1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkAAClip.h"
9 #include "SkAtomics.h"
10 #include "SkBlitter.h"
11 #include "SkColorPriv.h"
12 #include "SkPath.h"
13 #include "SkScan.h"
14 #include "SkUtils.h"
15
16 class AutoAAClipValidate {
17 public:
AutoAAClipValidate(const SkAAClip & clip)18 AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) {
19 fClip.validate();
20 }
~AutoAAClipValidate()21 ~AutoAAClipValidate() {
22 fClip.validate();
23 }
24 private:
25 const SkAAClip& fClip;
26 };
27
28 #ifdef SK_DEBUG
29 #define AUTO_AACLIP_VALIDATE(clip) AutoAAClipValidate acv(clip)
30 #else
31 #define AUTO_AACLIP_VALIDATE(clip)
32 #endif
33
34 ///////////////////////////////////////////////////////////////////////////////
35
36 #define kMaxInt32 0x7FFFFFFF
37
38 #ifdef SK_DEBUG
x_in_rect(int x,const SkIRect & rect)39 static inline bool x_in_rect(int x, const SkIRect& rect) {
40 return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
41 }
42 #endif
43
y_in_rect(int y,const SkIRect & rect)44 static inline bool y_in_rect(int y, const SkIRect& rect) {
45 return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
46 }
47
48 /*
49 * Data runs are packed [count, alpha]
50 */
51
52 struct SkAAClip::YOffset {
53 int32_t fY;
54 uint32_t fOffset;
55 };
56
57 struct SkAAClip::RunHead {
58 int32_t fRefCnt;
59 int32_t fRowCount;
60 size_t fDataSize;
61
yoffsetsSkAAClip::RunHead62 YOffset* yoffsets() {
63 return (YOffset*)((char*)this + sizeof(RunHead));
64 }
yoffsetsSkAAClip::RunHead65 const YOffset* yoffsets() const {
66 return (const YOffset*)((const char*)this + sizeof(RunHead));
67 }
dataSkAAClip::RunHead68 uint8_t* data() {
69 return (uint8_t*)(this->yoffsets() + fRowCount);
70 }
dataSkAAClip::RunHead71 const uint8_t* data() const {
72 return (const uint8_t*)(this->yoffsets() + fRowCount);
73 }
74
AllocSkAAClip::RunHead75 static RunHead* Alloc(int rowCount, size_t dataSize) {
76 size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize;
77 RunHead* head = (RunHead*)sk_malloc_throw(size);
78 head->fRefCnt = 1;
79 head->fRowCount = rowCount;
80 head->fDataSize = dataSize;
81 return head;
82 }
83
ComputeRowSizeForWidthSkAAClip::RunHead84 static int ComputeRowSizeForWidth(int width) {
85 // 2 bytes per segment, where each segment can store up to 255 for count
86 int segments = 0;
87 while (width > 0) {
88 segments += 1;
89 int n = SkMin32(width, 255);
90 width -= n;
91 }
92 return segments * 2; // each segment is row[0] + row[1] (n + alpha)
93 }
94
AllocRectSkAAClip::RunHead95 static RunHead* AllocRect(const SkIRect& bounds) {
96 SkASSERT(!bounds.isEmpty());
97 int width = bounds.width();
98 size_t rowSize = ComputeRowSizeForWidth(width);
99 RunHead* head = RunHead::Alloc(1, rowSize);
100 YOffset* yoff = head->yoffsets();
101 yoff->fY = bounds.height() - 1;
102 yoff->fOffset = 0;
103 uint8_t* row = head->data();
104 while (width > 0) {
105 int n = SkMin32(width, 255);
106 row[0] = n;
107 row[1] = 0xFF;
108 width -= n;
109 row += 2;
110 }
111 return head;
112 }
113 };
114
115 class SkAAClip::Iter {
116 public:
117 Iter(const SkAAClip&);
118
done() const119 bool done() const { return fDone; }
top() const120 int top() const { return fTop; }
bottom() const121 int bottom() const { return fBottom; }
data() const122 const uint8_t* data() const { return fData; }
123 void next();
124
125 private:
126 const YOffset* fCurrYOff;
127 const YOffset* fStopYOff;
128 const uint8_t* fData;
129
130 int fTop, fBottom;
131 bool fDone;
132 };
133
Iter(const SkAAClip & clip)134 SkAAClip::Iter::Iter(const SkAAClip& clip) {
