• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73 
74 #include "../bn/internal.h"
75 #include "../delocate.h"
76 #include "internal.h"
77 
78 
ec_GFp_mont_group_init(EC_GROUP * group)79 int ec_GFp_mont_group_init(EC_GROUP *group) {
80   int ok;
81 
82   ok = ec_GFp_simple_group_init(group);
83   group->mont = NULL;
84   return ok;
85 }
86 
ec_GFp_mont_group_finish(EC_GROUP * group)87 void ec_GFp_mont_group_finish(EC_GROUP *group) {
88   BN_MONT_CTX_free(group->mont);
89   group->mont = NULL;
90   ec_GFp_simple_group_finish(group);
91 }
92 
ec_GFp_mont_group_copy(EC_GROUP * dest,const EC_GROUP * src)93 int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
94   BN_MONT_CTX_free(dest->mont);
95   dest->mont = NULL;
96 
97   if (!ec_GFp_simple_group_copy(dest, src)) {
98     return 0;
99   }
100 
101   if (src->mont != NULL) {
102     dest->mont = BN_MONT_CTX_new();
103     if (dest->mont == NULL) {
104       return 0;
105     }
106     if (!BN_MONT_CTX_copy(dest->mont, src->mont)) {
107       goto err;
108     }
109   }
110 
111   return 1;
112 
113 err:
114   BN_MONT_CTX_free(dest->mont);
115   dest->mont = NULL;
116   return 0;
117 }
118 
ec_GFp_mont_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)119 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
120                                 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
121   BN_CTX *new_ctx = NULL;
122   BN_MONT_CTX *mont = NULL;
123   int ret = 0;
124 
125   BN_MONT_CTX_free(group->mont);
126   group->mont = NULL;
127 
128   if (ctx == NULL) {
129     ctx = new_ctx = BN_CTX_new();
130     if (ctx == NULL) {
131       return 0;
132     }
133   }
134 
135   mont = BN_MONT_CTX_new();
136   if (mont == NULL) {
137     goto err;
138   }
139   if (!BN_MONT_CTX_set(mont, p, ctx)) {
140     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
141     goto err;
142   }
143 
144   group->mont = mont;
145   mont = NULL;
146 
147   ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
148 
149   if (!ret) {
150     BN_MONT_CTX_free(group->mont);
151     group->mont = NULL;
152   }
153 
154 err:
155   BN_CTX_free(new_ctx);
156   BN_MONT_CTX_free(mont);
157   return ret;
158 }
159 
ec_GFp_mont_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)160 int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
161                           const BIGNUM *b, BN_CTX *ctx) {
162   if (group->mont == NULL) {
163     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
164     return 0;
165   }
166 
167   return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
168 }
169 
ec_GFp_mont_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)170 int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
171                           BN_CTX *ctx) {
172   if (group->mont == NULL) {
173     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
174     return 0;
175   }
176 
177   return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
178 }
179 
ec_GFp_mont_field_encode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)180 int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
181                              BN_CTX *ctx) {
182   if (group->mont == NULL) {
183     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
184     return 0;
185   }
186 
187   return BN_to_montgomery(r, a, group->mont, ctx);
188 }
189 
ec_GFp_mont_field_decode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)190 int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
191                              BN_CTX *ctx) {
192   if (group->mont == NULL) {
193     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
194     return 0;
195   }
196 
197   return BN_from_montgomery(r, a, group->mont, ctx);
198 }
199 
ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)200 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
201                                                     const EC_POINT *point,
202                                                     BIGNUM *x, BIGNUM *y,
203                                                     BN_CTX *ctx) {
204   if (EC_POINT_is_at_infinity(group, point)) {
205     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
206     return 0;
207   }
208 
209   BN_CTX *new_ctx = NULL;
210   if (ctx == NULL) {
211     ctx = new_ctx = BN_CTX_new();
212     if (ctx == NULL) {
213       return 0;
214     }
215   }
216 
217   int ret = 0;
218 
219   BN_CTX_start(ctx);
220 
221   if (BN_cmp(&point->Z, &group->one) == 0) {
222     /* |point| is already affine. */
223     if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
224       goto err;
225     }
226     if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
227       goto err;
228     }
229   } else {
230     /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
231 
232     BIGNUM *Z_1 = BN_CTX_get(ctx);
233     BIGNUM *Z_2 = BN_CTX_get(ctx);
234     BIGNUM *Z_3 = BN_CTX_get(ctx);
235     if (Z_1 == NULL ||
236         Z_2 == NULL ||
237         Z_3 == NULL) {
238       goto err;
239     }
240 
241     /* The straightforward way to calculate the inverse of a Montgomery-encoded
242      * value where the result is Montgomery-encoded is:
243      *
244      *    |BN_from_montgomery| + invert + |BN_to_montgomery|.
245      *
246      * This is equivalent, but more efficient, because |BN_from_montgomery|
247      * is more efficient (at least in theory) than |BN_to_montgomery|, since it
248      * doesn't have to do the multiplication before the reduction.
249      *
250      * Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
251      * inversion may be done as the final step of private key operations.
252      * Unfortunately, this is suboptimal for ECDSA verification. */
253     if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
254         !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
255         !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
256       goto err;
257     }
258 
259     if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
260       goto err;
261     }
262 
263     /* Instead of using |BN_from_montgomery| to convert the |x| coordinate
264      * and then calling |BN_from_montgomery| again to convert the |y|
265      * coordinate below, convert the common factor |Z_2| once now, saving one
266      * reduction. */
267     if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
268       goto err;
269     }
270 
271     if (x != NULL) {
272       if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
273         goto err;
274       }
275     }
276 
277     if (y != NULL) {
278       if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
279           !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
280         goto err;
281       }
282     }
283   }
284 
285   ret = 1;
286 
287 err:
288   BN_CTX_end(ctx);
289   BN_CTX_free(new_ctx);
290   return ret;
291 }
292 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_mont_method)293 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
294   out->group_init = ec_GFp_mont_group_init;
295   out->group_finish = ec_GFp_mont_group_finish;
296   out->group_copy = ec_GFp_mont_group_copy;
297   out->group_set_curve = ec_GFp_mont_group_set_curve;
298   out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
299   out->mul = ec_wNAF_mul /* XXX: Not constant time. */;
300   out->field_mul = ec_GFp_mont_field_mul;
301   out->field_sqr = ec_GFp_mont_field_sqr;
302   out->field_encode = ec_GFp_mont_field_encode;
303   out->field_decode = ec_GFp_mont_field_decode;
304 }
305