• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39 
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61 
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69 
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71 
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78 
79 #define JOB_START_TIMEOUT	(5 * 1000)
80 
sig_int(int sig)81 static void sig_int(int sig)
82 {
83 	if (threads) {
84 		if (is_backend)
85 			fio_server_got_signal(sig);
86 		else {
87 			log_info("\nfio: terminating on signal %d\n", sig);
88 			log_info_flush();
89 			exit_value = 128;
90 		}
91 
92 		fio_terminate_threads(TERMINATE_ALL);
93 	}
94 }
95 
sig_show_status(int sig)96 void sig_show_status(int sig)
97 {
98 	show_running_run_stats();
99 }
100 
set_sig_handlers(void)101 static void set_sig_handlers(void)
102 {
103 	struct sigaction act;
104 
105 	memset(&act, 0, sizeof(act));
106 	act.sa_handler = sig_int;
107 	act.sa_flags = SA_RESTART;
108 	sigaction(SIGINT, &act, NULL);
109 
110 	memset(&act, 0, sizeof(act));
111 	act.sa_handler = sig_int;
112 	act.sa_flags = SA_RESTART;
113 	sigaction(SIGTERM, &act, NULL);
114 
115 /* Windows uses SIGBREAK as a quit signal from other applications */
116 #ifdef WIN32
117 	memset(&act, 0, sizeof(act));
118 	act.sa_handler = sig_int;
119 	act.sa_flags = SA_RESTART;
120 	sigaction(SIGBREAK, &act, NULL);
121 #endif
122 
123 	memset(&act, 0, sizeof(act));
124 	act.sa_handler = sig_show_status;
125 	act.sa_flags = SA_RESTART;
126 	sigaction(SIGUSR1, &act, NULL);
127 
128 	if (is_backend) {
129 		memset(&act, 0, sizeof(act));
130 		act.sa_handler = sig_int;
131 		act.sa_flags = SA_RESTART;
132 		sigaction(SIGPIPE, &act, NULL);
133 	}
134 }
135 
136 /*
137  * Check if we are above the minimum rate given.
138  */
__check_min_rate(struct thread_data * td,struct timeval * now,enum fio_ddir ddir)139 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
140 			     enum fio_ddir ddir)
141 {
142 	unsigned long long bytes = 0;
143 	unsigned long iops = 0;
144 	unsigned long spent;
145 	unsigned long rate;
146 	unsigned int ratemin = 0;
147 	unsigned int rate_iops = 0;
148 	unsigned int rate_iops_min = 0;
149 
150 	assert(ddir_rw(ddir));
151 
152 	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 		return false;
154 
155 	/*
156 	 * allow a 2 second settle period in the beginning
157 	 */
158 	if (mtime_since(&td->start, now) < 2000)
159 		return false;
160 
161 	iops += td->this_io_blocks[ddir];
162 	bytes += td->this_io_bytes[ddir];
163 	ratemin += td->o.ratemin[ddir];
164 	rate_iops += td->o.rate_iops[ddir];
165 	rate_iops_min += td->o.rate_iops_min[ddir];
166 
167 	/*
168 	 * if rate blocks is set, sample is running
169 	 */
170 	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 		spent = mtime_since(&td->lastrate[ddir], now);
172 		if (spent < td->o.ratecycle)
173 			return false;
174 
175 		if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 			/*
177 			 * check bandwidth specified rate
178 			 */
179 			if (bytes < td->rate_bytes[ddir]) {
180 				log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 					td->o.name, ratemin, bytes);
182 				return true;
183 			} else {
184 				if (spent)
185 					rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 				else
187 					rate = 0;
188 
189 				if (rate < ratemin ||
190 				    bytes < td->rate_bytes[ddir]) {
191 					log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 						td->o.name, ratemin, rate);
193 					return true;
194 				}
195 			}
196 		} else {
197 			/*
198 			 * checks iops specified rate
199 			 */
200 			if (iops < rate_iops) {
201 				log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 						td->o.name, rate_iops, iops);
203 				return true;
204 			} else {
205 				if (spent)
206 					rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 				else
208 					rate = 0;
209 
210 				if (rate < rate_iops_min ||
211 				    iops < td->rate_blocks[ddir]) {
212 					log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 						td->o.name, rate_iops_min, rate);
214 					return true;
215 				}
216 			}
217 		}
218 	}
219 
220 	td->rate_bytes[ddir] = bytes;
221 	td->rate_blocks[ddir] = iops;
222 	memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 	return false;
224 }
225 
check_min_rate(struct thread_data * td,struct timeval * now)226 static bool check_min_rate(struct thread_data *td, struct timeval *now)
227 {
228 	bool ret = false;
229 
230 	if (td->bytes_done[DDIR_READ])
231 		ret |= __check_min_rate(td, now, DDIR_READ);
232 	if (td->bytes_done[DDIR_WRITE])
233 		ret |= __check_min_rate(td, now, DDIR_WRITE);
234 	if (td->bytes_done[DDIR_TRIM])
235 		ret |= __check_min_rate(td, now, DDIR_TRIM);
236 
237 	return ret;
238 }
239 
240 /*
241  * When job exits, we can cancel the in-flight IO if we are using async
242  * io. Attempt to do so.
243  */
cleanup_pending_aio(struct thread_data * td)244 static void cleanup_pending_aio(struct thread_data *td)
245 {
246 	int r;
247 
248 	/*
249 	 * get immediately available events, if any
250 	 */
251 	r = io_u_queued_complete(td, 0);
252 	if (r < 0)
253 		return;
254 
255 	/*
256 	 * now cancel remaining active events
257 	 */
258 	if (td->io_ops->cancel) {
259 		struct io_u *io_u;
260 		int i;
261 
262 		io_u_qiter(&td->io_u_all, io_u, i) {
263 			if (io_u->flags & IO_U_F_FLIGHT) {
264 				r = td->io_ops->cancel(td, io_u);
265 				if (!r)
266 					put_io_u(td, io_u);
267 			}
268 		}
269 	}
270 
271 	if (td->cur_depth)
272 		r = io_u_queued_complete(td, td->cur_depth);
273 }
274 
275 /*
276  * Helper to handle the final sync of a file. Works just like the normal
277  * io path, just does everything sync.
278  */
fio_io_sync(struct thread_data * td,struct fio_file * f)279 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280 {
281 	struct io_u *io_u = __get_io_u(td);
282 	int ret;
283 
284 	if (!io_u)
285 		return true;
286 
287 	io_u->ddir = DDIR_SYNC;
288 	io_u->file = f;
289 
290 	if (td_io_prep(td, io_u)) {
291 		put_io_u(td, io_u);
292 		return true;
293 	}
294 
295 requeue:
296 	ret = td_io_queue(td, io_u);
297 	if (ret < 0) {
298 		td_verror(td, io_u->error, "td_io_queue");
299 		put_io_u(td, io_u);
300 		return true;
301 	} else if (ret == FIO_Q_QUEUED) {
302 		if (td_io_commit(td))
303 			return true;
304 		if (io_u_queued_complete(td, 1) < 0)
305 			return true;
306 	} else if (ret == FIO_Q_COMPLETED) {
307 		if (io_u->error) {
308 			td_verror(td, io_u->error, "td_io_queue");
309 			return true;
310 		}
311 
312 		if (io_u_sync_complete(td, io_u) < 0)
313 			return true;
314 	} else if (ret == FIO_Q_BUSY) {
315 		if (td_io_commit(td))
316 			return true;
317 		goto requeue;
318 	}
319 
320 	return false;
321 }
322 
fio_file_fsync(struct thread_data * td,struct fio_file * f)323 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324 {
325 	int ret;
326 
327 	if (fio_file_open(f))
328 		return fio_io_sync(td, f);
329 
330 	if (td_io_open_file(td, f))
331 		return 1;
332 
333 	ret = fio_io_sync(td, f);
334 	td_io_close_file(td, f);
335 	return ret;
336 }
337 
__update_tv_cache(struct thread_data * td)338 static inline void __update_tv_cache(struct thread_data *td)
339 {
340 	fio_gettime(&td->tv_cache, NULL);
341 }
342 
update_tv_cache(struct thread_data * td)343 static inline void update_tv_cache(struct thread_data *td)
344 {
345 	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
346 		__update_tv_cache(td);
347 }
348 
runtime_exceeded(struct thread_data * td,struct timeval * t)349 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
350 {
351 	if (in_ramp_time(td))
352 		return false;
353 	if (!td->o.timeout)
354 		return false;
355 	if (utime_since(&td->epoch, t) >= td->o.timeout)
356 		return true;
357 
358 	return false;
359 }
360 
361 /*
362  * We need to update the runtime consistently in ms, but keep a running
363  * tally of the current elapsed time in microseconds for sub millisecond
364  * updates.
365  */
update_runtime(struct thread_data * td,unsigned long long * elapsed_us,const enum fio_ddir ddir)366 static inline void update_runtime(struct thread_data *td,
367 				  unsigned long long *elapsed_us,
368 				  const enum fio_ddir ddir)
369 {
370 	if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 		return;
372 
373 	td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 	elapsed_us[ddir] += utime_since_now(&td->start);
375 	td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376 }
377 
break_on_this_error(struct thread_data * td,enum fio_ddir ddir,int * retptr)378 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 				int *retptr)
380 {
381 	int ret = *retptr;
382 
383 	if (ret < 0 || td->error) {
384 		int err = td->error;
385 		enum error_type_bit eb;
386 
387 		if (ret < 0)
388 			err = -ret;
389 
390 		eb = td_error_type(ddir, err);
391 		if (!(td->o.continue_on_error & (1 << eb)))
392 			return true;
393 
394 		if (td_non_fatal_error(td, eb, err)) {
395 		        /*
396 		         * Continue with the I/Os in case of
397 			 * a non fatal error.