135 if (clip.isEmpty()) {
136 fDone = true;
137 fTop = fBottom = clip.fBounds.fBottom;
138 fData = nullptr;
139 fCurrYOff = nullptr;
140 fStopYOff = nullptr;
141 return;
142 }
143
144 const RunHead* head = clip.fRunHead;
145 fCurrYOff = head->yoffsets();
146 fStopYOff = fCurrYOff + head->fRowCount;
147 fData = head->data() + fCurrYOff->fOffset;
148
149 // setup first value
150 fTop = clip.fBounds.fTop;
151 fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1;
152 fDone = false;
153 }
154
next()155 void SkAAClip::Iter::next() {
156 if (!fDone) {
157 const YOffset* prev = fCurrYOff;
158 const YOffset* curr = prev + 1;
159 SkASSERT(curr <= fStopYOff);
160
161 fTop = fBottom;
162 if (curr >= fStopYOff) {
163 fDone = true;
164 fBottom = kMaxInt32;
165 fData = nullptr;
166 } else {
167 fBottom += curr->fY - prev->fY;
168 fData += curr->fOffset - prev->fOffset;
169 fCurrYOff = curr;
170 }
171 }
172 }
173
174 #ifdef SK_DEBUG
175 // assert we're exactly width-wide, and then return the number of bytes used
compute_row_length(const uint8_t row[],int width)176 static size_t compute_row_length(const uint8_t row[], int width) {
177 const uint8_t* origRow = row;
178 while (width > 0) {
179 int n = row[0];
180 SkASSERT(n > 0);
181 SkASSERT(n <= width);
182 row += 2;
183 width -= n;
184 }
185 SkASSERT(0 == width);
186 return row - origRow;
187 }
188
validate() const189 void SkAAClip::validate() const {
190 if (nullptr == fRunHead) {
191 SkASSERT(fBounds.isEmpty());
192 return;
193 }
194 SkASSERT(!fBounds.isEmpty());
195
196 const RunHead* head = fRunHead;
197 SkASSERT(head->fRefCnt > 0);
198 SkASSERT(head->fRowCount > 0);
199
200 const YOffset* yoff = head->yoffsets();
201 const YOffset* ystop = yoff + head->fRowCount;
202 const int lastY = fBounds.height() - 1;
203
204 // Y and offset must be monotonic
205 int prevY = -1;
206 int32_t prevOffset = -1;
207 while (yoff < ystop) {
208 SkASSERT(prevY < yoff->fY);
209 SkASSERT(yoff->fY <= lastY);
210 prevY = yoff->fY;
211 SkASSERT(prevOffset < (int32_t)yoff->fOffset);
212 prevOffset = yoff->fOffset;
213 const uint8_t* row = head->data() + yoff->fOffset;
214 size_t rowLength = compute_row_length(row, fBounds.width());
215 SkASSERT(yoff->fOffset + rowLength <= head->fDataSize);
216 yoff += 1;
217 }
218 // check the last entry;
219 --yoff;
220 SkASSERT(yoff->fY == lastY);
221 }
222
dump_one_row(const uint8_t * SK_RESTRICT row,int width,int leading_num)223 static void dump_one_row(const uint8_t* SK_RESTRICT row,
224 int width, int leading_num) {
225 if (leading_num) {
226 SkDebugf( "%03d ", leading_num );
227 }
228 while (width > 0) {
229 int n = row[0];
230 int val = row[1];
231 char out = '.';
232 if (val == 0xff) {
233 out = '*';
234 } else if (val > 0) {
235 out = '+';
236 }
237 for (int i = 0 ; i < n ; i++) {
238 SkDebugf( "%c", out );
239 }
240 row += 2;
241 width -= n;
242 }
243 SkDebugf( "\n" );
244 }
245
debug(bool compress_y) const246 void SkAAClip::debug(bool compress_y) const {
247 Iter iter(*this);
248 const int width = fBounds.width();
249
250 int y = fBounds.fTop;
251 while (!iter.done()) {
252 if (compress_y) {
253 dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1);
254 } else {
255 do {
256 dump_one_row(iter.data(), width, 0);
257 } while (++y < iter.bottom());
258 }
259 iter.next();
260 }
261 }
262 #endif
263
264 ///////////////////////////////////////////////////////////////////////////////
265
266 // Count the number of zeros on the left and right edges of the passed in
267 // RLE row. If 'row' is all zeros return 'width' in both variables.
