• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs_visitor.cpp
25  *
26  * This file supports generating the FS LIR from the GLSL IR.  The LIR
27  * makes it easier to do backend-specific optimizations than doing so
28  * in the GLSL IR or in the native code.
29  */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32 
33 using namespace brw;
34 
35 fs_reg *
emit_vs_system_value(int location)36 fs_visitor::emit_vs_system_value(int location)
37 {
38    fs_reg *reg = new(this->mem_ctx)
39       fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info->inputs_read),
40              BRW_REGISTER_TYPE_D);
41    struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
42 
43    switch (location) {
44    case SYSTEM_VALUE_BASE_VERTEX:
45       reg->offset = 0;
46       vs_prog_data->uses_basevertex = true;
47       break;
48    case SYSTEM_VALUE_BASE_INSTANCE:
49       reg->offset = REG_SIZE;
50       vs_prog_data->uses_baseinstance = true;
51       break;
52    case SYSTEM_VALUE_VERTEX_ID:
53       unreachable("should have been lowered");
54    case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55       reg->offset = 2 * REG_SIZE;
56       vs_prog_data->uses_vertexid = true;
57       break;
58    case SYSTEM_VALUE_INSTANCE_ID:
59       reg->offset = 3 * REG_SIZE;
60       vs_prog_data->uses_instanceid = true;
61       break;
62    case SYSTEM_VALUE_DRAW_ID:
63       if (nir->info->system_values_read &
64           (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65            BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66            BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67            BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68          reg->nr += 4;
69       reg->offset = 0;
70       vs_prog_data->uses_drawid = true;
71       break;
72    default:
73       unreachable("not reached");
74    }
75 
76    return reg;
77 }
78 
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
emit_mcs_fetch(const fs_reg & coordinate,unsigned components,const fs_reg & texture)81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82                            const fs_reg &texture)
83 {
84    const fs_reg dest = vgrf(glsl_type::uvec4_type);
85 
86    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
87    srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
88    srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
89    srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
90    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
91    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
92 
93    fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
94                             ARRAY_SIZE(srcs));
95 
96    /* We only care about one or two regs of response, but the sampler always
97     * writes 4/8.
98     */
99    inst->size_written = 4 * dest.component_size(inst->exec_size);
100 
101    return dest;
102 }
103 
104 /**
105  * Apply workarounds for Gen6 gather with UINT/SINT
106  */
107 void
emit_gen6_gather_wa(uint8_t wa,fs_reg dst)108 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
109 {
110    if (!wa)
111       return;
112 
113    int width = (wa & WA_8BIT) ? 8 : 16;
114 
115    for (int i = 0; i < 4; i++) {
116       fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
117       /* Convert from UNORM to UINT */
118       bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
119       bld.MOV(dst, dst_f);
120 
121       if (wa & WA_SIGN) {
122          /* Reinterpret the UINT value as a signed INT value by
123           * shifting the sign bit into place, then shifting back
124           * preserving sign.
125           */
126          bld.SHL(dst, dst, brw_imm_d(32 - width));
127          bld.ASR(dst, dst, brw_imm_d(32 - width));
128       }
129 
130       dst = offset(dst, bld, 1);
131    }
132 }
133 
134 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
135 void
emit_dummy_fs()136 fs_visitor::emit_dummy_fs()
137 {
138    int reg_width = dispatch_width / 8;
139 
140    /* Everyone's favorite color. */
141    const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
142    for (int i = 0; i < 4; i++) {
143       bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
144               brw_imm_f(color[i]));
145    }
146 
147    fs_inst *write;
148    write = bld.emit(FS_OPCODE_FB_WRITE);
149    write->eot = true;
150    if (devinfo->gen >= 6) {
151       write->base_mrf = 2;
152       write->mlen = 4 * reg_width;
153    } else {
154       write->header_size = 2;
155       write->base_mrf = 0;
156       write->mlen = 2 + 4 * reg_width;
157    }
158 
159    /* Tell the SF we don't have any inputs.  Gen4-5 require at least one
160     * varying to avoid GPU hangs, so set that.
