• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.math;
18 
19 import static com.google.common.base.Preconditions.checkArgument;
20 import static java.lang.Double.MAX_EXPONENT;
21 import static java.lang.Double.MIN_EXPONENT;
22 import static java.lang.Double.POSITIVE_INFINITY;
23 import static java.lang.Double.doubleToRawLongBits;
24 import static java.lang.Double.isNaN;
25 import static java.lang.Double.longBitsToDouble;
26 import static java.lang.Math.getExponent;
27 
28 import java.math.BigInteger;
29 
30 /**
31  * Utilities for {@code double} primitives.
32  *
33  * @author Louis Wasserman
34  */
35 final class DoubleUtils {
DoubleUtils()36   private DoubleUtils() {
37   }
38 
nextDown(double d)39   static double nextDown(double d) {
40     return -Math.nextUp(-d);
41   }
42 
43   // The mask for the significand, according to the {@link
44   // Double#doubleToRawLongBits(double)} spec.
45   static final long SIGNIFICAND_MASK = 0x000fffffffffffffL;
46 
47   // The mask for the exponent, according to the {@link
48   // Double#doubleToRawLongBits(double)} spec.
49   static final long EXPONENT_MASK = 0x7ff0000000000000L;
50 
51   // The mask for the sign, according to the {@link
52   // Double#doubleToRawLongBits(double)} spec.
53   static final long SIGN_MASK = 0x8000000000000000L;
54 
55   static final int SIGNIFICAND_BITS = 52;
56 
57   static final int EXPONENT_BIAS = 1023;
58 
59   /**
60    * The implicit 1 bit that is omitted in significands of normal doubles.
61    */
62   static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1;
63 
getSignificand(double d)64   static long getSignificand(double d) {
65     checkArgument(isFinite(d), "not a normal value");
66     int exponent = getExponent(d);
67     long bits = doubleToRawLongBits(d);
68     bits &= SIGNIFICAND_MASK;
69     return (exponent == MIN_EXPONENT - 1)
70         ? bits << 1
71         : bits | IMPLICIT_BIT;
72   }
73 
isFinite(double d)74   static boolean isFinite(double d) {
75     return getExponent(d) <= MAX_EXPONENT;
76   }
77 
isNormal(double d)78   static boolean isNormal(double d) {
79     return getExponent(d) >= MIN_EXPONENT;
80   }
81 
82   /*
83    * Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive,
84    * normal, and finite.
85    */
scaleNormalize(double x)86   static double scaleNormalize(double x) {
87     long significand = doubleToRawLongBits(x) & SIGNIFICAND_MASK;
88     return longBitsToDouble(significand | ONE_BITS);
89   }
90 
bigToDouble(BigInteger x)91   static double bigToDouble(BigInteger x) {
92     // This is an extremely fast implementation of BigInteger.doubleValue().  JDK patch pending.
93     BigInteger absX = x.abs();
94     int exponent = absX.bitLength() - 1;
95     // exponent == floor(log2(abs(x)))
96     if (exponent < Long.SIZE - 1) {
97       return x.longValue();
98     } else if (exponent > MAX_EXPONENT) {
99       return x.signum() * POSITIVE_INFINITY;
100     }
101 
102     /*
103      * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make
104      * rounding easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us
105      * round up or down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and
106      * signifFloor the top SIGNIFICAND_BITS + 1.
107      *
108      * It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent).
109      */
110     int shift = exponent - SIGNIFICAND_BITS - 1;
111     long twiceSignifFloor = absX.shiftRight(shift).longValue();
112     long signifFloor = twiceSignifFloor >> 1;
113     signifFloor &= SIGNIFICAND_MASK; // remove the implied bit
114 
115     /*
116      * We round up if either the fractional part of signif is strictly greater than 0.5 (which is
117      * true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is
118      * >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set).
119      */
120     boolean increment = (twiceSignifFloor & 1) != 0
121         && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift);
122     long signifRounded = increment ? signifFloor + 1 : signifFloor;
123     long bits = (long) ((exponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS;
124     bits += signifRounded;
125     /*
126      * If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to
127      * the exponent. This is exactly the behavior we get from just adding signifRounded to bits
128      * directly.  If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to
129      * Double.POSITIVE_INFINITY.
130      */
131     bits |= x.signum() & SIGN_MASK;
132     return longBitsToDouble(bits);
133   }
134 
135   /**
136    * Returns its argument if it is non-negative, zero if it is negative.
137    */
ensureNonNegative(double value)138   static double ensureNonNegative(double value) {
139     checkArgument(!isNaN(value));
140     if (value > 0.0) {
141       return value;
142     } else {
143       return 0.0;
144     }
145   }
146 
147   private static final long ONE_BITS = doubleToRawLongBits(1.0);
148 }
149