count_left_right_zeros(const uint8_t * row,int width,int * leftZ,int * riteZ)268 static void count_left_right_zeros(const uint8_t* row, int width,
269 int* leftZ, int* riteZ) {
270 int zeros = 0;
271 do {
272 if (row[1]) {
273 break;
274 }
275 int n = row[0];
276 SkASSERT(n > 0);
277 SkASSERT(n <= width);
278 zeros += n;
279 row += 2;
280 width -= n;
281 } while (width > 0);
282 *leftZ = zeros;
283
284 if (0 == width) {
285 // this line is completely empty return 'width' in both variables
286 *riteZ = *leftZ;
287 return;
288 }
289
290 zeros = 0;
291 while (width > 0) {
292 int n = row[0];
293 SkASSERT(n > 0);
294 if (0 == row[1]) {
295 zeros += n;
296 } else {
297 zeros = 0;
298 }
299 row += 2;
300 width -= n;
301 }
302 *riteZ = zeros;
303 }
304
305 #ifdef SK_DEBUG
test_count_left_right_zeros()306 static void test_count_left_right_zeros() {
307 static bool gOnce;
308 if (gOnce) {
309 return;
310 }
311 gOnce = true;
312
313 const uint8_t data0[] = { 0, 0, 10, 0xFF };
314 const uint8_t data1[] = { 0, 0, 5, 0xFF, 2, 0, 3, 0xFF };
315 const uint8_t data2[] = { 7, 0, 5, 0, 2, 0, 3, 0xFF };
316 const uint8_t data3[] = { 0, 5, 5, 0xFF, 2, 0, 3, 0 };
317 const uint8_t data4[] = { 2, 3, 2, 0, 5, 0xFF, 3, 0 };
318 const uint8_t data5[] = { 10, 10, 10, 0 };
319 const uint8_t data6[] = { 2, 2, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
320
321 const uint8_t* array[] = {
322 data0, data1, data2, data3, data4, data5, data6
323 };
324
325 for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
326 const uint8_t* data = array[i];
327 const int expectedL = *data++;
328 const int expectedR = *data++;
329 int L = 12345, R = 12345;
330 count_left_right_zeros(data, 10, &L, &R);
331 SkASSERT(expectedL == L);
332 SkASSERT(expectedR == R);
333 }
334 }
335 #endif
336
337 // modify row in place, trimming off (zeros) from the left and right sides.
338 // return the number of bytes that were completely eliminated from the left
trim_row_left_right(uint8_t * row,int width,int leftZ,int riteZ)339 static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) {
340 int trim = 0;
341 while (leftZ > 0) {
342 SkASSERT(0 == row[1]);
343 int n = row[0];
344 SkASSERT(n > 0);
345 SkASSERT(n <= width);
346 width -= n;
347 row += 2;
348 if (n > leftZ) {
349 row[-2] = n - leftZ;
350 break;
351 }
352 trim += 2;
353 leftZ -= n;
354 SkASSERT(leftZ >= 0);
355 }
356
357 if (riteZ) {
358 // walk row to the end, and then we'll back up to trim riteZ
359 while (width > 0) {
360 int n = row[0];
361 SkASSERT(n <= width);
362 width -= n;
363 row += 2;
364 }
365 // now skip whole runs of zeros
366 do {
367 row -= 2;
368 SkASSERT(0 == row[1]);
369 int n = row[0];
370 SkASSERT(n > 0);
371 if (n > riteZ) {
372 row[0] = n - riteZ;
373 break;
374 }
375 riteZ -= n;
376 SkASSERT(riteZ >= 0);
377 } while (riteZ > 0);
378 }
379
380 return trim;
381 }
382
383 #ifdef SK_DEBUG
384 // assert that this row is exactly this width
assert_row_width(const uint8_t * row,int width)385 static void assert_row_width(const uint8_t* row, int width) {
386 while (width > 0) {
387 int n = row[0];
388 SkASSERT(n > 0);
389 SkASSERT(n <= width);
390 width -= n;
391 row += 2;
392 }
393 SkASSERT(0 == width);
394 }
395
test_trim_row_left_right()396 static void test_trim_row_left_right() {
397 static bool gOnce;
398 if (gOnce) {
399 return;
400 }
401 gOnce = true;
402
403 uint8_t data0[] = { 0, 0, 0, 10, 10, 0xFF };
404 uint8_t data1[] = { 2, 0, 0, 10, 5, 0, 2, 0, 3, 0xFF };
405 uint8_t data2[] = { 5, 0, 2, 10, 5, 0, 2, 0, 3, 0xFF };
406 uint8_t data3[] = { 6, 0, 2, 10, 5, 0, 2, 0, 3, 0xFF };
407 uint8_t data4[] = { 0, 0, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
408 uint8_t data5[] = { 1, 0, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
409 uint8_t data6[] = { 0, 1, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
410 uint8_t data7[] = { 1, 1, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
411 uint8_t data8[] = { 2, 2, 2, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
412 uint8_t data9[] = { 5, 2, 4, 10, 2, 0, 2, 0, 2, 0, 2, 0xFF, 2, 0 };
413 uint8_t data10[] ={ 74, 0, 4, 150, 9, 0, 65, 0, 76, 0xFF };
414
415 uint8_t* array[] = {
416 data0, data1, data2, data3, data4,
417 data5, data6, data7, data8, data9,
418 data10
419 };
420
421 for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
422 uint8_t* data = array[i];
423 const int trimL = *data++;
424 const int trimR = *data++;
425 const int expectedSkip = *data++;
426 const int origWidth = *data++;
427 assert_row_width(data, origWidth);
428 int skip = trim_row_left_right(data, origWidth, trimL, trimR);
429 SkASSERT(expectedSkip == skip);
430 int expectedWidth = origWidth - trimL - trimR;
431 assert_row_width(data + skip, expectedWidth);
432 }
433 }
434 #endif
435
trimLeftRight()436 bool SkAAClip::trimLeftRight() {
437 SkDEBUGCODE(test_trim_row_left_right();)
438
439 if (this->isEmpty()) {
440 return false;
441 }
442
443 AUTO_AACLIP_VALIDATE(*this);
444
445 const int width = fBounds.width();
446 RunHead* head = fRunHead;
447 YOffset* yoff = head->yoffsets();
448 YOffset* stop = yoff + head->fRowCount;
449 uint8_t* base = head->data();
450
451 // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum
452 // number of zeros on the left and right of the clip. This information
453 // can be used to shrink the bounding box.