161     */
162    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
163    wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
164    memset(wm_prog_data->urb_setup, -1,
165           sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
166 
167    /* We don't have any uniforms. */
168    stage_prog_data->nr_params = 0;
169    stage_prog_data->nr_pull_params = 0;
170    stage_prog_data->curb_read_length = 0;
171    stage_prog_data->dispatch_grf_start_reg = 2;
172    wm_prog_data->dispatch_grf_start_reg_2 = 2;
173    grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
174 
175    calculate_cfg();
176 }
177 
178 /* The register location here is relative to the start of the URB
179  * data.  It will get adjusted to be a real location before
180  * generate_code() time.
181  */
182 struct brw_reg
interp_reg(int location,int channel)183 fs_visitor::interp_reg(int location, int channel)
184 {
185    assert(stage == MESA_SHADER_FRAGMENT);
186    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
187    int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
188    int stride = (channel & 1) * 4;
189 
190    assert(prog_data->urb_setup[location] != -1);
191 
192    return brw_vec1_grf(regnr, stride);
193 }
194 
195 /** Emits the interpolation for the varying inputs. */
196 void
emit_interpolation_setup_gen4()197 fs_visitor::emit_interpolation_setup_gen4()
198 {
199    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
200 
201    fs_builder abld = bld.annotate("compute pixel centers");
202    this->pixel_x = vgrf(glsl_type::uint_type);
203    this->pixel_y = vgrf(glsl_type::uint_type);
204    this->pixel_x.type = BRW_REGISTER_TYPE_UW;
205    this->pixel_y.type = BRW_REGISTER_TYPE_UW;
206    abld.ADD(this->pixel_x,
207             fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
208             fs_reg(brw_imm_v(0x10101010)));
209    abld.ADD(this->pixel_y,
210             fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
211             fs_reg(brw_imm_v(0x11001100)));
212 
213    abld = bld.annotate("compute pixel deltas from v0");
214 
215    this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
216       vgrf(glsl_type::vec2_type);
217    const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
218    const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
219    const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
220 
221    if (devinfo->has_pln && dispatch_width == 16) {
222       for (unsigned i = 0; i < 2; i++) {
223          abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
224                           half(this->pixel_x, i), xstart);
225          abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
226                           half(this->pixel_y, i), ystart);
227       }
228    } else {
229       abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
230       abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
231    }
232 
233    abld = bld.annotate("compute pos.w and 1/pos.w");
234    /* Compute wpos.w.  It's always in our setup, since it's needed to
235     * interpolate the other attributes.
236     */
237    this->wpos_w = vgrf(glsl_type::float_type);
238    abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
239              interp_reg(VARYING_SLOT_POS, 3));
240    /* Compute the pixel 1/W value from wpos.w. */
241    this->pixel_w = vgrf(glsl_type::float_type);
242    abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
243 }
244 
245 /** Emits the interpolation for the varying inputs. */
246 void
emit_interpolation_setup_gen6()247 fs_visitor::emit_interpolation_setup_gen6()
248 {
249    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
250 
251    fs_builder abld = bld.annotate("compute pixel centers");
252    if (devinfo->gen >= 8 || dispatch_width == 8) {
253       /* The "Register Region Restrictions" page says for BDW (and newer,
254        * presumably):
255        *
256        *     "When destination spans two registers, the source may be one or
257        *      two registers. The destination elements must be evenly split
258        *      between the two registers."
259        *
260        * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
261        * compute our pixel centers.
262        */
263       fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
264                           BRW_REGISTER_TYPE_UW);
265 
266       const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
267       dbld.ADD(int_pixel_xy,
268                fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
269                fs_reg(brw_imm_v(0x11001010)));
270 
271       this->pixel_x = vgrf(glsl_type::float_type);
272       this->pixel_y = vgrf(glsl_type::float_type);
273       abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
274       abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
275    } else {
276       /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
277        *
278        *     "When destination spans two registers, the source MUST span two
279        *      registers."
280        *
281        * Since the GRF source of the ADD will only read a single register, we
282        * must do two separate ADDs in SIMD16.
283        */
284       fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
285       fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
286       int_pixel_x.type = BRW_REGISTER_TYPE_UW;
287       int_pixel_y.type = BRW_REGISTER_TYPE_UW;
288       abld.ADD(int_pixel_x,
289                fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
290                fs_reg(brw_imm_v(0x10101010)));
291       abld.ADD(int_pixel_y,
292                fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
293                fs_reg(brw_imm_v(0x11001100)));
294 
295       /* As of gen6, we can no longer mix float and int sources.  We have
296        * to turn the integer pixel centers into floats for their actual
297        * use.
