precision qualifier."
4036        */
4037       earlier->data.precision = var->data.precision;
4038 
4039    } else if (allow_all_redeclarations) {
4040       if (earlier->data.mode != var->data.mode) {
4041          _mesa_glsl_error(&loc, state,
4042                           "redeclaration of `%s' with incorrect qualifiers",
4043                           var->name);
4044       } else if (earlier->type != var->type) {
4045          _mesa_glsl_error(&loc, state,
4046                           "redeclaration of `%s' has incorrect type",
4047                           var->name);
4048       }
4049    } else {
4050       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4051    }
4052 
4053    return earlier;
4054 }
4055 
4056 /**
4057  * Generate the IR for an initializer in a variable declaration
4058  */
4059 ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4060 process_initializer(ir_variable *var, ast_declaration *decl,
4061                     ast_fully_specified_type *type,
4062                     exec_list *initializer_instructions,
4063                     struct _mesa_glsl_parse_state *state)
4064 {
4065    ir_rvalue *result = NULL;
4066 
4067    YYLTYPE initializer_loc = decl->initializer->get_location();
4068 
4069    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4070     *
4071     *    "All uniform variables are read-only and are initialized either
4072     *    directly by an application via API commands, or indirectly by
4073     *    OpenGL."
4074     */
4075    if (var->data.mode == ir_var_uniform) {
4076       state->check_version(120, 0, &initializer_loc,
4077                            "cannot initialize uniform %s",
4078                            var->name);
4079    }
4080 
4081    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4082     *
4083     *    "Buffer variables cannot have initializers."
4084     */
4085    if (var->data.mode == ir_var_shader_storage) {
4086       _mesa_glsl_error(&initializer_loc, state,
4087                        "cannot initialize buffer variable %s",
4088                        var->name);
4089    }
4090 
4091    /* From section 4.1.7 of the GLSL 4.40 spec:
4092     *
4093     *    "Opaque variables [...] are initialized only through the
4094     *     OpenGL API; they cannot be declared with an initializer in a
4095     *     shader."
4096     */
4097    if (var->type->contains_opaque()) {
4098       _mesa_glsl_error(&initializer_loc, state,
4099                        "cannot initialize opaque variable %s",
4100                        var->name);
4101    }
4102 
4103    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4104       _mesa_glsl_error(&initializer_loc, state,
4105                        "cannot initialize %s shader input / %s %s",
4106                        _mesa_shader_stage_to_string(state->stage),
4107                        (state->stage == MESA_SHADER_VERTEX)
4108                        ? "attribute" : "varying",
4109                        var->name);
4110    }
4111 
4112    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4113       _mesa_glsl_error(&initializer_loc, state,
4114                        "cannot initialize %s shader output %s",
4115                        _mesa_shader_stage_to_string(state->stage),
4116                        var->name);
4117    }
4118 
4119    /* If the initializer is an ast_aggregate_initializer, recursively store
4120     * type information from the LHS into it, so that its hir() function can do
4121     * type checking.
4122     */
4123    if (decl->initializer->oper == ast_aggregate)
4124       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4125 
4126    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4127    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4128 
4129    /* Calculate the constant value if this is a const or uniform
4130     * declaration.
4131     *
4132     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4133     *
4134     *     "Declarations of globals without a storage qualifier, or with
4135     *     just the const qualifier, may include initializers, in which case
4136     *     they will be initialized before the first line of main() is
4137     *     executed.  Such initializers must be a constant expression."
4138     *
4139     * The same section of the GLSL ES 3.00.4 spec has similar language.
4140     */
4141    if (type->qualifier.flags.q.constant
4142        || type->qualifier.flags.q.uniform
4143        || (state->es_shader && state->current_function == NULL)) {
4144       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4145                                                lhs, rhs, true);
4146       if (new_rhs != NULL) {
4147          rhs = new_rhs;
4148 
4149          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4150           * says:
4151           *
4152           *     "A constant expression is one of
4153           *
4154           *        ...
4155           *
4156           *        - an expression formed by an operator on operands that are
4157           *          all constant expressions, including getting an element of
4158           *          a constant array, or a field of a constant structure, or
4159           *          components of a constant vector.  However, the sequence
4160           *          operator ( , ) and the assignment operators ( =, +=, ...)
4161           *          are not included in the operators that can create a
4162           *          constant expression."
4163           *
4164           * Section 12.43 (Sequence operator and constant expressions) says:
4165           *
4166           *     "Should the following construct be allowed?
4167           *
4168           *         float a[2,3];
4169           *
4170           *     The expression within the brackets uses the sequence operator
4171           *     (',') and returns the integer 3 so the construct is declaring
4172           *     a single-dimensional array of size 3.  In some languages, the
4173           *     construct declares a two-dimensional array.  It would be
4174           *     preferable to make this construct illegal to avoid confusion.
4175           *
4176           *     One possibility is to change the definition of the sequence
4177           *     operator so that it does not return a constant-expression and
4178           *     hence cannot be used to declare an array size.
4179           *
4180           *     RESOLUTION: The result of a sequence operator is not a
4181           *     constant-expression."
4182           *
4183           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4184           * contains language almost identical to the section 4.3.3 in the
4185           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4186           * versions.
4187           */
4188          ir_constant *constant_value = rhs->constant_expression_value();
4189          if (!constant_value ||
4190              (state->is_version(430, 300) &&
4191               decl->initializer->has_sequence_subexpression())) {
4192             const char *const variable_mode =
4193                (type->qualifier.flags.q.constant)
4194                ? "const"
4195                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4196 
4197             /* If ARB_shading_language_420pack is enabled, initializers of
4198              * const-qualified local variables do not have to be constant
4199              * expressions. Const-qualified global variables must still be
4200              * initialized with constant expressions.
4201              */
4202             if (!state->has_420pack()
4203                 || state->current_function == NULL) {
4204                _mesa_glsl_error(& initializer_loc, state,
4205                                 "initializer of %s variable `%s' must be a "
4206                                 "constant expression",
4207                                 variable_mode,
4208                                 decl->identifier);
4209                if (var->type->is_numeric()) {
4210                   /* Reduce cascading errors. */
4211                   var->constant_value = type->qualifier.flags.q.constant
4212                      ? ir_constant::zero(state, var->type) : NULL;
4213                }
4214             }
4215          } else {
4216             rhs = constant_value;
4217             var->constant_value = type->qualifier.flags.q.constant
4218                ? constant_value : NULL;
4219          }
4220       } else {
4221          if (var->type->is_numeric()) {
4222             /* Reduce cascading errors. */
4223             var->constant_value = type->qualifier.flags.q.constant
4224                ? ir_constant::zero(state, var->type) : NULL;
4225          }
4226       }
4227    }
4228 
4229    if (rhs && !rhs->type->is_error()) {
4230       bool temp = var->data.read_only;
4231       if (type->qualifier.flags.q.constant)
4232          var->data.read_only = false;
4233 
4234       /* Never emit code to initialize a uniform.
4235        */
4236       const glsl_type *initializer_type;
4237       if (!type->qualifier.flags.q.uniform) {
4238          do_assignment(initializer_instructions, state,
4239                        NULL,
4240                        lhs, rhs,
4241                        &result, true,
4242                        true,
4243                        type->get_location());
4244          initializer_type = result->type;
4245       } else
4246          initializer_type = rhs->type;
4247 
4248       var->constant_initializer = rhs->constant_expression_value();
4249       var->data.has_initializer = true;
4250 
4251       /* If the declared variable is an unsized array, it must inherrit
4252        * its full type from the initializer.  A declaration such as
4253        *
4254        *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4255        *
4256        * becomes
4257        *
4258        *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4259        *
4260        * The assignment generated in the if-statement (below) will also
4261        * automatically handle this case for non-uniforms.
4262        *
4263        * If the declared variable is not an array, the types must
4264        * already match exactly.  As a result, the type assignment
4265        * here can be done unconditionally.  For non-uniforms the call
4266        * to do_assignment can change the type of the initializer (via
4267        * the implicit conversion rules).  For uniforms the initializer
4268        * must be a constant expression, and the type of that expression
4269        * was validated above.
4270        */
4271       var->type = initializer_type;
4272 
4273       var->data.read_only = temp;
4274    }
4275 
4276    return result;
4277 }
4278 
4279 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4280 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4281                                        YYLTYPE loc, ir_variable *var,
4282                                        unsigned num_vertices,
4283                                        unsigned *size,
4284                                        const char *var_category)
4285 {
4286    if (var->type->is_unsized_array()) {
4287       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4288        *
4289        *   All geometry shader input unsized array declarations will be
4290        *   sized by an earlier input layout qualifier, when present, as per
4291        *   the following table.
4292        *
4293        * Followed by a table mapping each allowed input layout qualifier to
4294        * the corresponding input length.
4295        *
4296        * Similarly for tessellation control shader outputs.
4297        */
4298       if (num_vertices != 0)
4299          var->type = glsl_type::get_array_instance(var->type->fields.array,
4300                                                    num_vertices);
4301    } else {
4302       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4303        * includes the following examples of compile-time errors:
4304        *
4305        *   // code sequence within one shader...
4306        *   in vec4 Color1[];    // size unknown
4307        *   ...Color1.length()...// illegal, length() unknown
4308        *   in vec4 Color2[2];   // size is 2
4309        *   ...Color1.length()...// illegal, Color1 still has no size
4310        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4311        *   layout(lines) in;    // legal, input size is 2, matching
4312        *   in vec4 Color4[3];   // illegal, contradicts layout
4313        *   ...
4314        *
4315        * To detect the case illustrated by Color3, we verify that the size of
4316        * an explicitly-sized array matches the size of any previously declared
4317        * explicitly-sized array.  To detect the case illustrated by Color4, we
4318        * verify that the size of an explicitly-sized array is consistent with
4319        * any previously declared input layout.
4320        */
4321       if (num_vertices != 0 && var->type->length != num_vertices) {
4322          _mesa_glsl_error(&loc, state,
4323                           "%s size contradicts previously declared layout "
4324                           "(size is %u, but layout requires a size of %u)",
4325                           var_category, var->type->length, num_vertices);
4326       } else if (*size != 0 && var->type->length != *size) {
4327          _mesa_glsl_error(&loc, state,
4328                           "%s sizes are inconsistent (size is %u, but a "
4329                           "previous declaration has size %u)",
4330                           var_category, var->type->length, *size);
4331       } else {
4332          *size = var->type->length;
4333       }
4334    }
4335 }
4336 
4337 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4338 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4339                                     YYLTYPE loc, ir_variable *var)
4340 {
4341    unsigned num_vertices = 0;
4342 
4343    if (state->tcs_output_vertices_specified) {
4344       if (!state->out_qualifier->vertices->
4345              process_qualifier_constant(state, "vertices",
4346                                         &num_vertices, false)) {
4347          return;
4348       }
4349 
4350       if (num_vertices > state->Const.MaxPatchVertices) {
4351          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4352                           "GL_MAX_PATCH_VERTICES", num_vertices);
4353          return;
4354       }
4355    }
4356 
4357    if (!var->type->is_array() && !var->data.patch) {
4358       _mesa_glsl_error(&loc, state,
4359                        "tessellation control shader outputs must be arrays");
4360 
4361       /* To avoid cascading failures, short circuit the checks below. */
4362       return;
4363    }
4364 
4365    if (var->data.patch)
4366       return;
4367 
4368    var->data.tess_varying_implicit_sized_array = var->type->is_unsized_array();
4369 
4370    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4371                                           &state->tcs_output_size,
4372                                           "tessellation control shader output");
4373 }
4374 
4375 /**
4376  * Do additional processing necessary for tessellation control/evaluation shader
4377  * input declarations. This covers both interface block arrays and bare input
4378  * variables.
4379  */
4380 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4381 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4382                               YYLTYPE loc, ir_variable *var)
4383 {
4384    if (!var->type->is_array() && !var->data.patch) {
4385       _mesa_glsl_error(&loc, state,
4386                        "per-vertex tessellation shader inputs must be arrays");
4387       /* Avoid cascading failures. */
4388       return;
4389    }
4390 
4391    if (var->data.patch)
4392       return;
4393 
4394    /* The ARB_tessellation_shader spec says:
4395     *
4396     *    "Declaring an array size is optional.  If no size is specified, it
4397     *     will be taken from the implementation-dependent maximum patch size
4398     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4399     *     maximum patch size; otherwise, a compile or link error will occur."
4400     *
4401     * This text appears twice, once for TCS inputs, and again for TES inputs.
4402     */
4403    if (var->type->is_unsized_array()) {
4404       var->type = glsl_type::get_array_instance(var->type->fields.array,
4405             state->Const.MaxPatchVertices);
4406       var->data.tess_varying_implicit_sized_array = true;
4407    } else if (var->type->length != state->Const.MaxPatchVertices) {
4408       _mesa_glsl_error(&loc, state,
4409                        "per-vertex tessellation shader input arrays must be "
4410                        "sized to gl_MaxPatchVertices (%d).",
4411                        state->Const.MaxPatchVertices);
4412    }
4413 }
4414 
4415 
4416 /**
4417  * Do additional processing necessary for geometry shader input declarations
4418  * (this covers both interface blocks arrays and bare input variables).
4419  */
4420 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4421 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4422                                   YYLTYPE loc, ir_variable *var)
4423 {
4424    unsigned num_vertices = 0;
4425 
4426    if (state->gs_input_prim_type_specified) {
4427       num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4428    }
4429 
4430    /* Geometry shader input variables must be arrays.  Caller should have
4431     * reported an error for this.
4432     */
4433    if (!var->type->is_array()) {
4434       assert(state->error);
4435 
4436       /* To avoid cascading failures, short circuit the checks below. */
4437       return;
4438    }
4439 
4440    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4441                                           &state->gs_input_size,
4442                                           "geometry shader input");
4443 }
4444 
4445 void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)4446 validate_identifier(const char *identifier, YYLTYPE loc,
4447                     struct _mesa_glsl_parse_state *state)
4448 {
4449    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4450     *
4451     *   "Identifiers starting with "gl_" are reserved for use by
4452     *   OpenGL, and may not be declared in a shader as either a
4453     *   variable or a function."
4454     */
4455    if (is_gl_identifier(identifier)) {
4456       _mesa_glsl_error(&loc, state,
4457                        "identifier `%s' uses reserved `gl_' prefix",
4458                        identifier);
4459    } else if (strstr(identifier, "__")) {
4460       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4461        * spec:
4462        *
4463        *     "In addition, all identifiers containing two
4464        *      consecutive underscores (__) are reserved as
4465        *      possible future keywords."
4466        *
4467        * The intention is that names containing __ are reserved for internal
4468        * use by the implementation, and names prefixed with GL_ are reserved
4469        * for use by Khronos.  Names simply containing __ are dangerous to use,
4470        * but should be allowed.
4471        *
4472        * A future version of the GLSL specification will clarify this.
4473        */
4474       _mesa_glsl_warning(&loc, state,
4475                          "identifier `%s' uses reserved `__' string",
4476                          identifier);
4477    }
4478 }
4479 
4480 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)4481 ast_declarator_list::hir(exec_list *instructions,
4482                          struct _mesa_glsl_parse_state *state)
4483 {
4484    void *ctx = state;
4485    const struct glsl_type *decl_type;
4486    const char *type_name = NULL;
4487    ir_rvalue *result = NULL;
4488    YYLTYPE loc = this->get_location();
4489 
4490    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4491     *
4492     *     "To ensure that a particular output variable is invariant, it is
4493     *     necessary to use the invariant qualifier. It can either be used to
4494     *     qualify a previously declared variable as being invariant
4495     *
4496     *         invariant gl_Position; // make existing gl_Position be invariant"
4497     *
4498     * In these cases the parser will set the 'invariant' flag in the declarator
4499     * list, and the type will be NULL.
4500     */
4501    if (this->invariant) {
4502       assert(this->type == NULL);
4503 
4504       if (state->current_function != NULL) {
4505          _mesa_glsl_error(& loc, state,
4506                           "all uses of `invariant' keyword must be at global "
4507                           "scope");
4508       }
4509 
4510       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4511          assert(decl->array_specifier == NULL);
4512          assert(decl->initializer == NULL);
4513 
4514          ir_variable *const earlier =
4515             state->symbols->get_variable(decl->identifier);
4516          if (earlier == NULL) {
4517             _mesa_glsl_error(& loc, state,
4518                              "undeclared variable `%s' cannot be marked "
4519                              "invariant", decl->identifier);
4520          } else if (!is_allowed_invariant(earlier, state)) {
4521             _mesa_glsl_error(&loc, state,
4522                              "`%s' cannot be marked invariant; interfaces between "
4523                              "shader stages only.", decl->identifier);
4524          } else if (earlier->data.used) {
4525             _mesa_glsl_error(& loc, state,
4526                             "variable `%s' may not be redeclared "
4527                             "`invariant' after being used",
4528                             earlier->name);
4529          } else {
4530             earlier->data.invariant = true;
4531          }
4532       }
4533 
4534       /* Invariant redeclarations do not have r-values.
4535        */
4536       return NULL;
4537    }
4538 
4539    if (this->precise) {
4540       assert(this->type == NULL);
4541 
4542       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4543          assert(decl->array_specifier == NULL);
4544          assert(decl->initializer == NULL);
4545 
4546          ir_variable *const earlier =
4547             state->symbols->get_variable(decl->identifier);
4548          if (earlier == NULL) {
4549             _mesa_glsl_error(& loc, state,
4550                              "undeclared variable `%s' cannot be marked "
4551                              "precise", decl->identifier);
4552          } else if (state->current_function != NULL &&
4553                     !state->symbols->name_declared_this_scope(decl->identifier)) {
4554             /* Note: we have to check if we're in a function, since
4555              * builtins are treated as having come from another scope.
4556              */
4557             _mesa_glsl_error(& loc, state,
4558                              "variable `%s' from an outer scope may not be "
4559                              "redeclared `precise' in this scope",
4560                              earlier->name);
4561          } else if (earlier->data.used) {
4562             _mesa_glsl_error(& loc, state,
4563                              "variable `%s' may not be redeclared "
4564                              "`precise' after being used",
4565                              earlier->name);
4566          } else {
4567             earlier->data.precise = true;
4568          }
4569       }
4570 
4571       /* Precise redeclarations do not have r-values either. */
4572       return NULL;
4573    }
4574 
4575    assert(this->type != NULL);
4576    assert(!this->invariant);
4577    assert(!this->precise);
4578 
4579    /* The type specifier may contain a structure definition.  Process that
4580     * before any of the variable declarations.