398 			 */
399 			update_error_count(td, err);
400 			td_clear_error(td);
401 			*retptr = 0;
402 			return false;
403 		} else if (td->o.fill_device && err == ENOSPC) {
404 			/*
405 			 * We expect to hit this error if
406 			 * fill_device option is set.
407 			 */
408 			td_clear_error(td);
409 			fio_mark_td_terminate(td);
410 			return true;
411 		} else {
412 			/*
413 			 * Stop the I/O in case of a fatal
414 			 * error.
415 			 */
416 			update_error_count(td, err);
417 			return true;
418 		}
419 	}
420 
421 	return false;
422 }
423 
check_update_rusage(struct thread_data * td)424 static void check_update_rusage(struct thread_data *td)
425 {
426 	if (td->update_rusage) {
427 		td->update_rusage = 0;
428 		update_rusage_stat(td);
429 		fio_mutex_up(td->rusage_sem);
430 	}
431 }
432 
wait_for_completions(struct thread_data * td,struct timeval * time)433 static int wait_for_completions(struct thread_data *td, struct timeval *time)
434 {
435 	const int full = queue_full(td);
436 	int min_evts = 0;
437 	int ret;
438 
439 	if (td->flags & TD_F_REGROW_LOGS)
440 		return io_u_quiesce(td);
441 
442 	/*
443 	 * if the queue is full, we MUST reap at least 1 event
444 	 */
445 	min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 	if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 		min_evts = 1;
448 
449 	if (time && (__should_check_rate(td, DDIR_READ) ||
450 	    __should_check_rate(td, DDIR_WRITE) ||
451 	    __should_check_rate(td, DDIR_TRIM)))
452 		fio_gettime(time, NULL);
453 
454 	do {
455 		ret = io_u_queued_complete(td, min_evts);
456 		if (ret < 0)
457 			break;
458 	} while (full && (td->cur_depth > td->o.iodepth_low));
459 
460 	return ret;
461 }
462 
io_queue_event(struct thread_data * td,struct io_u * io_u,int * ret,enum fio_ddir ddir,uint64_t * bytes_issued,int from_verify,struct timeval * comp_time)463 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 		   enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 		   struct timeval *comp_time)
466 {
467 	int ret2;
468 
469 	switch (*ret) {
470 	case FIO_Q_COMPLETED:
471 		if (io_u->error) {
472 			*ret = -io_u->error;
473 			clear_io_u(td, io_u);
474 		} else if (io_u->resid) {
475 			int bytes = io_u->xfer_buflen - io_u->resid;
476 			struct fio_file *f = io_u->file;
477 
478 			if (bytes_issued)
479 				*bytes_issued += bytes;
480 
481 			if (!from_verify)
482 				trim_io_piece(td, io_u);
483 
484 			/*
485 			 * zero read, fail
486 			 */
487 			if (!bytes) {
488 				if (!from_verify)
489 					unlog_io_piece(td, io_u);
490 				td_verror(td, EIO, "full resid");
491 				put_io_u(td, io_u);
492 				break;
493 			}
494 
495 			io_u->xfer_buflen = io_u->resid;
496 			io_u->xfer_buf += bytes;
497 			io_u->offset += bytes;
498 
499 			if (ddir_rw(io_u->ddir))
500 				td->ts.short_io_u[io_u->ddir]++;
501 
502 			f = io_u->file;
503 			if (io_u->offset == f->real_file_size)
504 				goto sync_done;
505 
506 			requeue_io_u(td, &io_u);
507 		} else {
508 sync_done:
509 			if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510 			    __should_check_rate(td, DDIR_WRITE) ||
511 			    __should_check_rate(td, DDIR_TRIM)))
512 				fio_gettime(comp_time, NULL);
513 
514 			*ret = io_u_sync_complete(td, io_u);
515 			if (*ret < 0)
516 				break;
517 		}
518 
519 		if (td->flags & TD_F_REGROW_LOGS)
520 			regrow_logs(td);
521 
522 		/*
523 		 * when doing I/O (not when verifying),
524 		 * check for any errors that are to be ignored
525 		 */
526 		if (!from_verify)
527 			break;
528 
529 		return 0;
530 	case FIO_Q_QUEUED:
531 		/*
532 		 * if the engine doesn't have a commit hook,
533 		 * the io_u is really queued. if it does have such
534 		 * a hook, it has to call io_u_queued() itself.
535 		 */
536 		if (td->io_ops->commit == NULL)
537 			io_u_queued(td, io_u);
538 		if (bytes_issued)
539 			*bytes_issued += io_u->xfer_buflen;
540 		break;
541 	case FIO_Q_BUSY:
542 		if (!from_verify)
543 			unlog_io_piece(td, io_u);
544 		requeue_io_u(td, &io_u);
545 		ret2 = td_io_commit(td);
546 		if (ret2 < 0)
547 			*ret = ret2;
548 		break;
549 	default:
550 		assert(*ret < 0);
551 		td_verror(td, -(*ret), "td_io_queue");
552 		break;
553 	}
554 
555 	if (break_on_this_error(td, ddir, ret))
556 		return 1;
557 
558 	return 0;
559 }
560 
io_in_polling(struct thread_data * td)561 static inline bool io_in_polling(struct thread_data *td)
562 {
563 	return !td->o.iodepth_batch_complete_min &&
564 		   !td->o.iodepth_batch_complete_max;
565 }
566 /*
567  * Unlinks files from thread data fio_file structure
568  */
unlink_all_files(struct thread_data * td)569 static int unlink_all_files(struct thread_data *td)
570 {
571 	struct fio_file *f;
572 	unsigned int i;
573 	int ret = 0;
574 
575 	for_each_file(td, f, i) {
576 		if (f->filetype != FIO_TYPE_FILE)
577 			continue;
578 		ret = td_io_unlink_file(td, f);
579 		if (ret)
580 			break;
581 	}
582 
583 	if (ret)
584 		td_verror(td, ret, "unlink_all_files");
585 
586 	return ret;
587 }
588 
589 /*
590  * The main verify engine. Runs over the writes we previously submitted,
591  * reads the blocks back in, and checks the crc/md5 of the data.
592  */
do_verify(struct thread_data * td,uint64_t verify_bytes)593 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
594 {
595 	struct fio_file *f;
596 	struct io_u *io_u;
597 	int ret, min_events;
598 	unsigned int i;
599 
600 	dprint(FD_VERIFY, "starting loop\n");
601 
602 	/*
603 	 * sync io first and invalidate cache, to make sure we really
604 	 * read from disk.
605 	 */
606 	for_each_file(td, f, i) {
607 		if (!fio_file_open(f))
608 			continue;
609 		if (fio_io_sync(td, f))
610 			break;
611 		if (file_invalidate_cache(td, f))
612 			break;
613 	}
614 
615 	check_update_rusage(td);
616 
617 	if (td->error)
618 		return;
619 
620 	/*
621 	 * verify_state needs to be reset before verification
622 	 * proceeds so that expected random seeds match actual
623 	 * random seeds in headers. The main loop will reset
624 	 * all random number generators if randrepeat is set.
625 	 */
626 	if (!td->o.rand_repeatable)
627 		td_fill_verify_state_seed(td);
628 
629 	td_set_runstate(td, TD_VERIFYING);
630 
631 	io_u = NULL;
632 	while (!td->terminate) {
633 		enum fio_ddir ddir;
634 		int full;
635 
636 		update_tv_cache(td);
637 		check_update_rusage(td);
638 
639 		if (runtime_exceeded(td, &td->tv_cache)) {
640 			__update_tv_cache(td);
641 			if (runtime_exceeded(td, &td->tv_cache)) {
642 				fio_mark_td_terminate(td);
643 				break;
644 			}
645 		}
646 
647 		if (flow_threshold_exceeded(td))
648 			continue;
649 
650 		if (!td->o.experimental_verify) {
651 			io_u = __get_io_u(td);
652 			if (!io_u)
653 				break;
654 
655 			if (get_next_verify(td, io_u)) {
656 				put_io_u(td, io_u);
657 				break;
658 			}
659 
660 			if (td_io_prep(td, io_u)) {
661 				put_io_u(td, io_u);
662 				break;
663 			}
664 		} else {
665 			if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
666 				break;
667 
668 			while ((io_u = get_io_u(td)) != NULL) {
669 				if (IS_ERR_OR_NULL(io_u)) {
670 					io_u = NULL;
671 					ret = FIO_Q_BUSY;
672 					goto reap;
673 				}
674 
675 				/*
676 				 * We are only interested in the places where
677 				 * we wrote or trimmed IOs. Turn those into
678 				 * reads for verification purposes.