298        */
299       this->pixel_x = vgrf(glsl_type::float_type);
300       this->pixel_y = vgrf(glsl_type::float_type);
301       abld.MOV(this->pixel_x, int_pixel_x);
302       abld.MOV(this->pixel_y, int_pixel_y);
303    }
304 
305    abld = bld.annotate("compute pos.w");
306    this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
307    this->wpos_w = vgrf(glsl_type::float_type);
308    abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
309 
310    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
311    uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
312       (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
313        1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
314 
315    for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
316       uint8_t reg = payload.barycentric_coord_reg[i];
317       this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
318 
319       if (devinfo->needs_unlit_centroid_workaround &&
320           (centroid_modes & (1 << i))) {
321          /* Get the pixel/sample mask into f0 so that we know which
322           * pixels are lit.  Then, for each channel that is unlit,
323           * replace the centroid data with non-centroid data.
324           */
325          bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
326 
327          uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
328 
329          set_predicate_inv(BRW_PREDICATE_NORMAL, true,
330                            bld.half(0).MOV(brw_vec8_grf(reg, 0),
331                                            brw_vec8_grf(pixel_reg, 0)));
332          set_predicate_inv(BRW_PREDICATE_NORMAL, true,
333                            bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
334                                            brw_vec8_grf(pixel_reg + 1, 0)));
335          if (dispatch_width == 16) {
336             set_predicate_inv(BRW_PREDICATE_NORMAL, true,
337                               bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
338                                               brw_vec8_grf(pixel_reg + 2, 0)));
339             set_predicate_inv(BRW_PREDICATE_NORMAL, true,
340                               bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
341                                               brw_vec8_grf(pixel_reg + 3, 0)));
342          }
343          assert(dispatch_width != 32); /* not implemented yet */
344       }
345    }
346 }
347 
348 static enum brw_conditional_mod
cond_for_alpha_func(GLenum func)349 cond_for_alpha_func(GLenum func)
350 {
351    switch(func) {
352       case GL_GREATER:
353          return BRW_CONDITIONAL_G;
354       case GL_GEQUAL:
355          return BRW_CONDITIONAL_GE;
356       case GL_LESS:
357          return BRW_CONDITIONAL_L;
358       case GL_LEQUAL:
359          return BRW_CONDITIONAL_LE;
360       case GL_EQUAL:
361          return BRW_CONDITIONAL_EQ;
362       case GL_NOTEQUAL:
363          return BRW_CONDITIONAL_NEQ;
364       default:
365          unreachable("Not reached");
366    }
367 }
368 
369 /**
370  * Alpha test support for when we compile it into the shader instead
371  * of using the normal fixed-function alpha test.
372  */
373 void
emit_alpha_test()374 fs_visitor::emit_alpha_test()
375 {
376    assert(stage == MESA_SHADER_FRAGMENT);
377    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
378    const fs_builder abld = bld.annotate("Alpha test");
379 
380    fs_inst *cmp;
381    if (key->alpha_test_func == GL_ALWAYS)
382       return;
383 
384    if (key->alpha_test_func == GL_NEVER) {
385       /* f0.1 = 0 */
386       fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
387                                       BRW_REGISTER_TYPE_UW));
388       cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
389                      BRW_CONDITIONAL_NEQ);
390    } else {
391       /* RT0 alpha */
392       fs_reg color = offset(outputs[0], bld, 3);
393 
394       /* f0.1 &= func(color, ref) */
395       cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
396                      cond_for_alpha_func(key->alpha_test_func));
397    }
398    cmp->predicate = BRW_PREDICATE_NORMAL;
399    cmp->flag_subreg = 1;
400 }
401 
402 fs_inst *
emit_single_fb_write(const fs_builder & bld,fs_reg color0,fs_reg color1,fs_reg src0_alpha,unsigned components)403 fs_visitor::emit_single_fb_write(const fs_builder &bld,
404                                  fs_reg color0, fs_reg color1,
405                                  fs_reg src0_alpha, unsigned components)
406 {
407    assert(stage == MESA_SHADER_FRAGMENT);
408    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
409 
410    /* Hand over gl_FragDepth or the payload depth. */
411    const fs_reg dst_depth = (payload.dest_depth_reg ?