454 int leftZeros = width;
455 int riteZeros = width;
456 while (yoff < stop) {
457 int L, R;
458 count_left_right_zeros(base + yoff->fOffset, width, &L, &R);
459 SkASSERT(L + R < width || (L == width && R == width));
460 if (L < leftZeros) {
461 leftZeros = L;
462 }
463 if (R < riteZeros) {
464 riteZeros = R;
465 }
466 if (0 == (leftZeros | riteZeros)) {
467 // no trimming to do
468 return true;
469 }
470 yoff += 1;
471 }
472
473 SkASSERT(leftZeros || riteZeros);
474 if (width == leftZeros) {
475 SkASSERT(width == riteZeros);
476 return this->setEmpty();
477 }
478
479 this->validate();
480
481 fBounds.fLeft += leftZeros;
482 fBounds.fRight -= riteZeros;
483 SkASSERT(!fBounds.isEmpty());
484
485 // For now we don't realloc the storage (for time), we just shrink in place
486 // This means we don't have to do any memmoves either, since we can just
487 // play tricks with the yoff->fOffset for each row
488 yoff = head->yoffsets();
489 while (yoff < stop) {
490 uint8_t* row = base + yoff->fOffset;
491 SkDEBUGCODE((void)compute_row_length(row, width);)
492 yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros);
493 SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);)
494 yoff += 1;
495 }
496 return true;
497 }
498
row_is_all_zeros(const uint8_t * row,int width)499 static bool row_is_all_zeros(const uint8_t* row, int width) {
500 SkASSERT(width > 0);
501 do {
502 if (row[1]) {
503 return false;
504 }
505 int n = row[0];
506 SkASSERT(n <= width);
507 width -= n;
508 row += 2;
509 } while (width > 0);
510 SkASSERT(0 == width);
511 return true;
512 }
513
trimTopBottom()514 bool SkAAClip::trimTopBottom() {
515 if (this->isEmpty()) {
516 return false;
517 }
518
519 this->validate();
520
521 const int width = fBounds.width();
522 RunHead* head = fRunHead;
523 YOffset* yoff = head->yoffsets();
524 YOffset* stop = yoff + head->fRowCount;
525 const uint8_t* base = head->data();
526
527 // Look to trim away empty rows from the top.
528 //
529 int skip = 0;
530 while (yoff < stop) {
531 const uint8_t* data = base + yoff->fOffset;
532 if (!row_is_all_zeros(data, width)) {
533 break;
534 }
535 skip += 1;
536 yoff += 1;
537 }
538 SkASSERT(skip <= head->fRowCount);
539 if (skip == head->fRowCount) {
540 return this->setEmpty();
541 }
542 if (skip > 0) {
543 // adjust fRowCount and fBounds.fTop, and slide all the data up
544 // as we remove [skip] number of YOffset entries
545 yoff = head->yoffsets();
546 int dy = yoff[skip - 1].fY + 1;
547 for (int i = skip; i < head->fRowCount; ++i) {
548 SkASSERT(yoff[i].fY >= dy);
549 yoff[i].fY -= dy;
550 }
551 YOffset* dst = head->yoffsets();
552 size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize;
553 memmove(dst, dst + skip, size - skip * sizeof(YOffset));
554
555 fBounds.fTop += dy;
556 SkASSERT(!fBounds.isEmpty());
557 head->fRowCount -= skip;
558 SkASSERT(head->fRowCount > 0);
559
560 this->validate();
561 // need to reset this after the memmove
562 base = head->data();
563 }
564
565 // Look to trim away empty rows from the bottom.
566 // We know that we have at least one non-zero row, so we can just walk
567 // backwards without checking for running past the start.
568 //
569 stop = yoff = head->yoffsets() + head->fRowCount;
570 do {
571 yoff -= 1;
572 } while (row_is_all_zeros(base + yoff->fOffset, width));
573 skip = SkToInt(stop - yoff - 1);
574 SkASSERT(skip >= 0 && skip < head->fRowCount);
575 if (skip > 0) {
576 // removing from the bottom is easier than from the top, as we don't
577 // have to adjust any of the Y values, we just have to trim the array
578 memmove(stop - skip, stop, head->fDataSize);
579
580 fBounds.fBottom = fBounds.fTop + yoff->fY + 1;
581 SkASSERT(!fBounds.isEmpty());
582 head->fRowCount -= skip;
583 SkASSERT(head->fRowCount > 0);
584 }
585 this->validate();
586
587 return true;
588 }
589
590 // can't validate before we're done, since trimming is part of the process of
591 // making us valid after the Builder. Since we build from top to bottom, its
592 // possible our fBounds.fBottom is bigger than our last scanline of data, so
593 // we trim fBounds.fBottom back up.