4581     */
4582    (void) this->type->specifier->hir(instructions, state);
4583 
4584    decl_type = this->type->glsl_type(& type_name, state);
4585 
4586    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4587     *    "Buffer variables may only be declared inside interface blocks
4588     *    (section 4.3.9 “Interface Blocks”), which are then referred to as
4589     *    shader storage blocks. It is a compile-time error to declare buffer
4590     *    variables at global scope (outside a block)."
4591     */
4592    if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4593       _mesa_glsl_error(&loc, state,
4594                        "buffer variables cannot be declared outside "
4595                        "interface blocks");
4596    }
4597 
4598    /* An offset-qualified atomic counter declaration sets the default
4599     * offset for the next declaration within the same atomic counter
4600     * buffer.
4601     */
4602    if (decl_type && decl_type->contains_atomic()) {
4603       if (type->qualifier.flags.q.explicit_binding &&
4604           type->qualifier.flags.q.explicit_offset) {
4605          unsigned qual_binding;
4606          unsigned qual_offset;
4607          if (process_qualifier_constant(state, &loc, "binding",
4608                                         type->qualifier.binding,
4609                                         &qual_binding)
4610              && process_qualifier_constant(state, &loc, "offset",
4611                                         type->qualifier.offset,
4612                                         &qual_offset)) {
4613             state->atomic_counter_offsets[qual_binding] = qual_offset;
4614          }
4615       }
4616 
4617       ast_type_qualifier allowed_atomic_qual_mask;
4618       allowed_atomic_qual_mask.flags.i = 0;
4619       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4620       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4621       allowed_atomic_qual_mask.flags.q.uniform = 1;
4622 
4623       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4624                                      "invalid layout qualifier for",
4625                                      "atomic_uint");
4626    }
4627 
4628    if (this->declarations.is_empty()) {
4629       /* If there is no structure involved in the program text, there are two
4630        * possible scenarios:
4631        *
4632        * - The program text contained something like 'vec4;'.  This is an
4633        *   empty declaration.  It is valid but weird.  Emit a warning.
4634        *
4635        * - The program text contained something like 'S;' and 'S' is not the
4636        *   name of a known structure type.  This is both invalid and weird.
4637        *   Emit an error.
4638        *
4639        * - The program text contained something like 'mediump float;'
4640        *   when the programmer probably meant 'precision mediump
4641        *   float;' Emit a warning with a description of what they
4642        *   probably meant to do.
4643        *
4644        * Note that if decl_type is NULL and there is a structure involved,
4645        * there must have been some sort of error with the structure.  In this
4646        * case we assume that an error was already generated on this line of
4647        * code for the structure.  There is no need to generate an additional,
4648        * confusing error.
4649        */
4650       assert(this->type->specifier->structure == NULL || decl_type != NULL
4651              || state->error);
4652 
4653       if (decl_type == NULL) {
4654          _mesa_glsl_error(&loc, state,
4655                           "invalid type `%s' in empty declaration",
4656                           type_name);
4657       } else {
4658          if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4659             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4660              * spec:
4661              *
4662              *    "... any declaration that leaves the size undefined is
4663              *    disallowed as this would add complexity and there are no
4664              *    use-cases."
4665              */
4666             if (state->es_shader && decl_type->is_unsized_array()) {
4667                _mesa_glsl_error(&loc, state, "array size must be explicitly "
4668                                 "or implicitly defined");
4669             }
4670 
4671             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4672              *
4673              *    "The combinations of types and qualifiers that cause
4674              *    compile-time or link-time errors are the same whether or not
4675              *    the declaration is empty."
4676              */
4677             validate_array_dimensions(decl_type, state, &loc);
4678          }
4679 
4680          if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4681             /* Empty atomic counter declarations are allowed and useful
4682              * to set the default offset qualifier.
4683              */
4684             return NULL;
4685          } else if (this->type->qualifier.precision != ast_precision_none) {
4686             if (this->type->specifier->structure != NULL) {
4687                _mesa_glsl_error(&loc, state,
4688                                 "precision qualifiers can't be applied "
4689                                 "to structures");
4690             } else {
4691                static const char *const precision_names[] = {
4692                   "highp",
4693                   "highp",
4694                   "mediump",
4695                   "lowp"
4696                };
4697 
4698                _mesa_glsl_warning(&loc, state,
4699                                   "empty declaration with precision "
4700                                   "qualifier, to set the default precision, "
4701                                   "use `precision %s %s;'",
4702                                   precision_names[this->type->
4703                                      qualifier.precision],
4704                                   type_name);
4705             }
4706          } else if (this->type->specifier->structure == NULL) {
4707             _mesa_glsl_warning(&loc, state, "empty declaration");
4708          }
4709       }
4710    }
4711 
4712    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4713       const struct glsl_type *var_type;
4714       ir_variable *var;
4715       const char *identifier = decl->identifier;
4716       /* FINISHME: Emit a warning if a variable declaration shadows a
4717        * FINISHME: declaration at a higher scope.
4718        */
4719 
4720       if ((decl_type == NULL) || decl_type->is_void()) {
4721          if (type_name != NULL) {
4722             _mesa_glsl_error(& loc, state,
4723                              "invalid type `%s' in declaration of `%s'",
4724                              type_name, decl->identifier);
4725          } else {
4726             _mesa_glsl_error(& loc, state,
4727                              "invalid type in declaration of `%s'",
4728                              decl->identifier);
4729          }
4730          continue;
4731       }
4732 
4733       if (this->type->qualifier.flags.q.subroutine) {
4734          const glsl_type *t;
4735          const char *name;
4736 
4737          t = state->symbols->get_type(this->type->specifier->type_name);
4738          if (!t)
4739             _mesa_glsl_error(& loc, state,
4740                              "invalid type in declaration of `%s'",
4741                              decl->identifier);
4742          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4743 
4744          identifier = name;
4745 
4746       }
4747       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4748                                     state);
4749 
4750       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4751 
4752       /* The 'varying in' and 'varying out' qualifiers can only be used with
4753        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4754        * yet.
4755        */
4756       if (this->type->qualifier.flags.q.varying) {
4757          if (this->type->qualifier.flags.q.in) {
4758             _mesa_glsl_error(& loc, state,
4759                              "`varying in' qualifier in declaration of "
4760                              "`%s' only valid for geometry shaders using "
4761                              "ARB_geometry_shader4 or EXT_geometry_shader4",
4762                              decl->identifier);
4763          } else if (this->type->qualifier.flags.q.out) {
4764             _mesa_glsl_error(& loc, state,
4765                              "`varying out' qualifier in declaration of "
4766                              "`%s' only valid for geometry shaders using "
4767                              "ARB_geometry_shader4 or EXT_geometry_shader4",
4768                              decl->identifier);
4769          }
4770       }
4771 
4772       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4773        *
4774        *     "Global variables can only use the qualifiers const,
4775        *     attribute, uniform, or varying. Only one may be
4776        *     specified.
4777        *
4778        *     Local variables can only use the qualifier const."
4779        *
4780        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
4781        * any extension that adds the 'layout' keyword.
4782        */
4783       if (!state->is_version(130, 300)
4784           && !state->has_explicit_attrib_location()
4785           && !state->has_separate_shader_objects()
4786           && !state->ARB_fragment_coord_conventions_enable) {
4787          if (this->type->qualifier.flags.q.out) {
4788             _mesa_glsl_error(& loc, state,
4789                              "`out' qualifier in declaration of `%s' "
4790                              "only valid for function parameters in %s",
4791                              decl->identifier, state->get_version_string());
4792          }
4793          if (this->type->qualifier.flags.q.in) {
4794             _mesa_glsl_error(& loc, state,
4795                              "`in' qualifier in declaration of `%s' "
4796                              "only valid for function parameters in %s",
4797                              decl->identifier, state->get_version_string());
4798          }
4799          /* FINISHME: Test for other invalid qualifiers. */
4800       }
4801 
4802       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4803                                        & loc, false);
4804       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4805                                          &loc);
4806 
4807       if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4808           && (var->type->is_numeric() || var->type->is_boolean())
4809           && state->zero_init) {
4810          const ir_constant_data data = {0};
4811          var->data.has_initializer = true;
4812          var->constant_initializer = new(var) ir_constant(var->type, &data);
4813       }
4814 
4815       if (this->type->qualifier.flags.q.invariant) {
4816          if (!is_allowed_invariant(var, state)) {
4817             _mesa_glsl_error(&loc, state,
4818                              "`%s' cannot be marked invariant; interfaces between "
4819                              "shader stages only", var->name);
4820          }
4821       }
4822 
4823       if (state->current_function != NULL) {
4824          const char *mode = NULL;
4825          const char *extra = "";
4826 
4827          /* There is no need to check for 'inout' here because the parser will
4828           * only allow that in function parameter lists.
4829           */
4830          if (this->type->qualifier.flags.q.attribute) {
4831             mode = "attribute";
4832          } else if (this->type->qualifier.flags.q.subroutine) {
4833             mode = "subroutine uniform";
4834          } else if (this->type->qualifier.flags.q.uniform) {
4835             mode = "uniform";
4836          } else if (this->type->qualifier.flags.q.varying) {
4837             mode = "varying";
4838          } else if (this->type->qualifier.flags.q.in) {
4839             mode = "in";
4840             extra = " or in function parameter list";
4841          } else if (this->type->qualifier.flags.q.out) {
4842             mode = "out";
4843             extra = " or in function parameter list";
4844          }
4845 
4846          if (mode) {
4847             _mesa_glsl_error(& loc, state,
4848                              "%s variable `%s' must be declared at "
4849                              "global scope%s",
4850                              mode, var->name, extra);
4851          }
4852       } else if (var->data.mode == ir_var_shader_in) {
4853          var->data.read_only = true;
4854 
4855          if (state->stage == MESA_SHADER_VERTEX) {
4856             bool error_emitted = false;
4857 
4858             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4859              *
4860              *    "Vertex shader inputs can only be float, floating-point
4861              *    vectors, matrices, signed and unsigned integers and integer
4862              *    vectors. Vertex shader inputs can also form arrays of these
4863              *    types, but not structures."
4864              *
4865              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4866              *
4867              *    "Vertex shader inputs can only be float, floating-point
4868              *    vectors, matrices, signed and unsigned integers and integer
4869              *    vectors. They cannot be arrays or structures."
4870              *
4871              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4872              *
4873              *    "The attribute qualifier can be used only with float,
4874              *    floating-point vectors, and matrices. Attribute variables
4875              *    cannot be declared as arrays or structures."
4876              *
4877              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4878              *
4879              *    "Vertex shader inputs can only be float, floating-point
4880              *    vectors, matrices, signed and unsigned integers and integer
4881              *    vectors. Vertex shader inputs cannot be arrays or
4882              *    structures."
4883              */
4884             const glsl_type *check_type = var->type->without_array();
4885 
4886             switch (check_type->base_type) {
4887             case GLSL_TYPE_FLOAT:
4888             break;
4889             case GLSL_TYPE_UINT:
4890             case GLSL_TYPE_INT:
4891                if (state->is_version(120, 300))
4892                   break;
4893             case GLSL_TYPE_DOUBLE:
4894                if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4895                   break;
4896             /* FALLTHROUGH */
4897             default:
4898                _mesa_glsl_error(& loc, state,
4899                                 "vertex shader input / attribute cannot have "
4900                                 "type %s`%s'",
4901                                 var->type->is_array() ? "array of " : "",
4902                                 check_type->name);
4903                error_emitted = true;
4904             }
4905 
4906             if (!error_emitted && var->type->is_array() &&
4907                 !state->check_version(150, 0, &loc,
4908                                       "vertex shader input / attribute "
4909                                       "cannot have array type")) {
4910                error_emitted = true;
4911             }
4912          } else if (state->stage == MESA_SHADER_GEOMETRY) {
4913             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4914              *
4915              *     Geometry shader input variables get the per-vertex values
4916              *     written out by vertex shader output variables of the same
4917              *     names. Since a geometry shader operates on a set of
4918              *     vertices, each input varying variable (or input block, see
4919              *     interface blocks below) needs to be declared as an array.
4920              */
4921             if (!var->type->is_array()) {
4922                _mesa_glsl_error(&loc, state,
4923                                 "geometry shader inputs must be arrays");
4924             }
4925 
4926             handle_geometry_shader_input_decl(state, loc, var);
4927          } else if (state->stage == MESA_SHADER_FRAGMENT) {
4928             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4929              *
4930              *     It is a compile-time error to declare a fragment shader
4931              *     input with, or that contains, any of the following types:
4932              *
4933              *     * A boolean type
4934              *     * An opaque type
4935              *     * An array of arrays
4936              *     * An array of structures
4937              *     * A structure containing an array
4938              *     * A structure containing a structure
4939              */
4940             if (state->es_shader) {
4941                const glsl_type *check_type = var->type->without_array();
4942                if (check_type->is_boolean() ||
4943                    check_type->contains_opaque()) {
4944                   _mesa_glsl_error(&loc, state,
4945                                    "fragment shader input cannot have type %s",
4946                                    check_type->name);
4947                }
4948                if (var->type->is_array() &&
4949                    var->type->fields.array->is_array()) {
4950                   _mesa_glsl_error(&loc, state,
4951                                    "%s shader output "
4952                                    "cannot have an array of arrays",
4953                                    _mesa_shader_stage_to_string(state->stage));
4954                }
4955                if (var->type->is_array() &&
4956                    var->type->fields.array->is_record()) {
4957                   _mesa_glsl_error(&loc, state,
4958                                    "fragment shader input "
4959                                    "cannot have an array of structs");
4960                }
4961                if (var->type->is_record()) {
4962                   for (unsigned i = 0; i < var->type->length; i++) {
4963                      if (var->type->fields.structure[i].type->is_array() ||
4964                          var->type->fields.structure[i].type->is_record())
4965                         _mesa_glsl_error(&loc, state,
4966                                          "fragement shader input cannot have "
4967                                          "a struct that contains an "
4968                                          "array or struct");
4969                   }
4970                }
4971             }
4972          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4973                     state->stage == MESA_SHADER_TESS_EVAL) {
4974             handle_tess_shader_input_decl(state, loc, var);
4975          }
4976       } else if (var->data.mode == ir_var_shader_out) {
4977          const glsl_type *check_type = var->type->without_array();
4978 
4979          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4980           *
4981           *     It is a compile-time error to declare a vertex, tessellation
4982           *     evaluation, tessellation control, or geometry shader output
4983           *     that contains any of the following:
4984           *
4985           *     * A Boolean type (bool, bvec2 ...)
4986           *     * An opaque type
4987           */
4988          if (check_type->is_boolean() || check_type->contains_opaque())
4989             _mesa_glsl_error(&loc, state,
4990                              "%s shader output cannot have type %s",
4991                              _mesa_shader_stage_to_string(state->stage),
4992                              check_type->name);
4993 
4994          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4995           *
4996           *     It is a compile-time error to declare a fragment shader output
4997           *     that contains any of the following:
4998           *
4999           *     * A Boolean type (bool, bvec2 ...)
5000           *     * A double-precision scalar or vector (double, dvec2 ...)
5001           *     * An opaque type
5002           *     * Any matrix type
5003           *     * A structure
5004           */
5005          if (state->stage == MESA_SHADER_FRAGMENT) {
5006             if (check_type->is_record() || check_type->is_matrix())
5007                _mesa_glsl_error(&loc, state,
5008                                 "fragment shader output "
5009                                 "cannot have struct or matrix type");
5010             switch (check_type->base_type) {
5011             case GLSL_TYPE_UINT:
5012             case GLSL_TYPE_INT:
5013             case GLSL_TYPE_FLOAT:
5014                break;
5015             default:
5016                _mesa_glsl_error(&loc, state,
5017                                 "fragment shader output cannot have "
5018                                 "type %s", check_type->name);
5019             }
5020          }
5021 
5022          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5023           *
5024           *     It is a compile-time error to declare a vertex shader output
5025           *     with, or that contains, any of the following types:
5026           *
5027           *     * A boolean type
5028           *     * An opaque type
5029           *     * An array of arrays
5030           *     * An array of structures
5031           *     * A structure containing an array
5032           *     * A structure containing a structure
5033           *
5034           *     It is a compile-time error to declare a fragment shader output
5035           *     with, or that contains, any of the following types:
5036           *
5037           *     * A boolean type
5038           *     * An opaque type
5039           *     * A matrix
5040           *     * A structure
5041           *     * An array of array
5042           *
5043           * ES 3.20 updates this to apply to tessellation and geometry shaders
5044           * as well.  Because there are per-vertex arrays in the new stages,
5045           * it strikes the "array of..." rules and replaces them with these:
5046           *
5047           *     * For per-vertex-arrayed variables (applies to tessellation
5048           *       control, tessellation evaluation and geometry shaders):
5049           *
5050           *       * Per-vertex-arrayed arrays of arrays
5051           *       * Per-vertex-arrayed arrays of structures
5052           *
5053           *     * For non-per-vertex-arrayed variables:
5054           *
5055           *       * An array of arrays
5056           *       * An array of structures
5057           *
5058           * which basically says to unwrap the per-vertex aspect and apply
5059           * the old rules.