412                              fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
413                              fs_reg());
414    fs_reg src_depth, src_stencil;
415 
416    if (source_depth_to_render_target) {
417       if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
418          src_depth = frag_depth;
419       else
420          src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
421    }
422 
423    if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
424       src_stencil = frag_stencil;
425 
426    const fs_reg sources[] = {
427       color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
428       (prog_data->uses_omask ? sample_mask : fs_reg()),
429       brw_imm_ud(components)
430    };
431    assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
432    fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
433                              sources, ARRAY_SIZE(sources));
434 
435    if (prog_data->uses_kill) {
436       write->predicate = BRW_PREDICATE_NORMAL;
437       write->flag_subreg = 1;
438    }
439 
440    return write;
441 }
442 
443 void
emit_fb_writes()444 fs_visitor::emit_fb_writes()
445 {
446    assert(stage == MESA_SHADER_FRAGMENT);
447    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
448    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
449 
450    fs_inst *inst = NULL;
451 
452    if (source_depth_to_render_target && devinfo->gen == 6) {
453       /* For outputting oDepth on gen6, SIMD8 writes have to be used.  This
454        * would require SIMD8 moves of each half to message regs, e.g. by using
455        * the SIMD lowering pass.  Unfortunately this is more difficult than it
456        * sounds because the SIMD8 single-source message lacks channel selects
457        * for the second and third subspans.
458        */
459       limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
460    }
461 
462    if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
463       /* From the 'Render Target Write message' section of the docs:
464        * "Output Stencil is not supported with SIMD16 Render Target Write
465        * Messages."
466        */
467       limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
468                            "in SIMD16+ mode.\n");
469    }
470 
471    for (int target = 0; target < key->nr_color_regions; target++) {
472       /* Skip over outputs that weren't written. */
473       if (this->outputs[target].file == BAD_FILE)
474          continue;
475 
476       const fs_builder abld = bld.annotate(
477          ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
478 
479       fs_reg src0_alpha;
480       if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
481          src0_alpha = offset(outputs[0], bld, 3);
482 
483       inst = emit_single_fb_write(abld, this->outputs[target],
484                                   this->dual_src_output, src0_alpha, 4);
485       inst->target = target;
486    }
487 
488    prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
489    assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
490 
491    if (inst == NULL) {
492       /* Even if there's no color buffers enabled, we still need to send
493        * alpha out the pipeline to our null renderbuffer to support
494        * alpha-testing, alpha-to-coverage, and so on.
495        */
496       /* FINISHME: Factor out this frequently recurring pattern into a
497        * helper function.
498        */
499       const fs_reg srcs[] = { reg_undef, reg_undef,
500                               reg_undef, offset(this->outputs[0], bld, 3) };
501       const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
502       bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
503 
504       inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
505       inst->target = 0;
506    }
507 
508    inst->eot = true;
509 }
510 
511 void
setup_uniform_clipplane_values(gl_clip_plane * clip_planes)512 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
513 {
514    const struct brw_vs_prog_key *key =
515       (const struct brw_vs_prog_key *) this->key;
516 
517    for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
518       this->userplane[i] = fs_reg(UNIFORM, uniforms);
519       for (int j = 0; j < 4; ++j) {
520          stage_prog_data->param[uniforms + j] =
521             (gl_constant_value *) &clip_planes[i][j];
522       }
523       uniforms += 4;
524    }
525 }
526 
527 /**
528  * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
529  *
530  * This does nothing if the shader uses gl_ClipDistance or user clipping is
531  * disabled altogether.
532  */
compute_clip_distance(gl_clip_plane * clip_planes)533 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
534 {
535    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
536    const struct brw_vs_prog_key *key =
537       (const struct brw_vs_prog_key *) this->key;
538 
539    /* Bail unless some sort of legacy clipping is enabled */
540    if (key->nr_userclip_plane_consts == 0)
541       return;
542 
543    /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
544     *
545     *     "If a linked set of shaders forming the vertex stage contains no
546     *     static write to gl_ClipVertex or gl_ClipDistance, but the
547     *     application has requested clipping against user clip planes through
548     *     the API, then the coordinate written to gl_Position is used for
549     *     comparison against the user clip planes."
550     *
551     * This function is only called if the shader didn't write to
552     * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
553     * if the user wrote to it; otherwise we use gl_Position.