594 //
595 // TODO: check for duplicates in X and Y to further compress our data
596 //
trimBounds()597 bool SkAAClip::trimBounds() {
598 if (this->isEmpty()) {
599 return false;
600 }
601
602 const RunHead* head = fRunHead;
603 const YOffset* yoff = head->yoffsets();
604
605 SkASSERT(head->fRowCount > 0);
606 const YOffset& lastY = yoff[head->fRowCount - 1];
607 SkASSERT(lastY.fY + 1 <= fBounds.height());
608 fBounds.fBottom = fBounds.fTop + lastY.fY + 1;
609 SkASSERT(lastY.fY + 1 == fBounds.height());
610 SkASSERT(!fBounds.isEmpty());
611
612 return this->trimTopBottom() && this->trimLeftRight();
613 }
614
615 ///////////////////////////////////////////////////////////////////////////////
616
freeRuns()617 void SkAAClip::freeRuns() {
618 if (fRunHead) {
619 SkASSERT(fRunHead->fRefCnt >= 1);
620 if (1 == sk_atomic_dec(&fRunHead->fRefCnt)) {
621 sk_free(fRunHead);
622 }
623 }
624 }
625
SkAAClip()626 SkAAClip::SkAAClip() {
627 fBounds.setEmpty();
628 fRunHead = nullptr;
629 }
630
SkAAClip(const SkAAClip & src)631 SkAAClip::SkAAClip(const SkAAClip& src) {
632 SkDEBUGCODE(fBounds.setEmpty();) // need this for validate
633 fRunHead = nullptr;
634 *this = src;
635 }
636
~SkAAClip()637 SkAAClip::~SkAAClip() {
638 this->freeRuns();
639 }
640
operator =(const SkAAClip & src)641 SkAAClip& SkAAClip::operator=(const SkAAClip& src) {
642 AUTO_AACLIP_VALIDATE(*this);
643 src.validate();
644
645 if (this != &src) {
646 this->freeRuns();
647 fBounds = src.fBounds;
648 fRunHead = src.fRunHead;
649 if (fRunHead) {
650 sk_atomic_inc(&fRunHead->fRefCnt);
651 }
652 }
653 return *this;
654 }
655
operator ==(const SkAAClip & a,const SkAAClip & b)656 bool operator==(const SkAAClip& a, const SkAAClip& b) {
657 a.validate();
658 b.validate();
659
660 if (&a == &b) {
661 return true;
662 }
663 if (a.fBounds != b.fBounds) {
664 return false;
665 }
666
667 const SkAAClip::RunHead* ah = a.fRunHead;
668 const SkAAClip::RunHead* bh = b.fRunHead;
669
670 // this catches empties and rects being equal
671 if (ah == bh) {
672 return true;
673 }
674
675 // now we insist that both are complex (but different ptrs)
676 if (!a.fRunHead || !b.fRunHead) {
677 return false;
678 }
679
680 return ah->fRowCount == bh->fRowCount &&
681 ah->fDataSize == bh->fDataSize &&
682 !memcmp(ah->data(), bh->data(), ah->fDataSize);
683 }
684
swap(SkAAClip & other)685 void SkAAClip::swap(SkAAClip& other) {
686 AUTO_AACLIP_VALIDATE(*this);
687 other.validate();
688
689 SkTSwap(fBounds, other.fBounds);
690 SkTSwap(fRunHead, other.fRunHead);
691 }
692
set(const SkAAClip & src)693 bool SkAAClip::set(const SkAAClip& src) {
694 *this = src;
695 return !this->isEmpty();
696 }
697
setEmpty()698 bool SkAAClip::setEmpty() {
699 this->freeRuns();
700 fBounds.setEmpty();
701 fRunHead = nullptr;
702 return false;
703 }
704
setRect(const SkIRect & bounds)705 bool SkAAClip::setRect(const SkIRect& bounds) {
706 if (bounds.isEmpty()) {
707 return this->setEmpty();
708 }
709
710 AUTO_AACLIP_VALIDATE(*this);
711
712 #if 0
713 SkRect r;
714 r.set(bounds);
715 SkPath path;
716 path.addRect(r);
717 return this->setPath(path);
718 #else
719 this->freeRuns();
720 fBounds = bounds;
721 fRunHead = RunHead::AllocRect(bounds);
722 SkASSERT(!this->isEmpty());
723 return true;
724 #endif
725 }
726
isRect() const727 bool SkAAClip::isRect() const {
728 if (this->isEmpty()) {
729 return false;
730 }
731
732 const RunHead* head = fRunHead;
733 if (head->fRowCount != 1) {
734 return false;
735 }
736 const YOffset* yoff = head->yoffsets();
737 if (yoff->fY != fBounds.fBottom - 1) {
738 return false;
739 }
740
741 const uint8_t* row = head->data() + yoff->fOffset;
742 int width = fBounds.width();
743 do {
744 if (row[1] != 0xFF) {
745 return false;
746 }
747 int n = row[0];
748 SkASSERT(n <= width);
749 width -= n;
750 row += 2;
751 } while (width > 0);
752 return true;
753 }
754