679 				 */
680 				if (io_u->ddir == DDIR_READ) {
681 					/*
682 					 * Pretend we issued it for rwmix
683 					 * accounting
684 					 */
685 					td->io_issues[DDIR_READ]++;
686 					put_io_u(td, io_u);
687 					continue;
688 				} else if (io_u->ddir == DDIR_TRIM) {
689 					io_u->ddir = DDIR_READ;
690 					io_u_set(td, io_u, IO_U_F_TRIMMED);
691 					break;
692 				} else if (io_u->ddir == DDIR_WRITE) {
693 					io_u->ddir = DDIR_READ;
694 					break;
695 				} else {
696 					put_io_u(td, io_u);
697 					continue;
698 				}
699 			}
700 
701 			if (!io_u)
702 				break;
703 		}
704 
705 		if (verify_state_should_stop(td, io_u)) {
706 			put_io_u(td, io_u);
707 			break;
708 		}
709 
710 		if (td->o.verify_async)
711 			io_u->end_io = verify_io_u_async;
712 		else
713 			io_u->end_io = verify_io_u;
714 
715 		ddir = io_u->ddir;
716 		if (!td->o.disable_slat)
717 			fio_gettime(&io_u->start_time, NULL);
718 
719 		ret = td_io_queue(td, io_u);
720 
721 		if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
722 			break;
723 
724 		/*
725 		 * if we can queue more, do so. but check if there are
726 		 * completed io_u's first. Note that we can get BUSY even
727 		 * without IO queued, if the system is resource starved.
728 		 */
729 reap:
730 		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
731 		if (full || io_in_polling(td))
732 			ret = wait_for_completions(td, NULL);
733 
734 		if (ret < 0)
735 			break;
736 	}
737 
738 	check_update_rusage(td);
739 
740 	if (!td->error) {
741 		min_events = td->cur_depth;
742 
743 		if (min_events)
744 			ret = io_u_queued_complete(td, min_events);
745 	} else
746 		cleanup_pending_aio(td);
747 
748 	td_set_runstate(td, TD_RUNNING);
749 
750 	dprint(FD_VERIFY, "exiting loop\n");
751 }
752 
exceeds_number_ios(struct thread_data * td)753 static bool exceeds_number_ios(struct thread_data *td)
754 {
755 	unsigned long long number_ios;
756 
757 	if (!td->o.number_ios)
758 		return false;
759 
760 	number_ios = ddir_rw_sum(td->io_blocks);
761 	number_ios += td->io_u_queued + td->io_u_in_flight;
762 
763 	return number_ios >= (td->o.number_ios * td->loops);
764 }
765 
io_bytes_exceeded(struct thread_data * td,uint64_t * this_bytes)766 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
767 {
768 	unsigned long long bytes, limit;
769 
770 	if (td_rw(td))
771 		bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
772 	else if (td_write(td))
773 		bytes = this_bytes[DDIR_WRITE];
774 	else if (td_read(td))
775 		bytes = this_bytes[DDIR_READ];
776 	else
777 		bytes = this_bytes[DDIR_TRIM];
778 
779 	if (td->o.io_size)
780 		limit = td->o.io_size;
781 	else
782 		limit = td->o.size;
783 
784 	limit *= td->loops;
785 	return bytes >= limit || exceeds_number_ios(td);
786 }
787 
io_issue_bytes_exceeded(struct thread_data * td)788 static bool io_issue_bytes_exceeded(struct thread_data *td)
789 {
790 	return io_bytes_exceeded(td, td->io_issue_bytes);
791 }
792 
io_complete_bytes_exceeded(struct thread_data * td)793 static bool io_complete_bytes_exceeded(struct thread_data *td)
794 {
795 	return io_bytes_exceeded(td, td->this_io_bytes);
796 }
797 
798 /*
799  * used to calculate the next io time for rate control
800  *
801  */
usec_for_io(struct thread_data * td,enum fio_ddir ddir)802 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
803 {
804 	uint64_t secs, remainder, bps, bytes, iops;
805 
806 	assert(!(td->flags & TD_F_CHILD));
807 	bytes = td->rate_io_issue_bytes[ddir];
808 	bps = td->rate_bps[ddir];
809 
810 	if (td->o.rate_process == RATE_PROCESS_POISSON) {
811 		uint64_t val;
812 		iops = bps / td->o.bs[ddir];
813 		val = (int64_t) (1000000 / iops) *
814 				-logf(__rand_0_1(&td->poisson_state[ddir]));
815 		if (val) {
816 			dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
817 					(unsigned long long) 1000000 / val,
818 					ddir);
819 		}
820 		td->last_usec[ddir] += val;
821 		return td->last_usec[ddir];
822 	} else if (bps) {
823 		secs = bytes / bps;
824 		remainder = bytes % bps;
825 		return remainder * 1000000 / bps + secs * 1000000;
826 	}
827 
828 	return 0;
829 }
830 
831 /*
832  * Main IO worker function. It retrieves io_u's to process and queues
833  * and reaps them, checking for rate and errors along the way.
834  *
835  * Returns number of bytes written and trimmed.
836  */
do_io(struct thread_data * td,uint64_t * bytes_done)837 static void do_io(struct thread_data *td, uint64_t *bytes_done)
838 {
839 	unsigned int i;
840 	int ret = 0;
841 	uint64_t total_bytes, bytes_issued = 0;
842 
843 	for (i = 0; i < DDIR_RWDIR_CNT; i++)
844 		bytes_done[i] = td->bytes_done[i];
845 
846 	if (in_ramp_time(td))
847 		td_set_runstate(td, TD_RAMP);
848 	else
849 		td_set_runstate(td, TD_RUNNING);
850 
851 	lat_target_init(td);
852 
853 	total_bytes = td->o.size;
854 	/*
855 	* Allow random overwrite workloads to write up to io_size
856 	* before starting verification phase as 'size' doesn't apply.
857 	*/
858 	if (td_write(td) && td_random(td) && td->o.norandommap)
859 		total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
860 	/*
861 	 * If verify_backlog is enabled, we'll run the verify in this
862 	 * handler as well. For that case, we may need up to twice the
863 	 * amount of bytes.
864 	 */
865 	if (td->o.verify != VERIFY_NONE &&
866 	   (td_write(td) && td->o.verify_backlog))
867 		total_bytes += td->o.size;
868 
869 	/* In trimwrite mode, each byte is trimmed and then written, so
870 	 * allow total_bytes to be twice as big */
871 	if (td_trimwrite(td))
872 		total_bytes += td->total_io_size;
873 
874 	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
875 		(!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
876 		td->o.time_based) {
877 		struct timeval comp_time;
878 		struct io_u *io_u;
879 		int full;
880 		enum fio_ddir ddir;
881 
882 		check_update_rusage(td);
883 
884 		if (td->terminate || td->done)
885 			break;
886 
887 		update_tv_cache(td);
888 
889 		if (runtime_exceeded(td, &td->tv_cache)) {
890 			__update_tv_cache(td);
891 			if (runtime_exceeded(td, &td->tv_cache)) {
892 				fio_mark_td_terminate(td);
893 				break;
894 			}
895 		}
896 
897 		if (flow_threshold_exceeded(td))
898 			continue;
899 
900 		/*
901 		 * Break if we exceeded the bytes. The exception is time
902 		 * based runs, but we still need to break out of the loop
903 		 * for those to run verification, if enabled.
904 		 */
905 		if (bytes_issued >= total_bytes &&
906 		    (!td->o.time_based ||
907 		     (td->o.time_based && td->o.verify != VERIFY_NONE)))
908 			break;
909 
910 		io_u = get_io_u(td);
911 		if (IS_ERR_OR_NULL(io_u)) {
912 			int err = PTR_ERR(io_u);
913 
914 			io_u = NULL;
915 			if (err == -EBUSY) {
916 				ret = FIO_Q_BUSY;
917 				goto reap;
918 			}
919 			if (td->o.latency_target)
920 				goto reap;
921 			break;
922 		}
923 
924 		ddir = io_u->ddir;
925 
926 		/*
927 		 * Add verification end_io handler if:
928 		 *	- Asked to verify (!td_rw(td))
929 		 *	- Or the io_u is from our verify list (mixed write/ver)
930 		 */
931 		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
932 		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
933 
934 			if (!td->o.verify_pattern_bytes) {
935 				io_u->rand_seed = __rand(&td->verify_state);
936 				if (sizeof(int) != sizeof(long *))
937 					io_u->rand_seed *= __rand(&td->verify_state);
938 			}
939 
940 			if (verify_state_should_stop(td, io_u)) {
941 				put_io_u(td, io_u);
942 				break;
943 			}
944 
945 			if (td->o.verify_async)
946 				io_u->end_io = verify_io_u_async;
947 			else
948 				io_u->end_io = verify_io_u;
949 			td_set_runstate(td, TD_VERIFYING);
950 		} else if (in_ramp_time(td))
951 			td_set_runstate(td, TD_RAMP);
952 		else
953 			td_set_runstate(td, TD_RUNNING);
954 
955 		/*
956 		 * Always log IO before it's issued, so we know the specific
957 		 * order of it. The logged unit will track when the IO has
958 		 * completed.