554     */
555 
556    gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
557    if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
558       clip_vertex = VARYING_SLOT_POS;
559 
560    /* If the clip vertex isn't written, skip this.  Typically this means
561     * the GS will set up clipping. */
562    if (outputs[clip_vertex].file == BAD_FILE)
563       return;
564 
565    setup_uniform_clipplane_values(clip_planes);
566 
567    const fs_builder abld = bld.annotate("user clip distances");
568 
569    this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
570    this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
571 
572    for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
573       fs_reg u = userplane[i];
574       const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
575                                    bld, i & 3);
576 
577       abld.MUL(output, outputs[clip_vertex], u);
578       for (int j = 1; j < 4; j++) {
579          u.nr = userplane[i].nr + j;
580          abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
581       }
582    }
583 }
584 
585 void
emit_urb_writes(const fs_reg & gs_vertex_count)586 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
587 {
588    int slot, urb_offset, length;
589    int starting_urb_offset = 0;
590    const struct brw_vue_prog_data *vue_prog_data =
591       brw_vue_prog_data(this->prog_data);
592    const struct brw_vs_prog_key *vs_key =
593       (const struct brw_vs_prog_key *) this->key;
594    const GLbitfield64 psiz_mask =
595       VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
596    const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
597    bool flush;
598    fs_reg sources[8];
599    fs_reg urb_handle;
600 
601    if (stage == MESA_SHADER_TESS_EVAL)
602       urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
603    else
604       urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
605 
606    /* If we don't have any valid slots to write, just do a minimal urb write
607     * send to terminate the shader.  This includes 1 slot of undefined data,
608     * because it's invalid to write 0 data:
609     *
610     * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
611     * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
612     * Write Data Payload:
613     *
614     *    "The write data payload can be between 1 and 8 message phases long."
615     */
616    if (vue_map->slots_valid == 0) {
617       /* For GS, just turn EmitVertex() into a no-op.  We don't want it to
618        * end the thread, and emit_gs_thread_end() already emits a SEND with
619        * EOT at the end of the program for us.
620        */
621       if (stage == MESA_SHADER_GEOMETRY)
622          return;
623 
624       fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
625       bld.exec_all().MOV(payload, urb_handle);
626 
627       fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
628       inst->eot = true;
629       inst->mlen = 2;
630       inst->offset = 1;
631       return;
632    }
633 
634    opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
635    int header_size = 1;
636    fs_reg per_slot_offsets;
637 
638    if (stage == MESA_SHADER_GEOMETRY) {
639       const struct brw_gs_prog_data *gs_prog_data =
640          brw_gs_prog_data(this->prog_data);
641 
642       /* We need to increment the Global Offset to skip over the control data
643        * header and the extra "Vertex Count" field (1 HWord) at the beginning
644        * of the VUE.  We're counting in OWords, so the units are doubled.
645        */
646       starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
647       if (gs_prog_data->static_vertex_count == -1)
648          starting_urb_offset += 2;
649 
650       /* We also need to use per-slot offsets.  The per-slot offset is the
651        * Vertex Count.  SIMD8 mode processes 8 different primitives at a
652        * time; each may output a different number of vertices.
653        */
654       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
655       header_size++;
656 
657       /* The URB offset is in 128-bit units, so we need to multiply by 2 */
658       const int output_vertex_size_owords =
659          gs_prog_data->output_vertex_size_hwords * 2;
660 
661       if (gs_vertex_count.file == IMM) {
662          per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
663                                        gs_vertex_count.ud);
664       } else {
665          per_slot_offsets = vgrf(glsl_type::int_type);
666          bld.MUL(per_slot_offsets, gs_vertex_count,
667                  brw_imm_ud(output_vertex_size_owords));
668       }
669    }
670 
671    length = 0;
672    urb_offset = starting_urb_offset;
673    flush = false;
674 
675    /* SSO shaders can have VUE slots allocated which are never actually
676     * written to, so ignore them when looking for the last (written) slot.
