1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73
74 #include "../bn/internal.h"
75 #include "../delocate.h"
76 #include "internal.h"
77
78
ec_GFp_mont_group_init(EC_GROUP * group)79 int ec_GFp_mont_group_init(EC_GROUP *group) {
80 int ok;
81
82 ok = ec_GFp_simple_group_init(group);
83 group->mont = NULL;
84 return ok;
85 }
86
ec_GFp_mont_group_finish(EC_GROUP * group)87 void ec_GFp_mont_group_finish(EC_GROUP *group) {
88 BN_MONT_CTX_free(group->mont);
89 group->mont = NULL;
90 ec_GFp_simple_group_finish(group);
91 }
92
ec_GFp_mont_group_copy(EC_GROUP * dest,const EC_GROUP * src)93 int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
94 BN_MONT_CTX_free(dest->mont);
95 dest->mont = NULL;
96
97 if (!ec_GFp_simple_group_copy(dest, src)) {
98 return 0;
99 }
100
101 if (src->mont != NULL) {
102 dest->mont = BN_MONT_CTX_new();
103 if (dest->mont == NULL) {
104 return 0;
105 }
106 if (!BN_MONT_CTX_copy(dest->mont, src->mont)) {
107 goto err;
108 }
109 }
110
111 return 1;
112
113 err:
114 BN_MONT_CTX_free(dest->mont);
115 dest->mont = NULL;
116 return 0;
117 }
118
ec_GFp_mont_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)119 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
120 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
121 BN_CTX *new_ctx = NULL;
122 BN_MONT_CTX *mont = NULL;
123 int ret = 0;
124
125 BN_MONT_CTX_free(group->mont);
126 group->mont = NULL;
127
128 if (ctx == NULL) {
129 ctx = new_ctx = BN_CTX_new();
130 if (ctx == NULL) {
131 return 0;
132 }
133 }
134
135 mont = BN_MONT_CTX_new();
136 if (mont == NULL) {
137 goto err;
138 }
139 if (!BN_MONT_CTX_set(mont, p, ctx)) {
140 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
141 goto err;
142 }
143
144 group->mont = mont;
145 mont = NULL;
146
147 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
148
149 if (!ret) {
150 BN_MONT_CTX_free(group->mont);
151 group->mont = NULL;
152 }
153
154 err:
155 BN_CTX_free(new_ctx);
156 BN_MONT_CTX_free(mont);
157 return ret;
158 }
159
ec_GFp_mont_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)160 int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
161 const BIGNUM *b, BN_CTX *ctx) {
162 if (group->mont == NULL) {
163 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
164 return 0;
165 }
166
167 return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
168 }
169
ec_GFp_mont_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)170 int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
171 BN_CTX *ctx) {
172 if (group->mont == NULL) {
173 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
174 return 0;
175 }
176
177 return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
178 }
179
ec_GFp_mont_field_encode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)180 int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
181 BN_CTX *ctx) {
182 if (group->mont == NULL) {
183 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
184 return 0;
185 }
186
187 return BN_to_montgomery(r, a, group->mont, ctx);
188 }
189
ec_GFp_mont_field_decode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)190 int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
191 BN_CTX *ctx) {
192 if (group->mont == NULL) {
193 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
194 return 0;
195 }
196
197 return BN_from_montgomery(r, a, group->mont, ctx);
198 }
199
ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)200 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
201 const EC_POINT *point,
202 BIGNUM *x, BIGNUM *y,
203 BN_CTX *ctx) {
204 if (EC_POINT_is_at_infinity(group, point)) {
205 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
206 return 0;
207 }
208
209 BN_CTX *new_ctx = NULL;
210 if (ctx == NULL) {
211 ctx = new_ctx = BN_CTX_new();
212 if (ctx == NULL) {
213 return 0;
214 }
215 }
216
217 int ret = 0;
218
219 BN_CTX_start(ctx);
220
221 if (BN_cmp(&point->Z, &group->one) == 0) {
222 /* |point| is already affine. */
223 if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
224 goto err;
225 }
226 if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
227 goto err;
228 }
229 } else {
230 /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
231
232 BIGNUM *Z_1 = BN_CTX_get(ctx);
233 BIGNUM *Z_2 = BN_CTX_get(ctx);
234 BIGNUM *Z_3 = BN_CTX_get(ctx);
235 if (Z_1 == NULL ||
236 Z_2 == NULL ||
237 Z_3 == NULL) {
238 goto err;
239 }
240
241 /* The straightforward way to calculate the inverse of a Montgomery-encoded
242 * value where the result is Montgomery-encoded is:
243 *
244 * |BN_from_montgomery| + invert + |BN_to_montgomery|.
245 *
246 * This is equivalent, but more efficient, because |BN_from_montgomery|
247 * is more efficient (at least in theory) than |BN_to_montgomery|, since it
248 * doesn't have to do the multiplication before the reduction.
249 *
250 * Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
251 * inversion may be done as the final step of private key operations.
252 * Unfortunately, this is suboptimal for ECDSA verification. */
253 if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
254 !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
255 !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
256 goto err;
257 }
258
259 if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
260 goto err;
261 }
262
263 /* Instead of using |BN_from_montgomery| to convert the |x| coordinate
264 * and then calling |BN_from_montgomery| again to convert the |y|
265 * coordinate below, convert the common factor |Z_2| once now, saving one
266 * reduction. */
267 if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
268 goto err;
269 }
270
271 if (x != NULL) {
272 if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
273 goto err;
274 }
275 }
276
277 if (y != NULL) {
278 if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
279 !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
280 goto err;
281 }
282 }
283 }
284
285 ret = 1;
286
287 err:
288 BN_CTX_end(ctx);
289 BN_CTX_free(new_ctx);
290 return ret;
291 }
292
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_mont_method)293 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
294 out->group_init = ec_GFp_mont_group_init;
295 out->group_finish = ec_GFp_mont_group_finish;
296 out->group_copy = ec_GFp_mont_group_copy;
297 out->group_set_curve = ec_GFp_mont_group_set_curve;
298 out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
299 out->mul = ec_wNAF_mul /* XXX: Not constant time. */;
300 out->field_mul = ec_GFp_mont_field_mul;
301 out->field_sqr = ec_GFp_mont_field_sqr;
302 out->field_encode = ec_GFp_mont_field_encode;
303 out->field_decode = ec_GFp_mont_field_decode;
304 }
305