setRect(const SkRect & r,bool doAA)755 bool SkAAClip::setRect(const SkRect& r, bool doAA) {
756 if (r.isEmpty()) {
757 return this->setEmpty();
758 }
759
760 AUTO_AACLIP_VALIDATE(*this);
761
762 // TODO: special case this
763
764 SkPath path;
765 path.addRect(r);
766 return this->setPath(path, nullptr, doAA);
767 }
768
append_run(SkTDArray<uint8_t> & array,uint8_t value,int count)769 static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) {
770 SkASSERT(count >= 0);
771 while (count > 0) {
772 int n = count;
773 if (n > 255) {
774 n = 255;
775 }
776 uint8_t* data = array.append(2);
777 data[0] = n;
778 data[1] = value;
779 count -= n;
780 }
781 }
782
setRegion(const SkRegion & rgn)783 bool SkAAClip::setRegion(const SkRegion& rgn) {
784 if (rgn.isEmpty()) {
785 return this->setEmpty();
786 }
787 if (rgn.isRect()) {
788 return this->setRect(rgn.getBounds());
789 }
790
791 #if 0
792 SkAAClip clip;
793 SkRegion::Iterator iter(rgn);
794 for (; !iter.done(); iter.next()) {
795 clip.op(iter.rect(), SkRegion::kUnion_Op);
796 }
797 this->swap(clip);
798 return !this->isEmpty();
799 #else
800 const SkIRect& bounds = rgn.getBounds();
801 const int offsetX = bounds.fLeft;
802 const int offsetY = bounds.fTop;
803
804 SkTDArray<YOffset> yArray;
805 SkTDArray<uint8_t> xArray;
806
807 yArray.setReserve(SkMin32(bounds.height(), 1024));
808 xArray.setReserve(SkMin32(bounds.width() * 128, 64 * 1024));
809
810 SkRegion::Iterator iter(rgn);
811 int prevRight = 0;
812 int prevBot = 0;
813 YOffset* currY = nullptr;
814
815 for (; !iter.done(); iter.next()) {
816 const SkIRect& r = iter.rect();
817 SkASSERT(bounds.contains(r));
818
819 int bot = r.fBottom - offsetY;
820 SkASSERT(bot >= prevBot);
821 if (bot > prevBot) {
822 if (currY) {
823 // flush current row
824 append_run(xArray, 0, bounds.width() - prevRight);
825 }
826 // did we introduce an empty-gap from the prev row?
827 int top = r.fTop - offsetY;
828 if (top > prevBot) {
829 currY = yArray.append();
830 currY->fY = top - 1;
831 currY->fOffset = xArray.count();
832 append_run(xArray, 0, bounds.width());
833 }
834 // create a new record for this Y value
835 currY = yArray.append();
836 currY->fY = bot - 1;
837 currY->fOffset = xArray.count();
838 prevRight = 0;
839 prevBot = bot;
840 }
841
842 int x = r.fLeft - offsetX;
843 append_run(xArray, 0, x - prevRight);
844
845 int w = r.fRight - r.fLeft;
846 append_run(xArray, 0xFF, w);
847 prevRight = x + w;
848 SkASSERT(prevRight <= bounds.width());
849 }
850 // flush last row
851 append_run(xArray, 0, bounds.width() - prevRight);
852
853 // now pack everything into a RunHead
854 RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes());
855 memcpy(head->yoffsets(), yArray.begin(), yArray.bytes());
856 memcpy(head->data(), xArray.begin(), xArray.bytes());
857
858 this->setEmpty();
859 fBounds = bounds;
860 fRunHead = head;
861 this->validate();
862 return true;
863 #endif
864 }
865
866 ///////////////////////////////////////////////////////////////////////////////
867
findRow(int y,int * lastYForRow) const868 const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const {
869 SkASSERT(fRunHead);
870
871 if (!y_in_rect(y, fBounds)) {
872 return nullptr;
873 }
874 y -= fBounds.y(); // our yoffs values are relative to the top
875
876 const YOffset* yoff = fRunHead->yoffsets();
877 while (yoff->fY < y) {
878 yoff += 1;
879 SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount);
880 }
881
882 if (lastYForRow) {
883 *lastYForRow = fBounds.y() + yoff->fY;
884 }
885 return fRunHead->data() + yoff->fOffset;
886 }
887
findX(const uint8_t data[],int x,int * initialCount) const888 const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const {
889 SkASSERT(x_in_rect(x, fBounds));
890 x -= fBounds.x();
891
892 // first skip up to X
893 for (;;) {
894 int n = data[0];
895 if (x < n) {
896 if (initialCount) {
897 *initialCount = n - x;