677     */
678    int last_slot = vue_map->num_slots - 1;
679    while (last_slot > 0 &&
680           (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
681            outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
682       last_slot--;
683    }
684 
685    for (slot = 0; slot < vue_map->num_slots; slot++) {
686       int varying = vue_map->slot_to_varying[slot];
687       switch (varying) {
688       case VARYING_SLOT_PSIZ: {
689          /* The point size varying slot is the vue header and is always in the
690           * vue map.  But often none of the special varyings that live there
691           * are written and in that case we can skip writing to the vue
692           * header, provided the corresponding state properly clamps the
693           * values further down the pipeline. */
694          if ((vue_map->slots_valid & psiz_mask) == 0) {
695             assert(length == 0);
696             urb_offset++;
697             break;
698          }
699 
700          fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
701          bld.MOV(zero, brw_imm_ud(0u));
702 
703          sources[length++] = zero;
704          if (vue_map->slots_valid & VARYING_BIT_LAYER)
705             sources[length++] = this->outputs[VARYING_SLOT_LAYER];
706          else
707             sources[length++] = zero;
708 
709          if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
710             sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
711          else
712             sources[length++] = zero;
713 
714          if (vue_map->slots_valid & VARYING_BIT_PSIZ)
715             sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
716          else
717             sources[length++] = zero;
718          break;
719       }
720       case BRW_VARYING_SLOT_NDC:
721       case VARYING_SLOT_EDGE:
722          unreachable("unexpected scalar vs output");
723          break;
724 
725       default:
726          /* gl_Position is always in the vue map, but isn't always written by
727           * the shader.  Other varyings (clip distances) get added to the vue
728           * map but don't always get written.  In those cases, the
729           * corresponding this->output[] slot will be invalid we and can skip
730           * the urb write for the varying.  If we've already queued up a vue
731           * slot for writing we flush a mlen 5 urb write, otherwise we just
732           * advance the urb_offset.
733           */
734          if (varying == BRW_VARYING_SLOT_PAD ||
735              this->outputs[varying].file == BAD_FILE) {
736             if (length > 0)
737                flush = true;
738             else
739                urb_offset++;
740             break;
741          }
742 
743          if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
744              (varying == VARYING_SLOT_COL0 ||
745               varying == VARYING_SLOT_COL1 ||
746               varying == VARYING_SLOT_BFC0 ||
747               varying == VARYING_SLOT_BFC1)) {
748             /* We need to clamp these guys, so do a saturating MOV into a
749              * temp register and use that for the payload.
750              */
751             for (int i = 0; i < 4; i++) {
752                fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
753                fs_reg src = offset(this->outputs[varying], bld, i);
754                set_saturate(true, bld.MOV(reg, src));
755                sources[length++] = reg;
756             }
757          } else {
758             for (unsigned i = 0; i < 4; i++)
759                sources[length++] = offset(this->outputs[varying], bld, i);
760          }
761          break;
762       }
763 
764       const fs_builder abld = bld.annotate("URB write");
765 
766       /* If we've queued up 8 registers of payload (2 VUE slots), if this is
767        * the last slot or if we need to flush (see BAD_FILE varying case
768        * above), emit a URB write send now to flush out the data.
769        */
770       if (length == 8 || slot == last_slot)
771          flush = true;
772       if (flush) {
773          fs_reg *payload_sources =
774             ralloc_array(mem_ctx, fs_reg, length + header_size);
775          fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
776                                  BRW_REGISTER_TYPE_F);
777          payload_sources[0] = urb_handle;
778 
779          if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
780             payload_sources[1] = per_slot_offsets;
781 
782          memcpy(&payload_sources[header_size], sources,
783                 length * sizeof sources[0]);
784 
785          abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
786                            header_size);
787 
788          fs_inst *inst = abld.emit(opcode, reg_undef, payload);
789          inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
790          inst->mlen = length + header_size;
791          inst->offset = urb_offset;
792          urb_offset = starting_urb_offset + slot + 1;
793          length = 0;
794          flush = false;
795       }
796    }
797 }
798 
799 void
emit_cs_terminate()800 fs_visitor::emit_cs_terminate()
801 {
802    assert(devinfo->gen >= 7);
803 
804    /* We are getting the thread ID from the compute shader header */
805    assert(stage == MESA_SHADER_COMPUTE);
806 
807    /* We can't directly send from g0, since sends with EOT have to use
808     * g112-127. So, copy it to a virtual register, The register allocator will
809     * make sure it uses the appropriate register range.