959 		 */
960 		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
961 		    td->o.do_verify &&
962 		    td->o.verify != VERIFY_NONE &&
963 		    !td->o.experimental_verify)
964 			log_io_piece(td, io_u);
965 
966 		if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
967 			const unsigned long blen = io_u->xfer_buflen;
968 			const enum fio_ddir ddir = acct_ddir(io_u);
969 
970 			if (td->error)
971 				break;
972 
973 			workqueue_enqueue(&td->io_wq, &io_u->work);
974 			ret = FIO_Q_QUEUED;
975 
976 			if (ddir_rw(ddir)) {
977 				td->io_issues[ddir]++;
978 				td->io_issue_bytes[ddir] += blen;
979 				td->rate_io_issue_bytes[ddir] += blen;
980 			}
981 
982 			if (should_check_rate(td))
983 				td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
984 
985 		} else {
986 			ret = td_io_queue(td, io_u);
987 
988 			if (should_check_rate(td))
989 				td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
990 
991 			if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
992 				break;
993 
994 			/*
995 			 * See if we need to complete some commands. Note that
996 			 * we can get BUSY even without IO queued, if the
997 			 * system is resource starved.
998 			 */
999 reap:
1000 			full = queue_full(td) ||
1001 				(ret == FIO_Q_BUSY && td->cur_depth);
1002 			if (full || io_in_polling(td))
1003 				ret = wait_for_completions(td, &comp_time);
1004 		}
1005 		if (ret < 0)
1006 			break;
1007 		if (!ddir_rw_sum(td->bytes_done) &&
1008 		    !td_ioengine_flagged(td, FIO_NOIO))
1009 			continue;
1010 
1011 		if (!in_ramp_time(td) && should_check_rate(td)) {
1012 			if (check_min_rate(td, &comp_time)) {
1013 				if (exitall_on_terminate || td->o.exitall_error)
1014 					fio_terminate_threads(td->groupid);
1015 				td_verror(td, EIO, "check_min_rate");
1016 				break;
1017 			}
1018 		}
1019 		if (!in_ramp_time(td) && td->o.latency_target)
1020 			lat_target_check(td);
1021 
1022 		if (td->o.thinktime) {
1023 			unsigned long long b;
1024 
1025 			b = ddir_rw_sum(td->io_blocks);
1026 			if (!(b % td->o.thinktime_blocks)) {
1027 				int left;
1028 
1029 				io_u_quiesce(td);
1030 
1031 				if (td->o.thinktime_spin)
1032 					usec_spin(td->o.thinktime_spin);
1033 
1034 				left = td->o.thinktime - td->o.thinktime_spin;
1035 				if (left)
1036 					usec_sleep(td, left);
1037 			}
1038 		}
1039 	}
1040 
1041 	check_update_rusage(td);
1042 
1043 	if (td->trim_entries)
1044 		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1045 
1046 	if (td->o.fill_device && td->error == ENOSPC) {
1047 		td->error = 0;
1048 		fio_mark_td_terminate(td);
1049 	}
1050 	if (!td->error) {
1051 		struct fio_file *f;
1052 
1053 		if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1054 			workqueue_flush(&td->io_wq);
1055 			i = 0;
1056 		} else
1057 			i = td->cur_depth;
1058 
1059 		if (i) {
1060 			ret = io_u_queued_complete(td, i);
1061 			if (td->o.fill_device && td->error == ENOSPC)
1062 				td->error = 0;
1063 		}
1064 
1065 		if (should_fsync(td) && td->o.end_fsync) {
1066 			td_set_runstate(td, TD_FSYNCING);
1067 
1068 			for_each_file(td, f, i) {
1069 				if (!fio_file_fsync(td, f))
1070 					continue;
1071 
1072 				log_err("fio: end_fsync failed for file %s\n",
1073 								f->file_name);
1074 			}
1075 		}
1076 	} else
1077 		cleanup_pending_aio(td);
1078 
1079 	/*
1080 	 * stop job if we failed doing any IO
1081 	 */
1082 	if (!ddir_rw_sum(td->this_io_bytes))
1083 		td->done = 1;
1084 
1085 	for (i = 0; i < DDIR_RWDIR_CNT; i++)
1086 		bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1087 }
1088 
free_file_completion_logging(struct thread_data * td)1089 static void free_file_completion_logging(struct thread_data *td)
1090 {
1091 	struct fio_file *f;
1092 	unsigned int i;
1093 
1094 	for_each_file(td, f, i) {
1095 		if (!f->last_write_comp)
1096 			break;
1097 		sfree(f->last_write_comp);
1098 	}
1099 }
1100 
init_file_completion_logging(struct thread_data * td,unsigned int depth)1101 static int init_file_completion_logging(struct thread_data *td,
1102 					unsigned int depth)
1103 {
1104 	struct fio_file *f;
1105 	unsigned int i;
1106 
1107 	if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1108 		return 0;
1109 
1110 	for_each_file(td, f, i) {
1111 		f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1112 		if (!f->last_write_comp)
1113 			goto cleanup;
1114 	}
1115 
1116 	return 0;
1117 
1118 cleanup:
1119 	free_file_completion_logging(td);
1120 	log_err("fio: failed to alloc write comp data\n");
1121 	return 1;
1122 }
1123 
cleanup_io_u(struct thread_data * td)1124 static void cleanup_io_u(struct thread_data *td)
1125 {
1126 	struct io_u *io_u;
1127 
1128 	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1129 
1130 		if (td->io_ops->io_u_free)
1131 			td->io_ops->io_u_free(td, io_u);
1132 
1133 		fio_memfree(io_u, sizeof(*io_u));
1134 	}
1135 
1136 	free_io_mem(td);
1137 
1138 	io_u_rexit(&td->io_u_requeues);
1139 	io_u_qexit(&td->io_u_freelist);
1140 	io_u_qexit(&td->io_u_all);
1141 
1142 	free_file_completion_logging(td);
1143 }
1144 
init_io_u(struct thread_data * td)1145 static int init_io_u(struct thread_data *td)
1146 {
1147 	struct io_u *io_u;
1148 	unsigned int max_bs, min_write;
1149 	int cl_align, i, max_units;
1150 	int data_xfer = 1, err;
1151 	char *p;
1152 
1153 	max_units = td->o.iodepth;
1154 	max_bs = td_max_bs(td);
1155 	min_write = td->o.min_bs[DDIR_WRITE];
1156 	td->orig_buffer_size = (unsigned long long) max_bs
1157 					* (unsigned long long) max_units;
1158 
1159 	if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1160 		data_xfer = 0;
1161 
1162 	err = 0;
1163 	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1164 	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1165 	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1166 
1167 	if (err) {
1168 		log_err("fio: failed setting up IO queues\n");
1169 		return 1;
1170 	}
1171 
1172 	/*
1173 	 * if we may later need to do address alignment, then add any
1174 	 * possible adjustment here so that we don't cause a buffer
1175 	 * overflow later. this adjustment may be too much if we get
1176 	 * lucky and the allocator gives us an aligned address.
1177 	 */
1178 	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1179 	    td_ioengine_flagged(td, FIO_RAWIO))
1180 		td->orig_buffer_size += page_mask + td->o.mem_align;
1181 
1182 	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1183 		unsigned long bs;
1184 
1185 		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1186 		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1187 	}
1188 
1189 	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1190 		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1191 		return 1;
1192 	}
1193 
1194 	if (data_xfer && allocate_io_mem(td))
1195 		return 1;
1196 
1197 	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198 	    td_ioengine_flagged(td, FIO_RAWIO))
1199 		p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1200 	else
1201 		p = td->orig_buffer;
1202 
1203 	cl_align = os_cache_line_size();
1204 
1205 	for (i = 0; i < max_units; i++) {
1206 		void *ptr;
1207 
1208 		if (td->terminate)
1209 			return 1;
1210 
1211 		ptr = fio_memalign(cl_align, sizeof(*io_u));
1212 		if (!ptr) {
1213 			log_err("fio: unable to allocate aligned memory\n");
1214 			break;
1215 		}
1216 
1217 		io_u = ptr;
1218 		memset(io_u, 0, sizeof(*io_u));
1219 		INIT_FLIST_HEAD(&io_u->verify_list);
1220 		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1221 
1222 		if (data_xfer) {
1223 			io_u->buf = p;
1224 			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1225 
1226 			if (td_write(td))
1227 				io_u_fill_buffer(td, io_u, min_write, max_bs);
1228 			if (td_write(td) && td->o.verify_pattern_bytes) {
1229 				/*
1230 				 * Fill the buffer with the pattern if we are
1231 				 * going to be doing writes.
1232 				 */
1233 				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1234 			}
1235 		}
1236 
1237 		io_u->index = i;
1238 		io_u->flags = IO_U_F_FREE;
1239 		io_u_qpush(&td->io_u_freelist, io_u);
1240 
1241 		/*
1242 		 * io_u never leaves this stack, used for iteration of all
1243 		 * io_u buffers.
1244 		 */
1245 		io_u_qpush(&td->io_u_all, io_u);
1246 
1247 		if (td->io_ops->io_u_init) {
1248 			int ret = td->io_ops->io_u_init(td, io_u);
1249 
1250 			if (ret) {
1251 				log_err("fio: failed to init engine data: %d\n", ret);
1252 				return 1;
1253 			}
1254 		}
1255 
1256 		p += max_bs;
1257 	}
1258 
1259 	if (init_file_completion_logging(td, max_units))
1260 		return 1;
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * This function is Linux specific.