5060           */
5061          if (state->es_shader) {
5062             if (var->type->is_array() &&
5063                 var->type->fields.array->is_array()) {
5064                _mesa_glsl_error(&loc, state,
5065                                 "%s shader output "
5066                                 "cannot have an array of arrays",
5067                                 _mesa_shader_stage_to_string(state->stage));
5068             }
5069             if (state->stage <= MESA_SHADER_GEOMETRY) {
5070                const glsl_type *type = var->type;
5071 
5072                if (state->stage == MESA_SHADER_TESS_CTRL &&
5073                    !var->data.patch && var->type->is_array()) {
5074                   type = var->type->fields.array;
5075                }
5076 
5077                if (type->is_array() && type->fields.array->is_record()) {
5078                   _mesa_glsl_error(&loc, state,
5079                                    "%s shader output cannot have "
5080                                    "an array of structs",
5081                                    _mesa_shader_stage_to_string(state->stage));
5082                }
5083                if (type->is_record()) {
5084                   for (unsigned i = 0; i < type->length; i++) {
5085                      if (type->fields.structure[i].type->is_array() ||
5086                          type->fields.structure[i].type->is_record())
5087                         _mesa_glsl_error(&loc, state,
5088                                          "%s shader output cannot have a "
5089                                          "struct that contains an "
5090                                          "array or struct",
5091                                          _mesa_shader_stage_to_string(state->stage));
5092                   }
5093                }
5094             }
5095          }
5096 
5097          if (state->stage == MESA_SHADER_TESS_CTRL) {
5098             handle_tess_ctrl_shader_output_decl(state, loc, var);
5099          }
5100       } else if (var->type->contains_subroutine()) {
5101          /* declare subroutine uniforms as hidden */
5102          var->data.how_declared = ir_var_hidden;
5103       }
5104 
5105       /* From section 4.3.4 of the GLSL 4.00 spec:
5106        *    "Input variables may not be declared using the patch in qualifier
5107        *    in tessellation control or geometry shaders."
5108        *
5109        * From section 4.3.6 of the GLSL 4.00 spec:
5110        *    "It is an error to use patch out in a vertex, tessellation
5111        *    evaluation, or geometry shader."
5112        *
5113        * This doesn't explicitly forbid using them in a fragment shader, but
5114        * that's probably just an oversight.
5115        */
5116       if (state->stage != MESA_SHADER_TESS_EVAL
5117           && this->type->qualifier.flags.q.patch
5118           && this->type->qualifier.flags.q.in) {
5119 
5120          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5121                           "tessellation evaluation shader");
5122       }
5123 
5124       if (state->stage != MESA_SHADER_TESS_CTRL
5125           && this->type->qualifier.flags.q.patch
5126           && this->type->qualifier.flags.q.out) {
5127 
5128          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5129                           "tessellation control shader");
5130       }
5131 
5132       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5133        */
5134       if (this->type->qualifier.precision != ast_precision_none) {
5135          state->check_precision_qualifiers_allowed(&loc);
5136       }
5137 
5138       if (this->type->qualifier.precision != ast_precision_none &&
5139           !precision_qualifier_allowed(var->type)) {
5140          _mesa_glsl_error(&loc, state,
5141                           "precision qualifiers apply only to floating point"
5142                           ", integer and opaque types");
5143       }
5144 
5145       /* From section 4.1.7 of the GLSL 4.40 spec:
5146        *
5147        *    "[Opaque types] can only be declared as function
5148        *     parameters or uniform-qualified variables."
5149        */
5150       if (var_type->contains_opaque() &&
5151           !this->type->qualifier.flags.q.uniform) {
5152          _mesa_glsl_error(&loc, state,
5153                           "opaque variables must be declared uniform");
5154       }
5155 
5156       /* Process the initializer and add its instructions to a temporary
5157        * list.  This list will be added to the instruction stream (below) after
5158        * the declaration is added.  This is done because in some cases (such as
5159        * redeclarations) the declaration may not actually be added to the
5160        * instruction stream.
5161        */
5162       exec_list initializer_instructions;
5163 
5164       /* Examine var name here since var may get deleted in the next call */
5165       bool var_is_gl_id = is_gl_identifier(var->name);
5166 
5167       ir_variable *earlier =
5168          get_variable_being_redeclared(var, decl->get_location(), state,
5169                                        false /* allow_all_redeclarations */);
5170       if (earlier != NULL) {
5171          if (var_is_gl_id &&
5172              earlier->data.how_declared == ir_var_declared_in_block) {
5173             _mesa_glsl_error(&loc, state,
5174                              "`%s' has already been redeclared using "
5175                              "gl_PerVertex", earlier->name);
5176          }
5177          earlier->data.how_declared = ir_var_declared_normally;
5178       }
5179 
5180       if (decl->initializer != NULL) {
5181          result = process_initializer((earlier == NULL) ? var : earlier,
5182                                       decl, this->type,
5183                                       &initializer_instructions, state);
5184       } else {
5185          validate_array_dimensions(var_type, state, &loc);
5186       }
5187 
5188       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5189        *
5190        *     "It is an error to write to a const variable outside of
5191        *      its declaration, so they must be initialized when
5192        *      declared."
5193        */
5194       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5195          _mesa_glsl_error(& loc, state,
5196                           "const declaration of `%s' must be initialized",
5197                           decl->identifier);
5198       }
5199 
5200       if (state->es_shader) {
5201          const glsl_type *const t = (earlier == NULL)
5202             ? var->type : earlier->type;
5203 
5204          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5205           *
5206           * The GL_OES_tessellation_shader spec says about inputs:
5207           *
5208           *    "Declaring an array size is optional. If no size is specified,
5209           *     it will be taken from the implementation-dependent maximum
5210           *     patch size (gl_MaxPatchVertices)."
5211           *
5212           * and about TCS outputs:
5213           *
5214           *    "If no size is specified, it will be taken from output patch
5215           *     size declared in the shader."
5216           *
5217           * The GL_OES_geometry_shader spec says:
5218           *
5219           *    "All geometry shader input unsized array declarations will be
5220           *     sized by an earlier input primitive layout qualifier, when
5221           *     present, as per the following table."
5222           */
5223          const enum ir_variable_mode mode = (const enum ir_variable_mode)
5224             (earlier == NULL ? var->data.mode : earlier->data.mode);
5225          const bool implicitly_sized =
5226             (mode == ir_var_shader_in &&
5227              state->stage >= MESA_SHADER_TESS_CTRL &&
5228              state->stage <= MESA_SHADER_GEOMETRY) ||
5229             (mode == ir_var_shader_out &&
5230              state->stage == MESA_SHADER_TESS_CTRL);
5231 
5232          if (t->is_unsized_array() && !implicitly_sized)
5233             /* Section 10.17 of the GLSL ES 1.00 specification states that
5234              * unsized array declarations have been removed from the language.
5235              * Arrays that are sized using an initializer are still explicitly
5236              * sized.  However, GLSL ES 1.00 does not allow array
5237              * initializers.  That is only allowed in GLSL ES 3.00.
5238              *
5239              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5240              *
5241              *     "An array type can also be formed without specifying a size
5242              *     if the definition includes an initializer:
5243              *
5244              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5245              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5246              *
5247              *         float a[5];
5248              *         float b[] = a;"
5249              */
5250             _mesa_glsl_error(& loc, state,
5251                              "unsized array declarations are not allowed in "
5252                              "GLSL ES");
5253       }
5254 
5255       /* If the declaration is not a redeclaration, there are a few additional
5256        * semantic checks that must be applied.  In addition, variable that was
5257        * created for the declaration should be added to the IR stream.
5258        */
5259       if (earlier == NULL) {
5260          validate_identifier(decl->identifier, loc, state);
5261 
5262          /* Add the variable to the symbol table.  Note that the initializer's
5263           * IR was already processed earlier (though it hasn't been emitted
5264           * yet), without the variable in scope.
5265           *
5266           * This differs from most C-like languages, but it follows the GLSL
5267           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5268           * spec:
5269           *
5270           *     "Within a declaration, the scope of a name starts immediately
5271           *     after the initializer if present or immediately after the name
5272           *     being declared if not."
5273           */
5274          if (!state->symbols->add_variable(var)) {
5275             YYLTYPE loc = this->get_location();
5276             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5277                              "current scope", decl->identifier);
5278             continue;
5279          }
5280 
5281          /* Push the variable declaration to the top.  It means that all the
5282           * variable declarations will appear in a funny last-to-first order,
5283           * but otherwise we run into trouble if a function is prototyped, a
5284           * global var is decled, then the function is defined with usage of
5285           * the global var.  See glslparsertest's CorrectModule.frag.
5286           */
5287          instructions->push_head(var);
5288       }
5289 
5290       instructions->append_list(&initializer_instructions);
5291    }
5292 
5293 
5294    /* Generally, variable declarations do not have r-values.  However,
5295     * one is used for the declaration in
5296     *
5297     * while (bool b = some_condition()) {
5298     *   ...
5299     * }
5300     *
5301     * so we return the rvalue from the last seen declaration here.
5302     */
5303    return result;
5304 }
5305 
5306 
5307 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5308 ast_parameter_declarator::hir(exec_list *instructions,
5309                               struct _mesa_glsl_parse_state *state)
5310 {
5311    void *ctx = state;
5312    const struct glsl_type *type;
5313    const char *name = NULL;
5314    YYLTYPE loc = this->get_location();
5315 
5316    type = this->type->glsl_type(& name, state);
5317 
5318    if (type == NULL) {
5319       if (name != NULL) {
5320          _mesa_glsl_error(& loc, state,
5321                           "invalid type `%s' in declaration of `%s'",
5322                           name, this->identifier);
5323       } else {
5324          _mesa_glsl_error(& loc, state,
5325                           "invalid type in declaration of `%s'",
5326                           this->identifier);
5327       }
5328 
5329       type = glsl_type::error_type;
5330    }
5331 
5332    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5333     *
5334     *    "Functions that accept no input arguments need not use void in the
5335     *    argument list because prototypes (or definitions) are required and
5336     *    therefore there is no ambiguity when an empty argument list "( )" is
5337     *    declared. The idiom "(void)" as a parameter list is provided for
5338     *    convenience."
5339     *
5340     * Placing this check here prevents a void parameter being set up
5341     * for a function, which avoids tripping up checks for main taking
5342     * parameters and lookups of an unnamed symbol.
5343     */
5344    if (type->is_void()) {
5345       if (this->identifier != NULL)
5346          _mesa_glsl_error(& loc, state,
5347                           "named parameter cannot have type `void'");
5348 
5349       is_void = true;
5350       return NULL;
5351    }
5352 
5353    if (formal_parameter && (this->identifier == NULL)) {
5354       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5355       return NULL;
5356    }
5357 
5358    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5359     * call already handled the "vec4[..] foo" case.
5360     */
5361    type = process_array_type(&loc, type, this->array_specifier, state);
5362 
5363    if (!type->is_error() && type->is_unsized_array()) {
5364       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5365                        "a declared size");
5366       type = glsl_type::error_type;
5367    }
5368 
5369    is_void = false;
5370    ir_variable *var = new(ctx)
5371       ir_variable(type, this->identifier, ir_var_function_in);
5372 
5373    /* Apply any specified qualifiers to the parameter declaration.  Note that
5374     * for function parameters the default mode is 'in'.
5375     */
5376    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5377                                     true);
5378 
5379    /* From section 4.1.7 of the GLSL 4.40 spec:
5380     *
5381     *   "Opaque variables cannot be treated as l-values; hence cannot
5382     *    be used as out or inout function parameters, nor can they be
5383     *    assigned into."
5384     */
5385    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5386        && type->contains_opaque()) {
5387       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5388                        "contain opaque variables");
5389       type = glsl_type::error_type;
5390    }
5391 
5392    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5393     *
5394     *    "When calling a function, expressions that do not evaluate to
5395     *     l-values cannot be passed to parameters declared as out or inout."
5396     *
5397     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5398     *
5399     *    "Other binary or unary expressions, non-dereferenced arrays,
5400     *     function names, swizzles with repeated fields, and constants
5401     *     cannot be l-values."
5402     *
5403     * So for GLSL 1.10, passing an array as an out or inout parameter is not
5404     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5405     */
5406    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5407        && type->is_array()
5408        && !state->check_version(120, 100, &loc,
5409                                 "arrays cannot be out or inout parameters")) {
5410       type = glsl_type::error_type;
5411    }
5412 
5413    instructions->push_tail(var);
5414 
5415    /* Parameter declarations do not have r-values.
5416     */
5417    return NULL;
5418 }
5419 
5420 
5421 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)5422 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5423                                             bool formal,
5424                                             exec_list *ir_parameters,
5425                                             _mesa_glsl_parse_state *state)
5426 {
5427    ast_parameter_declarator *void_param = NULL;
5428    unsigned count = 0;
5429 
5430    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5431       param->formal_parameter = formal;
5432       param->hir(ir_parameters, state);
5433 
5434       if (param->is_void)
5435          void_param = param;
5436 
5437       count++;
5438    }
5439 
5440    if ((void_param != NULL) && (count > 1)) {
5441       YYLTYPE loc = void_param->get_location();
5442 
5443       _mesa_glsl_error(& loc, state,
5444                        "`void' parameter must be only parameter");
5445    }
5446 }
5447 
5448 
5449 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)5450 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5451 {
5452    /* IR invariants disallow function declarations or definitions
5453     * nested within other function definitions.  But there is no
5454     * requirement about the relative order of function declarations
5455     * and definitions with respect to one another.  So simply insert
5456     * the new ir_function block at the end of the toplevel instruction
5457     * list.
5458     */
5459    state->toplevel_ir->push_tail(f);
5460 }
5461 
5462 
5463 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5464 ast_function::hir(exec_list *instructions,
5465                   struct _mesa_glsl_parse_state *state)
5466 {
5467    void *ctx = state;
5468    ir_function *f = NULL;
5469    ir_function_signature *sig = NULL;
5470    exec_list hir_parameters;
5471    YYLTYPE loc = this->get_location();
5472 
5473    const char *const name = identifier;
5474 
5475    /* New functions are always added to the top-level IR instruction stream,
5476     * so this instruction list pointer is ignored.  See also emit_function
5477     * (called below).
5478     */
5479    (void) instructions;
5480 
5481    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5482     *
5483     *   "Function declarations (prototypes) cannot occur inside of functions;
5484     *   they must be at global scope, or for the built-in functions, outside
5485     *   the global scope."
5486     *
5487     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5488     *
5489     *   "User defined functions may only be defined within the global scope."
5490     *
5491     * Note that this language does not appear in GLSL 1.10.
5492     */
5493    if ((state->current_function != NULL) &&
5494        state->is_version(120, 100)) {
5495       YYLTYPE loc = this->get_location();
5496       _mesa_glsl_error(&loc, state,
5497                        "declaration of function `%s' not allowed within "
5498                        "function body", name);
5499    }
5500 
5501    validate_identifier(name, this->get_location(), state);
5502 
5503    /* Convert the list of function parameters to HIR now so that they can be
5504     * used below to compare this function's signature with previously seen
5505     * signatures for functions with the same name.
5506     */
5507    ast_parameter_declarator::parameters_to_hir(& this->parameters,
5508                                                is_definition,
5509                                                & hir_parameters, state);
5510 
5511    const char *return_type_name;
5512    const glsl_type *return_type =
5513       this->return_type->glsl_type(& return_type_name, state);
5514 
5515    if (!return_type) {
5516       YYLTYPE loc = this->get_location();
5517       _mesa_glsl_error(&loc, state,
5518                        "function `%s' has undeclared return type `%s'",
5519                        name, return_type_name);
5520       return_type = glsl_type::error_type;
5521    }
5522 
5523    /* ARB_shader_subroutine states:
5524     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
5525     *   subroutine(...) to a function declaration."
5526     */
5527    if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5528       YYLTYPE loc = this->get_location();
5529       _mesa_glsl_error(&loc, state,
5530                        "function declaration `%s' cannot have subroutine prepended",
5531                        name);
5532    }
5533 
5534    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5535     * "No qualifier is allowed on the return type of a function."
5536     */
5537    if (this->return_type->has_qualifiers(state)) {
5538       YYLTYPE loc = this->get_location();
5539       _mesa_glsl_error(& loc, state,
5540                        "function `%s' return type has qualifiers", name);
5541    }
5542 
5543    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5544     *
5545     *     "Arrays are allowed as arguments and as the return type. In both
5546     *     cases, the array must be explicitly sized."
5547     */
5548    if (return_type->is_unsized_array()) {
5549       YYLTYPE loc = this->get_location();
5550       _mesa_glsl_error(& loc, state,
5551                        "function `%s' return type array must be explicitly "
5552                        "sized", name);
5553    }
5554 
5555    /* From section 4.1.7 of the GLSL 4.40 spec:
5556     *
5557     *    "[Opaque types] can only be declared as function parameters
5558     *     or uniform-qualified variables."
5559     */
5560    if (return_type->contains_opaque()) {
5561       YYLTYPE loc = this->get_location();
5562       _mesa_glsl_error(&loc, state,
5563                        "function `%s' return type can't contain an opaque type",
5564                        name);
5565    }
5566 
5567    /**/
5568    if (return_type->is_subroutine()) {
5569       YYLTYPE loc = this->get_location();
5570       _mesa_glsl_error(&loc, state,
5571                        "function `%s' return type can't be a subroutine type",
5572                        name);
5573    }
5574 
5575 
5576    /* Create an ir_function if one doesn't already exist. */
5577    f = state->symbols->get_function(name);
5578    if (f == NULL) {
5579       f = new(ctx) ir_function(name);
5580       if (!this->return_type->qualifier.flags.q.subroutine) {
5581          if (!state->symbols->add_function(f)) {
5582             /* This function name shadows a non-function use of the same name. */
5583             YYLTYPE loc = this->get_location();
5584             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5585                              "non-function", name);
5586             return NULL;
5587          }
5588       }
5589       emit_function(state, f);
5590    }
5591 
5592    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5593     *
5594     * "A shader cannot redefine or overload built-in functions."
5595     *
5596     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5597     *
5598     * "User code can overload the built-in functions but cannot redefine
5599     * them."
5600     */
5601    if (state->es_shader && state->language_version >= 300) {
5602       /* Local shader has no exact candidates; check the built-ins. */
5603       _mesa_glsl_initialize_builtin_functions();
5604       if (_mesa_glsl_find_builtin_function_by_name(name)) {
5605          YYLTYPE loc = this->get_location();
5606          _mesa_glsl_error(& loc, state,
5607                           "A shader cannot redefine or overload built-in "
5608                           "function `%s' in GLSL ES 3.00", name);
5609          return NULL;
5610       }
5611    }
5612 
5613    /* Verify that this function's signature either doesn't match a previously
5614     * seen signature for a function with the same name, or, if a match is found,
5615     * that the previously seen signature does not have an associated definition.