898 }
899 break;
900 }
901 data += 2;
902 x -= n;
903 }
904 return data;
905 }
906
quickContains(int left,int top,int right,int bottom) const907 bool SkAAClip::quickContains(int left, int top, int right, int bottom) const {
908 if (this->isEmpty()) {
909 return false;
910 }
911 if (!fBounds.contains(left, top, right, bottom)) {
912 return false;
913 }
914 #if 0
915 if (this->isRect()) {
916 return true;
917 }
918 #endif
919
920 int lastY SK_INIT_TO_AVOID_WARNING;
921 const uint8_t* row = this->findRow(top, &lastY);
922 if (lastY < bottom) {
923 return false;
924 }
925 // now just need to check in X
926 int count;
927 row = this->findX(row, left, &count);
928 #if 0
929 return count >= (right - left) && 0xFF == row[1];
930 #else
931 int rectWidth = right - left;
932 while (0xFF == row[1]) {
933 if (count >= rectWidth) {
934 return true;
935 }
936 rectWidth -= count;
937 row += 2;
938 count = row[0];
939 }
940 return false;
941 #endif
942 }
943
944 ///////////////////////////////////////////////////////////////////////////////
945
946 class SkAAClip::Builder {
947 SkIRect fBounds;
948 struct Row {
949 int fY;
950 int fWidth;
951 SkTDArray<uint8_t>* fData;
952 };
953 SkTDArray<Row> fRows;
954 Row* fCurrRow;
955 int fPrevY;
956 int fWidth;
957 int fMinY;
958
959 public:
Builder(const SkIRect & bounds)960 Builder(const SkIRect& bounds) : fBounds(bounds) {
961 fPrevY = -1;
962 fWidth = bounds.width();
963 fCurrRow = nullptr;
964 fMinY = bounds.fTop;
965 }
966
~Builder()967 ~Builder() {
968 Row* row = fRows.begin();
969 Row* stop = fRows.end();
970 while (row < stop) {
971 delete row->fData;
972 row += 1;
973 }
974 }
975
getBounds() const976 const SkIRect& getBounds() const { return fBounds; }
977
addRun(int x,int y,U8CPU alpha,int count)978 void addRun(int x, int y, U8CPU alpha, int count) {
979 SkASSERT(count > 0);
980 SkASSERT(fBounds.contains(x, y));
981 SkASSERT(fBounds.contains(x + count - 1, y));
982
983 x -= fBounds.left();
984 y -= fBounds.top();
985
986 Row* row = fCurrRow;
987 if (y != fPrevY) {
988 SkASSERT(y > fPrevY);
989 fPrevY = y;
990 row = this->flushRow(true);
991 row->fY = y;
992 row->fWidth = 0;
993 SkASSERT(row->fData);
994 SkASSERT(0 == row->fData->count());
995 fCurrRow = row;
996 }
997
998 SkASSERT(row->fWidth <= x);
999 SkASSERT(row->fWidth < fBounds.width());
1000
1001 SkTDArray<uint8_t>& data = *row->fData;
1002
1003 int gap = x - row->fWidth;
1004 if (gap) {
1005 AppendRun(data, 0, gap);
1006 row->fWidth += gap;
1007 SkASSERT(row->fWidth < fBounds.width());
1008 }
1009
1010 AppendRun(data, alpha, count);
1011 row->fWidth += count;
1012 SkASSERT(row->fWidth <= fBounds.width());
1013 }
1014
addColumn(int x,int y,U8CPU alpha,int height)1015 void addColumn(int x, int y, U8CPU alpha, int height) {
1016 SkASSERT(fBounds.contains(x, y + height - 1));
1017
1018 this->addRun(x, y, alpha, 1);
1019 this->flushRowH(fCurrRow);
1020 y -= fBounds.fTop;
1021 SkASSERT(y == fCurrRow->fY);
1022 fCurrRow->fY = y + height - 1;
1023 }
1024
addRectRun(int x,int y,int width,int height)1025 void addRectRun(int x, int y, int width, int height) {
1026 SkASSERT(fBounds.contains(x + width - 1, y + height - 1));
1027 this->addRun(x, y, 0xFF, width);
1028
1029 // we assum the rect must be all we'll see for these scanlines
1030 // so we ensure our row goes all the way to our right
1031 this->flushRowH(fCurrRow);
1032
1033 y -= fBounds.fTop;
1034 SkASSERT(y == fCurrRow->fY);
1035 fCurrRow->fY = y + height - 1;
1036 }
1037
addAntiRectRun(int x,int y,int width,int height,SkAlpha leftAlpha,SkAlpha rightAlpha)1038 void addAntiRectRun(int x, int y, int width, int height,
1039 SkAlpha leftAlpha, SkAlpha rightAlpha) {
1040 // According to SkBlitter.cpp, no matter whether leftAlpha is 0 or positive,
1041 // we should always consider [x, x+1] as the left-most column and [x+1, x+1+width]
1042 // as the rect with full alpha.