810     */
811    struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
812    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
813    bld.group(8, 0).exec_all().MOV(payload, g0);
814 
815    /* Send a message to the thread spawner to terminate the thread. */
816    fs_inst *inst = bld.exec_all()
817                       .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
818    inst->eot = true;
819 }
820 
821 void
emit_barrier()822 fs_visitor::emit_barrier()
823 {
824    assert(devinfo->gen >= 7);
825    const uint32_t barrier_id_mask =
826       devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
827 
828    /* We are getting the barrier ID from the compute shader header */
829    assert(stage == MESA_SHADER_COMPUTE);
830 
831    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
832 
833    const fs_builder pbld = bld.exec_all().group(8, 0);
834 
835    /* Clear the message payload */
836    pbld.MOV(payload, brw_imm_ud(0u));
837 
838    /* Copy the barrier id from r0.2 to the message payload reg.2 */
839    fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
840    pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
841 
842    /* Emit a gateway "barrier" message using the payload we set up, followed
843     * by a wait instruction.
844     */
845    bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
846 }
847 
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const void * key,struct brw_stage_prog_data * prog_data,struct gl_program * prog,const nir_shader * shader,unsigned dispatch_width,int shader_time_index,const struct brw_vue_map * input_vue_map)848 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
849                        void *mem_ctx,
850                        const void *key,
851                        struct brw_stage_prog_data *prog_data,
852                        struct gl_program *prog,
853                        const nir_shader *shader,
854                        unsigned dispatch_width,
855                        int shader_time_index,
856                        const struct brw_vue_map *input_vue_map)
857    : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
858      key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
859      input_vue_map(input_vue_map),
860      dispatch_width(dispatch_width),
861      shader_time_index(shader_time_index),
862      bld(fs_builder(this, dispatch_width).at_end())
863 {
864    init();
865 }
866 
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,int shader_time_index)867 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
868                        void *mem_ctx,
869                        struct brw_gs_compile *c,
870                        struct brw_gs_prog_data *prog_data,
871                        const nir_shader *shader,
872                        int shader_time_index)
873    : backend_shader(compiler, log_data, mem_ctx, shader,
874                     &prog_data->base.base),
875      key(&c->key), gs_compile(c),
876      prog_data(&prog_data->base.base), prog(NULL),
877      dispatch_width(8),
878      shader_time_index(shader_time_index),
879      bld(fs_builder(this, dispatch_width).at_end())
880 {
881    init();
882 }
883 
884 
885 void
init()886 fs_visitor::init()
887 {
888    switch (stage) {
889    case MESA_SHADER_FRAGMENT:
890       key_tex = &((const brw_wm_prog_key *) key)->tex;
891       break;
892    case MESA_SHADER_VERTEX:
893       key_tex = &((const brw_vs_prog_key *) key)->tex;
894       break;
895    case MESA_SHADER_TESS_CTRL:
896       key_tex = &((const brw_tcs_prog_key *) key)->tex;
897       break;
898    case MESA_SHADER_TESS_EVAL:
899       key_tex = &((const brw_tes_prog_key *) key)->tex;
900       break;
901    case MESA_SHADER_GEOMETRY:
902       key_tex = &((const brw_gs_prog_key *) key)->tex;
903       break;
904    case MESA_SHADER_COMPUTE:
905       key_tex = &((const brw_cs_prog_key*) key)->tex;
906       break;
907    default:
908       unreachable("unhandled shader stage");
909    }
910 
911    if (stage == MESA_SHADER_COMPUTE) {
912       const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
913       unsigned size = cs_prog_data->local_size[0] *
914                       cs_prog_data->local_size[1] *
915                       cs_prog_data->local_size[2];
916       size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
917       min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
918    } else {
919       min_dispatch_width = 8;
920    }
921 
922    this->max_dispatch_width = 32;
923    this->prog_data = this->stage_prog_data;
924 
925    this->failed = false;
926 
927    this->nir_locals = NULL;
928    this->nir_ssa_values = NULL;
929 
930    memset(&this->payload, 0, sizeof(this->payload));
931    this->source_depth_to_render_target = false;
932    this->runtime_check_aads_emit = false;
933    this->first_non_payload_grf = 0;
934    this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
935 
936    this->virtual_grf_start = NULL;
937    this->virtual_grf_end = NULL;
938    this->live_intervals = NULL;
939    this->regs_live_at_ip = NULL;
940 
941    this->uniforms = 0;
942    this->last_scratch = 0;
943    this->pull_constant_loc = NULL;
944    this->push_constant_loc = NULL;
945 
946    this->promoted_constants = 0,
947 
948    this->spilled_any_registers = false;
949 }
950 
~fs_visitor()951 fs_visitor::~fs_visitor()
952 {
953 }
954