5616     */
5617    if (state->es_shader || f->has_user_signature()) {
5618       sig = f->exact_matching_signature(state, &hir_parameters);
5619       if (sig != NULL) {
5620          const char *badvar = sig->qualifiers_match(&hir_parameters);
5621          if (badvar != NULL) {
5622             YYLTYPE loc = this->get_location();
5623 
5624             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5625                              "qualifiers don't match prototype", name, badvar);
5626          }
5627 
5628          if (sig->return_type != return_type) {
5629             YYLTYPE loc = this->get_location();
5630 
5631             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5632                              "match prototype", name);
5633          }
5634 
5635          if (sig->is_defined) {
5636             if (is_definition) {
5637                YYLTYPE loc = this->get_location();
5638                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5639             } else {
5640                /* We just encountered a prototype that exactly matches a
5641                 * function that's already been defined.  This is redundant,
5642                 * and we should ignore it.
5643                 */
5644                return NULL;
5645             }
5646          }
5647       }
5648    }
5649 
5650    /* Verify the return type of main() */
5651    if (strcmp(name, "main") == 0) {
5652       if (! return_type->is_void()) {
5653          YYLTYPE loc = this->get_location();
5654 
5655          _mesa_glsl_error(& loc, state, "main() must return void");
5656       }
5657 
5658       if (!hir_parameters.is_empty()) {
5659          YYLTYPE loc = this->get_location();
5660 
5661          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5662       }
5663    }
5664 
5665    /* Finish storing the information about this new function in its signature.
5666     */
5667    if (sig == NULL) {
5668       sig = new(ctx) ir_function_signature(return_type);
5669       f->add_signature(sig);
5670    }
5671 
5672    sig->replace_parameters(&hir_parameters);
5673    signature = sig;
5674 
5675    if (this->return_type->qualifier.flags.q.subroutine_def) {
5676       int idx;
5677 
5678       if (this->return_type->qualifier.flags.q.explicit_index) {
5679          unsigned qual_index;
5680          if (process_qualifier_constant(state, &loc, "index",
5681                                         this->return_type->qualifier.index,
5682                                         &qual_index)) {
5683             if (!state->has_explicit_uniform_location()) {
5684                _mesa_glsl_error(&loc, state, "subroutine index requires "
5685                                 "GL_ARB_explicit_uniform_location or "
5686                                 "GLSL 4.30");
5687             } else if (qual_index >= MAX_SUBROUTINES) {
5688                _mesa_glsl_error(&loc, state,
5689                                 "invalid subroutine index (%d) index must "
5690                                 "be a number between 0 and "
5691                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5692                                 MAX_SUBROUTINES - 1);
5693             } else {
5694                f->subroutine_index = qual_index;
5695             }
5696          }
5697       }
5698 
5699       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5700       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5701                                          f->num_subroutine_types);
5702       idx = 0;
5703       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5704          const struct glsl_type *type;
5705          /* the subroutine type must be already declared */
5706          type = state->symbols->get_type(decl->identifier);
5707          if (!type) {
5708             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5709          }
5710 
5711          for (int i = 0; i < state->num_subroutine_types; i++) {
5712             ir_function *fn = state->subroutine_types[i];
5713             ir_function_signature *tsig = NULL;
5714 
5715             if (strcmp(fn->name, decl->identifier))
5716                continue;
5717 
5718             tsig = fn->matching_signature(state, &sig->parameters,
5719                                           false);
5720             if (!tsig) {
5721                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5722             } else {
5723                if (tsig->return_type != sig->return_type) {
5724                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5725                }
5726             }
5727          }
5728          f->subroutine_types[idx++] = type;
5729       }
5730       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5731                                                     ir_function *,
5732                                                     state->num_subroutines + 1);
5733       state->subroutines[state->num_subroutines] = f;
5734       state->num_subroutines++;
5735 
5736    }
5737 
5738    if (this->return_type->qualifier.flags.q.subroutine) {
5739       if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5740          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5741          return NULL;
5742       }
5743       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5744                                                          ir_function *,
5745                                                          state->num_subroutine_types + 1);
5746       state->subroutine_types[state->num_subroutine_types] = f;
5747       state->num_subroutine_types++;
5748 
5749       f->is_subroutine = true;
5750    }
5751 
5752    /* Function declarations (prototypes) do not have r-values.
5753     */
5754    return NULL;
5755 }
5756 
5757 
5758 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5759 ast_function_definition::hir(exec_list *instructions,
5760                              struct _mesa_glsl_parse_state *state)
5761 {
5762    prototype->is_definition = true;
5763    prototype->hir(instructions, state);
5764 
5765    ir_function_signature *signature = prototype->signature;
5766    if (signature == NULL)
5767       return NULL;
5768 
5769    assert(state->current_function == NULL);
5770    state->current_function = signature;
5771    state->found_return = false;
5772 
5773    /* Duplicate parameters declared in the prototype as concrete variables.
5774     * Add these to the symbol table.
5775     */
5776    state->symbols->push_scope();
5777    foreach_in_list(ir_variable, var, &signature->parameters) {
5778       assert(var->as_variable() != NULL);
5779 
5780       /* The only way a parameter would "exist" is if two parameters have
5781        * the same name.
5782        */
5783       if (state->symbols->name_declared_this_scope(var->name)) {
5784          YYLTYPE loc = this->get_location();
5785 
5786          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5787       } else {
5788          state->symbols->add_variable(var);
5789       }
5790    }
5791 
5792    /* Convert the body of the function to HIR. */
5793    this->body->hir(&signature->body, state);
5794    signature->is_defined = true;
5795 
5796    state->symbols->pop_scope();
5797 
5798    assert(state->current_function == signature);
5799    state->current_function = NULL;
5800 
5801    if (!signature->return_type->is_void() && !state->found_return) {
5802       YYLTYPE loc = this->get_location();
5803       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5804                        "%s, but no return statement",
5805                        signature->function_name(),
5806                        signature->return_type->name);
5807    }
5808 
5809    /* Function definitions do not have r-values.
5810     */
5811    return NULL;
5812 }
5813 
5814 
5815 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5816 ast_jump_statement::hir(exec_list *instructions,
5817                         struct _mesa_glsl_parse_state *state)
5818 {
5819    void *ctx = state;
5820 
5821    switch (mode) {
5822    case ast_return: {
5823       ir_return *inst;
5824       assert(state->current_function);
5825 
5826       if (opt_return_value) {
5827          ir_rvalue *ret = opt_return_value->hir(instructions, state);
5828 
5829          /* The value of the return type can be NULL if the shader says
5830           * 'return foo();' and foo() is a function that returns void.
5831           *
5832           * NOTE: The GLSL spec doesn't say that this is an error.  The type
5833           * of the return value is void.  If the return type of the function is
5834           * also void, then this should compile without error.  Seriously.
5835           */
5836          const glsl_type *const ret_type =
5837             (ret == NULL) ? glsl_type::void_type : ret->type;
5838 
5839          /* Implicit conversions are not allowed for return values prior to
5840           * ARB_shading_language_420pack.
5841           */
5842          if (state->current_function->return_type != ret_type) {
5843             YYLTYPE loc = this->get_location();
5844 
5845             if (state->has_420pack()) {
5846                if (!apply_implicit_conversion(state->current_function->return_type,
5847                                               ret, state)) {
5848                   _mesa_glsl_error(& loc, state,
5849                                    "could not implicitly convert return value "
5850                                    "to %s, in function `%s'",
5851                                    state->current_function->return_type->name,
5852                                    state->current_function->function_name());
5853                }
5854             } else {
5855                _mesa_glsl_error(& loc, state,
5856                                 "`return' with wrong type %s, in function `%s' "
5857                                 "returning %s",
5858                                 ret_type->name,
5859                                 state->current_function->function_name(),
5860                                 state->current_function->return_type->name);
5861             }
5862          } else if (state->current_function->return_type->base_type ==
5863                     GLSL_TYPE_VOID) {
5864             YYLTYPE loc = this->get_location();
5865 
5866             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5867              * specs add a clarification:
5868              *
5869              *    "A void function can only use return without a return argument, even if
5870              *     the return argument has void type. Return statements only accept values:
5871              *
5872              *         void func1() { }
5873              *         void func2() { return func1(); } // illegal return statement"
5874              */
5875             _mesa_glsl_error(& loc, state,
5876                              "void functions can only use `return' without a "
5877                              "return argument");
5878          }
5879 
5880          inst = new(ctx) ir_return(ret);
5881       } else {
5882          if (state->current_function->return_type->base_type !=
5883              GLSL_TYPE_VOID) {
5884             YYLTYPE loc = this->get_location();
5885 
5886             _mesa_glsl_error(& loc, state,
5887                              "`return' with no value, in function %s returning "
5888                              "non-void",
5889             state->current_function->function_name());
5890          }
5891          inst = new(ctx) ir_return;
5892       }
5893 
5894       state->found_return = true;
5895       instructions->push_tail(inst);
5896       break;
5897    }
5898 
5899    case ast_discard:
5900       if (state->stage != MESA_SHADER_FRAGMENT) {
5901          YYLTYPE loc = this->get_location();
5902 
5903          _mesa_glsl_error(& loc, state,
5904                           "`discard' may only appear in a fragment shader");
5905       }
5906       instructions->push_tail(new(ctx) ir_discard);
5907       break;
5908 
5909    case ast_break:
5910    case ast_continue:
5911       if (mode == ast_continue &&
5912           state->loop_nesting_ast == NULL) {
5913          YYLTYPE loc = this->get_location();
5914 
5915          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5916       } else if (mode == ast_break &&
5917          state->loop_nesting_ast == NULL &&
5918          state->switch_state.switch_nesting_ast == NULL) {
5919          YYLTYPE loc = this->get_location();
5920 
5921          _mesa_glsl_error(& loc, state,
5922                           "break may only appear in a loop or a switch");
5923       } else {
5924          /* For a loop, inline the for loop expression again, since we don't
5925           * know where near the end of the loop body the normal copy of it is
5926           * going to be placed.  Same goes for the condition for a do-while
5927           * loop.
5928           */
5929          if (state->loop_nesting_ast != NULL &&
5930              mode == ast_continue && !state->switch_state.is_switch_innermost) {
5931             if (state->loop_nesting_ast->rest_expression) {
5932                state->loop_nesting_ast->rest_expression->hir(instructions,
5933                                                              state);
5934             }
5935             if (state->loop_nesting_ast->mode ==
5936                 ast_iteration_statement::ast_do_while) {
5937                state->loop_nesting_ast->condition_to_hir(instructions, state);
5938             }
5939          }
5940 
5941          if (state->switch_state.is_switch_innermost &&
5942              mode == ast_continue) {
5943             /* Set 'continue_inside' to true. */
5944             ir_rvalue *const true_val = new (ctx) ir_constant(true);
5945             ir_dereference_variable *deref_continue_inside_var =
5946                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5947             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5948                                                            true_val));
5949 
5950             /* Break out from the switch, continue for the loop will
5951              * be called right after switch. */
5952             ir_loop_jump *const jump =
5953                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5954             instructions->push_tail(jump);
5955 
5956          } else if (state->switch_state.is_switch_innermost &&
5957              mode == ast_break) {
5958             /* Force break out of switch by inserting a break. */
5959             ir_loop_jump *const jump =
5960                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5961             instructions->push_tail(jump);
5962          } else {
5963             ir_loop_jump *const jump =
5964                new(ctx) ir_loop_jump((mode == ast_break)
5965                   ? ir_loop_jump::jump_break
5966                   : ir_loop_jump::jump_continue);
5967             instructions->push_tail(jump);
5968          }
5969       }
5970 
5971       break;
5972    }
5973 
5974    /* Jump instructions do not have r-values.
5975     */
5976    return NULL;
5977 }
5978 
5979 
5980 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5981 ast_selection_statement::hir(exec_list *instructions,
5982                              struct _mesa_glsl_parse_state *state)
5983 {
5984    void *ctx = state;
5985 
5986    ir_rvalue *const condition = this->condition->hir(instructions, state);
5987 
5988    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5989     *
5990     *    "Any expression whose type evaluates to a Boolean can be used as the
5991     *    conditional expression bool-expression. Vector types are not accepted
5992     *    as the expression to if."
5993     *
5994     * The checks are separated so that higher quality diagnostics can be
5995     * generated for cases where both rules are violated.
5996     */
5997    if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5998       YYLTYPE loc = this->condition->get_location();
5999 
6000       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6001                        "boolean");
6002    }
6003 
6004    ir_if *const stmt = new(ctx) ir_if(condition);
6005 
6006    if (then_statement != NULL) {
6007       state->symbols->push_scope();
6008       then_statement->hir(& stmt->then_instructions, state);
6009       state->symbols->pop_scope();
6010    }
6011 
6012    if (else_statement != NULL) {
6013       state->symbols->push_scope();
6014       else_statement->hir(& stmt->else_instructions, state);
6015       state->symbols->pop_scope();
6016    }
6017 
6018    instructions->push_tail(stmt);
6019 
6020    /* if-statements do not have r-values.
6021     */
6022    return NULL;
6023 }
6024 
6025 
6026 /* Used for detection of duplicate case values, compare
6027  * given contents directly.
6028  */
6029 static bool
compare_case_value(const void * a,const void * b)6030 compare_case_value(const void *a, const void *b)
6031 {
6032    return *(unsigned *) a == *(unsigned *) b;
6033 }
6034 
6035 
6036 /* Used for detection of duplicate case values, just
6037  * returns key contents as is.
6038  */
6039 static unsigned
key_contents(const void * key)6040 key_contents(const void *key)
6041 {
6042    return *(unsigned *) key;
6043 }
6044 
6045 
6046 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6047 ast_switch_statement::hir(exec_list *instructions,
6048                           struct _mesa_glsl_parse_state *state)
6049 {
6050    void *ctx = state;
6051 
6052    ir_rvalue *const test_expression =
6053       this->test_expression->hir(instructions, state);
6054 
6055    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6056     *
6057     *    "The type of init-expression in a switch statement must be a
6058     *     scalar integer."
6059     */
6060    if (!test_expression->type->is_scalar() ||
6061        !test_expression->type->is_integer()) {
6062       YYLTYPE loc = this->test_expression->get_location();
6063 
6064       _mesa_glsl_error(& loc,
6065                        state,
6066                        "switch-statement expression must be scalar "
6067                        "integer");
6068    }
6069 
6070    /* Track the switch-statement nesting in a stack-like manner.
6071     */
6072    struct glsl_switch_state saved = state->switch_state;
6073 
6074    state->switch_state.is_switch_innermost = true;
6075    state->switch_state.switch_nesting_ast = this;
6076    state->switch_state.labels_ht =
6077          _mesa_hash_table_create(NULL, key_contents,
6078                                  compare_case_value);
6079    state->switch_state.previous_default = NULL;
6080 
6081    /* Initalize is_fallthru state to false.
6082     */
6083    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6084    state->switch_state.is_fallthru_var =
6085       new(ctx) ir_variable(glsl_type::bool_type,
6086                            "switch_is_fallthru_tmp",
6087                            ir_var_temporary);
6088    instructions->push_tail(state->switch_state.is_fallthru_var);
6089 
6090    ir_dereference_variable *deref_is_fallthru_var =
6091       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6092    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6093                                                   is_fallthru_val));
6094 
6095    /* Initialize continue_inside state to false.
6096     */
6097    state->switch_state.continue_inside =
6098       new(ctx) ir_variable(glsl_type::bool_type,
6099                            "continue_inside_tmp",
6100                            ir_var_temporary);
6101    instructions->push_tail(state->switch_state.continue_inside);
6102 
6103    ir_rvalue *const false_val = new (ctx) ir_constant(false);
6104    ir_dereference_variable *deref_continue_inside_var =
6105       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6106    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6107                                                   false_val));
6108 
6109    state->switch_state.run_default =
6110       new(ctx) ir_variable(glsl_type::bool_type,
6111                              "run_default_tmp",
6112                              ir_var_temporary);
6113    instructions->push_tail(state->switch_state.run_default);
6114 
6115    /* Loop around the switch is used for flow control. */
6116    ir_loop * loop = new(ctx) ir_loop();
6117    instructions->push_tail(loop);
6118 
6119    /* Cache test expression.
6120     */
6121    test_to_hir(&loop->body_instructions, state);
6122 
6123    /* Emit code for body of switch stmt.
6124     */
6125    body->hir(&loop->body_instructions, state);
6126 
6127    /* Insert a break at the end to exit loop. */
6128    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6129    loop->body_instructions.push_tail(jump);
6130 
6131    /* If we are inside loop, check if continue got called inside switch. */
6132    if (state->loop_nesting_ast != NULL) {
6133       ir_dereference_variable *deref_continue_inside =
6134          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6135       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6136       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6137 
6138       if (state->loop_nesting_ast != NULL) {
6139          if (state->loop_nesting_ast->rest_expression) {
6140             state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6141                                                           state);
6142          }
6143          if (state->loop_nesting_ast->mode ==
6144              ast_iteration_statement::ast_do_while) {
6145             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6146          }
6147       }
6148       irif->then_instructions.push_tail(jump);
6149       instructions->push_tail(irif);
6150    }
6151 
6152    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6153 
6154    state->switch_state = saved;
6155 
6156    /* Switch statements do not have r-values. */
6157    return NULL;
6158 }
6159 
6160 
6161 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6162 ast_switch_statement::test_to_hir(exec_list *instructions,
6163                                   struct _mesa_glsl_parse_state *state)
6164 {
6165    void *ctx = state;
6166 
6167    /* set to true to avoid a duplicate "use of uninitialized variable" warning
6168     * on the switch test case. The first one would be already raised when
6169     * getting the test_expression at ast_switch_statement::hir
6170     */
6171    test_expression->set_is_lhs(true);
6172    /* Cache value of test expression. */
6173    ir_rvalue *const test_val = test_expression->hir(instructions, state);
6174 
6175    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6176                                                        "switch_test_tmp",
6177                                                        ir_var_temporary);
6178    ir_dereference_variable *deref_test_var =
6179       new(ctx) ir_dereference_variable(state->switch_state.test_var);
6180 
6181    instructions->push_tail(state->switch_state.test_var);
6182    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6183 }
6184 
6185 
6186 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6187 ast_switch_body::hir(exec_list *instructions,
6188                      struct _mesa_glsl_parse_state *state)
6189 {
6190    if (stmts != NULL)
6191       stmts->hir(instructions, state);
6192 
6193    /* Switch bodies do not have r-values. */
6194    return NULL;
6195 }
6196 
6197 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6198 ast_case_statement_list::hir(exec_list *instructions,
6199                              struct _mesa_glsl_parse_state *state)
6200 {
6201    exec_list default_case, after_default, tmp;
6202 
6203    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6204       case_stmt->hir(&tmp, state);
6205 
6206       /* Default case. */
6207       if (state->switch_state.previous_default && default_case.is_empty()) {
6208          default_case.append_list(&tmp);
6209          continue;
6210       }
6211 
6212       /* If default case found, append 'after_default' list. */
6213       if (!default_case.is_empty())
6214          after_default.append_list(&tmp);
6215       else
6216          instructions->append_list(&tmp);
6217    }
6218 
6219    /* Handle the default case. This is done here because default might not be
6220     * the last case. We need to add checks against following cases first to see
6221     * if default should be chosen or not.