1267  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1268  */
switch_ioscheduler(struct thread_data * td)1269 static int switch_ioscheduler(struct thread_data *td)
1270 {
1271 #ifdef FIO_HAVE_IOSCHED_SWITCH
1272 	char tmp[256], tmp2[128];
1273 	FILE *f;
1274 	int ret;
1275 
1276 	if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1277 		return 0;
1278 
1279 	assert(td->files && td->files[0]);
1280 	sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1281 
1282 	f = fopen(tmp, "r+");
1283 	if (!f) {
1284 		if (errno == ENOENT) {
1285 			log_err("fio: os or kernel doesn't support IO scheduler"
1286 				" switching\n");
1287 			return 0;
1288 		}
1289 		td_verror(td, errno, "fopen iosched");
1290 		return 1;
1291 	}
1292 
1293 	/*
1294 	 * Set io scheduler.
1295 	 */
1296 	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1297 	if (ferror(f) || ret != 1) {
1298 		td_verror(td, errno, "fwrite");
1299 		fclose(f);
1300 		return 1;
1301 	}
1302 
1303 	rewind(f);
1304 
1305 	/*
1306 	 * Read back and check that the selected scheduler is now the default.
1307 	 */
1308 	memset(tmp, 0, sizeof(tmp));
1309 	ret = fread(tmp, sizeof(tmp), 1, f);
1310 	if (ferror(f) || ret < 0) {
1311 		td_verror(td, errno, "fread");
1312 		fclose(f);
1313 		return 1;
1314 	}
1315 	/*
1316 	 * either a list of io schedulers or "none\n" is expected.
1317 	 */
1318 	tmp[strlen(tmp) - 1] = '\0';
1319 
1320 	/*
1321 	 * Write to "none" entry doesn't fail, so check the result here.
1322 	 */
1323 	if (!strcmp(tmp, "none")) {
1324 		log_err("fio: io scheduler is not tunable\n");
1325 		fclose(f);
1326 		return 0;
1327 	}
1328 
1329 	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1330 	if (!strstr(tmp, tmp2)) {
1331 		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1332 		td_verror(td, EINVAL, "iosched_switch");
1333 		fclose(f);
1334 		return 1;
1335 	}
1336 
1337 	fclose(f);
1338 	return 0;
1339 #else
1340 	return 0;
1341 #endif
1342 }
1343 
keep_running(struct thread_data * td)1344 static bool keep_running(struct thread_data *td)
1345 {
1346 	unsigned long long limit;
1347 
1348 	if (td->done)
1349 		return false;
1350 	if (td->o.time_based)
1351 		return true;
1352 	if (td->o.loops) {
1353 		td->o.loops--;
1354 		return true;
1355 	}
1356 	if (exceeds_number_ios(td))
1357 		return false;
1358 
1359 	if (td->o.io_size)
1360 		limit = td->o.io_size;
1361 	else
1362 		limit = td->o.size;
1363 
1364 	if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1365 		uint64_t diff;
1366 
1367 		/*
1368 		 * If the difference is less than the maximum IO size, we
1369 		 * are done.
1370 		 */
1371 		diff = limit - ddir_rw_sum(td->io_bytes);
1372 		if (diff < td_max_bs(td))
1373 			return false;
1374 
1375 		if (fio_files_done(td) && !td->o.io_size)
1376 			return false;
1377 
1378 		return true;
1379 	}
1380 
1381 	return false;
1382 }
1383 
exec_string(struct thread_options * o,const char * string,const char * mode)1384 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1385 {
1386 	size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1387 	int ret;
1388 	char *str;
1389 
1390 	str = malloc(newlen);
1391 	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1392 
1393 	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1394 	ret = system(str);
1395 	if (ret == -1)
1396 		log_err("fio: exec of cmd <%s> failed\n", str);
1397 
1398 	free(str);
1399 	return ret;
1400 }
1401 
1402 /*
1403  * Dry run to compute correct state of numberio for verification.
1404  */
do_dry_run(struct thread_data * td)1405 static uint64_t do_dry_run(struct thread_data *td)
1406 {
1407 	td_set_runstate(td, TD_RUNNING);
1408 
1409 	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1410 		(!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1411 		struct io_u *io_u;
1412 		int ret;
1413 
1414 		if (td->terminate || td->done)
1415 			break;
1416 
1417 		io_u = get_io_u(td);
1418 		if (IS_ERR_OR_NULL(io_u))
1419 			break;
1420 
1421 		io_u_set(td, io_u, IO_U_F_FLIGHT);
1422 		io_u->error = 0;
1423 		io_u->resid = 0;
1424 		if (ddir_rw(acct_ddir(io_u)))
1425 			td->io_issues[acct_ddir(io_u)]++;
1426 		if (ddir_rw(io_u->ddir)) {
1427 			io_u_mark_depth(td, 1);
1428 			td->ts.total_io_u[io_u->ddir]++;
1429 		}
1430 
1431 		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1432 		    td->o.do_verify &&
1433 		    td->o.verify != VERIFY_NONE &&
1434 		    !td->o.experimental_verify)
1435 			log_io_piece(td, io_u);
1436 
1437 		ret = io_u_sync_complete(td, io_u);
1438 		(void) ret;
1439 	}
1440 
1441 	return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1442 }
1443 
1444 struct fork_data {
1445 	struct thread_data *td;
1446 	struct sk_out *sk_out;
1447 };
1448 
1449 /*
1450  * Entry point for the thread based jobs. The process based jobs end up
1451  * here as well, after a little setup.
1452  */
thread_main(void * data)1453 static void *thread_main(void *data)
1454 {
1455 	struct fork_data *fd = data;
1456 	unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1457 	struct thread_data *td = fd->td;
1458 	struct thread_options *o = &td->o;
1459 	struct sk_out *sk_out = fd->sk_out;
1460 	uint64_t bytes_done[DDIR_RWDIR_CNT];
1461 	int deadlock_loop_cnt;
1462 	int clear_state;
1463 	int ret;
1464 
1465 	sk_out_assign(sk_out);
1466 	free(fd);
1467 
1468 	if (!o->use_thread) {
1469 		setsid();
1470 		td->pid = getpid();
1471 	} else
1472 		td->pid = gettid();
1473 
1474 	fio_local_clock_init(o->use_thread);
1475 
1476 	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1477 
1478 	if (is_backend)
1479 		fio_server_send_start(td);
1480 
1481 	INIT_FLIST_HEAD(&td->io_log_list);
1482 	INIT_FLIST_HEAD(&td->io_hist_list);
1483 	INIT_FLIST_HEAD(&td->verify_list);
1484 	INIT_FLIST_HEAD(&td->trim_list);
1485 	INIT_FLIST_HEAD(&td->next_rand_list);
1486 	td->io_hist_tree = RB_ROOT;
1487 
1488 	ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1489 	if (ret) {
1490 		td_verror(td, ret, "mutex_cond_init_pshared");
1491 		goto err;
1492 	}
1493 	ret = cond_init_pshared(&td->verify_cond);
1494 	if (ret) {
1495 		td_verror(td, ret, "mutex_cond_pshared");
1496 		goto err;
1497 	}
1498 
1499 	td_set_runstate(td, TD_INITIALIZED);
1500 	dprint(FD_MUTEX, "up startup_mutex\n");
1501 	fio_mutex_up(startup_mutex);
1502 	dprint(FD_MUTEX, "wait on td->mutex\n");
1503 	fio_mutex_down(td->mutex);
1504 	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1505 
1506 	/*
1507 	 * A new gid requires privilege, so we need to do this before setting
1508 	 * the uid.
1509 	 */
1510 	if (o->gid != -1U && setgid(o->gid)) {
1511 		td_verror(td, errno, "setgid");
1512 		goto err;
1513 	}
1514 	if (o->uid != -1U && setuid(o->uid)) {
1515 		td_verror(td, errno, "setuid");
1516 		goto err;
1517 	}
1518 
1519 	/*
1520 	 * Do this early, we don't want the compress threads to be limited
1521 	 * to the same CPUs as the IO workers. So do this before we set
1522 	 * any potential CPU affinity
1523 	 */
1524 	if (iolog_compress_init(td, sk_out))
1525 		goto err;
1526 
1527 	/*
1528 	 * If we have a gettimeofday() thread, make sure we exclude that
1529 	 * thread from this job
1530 	 */
1531 	if (o->gtod_cpu)
1532 		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1533 
1534 	/*
1535 	 * Set affinity first, in case it has an impact on the memory
1536 	 * allocations.