6222     */
6223    if (!default_case.is_empty()) {
6224 
6225       ir_rvalue *const true_val = new (state) ir_constant(true);
6226       ir_dereference_variable *deref_run_default_var =
6227          new(state) ir_dereference_variable(state->switch_state.run_default);
6228 
6229       /* Choose to run default case initially, following conditional
6230        * assignments might change this.
6231        */
6232       ir_assignment *const init_var =
6233          new(state) ir_assignment(deref_run_default_var, true_val);
6234       instructions->push_tail(init_var);
6235 
6236       /* Default case was the last one, no checks required. */
6237       if (after_default.is_empty()) {
6238          instructions->append_list(&default_case);
6239          return NULL;
6240       }
6241 
6242       foreach_in_list(ir_instruction, ir, &after_default) {
6243          ir_assignment *assign = ir->as_assignment();
6244 
6245          if (!assign)
6246             continue;
6247 
6248          /* Clone the check between case label and init expression. */
6249          ir_expression *exp = (ir_expression*) assign->condition;
6250          ir_expression *clone = exp->clone(state, NULL);
6251 
6252          ir_dereference_variable *deref_var =
6253             new(state) ir_dereference_variable(state->switch_state.run_default);
6254          ir_rvalue *const false_val = new (state) ir_constant(false);
6255 
6256          ir_assignment *const set_false =
6257             new(state) ir_assignment(deref_var, false_val, clone);
6258 
6259          instructions->push_tail(set_false);
6260       }
6261 
6262       /* Append default case and all cases after it. */
6263       instructions->append_list(&default_case);
6264       instructions->append_list(&after_default);
6265    }
6266 
6267    /* Case statements do not have r-values. */
6268    return NULL;
6269 }
6270 
6271 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6272 ast_case_statement::hir(exec_list *instructions,
6273                         struct _mesa_glsl_parse_state *state)
6274 {
6275    labels->hir(instructions, state);
6276 
6277    /* Guard case statements depending on fallthru state. */
6278    ir_dereference_variable *const deref_fallthru_guard =
6279       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6280    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6281 
6282    foreach_list_typed (ast_node, stmt, link, & this->stmts)
6283       stmt->hir(& test_fallthru->then_instructions, state);
6284 
6285    instructions->push_tail(test_fallthru);
6286 
6287    /* Case statements do not have r-values. */
6288    return NULL;
6289 }
6290 
6291 
6292 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6293 ast_case_label_list::hir(exec_list *instructions,
6294                          struct _mesa_glsl_parse_state *state)
6295 {
6296    foreach_list_typed (ast_case_label, label, link, & this->labels)
6297       label->hir(instructions, state);
6298 
6299    /* Case labels do not have r-values. */
6300    return NULL;
6301 }
6302 
6303 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6304 ast_case_label::hir(exec_list *instructions,
6305                     struct _mesa_glsl_parse_state *state)
6306 {
6307    void *ctx = state;
6308 
6309    ir_dereference_variable *deref_fallthru_var =
6310       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6311 
6312    ir_rvalue *const true_val = new(ctx) ir_constant(true);
6313 
6314    /* If not default case, ... */
6315    if (this->test_value != NULL) {
6316       /* Conditionally set fallthru state based on
6317        * comparison of cached test expression value to case label.
6318        */
6319       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6320       ir_constant *label_const = label_rval->constant_expression_value();
6321 
6322       if (!label_const) {
6323          YYLTYPE loc = this->test_value->get_location();
6324 
6325          _mesa_glsl_error(& loc, state,
6326                           "switch statement case label must be a "
6327                           "constant expression");
6328 
6329          /* Stuff a dummy value in to allow processing to continue. */
6330          label_const = new(ctx) ir_constant(0);
6331       } else {
6332          hash_entry *entry =
6333                _mesa_hash_table_search(state->switch_state.labels_ht,
6334                      (void *)(uintptr_t)&label_const->value.u[0]);
6335 
6336          if (entry) {
6337             ast_expression *previous_label = (ast_expression *) entry->data;
6338             YYLTYPE loc = this->test_value->get_location();
6339             _mesa_glsl_error(& loc, state, "duplicate case value");
6340 
6341             loc = previous_label->get_location();
6342             _mesa_glsl_error(& loc, state, "this is the previous case label");
6343          } else {
6344             _mesa_hash_table_insert(state->switch_state.labels_ht,
6345                                     (void *)(uintptr_t)&label_const->value.u[0],
6346                                     this->test_value);
6347          }
6348       }
6349 
6350       ir_dereference_variable *deref_test_var =
6351          new(ctx) ir_dereference_variable(state->switch_state.test_var);
6352 
6353       ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6354                                                         label_const,
6355                                                         deref_test_var);
6356 
6357       /*
6358        * From GLSL 4.40 specification section 6.2 ("Selection"):
6359        *
6360        *     "The type of the init-expression value in a switch statement must
6361        *     be a scalar int or uint. The type of the constant-expression value
6362        *     in a case label also must be a scalar int or uint. When any pair
6363        *     of these values is tested for "equal value" and the types do not
6364        *     match, an implicit conversion will be done to convert the int to a
6365        *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
6366        *     is done."
6367        */
6368       if (label_const->type != state->switch_state.test_var->type) {
6369          YYLTYPE loc = this->test_value->get_location();
6370 
6371          const glsl_type *type_a = label_const->type;
6372          const glsl_type *type_b = state->switch_state.test_var->type;
6373 
6374          /* Check if int->uint implicit conversion is supported. */
6375          bool integer_conversion_supported =
6376             glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6377                                                            state);
6378 
6379          if ((!type_a->is_integer() || !type_b->is_integer()) ||
6380               !integer_conversion_supported) {
6381             _mesa_glsl_error(&loc, state, "type mismatch with switch "
6382                              "init-expression and case label (%s != %s)",
6383                              type_a->name, type_b->name);
6384          } else {
6385             /* Conversion of the case label. */
6386             if (type_a->base_type == GLSL_TYPE_INT) {
6387                if (!apply_implicit_conversion(glsl_type::uint_type,
6388                                               test_cond->operands[0], state))
6389                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
6390             } else {
6391                /* Conversion of the init-expression value. */
6392                if (!apply_implicit_conversion(glsl_type::uint_type,
6393                                               test_cond->operands[1], state))
6394                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
6395             }
6396          }
6397       }
6398 
6399       ir_assignment *set_fallthru_on_test =
6400          new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6401 
6402       instructions->push_tail(set_fallthru_on_test);
6403    } else { /* default case */
6404       if (state->switch_state.previous_default) {
6405          YYLTYPE loc = this->get_location();
6406          _mesa_glsl_error(& loc, state,
6407                           "multiple default labels in one switch");
6408 
6409          loc = state->switch_state.previous_default->get_location();
6410          _mesa_glsl_error(& loc, state, "this is the first default label");
6411       }
6412       state->switch_state.previous_default = this;
6413 
6414       /* Set fallthru condition on 'run_default' bool. */
6415       ir_dereference_variable *deref_run_default =
6416          new(ctx) ir_dereference_variable(state->switch_state.run_default);
6417       ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6418       ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6419                                                         cond_true,
6420                                                         deref_run_default);
6421 
6422       /* Set falltrhu state. */
6423       ir_assignment *set_fallthru =
6424          new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6425 
6426       instructions->push_tail(set_fallthru);
6427    }
6428 
6429    /* Case statements do not have r-values. */
6430    return NULL;
6431 }
6432 
6433 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6434 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6435                                           struct _mesa_glsl_parse_state *state)
6436 {
6437    void *ctx = state;
6438 
6439    if (condition != NULL) {
6440       ir_rvalue *const cond =
6441          condition->hir(instructions, state);
6442 
6443       if ((cond == NULL)
6444           || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6445          YYLTYPE loc = condition->get_location();
6446 
6447          _mesa_glsl_error(& loc, state,
6448                           "loop condition must be scalar boolean");
6449       } else {
6450          /* As the first code in the loop body, generate a block that looks
6451           * like 'if (!condition) break;' as the loop termination condition.
6452           */
6453          ir_rvalue *const not_cond =
6454             new(ctx) ir_expression(ir_unop_logic_not, cond);
6455 
6456          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6457 
6458          ir_jump *const break_stmt =
6459             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6460 
6461          if_stmt->then_instructions.push_tail(break_stmt);
6462          instructions->push_tail(if_stmt);
6463       }
6464    }
6465 }
6466 
6467 
6468 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6469 ast_iteration_statement::hir(exec_list *instructions,
6470                              struct _mesa_glsl_parse_state *state)
6471 {
6472    void *ctx = state;
6473 
6474    /* For-loops and while-loops start a new scope, but do-while loops do not.
6475     */
6476    if (mode != ast_do_while)
6477       state->symbols->push_scope();
6478 
6479    if (init_statement != NULL)
6480       init_statement->hir(instructions, state);
6481 
6482    ir_loop *const stmt = new(ctx) ir_loop();
6483    instructions->push_tail(stmt);
6484 
6485    /* Track the current loop nesting. */
6486    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6487 
6488    state->loop_nesting_ast = this;
6489 
6490    /* Likewise, indicate that following code is closest to a loop,
6491     * NOT closest to a switch.
6492     */
6493    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6494    state->switch_state.is_switch_innermost = false;
6495 
6496    if (mode != ast_do_while)
6497       condition_to_hir(&stmt->body_instructions, state);
6498 
6499    if (body != NULL)
6500       body->hir(& stmt->body_instructions, state);
6501 
6502    if (rest_expression != NULL)
6503       rest_expression->hir(& stmt->body_instructions, state);
6504 
6505    if (mode == ast_do_while)
6506       condition_to_hir(&stmt->body_instructions, state);
6507 
6508    if (mode != ast_do_while)
6509       state->symbols->pop_scope();
6510 
6511    /* Restore previous nesting before returning. */
6512    state->loop_nesting_ast = nesting_ast;
6513    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6514 
6515    /* Loops do not have r-values.
6516     */
6517    return NULL;
6518 }
6519 
6520 
6521 /**
6522  * Determine if the given type is valid for establishing a default precision
6523  * qualifier.
6524  *
6525  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6526  *
6527  *     "The precision statement
6528  *
6529  *         precision precision-qualifier type;
6530  *
6531  *     can be used to establish a default precision qualifier. The type field
6532  *     can be either int or float or any of the sampler types, and the
6533  *     precision-qualifier can be lowp, mediump, or highp."
6534  *
6535  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
6536  * qualifiers on sampler types, but this seems like an oversight (since the
6537  * intention of including these in GLSL 1.30 is to allow compatibility with ES
6538  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
6539  * version.
6540  */
6541 static bool
is_valid_default_precision_type(const struct glsl_type * const type)6542 is_valid_default_precision_type(const struct glsl_type *const type)
6543 {
6544    if (type == NULL)
6545       return false;
6546 
6547    switch (type->base_type) {
6548    case GLSL_TYPE_INT:
6549    case GLSL_TYPE_FLOAT:
6550       /* "int" and "float" are valid, but vectors and matrices are not. */
6551       return type->vector_elements == 1 && type->matrix_columns == 1;
6552    case GLSL_TYPE_SAMPLER:
6553    case GLSL_TYPE_IMAGE:
6554    case GLSL_TYPE_ATOMIC_UINT:
6555       return true;
6556    default:
6557       return false;
6558    }
6559 }
6560 
6561 
6562 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6563 ast_type_specifier::hir(exec_list *instructions,
6564                         struct _mesa_glsl_parse_state *state)
6565 {
6566    if (this->default_precision == ast_precision_none && this->structure == NULL)
6567       return NULL;
6568 
6569    YYLTYPE loc = this->get_location();
6570 
6571    /* If this is a precision statement, check that the type to which it is
6572     * applied is either float or int.
6573     *
6574     * From section 4.5.3 of the GLSL 1.30 spec:
6575     *    "The precision statement
6576     *       precision precision-qualifier type;
6577     *    can be used to establish a default precision qualifier. The type
6578     *    field can be either int or float [...].  Any other types or
6579     *    qualifiers will result in an error.
6580     */
6581    if (this->default_precision != ast_precision_none) {
6582       if (!state->check_precision_qualifiers_allowed(&loc))
6583          return NULL;
6584 
6585       if (this->structure != NULL) {
6586          _mesa_glsl_error(&loc, state,
6587                           "precision qualifiers do not apply to structures");
6588          return NULL;
6589       }
6590 
6591       if (this->array_specifier != NULL) {
6592          _mesa_glsl_error(&loc, state,
6593                           "default precision statements do not apply to "
6594                           "arrays");
6595          return NULL;
6596       }
6597 
6598       const struct glsl_type *const type =
6599          state->symbols->get_type(this->type_name);
6600       if (!is_valid_default_precision_type(type)) {
6601          _mesa_glsl_error(&loc, state,
6602                           "default precision statements apply only to "
6603                           "float, int, and opaque types");
6604          return NULL;
6605       }
6606 
6607       if (state->es_shader) {
6608          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6609           * spec says:
6610           *
6611           *     "Non-precision qualified declarations will use the precision
6612           *     qualifier specified in the most recent precision statement
6613           *     that is still in scope. The precision statement has the same
6614           *     scoping rules as variable declarations. If it is declared
6615           *     inside a compound statement, its effect stops at the end of
6616           *     the innermost statement it was declared in. Precision
6617           *     statements in nested scopes override precision statements in
6618           *     outer scopes. Multiple precision statements for the same basic
6619           *     type can appear inside the same scope, with later statements
6620           *     overriding earlier statements within that scope."
6621           *
6622           * Default precision specifications follow the same scope rules as
6623           * variables.  So, we can track the state of the default precision
6624           * qualifiers in the symbol table, and the rules will just work.  This
6625           * is a slight abuse of the symbol table, but it has the semantics
6626           * that we want.
6627           */
6628          state->symbols->add_default_precision_qualifier(this->type_name,
6629                                                          this->default_precision);
6630       }
6631 
6632       /* FINISHME: Translate precision statements into IR. */
6633       return NULL;
6634    }
6635 
6636    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6637     * process_record_constructor() can do type-checking on C-style initializer
6638     * expressions of structs, but ast_struct_specifier should only be translated
6639     * to HIR if it is declaring the type of a structure.
6640     *
6641     * The ->is_declaration field is false for initializers of variables
6642     * declared separately from the struct's type definition.
6643     *
6644     *    struct S { ... };              (is_declaration = true)
6645     *    struct T { ... } t = { ... };  (is_declaration = true)
6646     *    S s = { ... };                 (is_declaration = false)
6647     */
6648    if (this->structure != NULL && this->structure->is_declaration)
6649       return this->structure->hir(instructions, state);
6650 
6651    return NULL;
6652 }
6653 
6654 
6655 /**
6656  * Process a structure or interface block tree into an array of structure fields
6657  *
6658  * After parsing, where there are some syntax differnces, structures and
6659  * interface blocks are almost identical.  They are similar enough that the
6660  * AST for each can be processed the same way into a set of
6661  * \c glsl_struct_field to describe the members.
6662  *
6663  * If we're processing an interface block, var_mode should be the type of the
6664  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6665  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
6666  * ir_var_auto.
6667  *
6668  * \return
6669  * The number of fields processed.  A pointer to the array structure fields is
6670  * stored in \c *fields_ret.
6671  */
6672 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)6673 ast_process_struct_or_iface_block_members(exec_list *instructions,
6674                                           struct _mesa_glsl_parse_state *state,
6675                                           exec_list *declarations,
6676                                           glsl_struct_field **fields_ret,
6677                                           bool is_interface,
6678                                           enum glsl_matrix_layout matrix_layout,
6679                                           bool allow_reserved_names,
6680                                           ir_variable_mode var_mode,
6681                                           ast_type_qualifier *layout,
6682                                           unsigned block_stream,
6683                                           unsigned block_xfb_buffer,
6684                                           unsigned block_xfb_offset,
6685                                           unsigned expl_location,
6686                                           unsigned expl_align)
6687 {
6688    unsigned decl_count = 0;
6689    unsigned next_offset = 0;
6690 
6691    /* Make an initial pass over the list of fields to determine how
6692     * many there are.  Each element in this list is an ast_declarator_list.
6693     * This means that we actually need to count the number of elements in the
6694     * 'declarations' list in each of the elements.
6695     */
6696    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6697       decl_count += decl_list->declarations.length();
6698    }
6699 
6700    /* Allocate storage for the fields and process the field
6701     * declarations.  As the declarations are processed, try to also convert
6702     * the types to HIR.  This ensures that structure definitions embedded in
6703     * other structure definitions or in interface blocks are processed.
6704     */
6705    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6706                                                    decl_count);
6707 
6708    bool first_member = true;
6709    bool first_member_has_explicit_location = false;
6710 
6711    unsigned i = 0;
6712    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6713       const char *type_name;
6714       YYLTYPE loc = decl_list->get_location();
6715 
6716       decl_list->type->specifier->hir(instructions, state);
6717 
6718       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6719        *
6720        *    "Anonymous structures are not supported; so embedded structures
6721        *    must have a declarator. A name given to an embedded struct is
6722        *    scoped at the same level as the struct it is embedded in."
6723        *
6724        * The same section of the  GLSL 1.20 spec says:
6725        *
6726        *    "Anonymous structures are not supported. Embedded structures are
6727        *    not supported."
6728        *
6729        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6730        * embedded structures in 1.10 only.