1537 	 */
1538 	if (fio_option_is_set(o, cpumask)) {
1539 		if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1540 			ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1541 			if (!ret) {
1542 				log_err("fio: no CPUs set\n");
1543 				log_err("fio: Try increasing number of available CPUs\n");
1544 				td_verror(td, EINVAL, "cpus_split");
1545 				goto err;
1546 			}
1547 		}
1548 		ret = fio_setaffinity(td->pid, o->cpumask);
1549 		if (ret == -1) {
1550 			td_verror(td, errno, "cpu_set_affinity");
1551 			goto err;
1552 		}
1553 	}
1554 
1555 #ifdef CONFIG_LIBNUMA
1556 	/* numa node setup */
1557 	if (fio_option_is_set(o, numa_cpunodes) ||
1558 	    fio_option_is_set(o, numa_memnodes)) {
1559 		struct bitmask *mask;
1560 
1561 		if (numa_available() < 0) {
1562 			td_verror(td, errno, "Does not support NUMA API\n");
1563 			goto err;
1564 		}
1565 
1566 		if (fio_option_is_set(o, numa_cpunodes)) {
1567 			mask = numa_parse_nodestring(o->numa_cpunodes);
1568 			ret = numa_run_on_node_mask(mask);
1569 			numa_free_nodemask(mask);
1570 			if (ret == -1) {
1571 				td_verror(td, errno, \
1572 					"numa_run_on_node_mask failed\n");
1573 				goto err;
1574 			}
1575 		}
1576 
1577 		if (fio_option_is_set(o, numa_memnodes)) {
1578 			mask = NULL;
1579 			if (o->numa_memnodes)
1580 				mask = numa_parse_nodestring(o->numa_memnodes);
1581 
1582 			switch (o->numa_mem_mode) {
1583 			case MPOL_INTERLEAVE:
1584 				numa_set_interleave_mask(mask);
1585 				break;
1586 			case MPOL_BIND:
1587 				numa_set_membind(mask);
1588 				break;
1589 			case MPOL_LOCAL:
1590 				numa_set_localalloc();
1591 				break;
1592 			case MPOL_PREFERRED:
1593 				numa_set_preferred(o->numa_mem_prefer_node);
1594 				break;
1595 			case MPOL_DEFAULT:
1596 			default:
1597 				break;
1598 			}
1599 
1600 			if (mask)
1601 				numa_free_nodemask(mask);
1602 
1603 		}
1604 	}
1605 #endif
1606 
1607 	if (fio_pin_memory(td))
1608 		goto err;
1609 
1610 	/*
1611 	 * May alter parameters that init_io_u() will use, so we need to
1612 	 * do this first.
1613 	 */
1614 	if (init_iolog(td))
1615 		goto err;
1616 
1617 	if (init_io_u(td))
1618 		goto err;
1619 
1620 	if (o->verify_async && verify_async_init(td))
1621 		goto err;
1622 
1623 	if (fio_option_is_set(o, ioprio) ||
1624 	    fio_option_is_set(o, ioprio_class)) {
1625 		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1626 		if (ret == -1) {
1627 			td_verror(td, errno, "ioprio_set");
1628 			goto err;
1629 		}
1630 	}
1631 
1632 	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1633 		goto err;
1634 
1635 	errno = 0;
1636 	if (nice(o->nice) == -1 && errno != 0) {
1637 		td_verror(td, errno, "nice");
1638 		goto err;
1639 	}
1640 
1641 	if (o->ioscheduler && switch_ioscheduler(td))
1642 		goto err;
1643 
1644 	if (!o->create_serialize && setup_files(td))
1645 		goto err;
1646 
1647 	if (td_io_init(td))
1648 		goto err;
1649 
1650 	if (init_random_map(td))
1651 		goto err;
1652 
1653 	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1654 		goto err;
1655 
1656 	if (o->pre_read) {
1657 		if (pre_read_files(td) < 0)
1658 			goto err;
1659 	}
1660 
1661 	fio_verify_init(td);
1662 
1663 	if (rate_submit_init(td, sk_out))
1664 		goto err;
1665 
1666 	set_epoch_time(td, o->log_unix_epoch);
1667 	fio_getrusage(&td->ru_start);
1668 	memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1669 	memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1670 	memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1671 
1672 	if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1673 			o->ratemin[DDIR_TRIM]) {
1674 	        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1675 					sizeof(td->bw_sample_time));
1676 	        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1677 					sizeof(td->bw_sample_time));
1678 	        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1679 					sizeof(td->bw_sample_time));
1680 	}
1681 
1682 	memset(bytes_done, 0, sizeof(bytes_done));
1683 	clear_state = 0;
1684 
1685 	while (keep_running(td)) {
1686 		uint64_t verify_bytes;
1687 
1688 		fio_gettime(&td->start, NULL);
1689 		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1690 
1691 		if (clear_state) {
1692 			clear_io_state(td, 0);
1693 
1694 			if (o->unlink_each_loop && unlink_all_files(td))
1695 				break;
1696 		}
1697 
1698 		prune_io_piece_log(td);
1699 
1700 		if (td->o.verify_only && td_write(td))
1701 			verify_bytes = do_dry_run(td);
1702 		else {
1703 			do_io(td, bytes_done);
1704 
1705 			if (!ddir_rw_sum(bytes_done)) {
1706 				fio_mark_td_terminate(td);
1707 				verify_bytes = 0;
1708 			} else {
1709 				verify_bytes = bytes_done[DDIR_WRITE] +
1710 						bytes_done[DDIR_TRIM];
1711 			}
1712 		}
1713 
1714 		/*
1715 		 * If we took too long to shut down, the main thread could
1716 		 * already consider us reaped/exited. If that happens, break
1717 		 * out and clean up.
1718 		 */
1719 		if (td->runstate >= TD_EXITED)
1720 			break;
1721 
1722 		clear_state = 1;
1723 
1724 		/*
1725 		 * Make sure we've successfully updated the rusage stats
1726 		 * before waiting on the stat mutex. Otherwise we could have
1727 		 * the stat thread holding stat mutex and waiting for
1728 		 * the rusage_sem, which would never get upped because
1729 		 * this thread is waiting for the stat mutex.
1730 		 */
1731 		deadlock_loop_cnt = 0;
1732 		do {
1733 			check_update_rusage(td);
1734 			if (!fio_mutex_down_trylock(stat_mutex))
1735 				break;
1736 			usleep(1000);
1737 			if (deadlock_loop_cnt++ > 5000) {
1738 				log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1739 				td->error = EDEADLK;
1740 				goto err;
1741 			}
1742 		} while (1);
1743 
1744 		if (td_read(td) && td->io_bytes[DDIR_READ])
1745 			update_runtime(td, elapsed_us, DDIR_READ);
1746 		if (td_write(td) && td->io_bytes[DDIR_WRITE])
1747 			update_runtime(td, elapsed_us, DDIR_WRITE);
1748 		if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1749 			update_runtime(td, elapsed_us, DDIR_TRIM);
1750 		fio_gettime(&td->start, NULL);
1751 		fio_mutex_up(stat_mutex);
1752 
1753 		if (td->error || td->terminate)
1754 			break;
1755 
1756 		if (!o->do_verify ||
1757 		    o->verify == VERIFY_NONE ||
1758 		    td_ioengine_flagged(td, FIO_UNIDIR))
1759 			continue;
1760 
1761 		clear_io_state(td, 0);
1762 
1763 		fio_gettime(&td->start, NULL);
1764 
1765 		do_verify(td, verify_bytes);
1766 
1767 		/*
1768 		 * See comment further up for why this is done here.
1769 		 */
1770 		check_update_rusage(td);
1771 
1772 		fio_mutex_down(stat_mutex);
1773 		update_runtime(td, elapsed_us, DDIR_READ);
1774 		fio_gettime(&td->start, NULL);
1775 		fio_mutex_up(stat_mutex);
1776 
1777 		if (td->error || td->terminate)
1778 			break;
1779 	}
1780 
1781 	/*
1782 	 * If td ended up with no I/O when it should have had,
1783 	 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1784 	 * (Are we not missing other flags that can be ignored ?)
1785 	 */
1786 	if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1787 	    !(td_ioengine_flagged(td, FIO_NOIO) ||
1788 	      td_ioengine_flagged(td, FIO_DISKLESSIO)))
1789 		log_err("%s: No I/O performed by %s, "
1790 			 "perhaps try --debug=io option for details?\n",
1791 			 td->o.name, td->io_ops->name);
1792 
1793 	td_set_runstate(td, TD_FINISHING);
1794 
1795 	update_rusage_stat(td);
1796 	td->ts.total_run_time = mtime_since_now(&td->epoch);
1797 	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1798 	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1799 	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1800 
1801 	if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1802 	    (td->o.verify != VERIFY_NONE && td_write(td)))
1803 		verify_save_state(td->thread_number);
1804 
1805 	fio_unpin_memory(td);
1806 
1807 	td_writeout_logs(td, true);
1808 
1809 	iolog_compress_exit(td);
1810 	rate_submit_exit(td);
1811 
1812 	if (o->exec_postrun)
1813 		exec_string(o, o->exec_postrun, (const char *)"postrun");
1814 
1815 	if (exitall_on_terminate || (o->exitall_error && td->error))
1816 		fio_terminate_threads(td->groupid);
1817 
1818 err:
1819 	if (td->error)
1820 		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1821 							td->verror);
1822 
1823 	if (o->verify_async)
1824 		verify_async_exit(td);
1825 
1826 	close_and_free_files(td);
1827 	cleanup_io_u(td);
1828 	close_ioengine(td);
1829 	cgroup_shutdown(td, &cgroup_mnt);
1830 	verify_free_state(td);
1831 
1832 	if (td->zone_state_index) {
1833 		int i;
1834 
1835 		for (i = 0; i < DDIR_RWDIR_CNT; i++)
1836 			free(td->zone_state_index[i]);
1837 		free(td->zone_state_index);
1838 		td->zone_state_index = NULL;
1839 	}
1840 
1841 	if (fio_option_is_set(o, cpumask)) {
1842 		ret = fio_cpuset_exit(&o->cpumask);
1843 		if (ret)
1844 			td_verror(td, ret, "fio_cpuset_exit");
1845 	}
1846 
1847 	/*
1848 	 * do this very late, it will log file closing as well
1849 	 */
1850 	if (o->write_iolog_file)
1851 		write_iolog_close(td);
1852 
1853 	td_set_runstate(td, TD_EXITED);
1854 
1855 	/*
1856 	 * Do this last after setting our runstate to exited, so we
1857 	 * know that the stat thread is signaled.