6731        */
6732       if (state->language_version != 110 &&
6733           decl_list->type->specifier->structure != NULL)
6734          _mesa_glsl_error(&loc, state,
6735                           "embedded structure declarations are not allowed");
6736 
6737       const glsl_type *decl_type =
6738          decl_list->type->glsl_type(& type_name, state);
6739 
6740       const struct ast_type_qualifier *const qual =
6741          &decl_list->type->qualifier;
6742 
6743       /* From section 4.3.9 of the GLSL 4.40 spec:
6744        *
6745        *    "[In interface blocks] opaque types are not allowed."
6746        *
6747        * It should be impossible for decl_type to be NULL here.  Cases that
6748        * might naturally lead to decl_type being NULL, especially for the
6749        * is_interface case, will have resulted in compilation having
6750        * already halted due to a syntax error.
6751        */
6752       assert(decl_type);
6753 
6754       if (is_interface) {
6755          if (decl_type->contains_opaque()) {
6756             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6757                              "interface block contains opaque variable");
6758          }
6759       } else {
6760          if (decl_type->contains_atomic()) {
6761             /* From section 4.1.7.3 of the GLSL 4.40 spec:
6762              *
6763              *    "Members of structures cannot be declared as atomic counter
6764              *     types."
6765              */
6766             _mesa_glsl_error(&loc, state, "atomic counter in structure");
6767          }
6768 
6769          if (decl_type->contains_image()) {
6770             /* FINISHME: Same problem as with atomic counters.
6771              * FINISHME: Request clarification from Khronos and add
6772              * FINISHME: spec quotation here.
6773              */
6774             _mesa_glsl_error(&loc, state, "image in structure");
6775          }
6776       }
6777 
6778       if (qual->flags.q.explicit_binding) {
6779          _mesa_glsl_error(&loc, state,
6780                           "binding layout qualifier cannot be applied "
6781                           "to struct or interface block members");
6782       }
6783 
6784       if (is_interface) {
6785          if (!first_member) {
6786             if (!layout->flags.q.explicit_location &&
6787                 ((first_member_has_explicit_location &&
6788                   !qual->flags.q.explicit_location) ||
6789                  (!first_member_has_explicit_location &&
6790                   qual->flags.q.explicit_location))) {
6791                _mesa_glsl_error(&loc, state,
6792                                 "when block-level location layout qualifier "
6793                                 "is not supplied either all members must "
6794                                 "have a location layout qualifier or all "
6795                                 "members must not have a location layout "
6796                                 "qualifier");
6797             }
6798          } else {
6799             first_member = false;
6800             first_member_has_explicit_location =
6801                qual->flags.q.explicit_location;
6802          }
6803       }
6804 
6805       if (qual->flags.q.std140 ||
6806           qual->flags.q.std430 ||
6807           qual->flags.q.packed ||
6808           qual->flags.q.shared) {
6809          _mesa_glsl_error(&loc, state,
6810                           "uniform/shader storage block layout qualifiers "
6811                           "std140, std430, packed, and shared can only be "
6812                           "applied to uniform/shader storage blocks, not "
6813                           "members");
6814       }
6815 
6816       if (qual->flags.q.constant) {
6817          _mesa_glsl_error(&loc, state,
6818                           "const storage qualifier cannot be applied "
6819                           "to struct or interface block members");
6820       }
6821 
6822       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6823        *
6824        *   "A block member may be declared with a stream identifier, but
6825        *   the specified stream must match the stream associated with the
6826        *   containing block."
6827        */
6828       if (qual->flags.q.explicit_stream) {
6829          unsigned qual_stream;
6830          if (process_qualifier_constant(state, &loc, "stream",
6831                                         qual->stream, &qual_stream) &&
6832              qual_stream != block_stream) {
6833             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6834                              "interface block member does not match "
6835                              "the interface block (%u vs %u)", qual_stream,
6836                              block_stream);
6837          }
6838       }
6839 
6840       int xfb_buffer;
6841       unsigned explicit_xfb_buffer = 0;
6842       if (qual->flags.q.explicit_xfb_buffer) {
6843          unsigned qual_xfb_buffer;
6844          if (process_qualifier_constant(state, &loc, "xfb_buffer",
6845                                         qual->xfb_buffer, &qual_xfb_buffer)) {
6846             explicit_xfb_buffer = 1;
6847             if (qual_xfb_buffer != block_xfb_buffer)
6848                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6849                                 "interface block member does not match "
6850                                 "the interface block (%u vs %u)",
6851                                 qual_xfb_buffer, block_xfb_buffer);
6852          }
6853          xfb_buffer = (int) qual_xfb_buffer;
6854       } else {
6855          if (layout)
6856             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6857          xfb_buffer = (int) block_xfb_buffer;
6858       }
6859 
6860       int xfb_stride = -1;
6861       if (qual->flags.q.explicit_xfb_stride) {
6862          unsigned qual_xfb_stride;
6863          if (process_qualifier_constant(state, &loc, "xfb_stride",
6864                                         qual->xfb_stride, &qual_xfb_stride)) {
6865             xfb_stride = (int) qual_xfb_stride;
6866          }
6867       }
6868 
6869       if (qual->flags.q.uniform && qual->has_interpolation()) {
6870          _mesa_glsl_error(&loc, state,
6871                           "interpolation qualifiers cannot be used "
6872                           "with uniform interface blocks");
6873       }
6874 
6875       if ((qual->flags.q.uniform || !is_interface) &&
6876           qual->has_auxiliary_storage()) {
6877          _mesa_glsl_error(&loc, state,
6878                           "auxiliary storage qualifiers cannot be used "
6879                           "in uniform blocks or structures.");
6880       }
6881 
6882       if (qual->flags.q.row_major || qual->flags.q.column_major) {
6883          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6884             _mesa_glsl_error(&loc, state,
6885                              "row_major and column_major can only be "
6886                              "applied to interface blocks");
6887          } else
6888             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6889       }
6890 
6891       if (qual->flags.q.read_only && qual->flags.q.write_only) {
6892          _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6893                           "readonly and writeonly.");
6894       }
6895 
6896       foreach_list_typed (ast_declaration, decl, link,
6897                           &decl_list->declarations) {
6898          YYLTYPE loc = decl->get_location();
6899 
6900          if (!allow_reserved_names)
6901             validate_identifier(decl->identifier, loc, state);
6902 
6903          const struct glsl_type *field_type =
6904             process_array_type(&loc, decl_type, decl->array_specifier, state);
6905          validate_array_dimensions(field_type, state, &loc);
6906          fields[i].type = field_type;
6907          fields[i].name = decl->identifier;
6908          fields[i].interpolation =
6909             interpret_interpolation_qualifier(qual, field_type,
6910                                               var_mode, state, &loc);
6911          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6912          fields[i].sample = qual->flags.q.sample ? 1 : 0;
6913          fields[i].patch = qual->flags.q.patch ? 1 : 0;
6914          fields[i].precision = qual->precision;
6915          fields[i].offset = -1;
6916          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6917          fields[i].xfb_buffer = xfb_buffer;
6918          fields[i].xfb_stride = xfb_stride;
6919 
6920          if (qual->flags.q.explicit_location) {
6921             unsigned qual_location;
6922             if (process_qualifier_constant(state, &loc, "location",
6923                                            qual->location, &qual_location)) {
6924                fields[i].location = qual_location +
6925                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6926                expl_location = fields[i].location +
6927                   fields[i].type->count_attribute_slots(false);
6928             }
6929          } else {
6930             if (layout && layout->flags.q.explicit_location) {
6931                fields[i].location = expl_location;
6932                expl_location += fields[i].type->count_attribute_slots(false);
6933             } else {
6934                fields[i].location = -1;
6935             }
6936          }
6937 
6938          /* Offset can only be used with std430 and std140 layouts an initial
6939           * value of 0 is used for error detection.
6940           */
6941          unsigned align = 0;
6942          unsigned size = 0;
6943          if (layout) {
6944             bool row_major;
6945             if (qual->flags.q.row_major ||
6946                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6947                row_major = true;
6948             } else {
6949                row_major = false;
6950             }
6951 
6952             if(layout->flags.q.std140) {
6953                align = field_type->std140_base_alignment(row_major);
6954                size = field_type->std140_size(row_major);
6955             } else if (layout->flags.q.std430) {
6956                align = field_type->std430_base_alignment(row_major);
6957                size = field_type->std430_size(row_major);
6958             }
6959          }
6960 
6961          if (qual->flags.q.explicit_offset) {
6962             unsigned qual_offset;
6963             if (process_qualifier_constant(state, &loc, "offset",
6964                                            qual->offset, &qual_offset)) {
6965                if (align != 0 && size != 0) {
6966                    if (next_offset > qual_offset)
6967                       _mesa_glsl_error(&loc, state, "layout qualifier "
6968                                        "offset overlaps previous member");
6969 
6970                   if (qual_offset % align) {
6971                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
6972                                       "must be a multiple of the base "
6973                                       "alignment of %s", field_type->name);
6974                   }
6975                   fields[i].offset = qual_offset;
6976                   next_offset = glsl_align(qual_offset + size, align);
6977                } else {
6978                   _mesa_glsl_error(&loc, state, "offset can only be used "
6979                                    "with std430 and std140 layouts");
6980                }
6981             }
6982          }
6983 
6984          if (qual->flags.q.explicit_align || expl_align != 0) {
6985             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6986                next_offset;
6987             if (align == 0 || size == 0) {
6988                _mesa_glsl_error(&loc, state, "align can only be used with "
6989                                 "std430 and std140 layouts");
6990             } else if (qual->flags.q.explicit_align) {
6991                unsigned member_align;
6992                if (process_qualifier_constant(state, &loc, "align",
6993                                               qual->align, &member_align)) {
6994                   if (member_align == 0 ||
6995                       member_align & (member_align - 1)) {
6996                      _mesa_glsl_error(&loc, state, "align layout qualifier "
6997                                       "in not a power of 2");
6998                   } else {
6999                      fields[i].offset = glsl_align(offset, member_align);
7000                      next_offset = glsl_align(fields[i].offset + size, align);
7001                   }
7002                }
7003             } else {
7004                fields[i].offset = glsl_align(offset, expl_align);
7005                next_offset = glsl_align(fields[i].offset + size, align);
7006             }
7007          } else if (!qual->flags.q.explicit_offset) {
7008             if (align != 0 && size != 0)
7009                next_offset = glsl_align(next_offset + size, align);
7010          }
7011 
7012          /* From the ARB_enhanced_layouts spec:
7013           *
7014           *    "The given offset applies to the first component of the first
7015           *    member of the qualified entity.  Then, within the qualified
7016           *    entity, subsequent components are each assigned, in order, to
7017           *    the next available offset aligned to a multiple of that
7018           *    component's size.  Aggregate types are flattened down to the
7019           *    component level to get this sequence of components."
7020           */
7021          if (qual->flags.q.explicit_xfb_offset) {
7022             unsigned xfb_offset;
7023             if (process_qualifier_constant(state, &loc, "xfb_offset",
7024                                            qual->offset, &xfb_offset)) {
7025                fields[i].offset = xfb_offset;
7026                block_xfb_offset = fields[i].offset +
7027                   MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7028             }
7029          } else {
7030             if (layout && layout->flags.q.explicit_xfb_offset) {
7031                unsigned align = field_type->is_64bit() ? 8 : 4;
7032                fields[i].offset = glsl_align(block_xfb_offset, align);
7033                block_xfb_offset +=
7034                   MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7035             }
7036          }
7037 
7038          /* Propogate row- / column-major information down the fields of the
7039           * structure or interface block.  Structures need this data because
7040           * the structure may contain a structure that contains ... a matrix
7041           * that need the proper layout.
7042           */
7043          if (is_interface && layout &&
7044              (layout->flags.q.uniform || layout->flags.q.buffer) &&
7045              (field_type->without_array()->is_matrix()
7046               || field_type->without_array()->is_record())) {
7047             /* If no layout is specified for the field, inherit the layout
7048              * from the block.
7049              */
7050             fields[i].matrix_layout = matrix_layout;
7051 
7052             if (qual->flags.q.row_major)
7053                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7054             else if (qual->flags.q.column_major)
7055                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7056 
7057             /* If we're processing an uniform or buffer block, the matrix
7058              * layout must be decided by this point.
7059              */
7060             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7061                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7062          }
7063 
7064          /* Image qualifiers are allowed on buffer variables, which can only
7065           * be defined inside shader storage buffer objects
7066           */
7067          if (layout && var_mode == ir_var_shader_storage) {
7068             /* For readonly and writeonly qualifiers the field definition,
7069              * if set, overwrites the layout qualifier.
7070              */
7071             if (qual->flags.q.read_only) {
7072                fields[i].image_read_only = true;
7073                fields[i].image_write_only = false;
7074             } else if (qual->flags.q.write_only) {
7075                fields[i].image_read_only = false;
7076                fields[i].image_write_only = true;
7077             } else {
7078                fields[i].image_read_only = layout->flags.q.read_only;
7079                fields[i].image_write_only = layout->flags.q.write_only;
7080             }
7081 
7082             /* For other qualifiers, we set the flag if either the layout
7083              * qualifier or the field qualifier are set
7084              */
7085             fields[i].image_coherent = qual->flags.q.coherent ||
7086                                         layout->flags.q.coherent;
7087             fields[i].image_volatile = qual->flags.q._volatile ||
7088                                         layout->flags.q._volatile;
7089             fields[i].image_restrict = qual->flags.q.restrict_flag ||
7090                                         layout->flags.q.restrict_flag;
7091          }
7092 
7093          i++;
7094       }
7095    }
7096 
7097    assert(i == decl_count);
7098 
7099    *fields_ret = fields;
7100    return decl_count;
7101 }
7102 
7103 
7104 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7105 ast_struct_specifier::hir(exec_list *instructions,
7106                           struct _mesa_glsl_parse_state *state)
7107 {
7108    YYLTYPE loc = this->get_location();
7109 
7110    unsigned expl_location = 0;
7111    if (layout && layout->flags.q.explicit_location) {
7112       if (!process_qualifier_constant(state, &loc, "location",
7113                                       layout->location, &expl_location)) {
7114          return NULL;
7115       } else {
7116          expl_location = VARYING_SLOT_VAR0 + expl_location;
7117       }
7118    }
7119 
7120    glsl_struct_field *fields;
7121    unsigned decl_count =
7122       ast_process_struct_or_iface_block_members(instructions,
7123                                                 state,
7124                                                 &this->declarations,
7125                                                 &fields,
7126                                                 false,
7127                                                 GLSL_MATRIX_LAYOUT_INHERITED,
7128                                                 false /* allow_reserved_names */,
7129                                                 ir_var_auto,
7130                                                 layout,
7131                                                 0, /* for interface only */
7132                                                 0, /* for interface only */
7133                                                 0, /* for interface only */
7134                                                 expl_location,
7135                                                 0 /* for interface only */);
7136 
7137    validate_identifier(this->name, loc, state);
7138 
7139    const glsl_type *t =
7140       glsl_type::get_record_instance(fields, decl_count, this->name);
7141 
7142    if (!state->symbols->add_type(name, t)) {
7143       const glsl_type *match = state->symbols->get_type(name);
7144       /* allow struct matching for desktop GL - older UE4 does this */
7145       if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7146          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7147       else
7148          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7149    } else {
7150       const glsl_type **s = reralloc(state, state->user_structures,
7151                                      const glsl_type *,
7152                                      state->num_user_structures + 1);
7153       if (s != NULL) {
7154          s[state->num_user_structures] = t;
7155          state->user_structures = s;
7156          state->num_user_structures++;
7157       }
7158    }
7159 
7160    /* Structure type definitions do not have r-values.
7161     */
7162    return NULL;
7163 }
7164 
7165 
7166 /**
7167  * Visitor class which detects whether a given interface block has been used.
7168  */
7169 class interface_block_usage_visitor : public ir_hierarchical_visitor
7170 {
7171 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)7172    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7173       : mode(mode), block(block), found(false)
7174    {
7175    }
7176 
visit(ir_dereference_variable * ir)7177    virtual ir_visitor_status visit(ir_dereference_variable *ir)
7178    {
7179       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7180          found = true;
7181          return visit_stop;
7182       }
7183       return visit_continue;
7184    }
7185 
usage_found() const7186    bool usage_found() const
7187    {
7188       return this->found;
7189    }
7190 
7191 private:
7192    ir_variable_mode mode;
7193    const glsl_type *block;
7194    bool found;
7195 };
7196 
7197 static bool
is_unsized_array_last_element(ir_variable * v)7198 is_unsized_array_last_element(ir_variable *v)
7199 {
7200    const glsl_type *interface_type = v->get_interface_type();
7201    int length = interface_type->length;
7202 
7203    assert(v->type->is_unsized_array());
7204 
7205    /* Check if it is the last element of the interface */
7206    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7207       return true;
7208    return false;
7209 }
7210 
7211 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)7212 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7213 {
7214    var->data.image_read_only = field.image_read_only;
7215    var->data.image_write_only = field.image_write_only;
7216    var->data.image_coherent = field.image_coherent;
7217    var->data.image_volatile = field.image_volatile;
7218    var->data.image_restrict = field.image_restrict;
7219 }
7220 
7221 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7222 ast_interface_block::hir(exec_list *instructions,
7223                          struct _mesa_glsl_parse_state *state)
7224 {
7225    YYLTYPE loc = this->get_location();
7226 
7227    /* Interface blocks must be declared at global scope */
7228    if (state->current_function != NULL) {
7229       _mesa_glsl_error(&loc, state,
7230                        "Interface block `%s' must be declared "
7231                        "at global scope",
7232                        this->block_name);
7233    }
7234 
7235    /* Validate qualifiers:
7236     *
7237     * - Layout Qualifiers as per the table in Section 4.4
7238     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7239     *
7240     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7241     *   GLSL 4.50 spec:
7242     *
7243     *     "Additionally, memory qualifiers may also be used in the declaration
7244     *      of shader storage blocks"
7245     *
7246     * Note the table in Section 4.4 says std430 is allowed on both uniform and
7247     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7248     * Layout Qualifiers) of the GLSL 4.50 spec says:
7249     *
7250     *    "The std430 qualifier is supported only for shader storage blocks;
7251     *    using std430 on a uniform block will result in a compile-time error."
7252     */
7253    ast_type_qualifier allowed_blk_qualifiers;
7254    allowed_blk_qualifiers.flags.i = 0;
7255    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7256       allowed_blk_qualifiers.flags.q.shared = 1;
7257       allowed_blk_qualifiers.flags.q.packed = 1;
7258       allowed_blk_qualifiers.flags.q.std140 = 1;
7259       allowed_blk_qualifiers.flags.q.row_major = 1;
7260       allowed_blk_qualifiers.flags.q.column_major = 1;
7261       allowed_blk_qualifiers.flags.q.explicit_align = 1;
7262       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7263       if (this->layout.flags.q.buffer) {
7264          allowed_blk_qualifiers.flags.q.buffer = 1;
7265          allowed_blk_qualifiers.flags.q.std430 = 1;
7266          allowed_blk_qualifiers.flags.q.coherent = 1;
7267          allowed_blk_qualifiers.flags.q._volatile = 1;
7268          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7269          allowed_blk_qualifiers.flags.q.read_only = 1;
7270          allowed_blk_qualifiers.flags.q.write_only = 1;
7271       } else {
7272          allowed_blk_qualifiers.flags.q.uniform = 1;
7273       }
7274    } else {
7275       /* Interface block */
7276       assert(this->layout.flags.q.in || this->layout.flags.q.out);
7277 
7278       allowed_blk_qualifiers.flags.q.explicit_location = 1;
7279       if (this->layout.flags.q.out) {
7280          allowed_blk_qualifiers.flags.q.out = 1;
7281          if (state->stage == MESA_SHADER_GEOMETRY ||
7282           state->stage == MESA_SHADER_TESS_CTRL ||
7283           state->stage == MESA_SHADER_TESS_EVAL ||
7284           state->stage == MESA_SHADER_VERTEX ) {
7285             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7286             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7287             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7288             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7289             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7290             if (state->stage == MESA_SHADER_GEOMETRY) {
7291                allowed_blk_qualifiers.flags.q.stream = 1;
7292                allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7293             }
7294             if (state->stage == MESA_SHADER_TESS_CTRL) {
7295                allowed_blk_qualifiers.flags.q.patch = 1;
7296             }
7297          }
7298       } else {
7299          allowed_blk_qualifiers.flags.q.in = 1;
7300          if (state->stage == MESA_SHADER_TESS_EVAL) {
7301             allowed_blk_qualifiers.flags.q.patch = 1;
7302          }
7303       }
7304    }
7305 
7306    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7307                                "invalid qualifier for block",
7308                                this->block_name);
7309 
7310    /* The ast_interface_block has a list of ast_declarator_lists.  We
7311     * need to turn those into ir_variables with an association
7312     * with this uniform block.
7313     */
7314    enum glsl_interface_packing packing;
7315    if (this->layout.flags.q.shared) {
7316       packing = GLSL_INTERFACE_PACKING_SHARED;
7317    } else if (this->layout.flags.q.packed) {
7318       packing = GLSL_INTERFACE_PACKING_PACKED;
7319    } else if (this->layout.flags.q.std430) {
7320       packing = GLSL_INTERFACE_PACKING_STD430;
7321    } else {
7322       /* The default layout is std140.
7323        */
7324       packing = GLSL_INTERFACE_PACKING_STD140;
7325    }
7326 
7327    ir_variable_mode var_mode;
7328    const char *iface_type_name;
7329    if (this->layout.flags.q.in) {
7330       var_mode = ir_var_shader_in;
7331       iface_type_name = "in";
7332    } else if (this->layout.flags.q.out) {
7333       var_mode = ir_var_shader_out;
7334       iface_type_name = "out";
7335    } else if (this->layout.flags.q.uniform) {
7336       var_mode = ir_var_uniform;
7337       iface_type_name = "uniform";
7338    } else if (this->layout.flags.q.buffer) {
7339       var_mode = ir_var_shader_storage;
7340       iface_type_name = "buffer";
7341    } else {
7342       var_mode = ir_var_auto;
7343       iface_type_name = "UNKNOWN";
7344       assert(!"interface block layout qualifier not found!");
7345    }
7346 
7347    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7348    if (this->layout.flags.q.row_major)
7349       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7350    else if (this->layout.flags.q.column_major)
7351       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7352 
7353    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7354    exec_list declared_variables;
7355    glsl_struct_field *fields;
7356 
7357    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7358     * that we don't have incompatible qualifiers
7359     */
7360    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7361       _mesa_glsl_error(&loc, state,
7362                        "Interface block sets both readonly and writeonly");
7363    }
7364 
7365    unsigned qual_stream;
7366    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7367                                    &qual_stream) ||
7368        !validate_stream_qualifier(&loc, state, qual_stream)) {
7369       /* If the stream qualifier is invalid it doesn't make sense to continue
7370        * on and try to compare stream layouts on member variables against it
7371        * so just return early.
7372        */
7373       return NULL;
7374    }
7375 
7376    unsigned qual_xfb_buffer;
7377    if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7378                                    layout.xfb_buffer, &qual_xfb_buffer) ||
7379        !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7380       return NULL;
7381    }
7382 
7383    unsigned qual_xfb_offset;
7384    if (layout.flags.q.explicit_xfb_offset) {
7385       if (!process_qualifier_constant(state, &loc, "xfb_offset",
7386                                       layout.offset, &qual_xfb_offset)) {
7387          return NULL;
7388       }
7389    }
7390 
7391    unsigned qual_xfb_stride;
7392    if (layout.flags.q.explicit_xfb_stride) {
7393       if (!process_qualifier_constant(state, &loc, "xfb_stride",
7394                                       layout.xfb_stride, &qual_xfb_stride)) {
7395          return NULL;
7396       }
7397    }
7398 
7399    unsigned expl_location = 0;
7400    if (layout.flags.q.explicit_location) {
7401       if (!process_qualifier_constant(state, &loc, "location",
7402                                       layout.location, &expl_location)) {
7403          return NULL;
7404       } else {
7405          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7406                                                      : VARYING_SLOT_VAR0;
7407       }
7408    }
7409 
7410    unsigned expl_align = 0;
7411    if (layout.flags.q.explicit_align) {
7412       if (!process_qualifier_constant(state, &loc, "align",
7413                                       layout.align, &expl_align)) {
7414          return NULL;
7415       } else {
7416          if (expl_align == 0 || expl_align & (expl_align - 1)) {
7417             _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7418                              "power of 2.");
7419             return NULL;
7420          }
7421       }
7422    }
7423 
7424    unsigned int num_variables =
7425       ast_process_struct_or_iface_block_members(&declared_variables,
7426                                                 state,
7427                                                 &this->declarations,
7428                                                 &fields,
7429                                                 true,
7430                                                 matrix_layout,
7431                                                 redeclaring_per_vertex,
7432                                                 var_mode,
7433                                                 &this->layout,
7434                                                 qual_stream,
7435                                                 qual_xfb_buffer,
7436                                                 qual_xfb_offset,
7437                                                 expl_location,
7438                                                 expl_align);
7439 
7440    if (!redeclaring_per_vertex) {
7441       validate_identifier(this->block_name, loc, state);
7442 
7443       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7444        *
7445        *     "Block names have no other use within a shader beyond interface
7446        *     matching; it is a compile-time error to use a block name at global
7447        *     scope for anything other than as a block name."
7448        */
7449       ir_variable *var = state->symbols->get_variable(this->block_name);
7450       if (var && !var->type->is_interface()) {
7451          _mesa_glsl_error(&loc, state, "Block name `%s' is "
7452                           "already used in the scope.",
7453                           this->block_name);
7454       }
7455    }
7456 
7457    const glsl_type *earlier_per_vertex = NULL;
7458    if (redeclaring_per_vertex) {
7459       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
7460        * the named interface block gl_in, we can find it by looking at the
7461        * previous declaration of gl_in.  Otherwise we can find it by looking
7462        * at the previous decalartion of any of the built-in outputs,
7463        * e.g. gl_Position.
7464        *
7465        * Also check that the instance name and array-ness of the redeclaration
7466        * are correct.
7467        */
7468       switch (var_mode) {
7469       case ir_var_shader_in:
7470          if (ir_variable *earlier_gl_in =
7471              state->symbols->get_variable("gl_in")) {
7472             earlier_per_vertex = earlier_gl_in->get_interface_type();
7473          } else {
7474             _mesa_glsl_error(&loc, state,
7475                              "redeclaration of gl_PerVertex input not allowed "
7476                              "in the %s shader",
7477                              _mesa_shader_stage_to_string(state->stage));
7478          }
7479          if (this->instance_name == NULL ||
7480              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7481              !this->array_specifier->is_single_dimension()) {
7482             _mesa_glsl_error(&loc, state,
7483                              "gl_PerVertex input must be redeclared as "
7484                              "gl_in[]");
7485          }
7486          break;
7487       case ir_var_shader_out:
7488          if (ir_variable *earlier_gl_Position =
7489              state->symbols->get_variable("gl_Position")) {
7490             earlier_per_vertex = earlier_gl_Position->get_interface_type();
7491          } else if (ir_variable *earlier_gl_out =
7492                state->symbols->get_variable("gl_out")) {
7493             earlier_per_vertex = earlier_gl_out->get_interface_type();
7494          } else {
7495             _mesa_glsl_error(&loc, state,
7496                              "redeclaration of gl_PerVertex output not "
7497                              "allowed in the %s shader",
7498                              _mesa_shader_stage_to_string(state->stage));
7499          }
7500          if (state->stage == MESA_SHADER_TESS_CTRL) {
7501             if (this->instance_name == NULL ||
7502                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7503                _mesa_glsl_error(&loc, state,
7504                                 "gl_PerVertex output must be redeclared as "
7505                                 "gl_out[]");
7506             }
7507          } else {
7508             if (this->instance_name != NULL) {
7509                _mesa_glsl_error(&loc, state,
7510                                 "gl_PerVertex output may not be redeclared with "
7511                                 "an instance name");
7512             }
7513          }
7514          break;
7515       default:
7516          _mesa_glsl_error(&loc, state,
7517                           "gl_PerVertex must be declared as an input or an "
7518                           "output");
7519          break;
7520       }
7521 
7522       if (earlier_per_vertex == NULL) {
7523          /* An error has already been reported.  Bail out to avoid null
7524           * dereferences later in this function.
7525           */
7526          return NULL;
7527       }
7528 
7529       /* Copy locations from the old gl_PerVertex interface block. */
7530       for (unsigned i = 0; i < num_variables; i++) {
7531          int j = earlier_per_vertex->field_index(fields[i].name);
7532          if (j == -1) {
7533             _mesa_glsl_error(&loc, state,
7534                              "redeclaration of gl_PerVertex must be a subset "
7535                              "of the built-in members of gl_PerVertex");
7536          } else {
7537             fields[i].location =
7538                earlier_per_vertex->fields.structure[j].location;
7539             fields[i].offset =
7540                earlier_per_vertex->fields.structure[j].offset;
7541             fields[i].interpolation =
7542                earlier_per_vertex->fields.structure[j].interpolation;
7543             fields[i].centroid =
7544                earlier_per_vertex->fields.structure[j].centroid;
7545             fields[i].sample =
7546                earlier_per_vertex->fields.structure[j].sample;
7547             fields[i].patch =
7548                earlier_per_vertex->fields.structure[j].patch;
7549             fields[i].precision =
7550                earlier_per_vertex->fields.structure[j].precision;
7551             fields[i].explicit_xfb_buffer =
7552                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7553             fields[i].xfb_buffer =
7554                earlier_per_vertex->fields.structure[j].xfb_buffer;
7555             fields[i].xfb_stride =
7556                earlier_per_vertex->fields.structure[j].xfb_stride;
7557          }
7558       }
7559 
7560       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7561        * spec:
7562        *
7563        *     If a built-in interface block is redeclared, it must appear in
7564        *     the shader before any use of any member included in the built-in
7565        *     declaration, or a compilation error will result.
7566        *
7567        * This appears to be a clarification to the behaviour established for
7568        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7569        * regardless of GLSL version.
7570        */
7571       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7572       v.run(instructions);
7573       if (v.usage_found()) {
7574          _mesa_glsl_error(&loc, state,
7575                           "redeclaration of a built-in interface block must "
7576                           "appear before any use of any member of the "
7577                           "interface block");
7578       }
7579    }
7580 
7581    const glsl_type *block_type =
7582       glsl_type::get_interface_instance(fields,
7583                                         num_variables,
7584                                         packing,
7585                                         matrix_layout ==
7586                                            GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7587                                         this->block_name);
7588 
7589    unsigned component_size = block_type->contains_double() ? 8 : 4;
7590    int xfb_offset =
7591       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7592    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7593                                  component_size);
7594 
7595    if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7596       YYLTYPE loc = this->get_location();
7597       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7598                        "already taken in the current scope",
7599                        this->block_name, iface_type_name);
7600    }
7601 
7602    /* Since interface blocks cannot contain statements, it should be
7603     * impossible for the block to generate any instructions.
7604     */
7605    assert(declared_variables.is_empty());
7606 
7607    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7608     *
7609     *     Geometry shader input variables get the per-vertex values written
7610     *     out by vertex shader output variables of the same names. Since a
7611     *     geometry shader operates on a set of vertices, each input varying
7612     *     variable (or input block, see interface blocks below) needs to be
7613     *     declared as an array.
7614     */
7615    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7616        var_mode == ir_var_shader_in) {
7617       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7618    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7619                state->stage == MESA_SHADER_TESS_EVAL) &&
7620               !this->layout.flags.q.patch &&
7621               this->array_specifier == NULL &&
7622               var_mode == ir_var_shader_in) {
7623       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7624    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7625               !this->layout.flags.q.patch &&
7626               this->array_specifier == NULL &&
7627               var_mode == ir_var_shader_out) {
7628       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7629    }
7630 
7631 
7632    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7633     * says:
7634     *
7635     *     "If an instance name (instance-name) is used, then it puts all the
7636     *     members inside a scope within its own name space, accessed with the
7637     *     field selector ( . ) operator (analogously to structures)."
7638     */
7639    if (this->instance_name) {
7640       if (redeclaring_per_vertex) {
7641          /* When a built-in in an unnamed interface block is redeclared,
7642           * get_variable_being_redeclared() calls
7643           * check_builtin_array_max_size() to make sure that built-in array
7644           * variables aren't redeclared to illegal sizes.  But we're looking
7645           * at a redeclaration of a named built-in interface block.  So we
7646           * have to manually call check_builtin_array_max_size() for all parts
7647           * of the interface that are arrays.
7648           */
7649          for (unsigned i = 0; i < num_variables; i++) {
7650             if (fields[i].type->is_array()) {
7651                const unsigned size = fields[i].type->array_size();
7652                check_builtin_array_max_size(fields[i].name, size, loc, state);
7653             }
7654          }
7655       } else {
7656          validate_identifier(this->instance_name, loc, state);
7657       }
7658 
7659       ir_variable *var;
7660 
7661       if (this->array_specifier != NULL) {
7662          const glsl_type *block_array_type =
7663             process_array_type(&loc, block_type, this->array_specifier, state);
7664 
7665          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7666           *
7667           *     For uniform blocks declared an array, each individual array
7668           *     element corresponds to a separate buffer object backing one
7669           *     instance of the block. As the array size indicates the number
7670           *     of buffer objects needed, uniform block array declarations
7671           *     must specify an array size.
7672           *
7673           * And a few paragraphs later:
7674           *
7675           *     Geometry shader input blocks must be declared as arrays and
7676           *     follow the array declaration and linking rules for all
7677           *     geometry shader inputs. All other input and output block
7678           *     arrays must specify an array size.
7679           *
7680           * The same applies to tessellation shaders.
7681           *
7682           * The upshot of this is that the only circumstance where an
7683           * interface array size *doesn't* need to be specified is on a
7684           * geometry shader input, tessellation control shader input,
7685           * tessellation control shader output, and tessellation evaluation
7686           * shader input.
7687           */
7688          if (block_array_type->is_unsized_array()) {
7689             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7690                                 state->stage == MESA_SHADER_TESS_CTRL ||
7691                                 state->stage == MESA_SHADER_TESS_EVAL;
7692             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7693 
7694             if (this->layout.flags.q.in) {
7695                if (!allow_inputs)
7696                   _mesa_glsl_error(&loc, state,
7697                                    "unsized input block arrays not allowed in "
7698                                    "%s shader",
7699                                    _mesa_shader_stage_to_string(state->stage));
7700             } else if (this->layout.flags.q.out) {
7701                if (!allow_outputs)
7702                   _mesa_glsl_error(&loc, state,
7703                                    "unsized output block arrays not allowed in "
7704                                    "%s shader",
7705                                    _mesa_shader_stage_to_string(state->stage));
7706             } else {
7707                /* by elimination, this is a uniform block array */
7708                _mesa_glsl_error(&loc, state,
7709                                 "unsized uniform block arrays not allowed in "
7710                                 "%s shader",
7711                                 _mesa_shader_stage_to_string(state->stage));
7712             }
7713          }
7714 
7715          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7716           *
7717           *     * Arrays of arrays of blocks are not allowed
7718           */
7719          if (state->es_shader && block_array_type->is_array() &&
7720              block_array_type->fields.array->is_array()) {
7721             _mesa_glsl_error(&loc, state,
7722                              "arrays of arrays interface blocks are "
7723                              "not allowed");
7724          }
7725 
7726          var = new(state) ir_variable(block_array_type,
7727                                       this->instance_name,
7728                                       var_mode);
7729       } else {
7730          var = new(state) ir_variable(block_type,
7731                                       this->instance_name,
7732                                       var_mode);
7733       }
7734 
7735       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7736          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7737 
7738       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7739          var->data.read_only = true;
7740 
7741       var->data.patch = this->layout.flags.q.patch;
7742 
7743       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7744          handle_geometry_shader_input_decl(state, loc, var);
7745       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7746            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7747          handle_tess_shader_input_decl(state, loc, var);
7748       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7749          handle_tess_ctrl_shader_output_decl(state, loc, var);
7750 
7751       for (unsigned i = 0; i < num_variables; i++) {
7752          if (var->data.mode == ir_var_shader_storage)
7753             apply_memory_qualifiers(var, fields[i]);
7754       }
7755 
7756       if (ir_variable *earlier =
7757           state->symbols->get_variable(this->instance_name)) {
7758          if (!redeclaring_per_vertex) {
7759             _mesa_glsl_error(&loc, state, "`%s' redeclared",
7760                              this->instance_name);
7761          }
7762          earlier->data.how_declared = ir_var_declared_normally;
7763          earlier->type = var->type;
7764          earlier->reinit_interface_type(block_type);
7765          delete var;
7766       } else {
7767          if (this->layout.flags.q.explicit_binding) {
7768             apply_explicit_binding(state, &loc, var, var->type,
7769                                    &this->layout);
7770          }
7771 
7772          var->data.stream = qual_stream;
7773          if (layout.flags.q.explicit_location) {
7774             var->data.location = expl_location;
7775             var->data.explicit_location = true;
7776          }
7777 
7778          state->symbols->add_variable(var);
7779          instructions->push_tail(var);
7780       }
7781    } else {
7782       /* In order to have an array size, the block must also be declared with
7783        * an instance name.