1858 	 */
1859 	check_update_rusage(td);
1860 
1861 	sk_out_drop();
1862 	return (void *) (uintptr_t) td->error;
1863 }
1864 
1865 /*
1866  * Run over the job map and reap the threads that have exited, if any.
1867  */
reap_threads(unsigned int * nr_running,uint64_t * t_rate,uint64_t * m_rate)1868 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1869 			 uint64_t *m_rate)
1870 {
1871 	struct thread_data *td;
1872 	unsigned int cputhreads, realthreads, pending;
1873 	int i, status, ret;
1874 
1875 	/*
1876 	 * reap exited threads (TD_EXITED -> TD_REAPED)
1877 	 */
1878 	realthreads = pending = cputhreads = 0;
1879 	for_each_td(td, i) {
1880 		int flags = 0;
1881 
1882 		/*
1883 		 * ->io_ops is NULL for a thread that has closed its
1884 		 * io engine
1885 		 */
1886 		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1887 			cputhreads++;
1888 		else
1889 			realthreads++;
1890 
1891 		if (!td->pid) {
1892 			pending++;
1893 			continue;
1894 		}
1895 		if (td->runstate == TD_REAPED)
1896 			continue;
1897 		if (td->o.use_thread) {
1898 			if (td->runstate == TD_EXITED) {
1899 				td_set_runstate(td, TD_REAPED);
1900 				goto reaped;
1901 			}
1902 			continue;
1903 		}
1904 
1905 		flags = WNOHANG;
1906 		if (td->runstate == TD_EXITED)
1907 			flags = 0;
1908 
1909 		/*
1910 		 * check if someone quit or got killed in an unusual way
1911 		 */
1912 		ret = waitpid(td->pid, &status, flags);
1913 		if (ret < 0) {
1914 			if (errno == ECHILD) {
1915 				log_err("fio: pid=%d disappeared %d\n",
1916 						(int) td->pid, td->runstate);
1917 				td->sig = ECHILD;
1918 				td_set_runstate(td, TD_REAPED);
1919 				goto reaped;
1920 			}
1921 			perror("waitpid");
1922 		} else if (ret == td->pid) {
1923 			if (WIFSIGNALED(status)) {
1924 				int sig = WTERMSIG(status);
1925 
1926 				if (sig != SIGTERM && sig != SIGUSR2)
1927 					log_err("fio: pid=%d, got signal=%d\n",
1928 							(int) td->pid, sig);
1929 				td->sig = sig;
1930 				td_set_runstate(td, TD_REAPED);
1931 				goto reaped;
1932 			}
1933 			if (WIFEXITED(status)) {
1934 				if (WEXITSTATUS(status) && !td->error)
1935 					td->error = WEXITSTATUS(status);
1936 
1937 				td_set_runstate(td, TD_REAPED);
1938 				goto reaped;
1939 			}
1940 		}
1941 
1942 		/*
1943 		 * If the job is stuck, do a forceful timeout of it and
1944 		 * move on.
1945 		 */
1946 		if (td->terminate &&
1947 		    td->runstate < TD_FSYNCING &&
1948 		    time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1949 			log_err("fio: job '%s' (state=%d) hasn't exited in "
1950 				"%lu seconds, it appears to be stuck. Doing "
1951 				"forceful exit of this job.\n",
1952 				td->o.name, td->runstate,
1953 				(unsigned long) time_since_now(&td->terminate_time));
1954 			td_set_runstate(td, TD_REAPED);
1955 			goto reaped;
1956 		}
1957 
1958 		/*
1959 		 * thread is not dead, continue
1960 		 */
1961 		pending++;
1962 		continue;
1963 reaped:
1964 		(*nr_running)--;
1965 		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1966 		(*t_rate) -= ddir_rw_sum(td->o.rate);
1967 		if (!td->pid)
1968 			pending--;
1969 
1970 		if (td->error)
1971 			exit_value++;
1972 
1973 		done_secs += mtime_since_now(&td->epoch) / 1000;
1974 		profile_td_exit(td);
1975 	}
1976 
1977 	if (*nr_running == cputhreads && !pending && realthreads)
1978 		fio_terminate_threads(TERMINATE_ALL);
1979 }
1980 
__check_trigger_file(void)1981 static bool __check_trigger_file(void)
1982 {
1983 	struct stat sb;
1984 
1985 	if (!trigger_file)
1986 		return false;
1987 
1988 	if (stat(trigger_file, &sb))
1989 		return false;
1990 
1991 	if (unlink(trigger_file) < 0)
1992 		log_err("fio: failed to unlink %s: %s\n", trigger_file,
1993 							strerror(errno));
1994 
1995 	return true;
1996 }
1997 
trigger_timedout(void)1998 static bool trigger_timedout(void)
1999 {
2000 	if (trigger_timeout)
2001 		return time_since_genesis() >= trigger_timeout;
2002 
2003 	return false;
2004 }
2005 
exec_trigger(const char * cmd)2006 void exec_trigger(const char *cmd)
2007 {
2008 	int ret;
2009 
2010 	if (!cmd)
2011 		return;
2012 
2013 	ret = system(cmd);
2014 	if (ret == -1)
2015 		log_err("fio: failed executing %s trigger\n", cmd);
2016 }
2017 
check_trigger_file(void)2018 void check_trigger_file(void)
2019 {
2020 	if (__check_trigger_file() || trigger_timedout()) {
2021 		if (nr_clients)
2022 			fio_clients_send_trigger(trigger_remote_cmd);
2023 		else {
2024 			verify_save_state(IO_LIST_ALL);
2025 			fio_terminate_threads(TERMINATE_ALL);
2026 			exec_trigger(trigger_cmd);
2027 		}
2028 	}
2029 }
2030 
fio_verify_load_state(struct thread_data * td)2031 static int fio_verify_load_state(struct thread_data *td)
2032 {
2033 	int ret;
2034 
2035 	if (!td->o.verify_state)
2036 		return 0;
2037 
2038 	if (is_backend) {
2039 		void *data;
2040 
2041 		ret = fio_server_get_verify_state(td->o.name,
2042 					td->thread_number - 1, &data);
2043 		if (!ret)
2044 			verify_assign_state(td, data);
2045 	} else
2046 		ret = verify_load_state(td, "local");
2047 
2048 	return ret;
2049 }
2050 
do_usleep(unsigned int usecs)2051 static void do_usleep(unsigned int usecs)
2052 {
2053 	check_for_running_stats();
2054 	check_trigger_file();
2055 	usleep(usecs);
2056 }
2057 
check_mount_writes(struct thread_data * td)2058 static bool check_mount_writes(struct thread_data *td)
2059 {
2060 	struct fio_file *f;
2061 	unsigned int i;
2062 
2063 	if (!td_write(td) || td->o.allow_mounted_write)
2064 		return false;
2065 
2066 	/*
2067 	 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2068 	 * are mkfs'd and mounted.
2069 	 */
2070 	for_each_file(td, f, i) {
2071 #ifdef FIO_HAVE_CHARDEV_SIZE
2072 		if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2073 #else
2074 		if (f->filetype != FIO_TYPE_BLOCK)
2075 #endif
2076 			continue;
2077 		if (device_is_mounted(f->file_name))
2078 			goto mounted;
2079 	}
2080 
2081 	return false;
2082 mounted:
2083 	log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2084 	return true;
2085 }
2086 
waitee_running(struct thread_data * me)2087 static bool waitee_running(struct thread_data *me)
2088 {
2089 	const char *waitee = me->o.wait_for;
2090 	const char *self = me->o.name;
2091 	struct thread_data *td;
2092 	int i;
2093 
2094 	if (!waitee)
2095 		return false;
2096 
2097 	for_each_td(td, i) {
2098 		if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2099 			continue;
2100 
2101 		if (td->runstate < TD_EXITED) {
2102 			dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2103 					self, td->o.name,
2104 					runstate_to_name(td->runstate));
2105 			return true;
2106 		}
2107 	}
2108 
2109 	dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2110 	return false;
2111 }
2112 
2113 /*
2114  * Main function for kicking off and reaping jobs, as needed.
2115  */
run_threads(struct sk_out * sk_out)2116 static void run_threads(struct sk_out *sk_out)
2117 {
2118 	struct thread_data *td;
2119 	unsigned int i, todo, nr_running, nr_started;
2120 	uint64_t m_rate, t_rate;
2121 	uint64_t spent;
2122 
2123 	if (fio_gtod_offload && fio_start_gtod_thread())
2124 		return;
2125 
2126 	fio_idle_prof_init();
2127 
2128 	set_sig_handlers();
2129 
2130 	nr_thread = nr_process = 0;
2131 	for_each_td(td, i) {
2132 		if (check_mount_writes(td))
2133 			return;
2134 		if (td->o.use_thread)
2135 			nr_thread++;
2136 		else
2137 			nr_process++;
2138 	}
2139 
2140 	if (output_format & FIO_OUTPUT_NORMAL) {
2141 		log_info("Starting ");
2142 		if (nr_thread)
2143 			log_info("%d thread%s", nr_thread,
2144 						nr_thread > 1 ? "s" : "");
2145 		if (nr_process) {
2146 			if (nr_thread)
2147 				log_info(" and ");
2148 			log_info("%d process%s", nr_process,
2149 						nr_process > 1 ? "es" : "");
2150 		}
2151 		log_info("\n");
2152 		log_info_flush();
2153 	}
2154 
2155 	todo = thread_number;
2156 	nr_running = 0;
2157 	nr_started = 0;
2158 	m_rate = t_rate = 0;
2159 
2160 	for_each_td(td, i) {
2161 		print_status_init(td->thread_number - 1);
2162 
2163 		if (!td->o.create_serialize)
2164 			continue;
2165 
2166 		if (fio_verify_load_state(td))
2167 			goto reap;
2168 
2169 		/*
2170 		 * do file setup here so it happens sequentially,
2171 		 * we don't want X number of threads getting their
2172 		 * client data interspersed on disk
2173 		 */
2174 		if (setup_files(td)) {
2175 reap:
2176 			exit_value++;
2177 			if (td->error)
2178 				log_err("fio: pid=%d, err=%d/%s\n",
2179 					(int) td->pid, td->error, td->verror);
2180 			td_set_runstate(td, TD_REAPED);
2181 			todo--;
2182 		} else {
2183 			struct fio_file *f;
2184 			unsigned int j;
2185 
2186 			/*
2187 			 * for sharing to work, each job must always open
2188 			 * its own files. so close them, if we opened them
2189 			 * for creation
2190 			 */
2191 			for_each_file(td, f, j) {
2192 				if (fio_file_open(f))
2193 					td_io_close_file(td, f);
2194 			}
2195 		}
2196 	}
2197 
2198 	/* start idle threads before io threads start to run */
2199 	fio_idle_prof_start();
2200 
2201 	set_genesis_time();
2202 
2203 	while (todo) {
2204 		struct thread_data *map[REAL_MAX_JOBS];
2205 		struct timeval this_start;
2206 		int this_jobs = 0, left;
2207 		struct fork_data *fd;
2208 
2209 		/*
2210 		 * create threads (TD_NOT_CREATED -> TD_CREATED)
2211 		 */
2212 		for_each_td(td, i) {
2213 			if (td->runstate != TD_NOT_CREATED)
2214 				continue;
2215 
2216 			/*
2217 			 * never got a chance to start, killed by other
2218 			 * thread for some reason
2219 			 */
2220 			if (td->terminate) {
2221 				todo--;
2222 				continue;
2223 			}
2224 
2225 			if (td->o.start_delay) {
2226 				spent = utime_since_genesis();
2227 
2228 				if (td->o.start_delay > spent)
2229 					continue;
2230 			}
2231 
2232 			if (td->o.stonewall && (nr_started || nr_running)) {
2233 				dprint(FD_PROCESS, "%s: stonewall wait\n",
2234 							td->o.name);
2235 				break;
2236 			}
2237 
2238 			if (waitee_running(td)) {
2239 				dprint(FD_PROCESS, "%s: waiting for %s\n",
2240 						td->o.name, td->o.wait_for);
2241 				continue;
2242 			}
2243 
2244 			init_disk_util(td);
2245 
2246 			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2247 			td->update_rusage = 0;
2248 
2249 			/*
2250 			 * Set state to created. Thread will transition
2251 			 * to TD_INITIALIZED when it's done setting up.
2252 			 */
2253 			td_set_runstate(td, TD_CREATED);
2254 			map[this_jobs++] = td;
2255 			nr_started++;
2256 
2257 			fd = calloc(1, sizeof(*fd));
2258 			fd->td = td;
2259 			fd->sk_out = sk_out;
2260 
2261 			if (td->o.use_thread) {
2262 				int ret;
2263 
2264 				dprint(FD_PROCESS, "will pthread_create\n");
2265 				ret = pthread_create(&td->thread, NULL,
2266 							thread_main, fd);
2267 				if (ret) {
2268 					log_err("pthread_create: %s\n",
2269 							strerror(ret));
2270 					free(fd);
2271 					nr_started--;
2272 					break;
2273 				}
2274 				ret = pthread_detach(td->thread);
2275 				if (ret)
2276 					log_err("pthread_detach: %s",
2277 							strerror(ret));
2278 			} else {
2279 				pid_t pid;
2280 				dprint(FD_PROCESS, "will fork\n");
2281 				pid = fork();
2282 				if (!pid) {
2283 					int ret;
2284 
2285 					ret = (int)(uintptr_t)thread_main(fd);
2286 					_exit(ret);
2287 				} else if (i == fio_debug_jobno)
2288 					*fio_debug_jobp = pid;
2289 			}
2290 			dprint(FD_MUTEX, "wait on startup_mutex\n");
2291 			if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2292 				log_err("fio: job startup hung? exiting.\n");
2293 				fio_terminate_threads(TERMINATE_ALL);
2294 				fio_abort = 1;
2295 				nr_started--;
2296 				break;
2297 			}
2298 			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2299 		}
2300 
2301 		/*
2302 		 * Wait for the started threads to transition to
2303 		 * TD_INITIALIZED.
2304 		 */
2305 		fio_gettime(&this_start, NULL);
2306 		left = this_jobs;
2307 		while (left && !fio_abort) {
2308 			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2309 				break;
2310 
2311 			do_usleep(100000);
2312 
2313 			for (i = 0; i < this_jobs; i++) {
2314 				td = map[i];
2315 				if (!td)
2316 					continue;
2317 				if (td->runstate == TD_INITIALIZED) {
2318 					map[i] = NULL;
2319 					left--;
2320 				} else if (td->runstate >= TD_EXITED) {
2321 					map[i] = NULL;
2322 					left--;
2323 					todo--;
2324 					nr_running++; /* work-around... */
2325 				}
2326 			}
2327 		}
2328 
2329 		if (left) {
2330 			log_err("fio: %d job%s failed to start\n", left,
2331 					left > 1 ? "s" : "");
2332 			for (i = 0; i < this_jobs; i++) {
2333 				td = map[i];
2334 				if (!td)
2335 					continue;
2336 				kill(td->pid, SIGTERM);
2337 			}
2338 			break;
2339 		}
2340 
2341 		/*
2342 		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2343 		 */
2344 		for_each_td(td, i) {
2345 			if (td->runstate != TD_INITIALIZED)
2346 				continue;
2347 
2348 			if (in_ramp_time(td))
2349 				td_set_runstate(td, TD_RAMP);
2350 			else
2351 				td_set_runstate(td, TD_RUNNING);
2352 			nr_running++;
2353 			nr_started--;
2354 			m_rate += ddir_rw_sum(td->o.ratemin);
2355 			t_rate += ddir_rw_sum(td->o.rate);
2356 			todo--;
2357 			fio_mutex_up(td->mutex);
2358 		}
2359 
2360 		reap_threads(&nr_running, &t_rate, &m_rate);
2361 
2362 		if (todo)
2363 			do_usleep(100000);
2364 	}
2365 
2366 	while (nr_running) {
2367 		reap_threads(&nr_running, &t_rate, &m_rate);
2368 		do_usleep(10000);
2369 	}
2370 
2371 	fio_idle_prof_stop();
2372 
2373 	update_io_ticks();
2374 }
2375 
free_disk_util(void)2376 static void free_disk_util(void)
2377 {
2378 	disk_util_prune_entries();
2379 	helper_thread_destroy();
2380 }
2381 
fio_backend(struct sk_out * sk_out)2382 int fio_backend(struct sk_out *sk_out)
2383 {
2384 	struct thread_data *td;
2385 	int i;
2386 
2387 	if (exec_profile) {
2388 		if (load_profile(exec_profile))
2389 			return 1;
2390 		free(exec_profile);
2391 		exec_profile = NULL;
2392 	}
2393 	if (!thread_number)
2394 		return 0;
2395 
2396 	if (write_bw_log) {
2397 		struct log_params p = {
2398 			.log_type = IO_LOG_TYPE_BW,
2399 		};
2400 
2401 		setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2402 		setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2403 		setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2404 	}
2405 
2406 	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2407 	if (startup_mutex == NULL)
2408 		return 1;
2409 
2410 	set_genesis_time();
2411 	stat_init();
2412 	helper_thread_create(startup_mutex, sk_out);
2413 
2414 	cgroup_list = smalloc(sizeof(*cgroup_list));
2415 	INIT_FLIST_HEAD(cgroup_list);
2416 
2417 	run_threads(sk_out);
2418 
2419 	helper_thread_exit();
2420 
2421 	if (!fio_abort) {
2422 		__show_run_stats();
2423 		if (write_bw_log) {
2424 			for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2425 				struct io_log *log = agg_io_log[i];
2426 
2427 				flush_log(log, false);
2428 				free_log(log);
2429 			}
2430 		}
2431 	}
2432 
2433 	for_each_td(td, i) {
2434 		if (td->ss.dur) {
2435 			if (td->ss.iops_data != NULL) {
2436 				free(td->ss.iops_data);
2437 				free(td->ss.bw_data);
2438 			}
2439 		}
2440 		fio_options_free(td);
2441 		if (td->rusage_sem) {
2442 			fio_mutex_remove(td->rusage_sem);
2443 			td->rusage_sem = NULL;
2444 		}
2445 		fio_mutex_remove(td->mutex);
2446 		td->mutex = NULL;
2447 	}
2448 
2449 	free_disk_util();
2450 	cgroup_kill(cgroup_list);
2451 	sfree(cgroup_list);
2452 	sfree(cgroup_mnt);
2453 
2454 	fio_mutex_remove(startup_mutex);
2455 	stat_exit();
2456 	return exit_value;
2457 }
2458