7784        */
7785       assert(this->array_specifier == NULL);
7786 
7787       for (unsigned i = 0; i < num_variables; i++) {
7788          ir_variable *var =
7789             new(state) ir_variable(fields[i].type,
7790                                    ralloc_strdup(state, fields[i].name),
7791                                    var_mode);
7792          var->data.interpolation = fields[i].interpolation;
7793          var->data.centroid = fields[i].centroid;
7794          var->data.sample = fields[i].sample;
7795          var->data.patch = fields[i].patch;
7796          var->data.stream = qual_stream;
7797          var->data.location = fields[i].location;
7798 
7799          if (fields[i].location != -1)
7800             var->data.explicit_location = true;
7801 
7802          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7803          var->data.xfb_buffer = fields[i].xfb_buffer;
7804 
7805          if (fields[i].offset != -1)
7806             var->data.explicit_xfb_offset = true;
7807          var->data.offset = fields[i].offset;
7808 
7809          var->init_interface_type(block_type);
7810 
7811          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7812             var->data.read_only = true;
7813 
7814          /* Precision qualifiers do not have any meaning in Desktop GLSL */
7815          if (state->es_shader) {
7816             var->data.precision =
7817                select_gles_precision(fields[i].precision, fields[i].type,
7818                                      state, &loc);
7819          }
7820 
7821          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7822             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7823                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7824          } else {
7825             var->data.matrix_layout = fields[i].matrix_layout;
7826          }
7827 
7828          if (var->data.mode == ir_var_shader_storage)
7829             apply_memory_qualifiers(var, fields[i]);
7830 
7831          /* Examine var name here since var may get deleted in the next call */
7832          bool var_is_gl_id = is_gl_identifier(var->name);
7833 
7834          if (redeclaring_per_vertex) {
7835             ir_variable *earlier =
7836                get_variable_being_redeclared(var, loc, state,
7837                                              true /* allow_all_redeclarations */);
7838             if (!var_is_gl_id || earlier == NULL) {
7839                _mesa_glsl_error(&loc, state,
7840                                 "redeclaration of gl_PerVertex can only "
7841                                 "include built-in variables");
7842             } else if (earlier->data.how_declared == ir_var_declared_normally) {
7843                _mesa_glsl_error(&loc, state,
7844                                 "`%s' has already been redeclared",
7845                                 earlier->name);
7846             } else {
7847                earlier->data.how_declared = ir_var_declared_in_block;
7848                earlier->reinit_interface_type(block_type);
7849             }
7850             continue;
7851          }
7852 
7853          if (state->symbols->get_variable(var->name) != NULL)
7854             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7855 
7856          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7857           * The UBO declaration itself doesn't get an ir_variable unless it
7858           * has an instance name.  This is ugly.
7859           */
7860          if (this->layout.flags.q.explicit_binding) {
7861             apply_explicit_binding(state, &loc, var,
7862                                    var->get_interface_type(), &this->layout);
7863          }
7864 
7865          if (var->type->is_unsized_array()) {
7866             if (var->is_in_shader_storage_block() &&
7867                 is_unsized_array_last_element(var)) {
7868                var->data.from_ssbo_unsized_array = true;
7869             } else {
7870                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7871                 *
7872                 * "If an array is declared as the last member of a shader storage
7873                 * block and the size is not specified at compile-time, it is
7874                 * sized at run-time. In all other cases, arrays are sized only
7875                 * at compile-time."
7876                 *
7877                 * In desktop GLSL it is allowed to have unsized-arrays that are
7878                 * not last, as long as we can determine that they are implicitly
7879                 * sized.
7880                 */
7881                if (state->es_shader) {
7882                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
7883                                    "definition: only last member of a shader "
7884                                    "storage block can be defined as unsized "
7885                                    "array", fields[i].name);
7886                }
7887             }
7888          }
7889 
7890          state->symbols->add_variable(var);
7891          instructions->push_tail(var);
7892       }
7893 
7894       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7895          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7896           *
7897           *     It is also a compilation error ... to redeclare a built-in
7898           *     block and then use a member from that built-in block that was
7899           *     not included in the redeclaration.
7900           *
7901           * This appears to be a clarification to the behaviour established
7902           * for gl_PerVertex by GLSL 1.50, therefore we implement this
7903           * behaviour regardless of GLSL version.
7904           *
7905           * To prevent the shader from using a member that was not included in
7906           * the redeclaration, we disable any ir_variables that are still
7907           * associated with the old declaration of gl_PerVertex (since we've
7908           * already updated all of the variables contained in the new
7909           * gl_PerVertex to point to it).
7910           *
7911           * As a side effect this will prevent
7912           * validate_intrastage_interface_blocks() from getting confused and
7913           * thinking there are conflicting definitions of gl_PerVertex in the
7914           * shader.
7915           */
7916          foreach_in_list_safe(ir_instruction, node, instructions) {
7917             ir_variable *const var = node->as_variable();
7918             if (var != NULL &&
7919                 var->get_interface_type() == earlier_per_vertex &&
7920                 var->data.mode == var_mode) {
7921                if (var->data.how_declared == ir_var_declared_normally) {
7922                   _mesa_glsl_error(&loc, state,
7923                                    "redeclaration of gl_PerVertex cannot "
7924                                    "follow a redeclaration of `%s'",
7925                                    var->name);
7926                }
7927                state->symbols->disable_variable(var->name);
7928                var->remove();
7929             }
7930          }
7931       }
7932    }
7933 
7934    return NULL;
7935 }
7936 
7937 
7938 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7939 ast_tcs_output_layout::hir(exec_list *instructions,
7940                            struct _mesa_glsl_parse_state *state)
7941 {
7942    YYLTYPE loc = this->get_location();
7943 
7944    unsigned num_vertices;
7945    if (!state->out_qualifier->vertices->
7946           process_qualifier_constant(state, "vertices", &num_vertices,
7947                                      false)) {
7948       /* return here to stop cascading incorrect error messages */
7949      return NULL;
7950    }
7951 
7952    /* If any shader outputs occurred before this declaration and specified an
7953     * array size, make sure the size they specified is consistent with the
7954     * primitive type.
7955     */
7956    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7957       _mesa_glsl_error(&loc, state,
7958                        "this tessellation control shader output layout "
7959                        "specifies %u vertices, but a previous output "
7960                        "is declared with size %u",
7961                        num_vertices, state->tcs_output_size);
7962       return NULL;
7963    }
7964 
7965    state->tcs_output_vertices_specified = true;
7966 
7967    /* If any shader outputs occurred before this declaration and did not
7968     * specify an array size, their size is determined now.
7969     */
7970    foreach_in_list (ir_instruction, node, instructions) {
7971       ir_variable *var = node->as_variable();
7972       if (var == NULL || var->data.mode != ir_var_shader_out)
7973          continue;
7974 
7975       /* Note: Not all tessellation control shader output are arrays. */
7976       if (!var->type->is_unsized_array() || var->data.patch)
7977          continue;
7978 
7979       if (var->data.max_array_access >= (int)num_vertices) {
7980          _mesa_glsl_error(&loc, state,
7981                           "this tessellation control shader output layout "
7982                           "specifies %u vertices, but an access to element "
7983                           "%u of output `%s' already exists", num_vertices,
7984                           var->data.max_array_access, var->name);
7985       } else {
7986          var->type = glsl_type::get_array_instance(var->type->fields.array,
7987                                                    num_vertices);
7988       }
7989    }
7990 
7991    return NULL;
7992 }
7993 
7994 
7995 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7996 ast_gs_input_layout::hir(exec_list *instructions,
7997                          struct _mesa_glsl_parse_state *state)
7998 {
7999    YYLTYPE loc = this->get_location();
8000 
8001    /* Should have been prevented by the parser. */
8002    assert(!state->gs_input_prim_type_specified
8003           || state->in_qualifier->prim_type == this->prim_type);
8004 
8005    /* If any shader inputs occurred before this declaration and specified an
8006     * array size, make sure the size they specified is consistent with the
8007     * primitive type.
8008     */
8009    unsigned num_vertices = vertices_per_prim(this->prim_type);
8010    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8011       _mesa_glsl_error(&loc, state,
8012                        "this geometry shader input layout implies %u vertices"
8013                        " per primitive, but a previous input is declared"
8014                        " with size %u", num_vertices, state->gs_input_size);
8015       return NULL;
8016    }
8017 
8018    state->gs_input_prim_type_specified = true;
8019 
8020    /* If any shader inputs occurred before this declaration and did not
8021     * specify an array size, their size is determined now.
8022     */
8023    foreach_in_list(ir_instruction, node, instructions) {
8024       ir_variable *var = node->as_variable();
8025       if (var == NULL || var->data.mode != ir_var_shader_in)
8026          continue;
8027 
8028       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8029        * array; skip it.
8030        */
8031 
8032       if (var->type->is_unsized_array()) {
8033          if (var->data.max_array_access >= (int)num_vertices) {
8034             _mesa_glsl_error(&loc, state,
8035                              "this geometry shader input layout implies %u"
8036                              " vertices, but an access to element %u of input"
8037                              " `%s' already exists", num_vertices,
8038                              var->data.max_array_access, var->name);
8039          } else {
8040             var->type = glsl_type::get_array_instance(var->type->fields.array,
8041                                                       num_vertices);
8042          }
8043       }
8044    }
8045 
8046    return NULL;
8047 }
8048 
8049 
8050 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8051 ast_cs_input_layout::hir(exec_list *instructions,
8052                          struct _mesa_glsl_parse_state *state)
8053 {
8054    YYLTYPE loc = this->get_location();
8055 
8056    /* From the ARB_compute_shader specification:
8057     *
8058     *     If the local size of the shader in any dimension is greater
8059     *     than the maximum size supported by the implementation for that
8060     *     dimension, a compile-time error results.
8061     *
8062     * It is not clear from the spec how the error should be reported if
8063     * the total size of the work group exceeds
8064     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8065     * report it at compile time as well.
8066     */
8067    GLuint64 total_invocations = 1;
8068    unsigned qual_local_size[3];
8069    for (int i = 0; i < 3; i++) {
8070 
8071       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8072                                              'x' + i);
8073       /* Infer a local_size of 1 for unspecified dimensions */
8074       if (this->local_size[i] == NULL) {
8075          qual_local_size[i] = 1;
8076       } else if (!this->local_size[i]->
8077              process_qualifier_constant(state, local_size_str,
8078                                         &qual_local_size[i], false)) {
8079          ralloc_free(local_size_str);
8080          return NULL;
8081       }
8082       ralloc_free(local_size_str);
8083 
8084       if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8085          _mesa_glsl_error(&loc, state,
8086                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8087                           " (%d)", 'x' + i,
8088                           state->ctx->Const.MaxComputeWorkGroupSize[i]);
8089          break;
8090       }
8091       total_invocations *= qual_local_size[i];
8092       if (total_invocations >
8093           state->ctx->Const.MaxComputeWorkGroupInvocations) {
8094          _mesa_glsl_error(&loc, state,
8095                           "product of local_sizes exceeds "
8096                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8097                           state->ctx->Const.MaxComputeWorkGroupInvocations);
8098          break;
8099       }
8100    }
8101 
8102    /* If any compute input layout declaration preceded this one, make sure it
8103     * was consistent with this one.
8104     */
8105    if (state->cs_input_local_size_specified) {
8106       for (int i = 0; i < 3; i++) {
8107          if (state->cs_input_local_size[i] != qual_local_size[i]) {
8108             _mesa_glsl_error(&loc, state,
8109                              "compute shader input layout does not match"
8110                              " previous declaration");
8111             return NULL;
8112          }
8113       }
8114    }
8115 
8116    /* The ARB_compute_variable_group_size spec says:
8117     *
8118     *     If a compute shader including a *local_size_variable* qualifier also
8119     *     declares a fixed local group size using the *local_size_x*,
8120     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8121     *     results
8122     */
8123    if (state->cs_input_local_size_variable_specified) {
8124       _mesa_glsl_error(&loc, state,
8125                        "compute shader can't include both a variable and a "
8126                        "fixed local group size");
8127       return NULL;
8128    }
8129 
8130    state->cs_input_local_size_specified = true;
8131    for (int i = 0; i < 3; i++)
8132       state->cs_input_local_size[i] = qual_local_size[i];
8133 
8134    /* We may now declare the built-in constant gl_WorkGroupSize (see
8135     * builtin_variable_generator::generate_constants() for why we didn't
8136     * declare it earlier).
8137     */
8138    ir_variable *var = new(state->symbols)
8139       ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8140    var->data.how_declared = ir_var_declared_implicitly;
8141    var->data.read_only = true;
8142    instructions->push_tail(var);
8143    state->symbols->add_variable(var);
8144    ir_constant_data data;
8145    memset(&data, 0, sizeof(data));
8146    for (int i = 0; i < 3; i++)
8147       data.u[i] = qual_local_size[i];
8148    var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8149    var->constant_initializer =
8150       new(var) ir_constant(glsl_type::uvec3_type, &data);
8151    var->data.has_initializer = true;
8152 
8153    return NULL;
8154 }
8155 
8156 
8157 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)8158 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8159                                exec_list *instructions)
8160 {
8161    bool gl_FragColor_assigned = false;
8162    bool gl_FragData_assigned = false;
8163    bool gl_FragSecondaryColor_assigned = false;
8164    bool gl_FragSecondaryData_assigned = false;
8165    bool user_defined_fs_output_assigned = false;
8166    ir_variable *user_defined_fs_output = NULL;
8167 
8168    /* It would be nice to have proper location information. */
8169    YYLTYPE loc;
8170    memset(&loc, 0, sizeof(loc));
8171 
8172    foreach_in_list(ir_instruction, node, instructions) {
8173       ir_variable *var = node->as_variable();
8174 
8175       if (!var || !var->data.assigned)
8176          continue;
8177 
8178       if (strcmp(var->name, "gl_FragColor") == 0)
8179          gl_FragColor_assigned = true;
8180       else if (strcmp(var->name, "gl_FragData") == 0)
8181          gl_FragData_assigned = true;
8182         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8183          gl_FragSecondaryColor_assigned = true;
8184         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8185          gl_FragSecondaryData_assigned = true;
8186       else if (!is_gl_identifier(var->name)) {
8187          if (state->stage == MESA_SHADER_FRAGMENT &&
8188              var->data.mode == ir_var_shader_out) {
8189             user_defined_fs_output_assigned = true;
8190             user_defined_fs_output = var;
8191          }
8192       }
8193    }
8194 
8195    /* From the GLSL 1.30 spec:
8196     *
8197     *     "If a shader statically assigns a value to gl_FragColor, it
8198     *      may not assign a value to any element of gl_FragData. If a
8199     *      shader statically writes a value to any element of
8200     *      gl_FragData, it may not assign a value to
8201     *      gl_FragColor. That is, a shader may assign values to either
8202     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
8203     *      linked together must also consistently write just one of
8204     *      these variables.  Similarly, if user declared output
8205     *      variables are in use (statically assigned to), then the
8206     *      built-in variables gl_FragColor and gl_FragData may not be
8207     *      assigned to. These incorrect usages all generate compile
8208     *      time errors."
8209     */
8210    if (gl_FragColor_assigned && gl_FragData_assigned) {
8211       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8212                        "`gl_FragColor' and `gl_FragData'");
8213    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8214       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8215                        "`gl_FragColor' and `%s'",
8216                        user_defined_fs_output->name);
8217    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8218       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8219                        "`gl_FragSecondaryColorEXT' and"
8220                        " `gl_FragSecondaryDataEXT'");
8221    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8222       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8223                        "`gl_FragColor' and"
8224                        " `gl_FragSecondaryDataEXT'");
8225    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8226       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8227                        "`gl_FragData' and"
8228                        " `gl_FragSecondaryColorEXT'");
8229    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8230       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8231                        "`gl_FragData' and `%s'",
8232                        user_defined_fs_output->name);
8233    }
8234 
8235    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8236        !state->EXT_blend_func_extended_enable) {
8237       _mesa_glsl_error(&loc, state,
8238                        "Dual source blending requires EXT_blend_func_extended");
8239    }
8240 }
8241 
8242 
8243 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)8244 remove_per_vertex_blocks(exec_list *instructions,
8245                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
8246 {
8247    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8248     * if it exists in this shader type.
8249     */
8250    const glsl_type *per_vertex = NULL;
8251    switch (mode) {
8252    case ir_var_shader_in:
8253       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8254          per_vertex = gl_in->get_interface_type();
8255       break;
8256    case ir_var_shader_out:
8257       if (ir_variable *gl_Position =
8258           state->symbols->get_variable("gl_Position")) {
8259          per_vertex = gl_Position->get_interface_type();
8260       }
8261       break;
8262    default:
8263       assert(!"Unexpected mode");
8264       break;
8265    }
8266 
8267    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8268     * need to do anything.
8269     */
8270    if (per_vertex == NULL)
8271       return;
8272 
8273    /* If the interface block is used by the shader, then we don't need to do
8274     * anything.
8275     */
8276    interface_block_usage_visitor v(mode, per_vertex);
8277    v.run(instructions);
8278    if (v.usage_found())
8279       return;
8280 
8281    /* Remove any ir_variable declarations that refer to the interface block
8282     * we're removing.
8283     */
8284    foreach_in_list_safe(ir_instruction, node, instructions) {
8285       ir_variable *const var = node->as_variable();
8286       if (var != NULL && var->get_interface_type() == per_vertex &&
8287           var->data.mode == mode) {
8288          state->symbols->disable_variable(var->name);
8289          var->remove();
8290       }
8291    }
8292 }
8293