1043 SkASSERT(fBounds.contains(x + width + (rightAlpha > 0 ? 1 : 0),
1044 y + height - 1));
1045 SkASSERT(width >= 0);
1046
1047 // Conceptually we're always adding 3 runs, but we should
1048 // merge or omit them if possible.
1049 if (leftAlpha == 0xFF) {
1050 width++;
1051 } else if (leftAlpha > 0) {
1052 this->addRun(x++, y, leftAlpha, 1);
1053 } else {
1054 // leftAlpha is 0, ignore the left column
1055 x++;
1056 }
1057 if (rightAlpha == 0xFF) {
1058 width++;
1059 }
1060 if (width > 0) {
1061 this->addRun(x, y, 0xFF, width);
1062 }
1063 if (rightAlpha > 0 && rightAlpha < 255) {
1064 this->addRun(x + width, y, rightAlpha, 1);
1065 }
1066
1067 // we assume the rect must be all we'll see for these scanlines
1068 // so we ensure our row goes all the way to our right
1069 this->flushRowH(fCurrRow);
1070
1071 y -= fBounds.fTop;
1072 SkASSERT(y == fCurrRow->fY);
1073 fCurrRow->fY = y + height - 1;
1074 }
1075
finish(SkAAClip * target)1076 bool finish(SkAAClip* target) {
1077 this->flushRow(false);
1078
1079 const Row* row = fRows.begin();
1080 const Row* stop = fRows.end();
1081
1082 size_t dataSize = 0;
1083 while (row < stop) {
1084 dataSize += row->fData->count();
1085 row += 1;
1086 }
1087
1088 if (0 == dataSize) {
1089 return target->setEmpty();
1090 }
1091
1092 SkASSERT(fMinY >= fBounds.fTop);
1093 SkASSERT(fMinY < fBounds.fBottom);
1094 int adjustY = fMinY - fBounds.fTop;
1095 fBounds.fTop = fMinY;
1096
1097 RunHead* head = RunHead::Alloc(fRows.count(), dataSize);
1098 YOffset* yoffset = head->yoffsets();
1099 uint8_t* data = head->data();
1100 uint8_t* baseData = data;
1101
1102 row = fRows.begin();
1103 SkDEBUGCODE(int prevY = row->fY - 1;)
1104 while (row < stop) {
1105 SkASSERT(prevY < row->fY); // must be monotonic
1106 SkDEBUGCODE(prevY = row->fY);
1107
1108 yoffset->fY = row->fY - adjustY;
1109 yoffset->fOffset = SkToU32(data - baseData);
1110 yoffset += 1;
1111
1112 size_t n = row->fData->count();
1113 memcpy(data, row->fData->begin(), n);
1114 #ifdef SK_DEBUG
1115 size_t bytesNeeded = compute_row_length(data, fBounds.width());
1116 SkASSERT(bytesNeeded == n);
1117 #endif
1118 data += n;
1119
1120 row += 1;
1121 }
1122
1123 target->freeRuns();
1124 target->fBounds = fBounds;
1125 target->fRunHead = head;
1126 return target->trimBounds();
1127 }
1128
dump()1129 void dump() {
1130 this->validate();
1131 int y;
1132 for (y = 0; y < fRows.count(); ++y) {
1133 const Row& row = fRows[y];
1134 SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth);
1135 const SkTDArray<uint8_t>& data = *row.fData;
1136 int count = data.count();
1137 SkASSERT(!(count & 1));
1138 const uint8_t* ptr = data.begin();
1139 for (int x = 0; x < count; x += 2) {
1140 SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]);
1141 ptr += 2;
1142 }
1143 SkDebugf("\n");
1144 }
1145 }
1146
validate()1147 void validate() {
1148 #ifdef SK_DEBUG
1149 if (false) { // avoid bit rot, suppress warning
1150 test_count_left_right_zeros();
1151 }
1152 int prevY = -1;
1153 for (int i = 0; i < fRows.count(); ++i) {
1154 const Row& row = fRows[i];
1155 SkASSERT(prevY < row.fY);
1156 SkASSERT(fWidth == row.fWidth);
1157 int count = row.fData->count();
1158 const uint8_t* ptr = row.fData->begin();
1159 SkASSERT(!(count & 1));
1160 int w = 0;
1161 for (int x = 0; x < count; x += 2) {
1162 int n = ptr[0];
1163 SkASSERT(n > 0);
1164 w += n;
1165 SkASSERT(w <= fWidth);
1166 ptr += 2;
1167 }
1168 SkASSERT(w == fWidth);
1169 prevY = row.fY;
1170 }
1171 #endif
1172 }
1173
1174 // only called by BuilderBlitter
setMinY(int y)1175 void setMinY(int y) {
1176 fMinY = y;
1177 }
1178
1179 private:
flushRowH(Row * row)1180 void flushRowH(Row* row) {
1181 // flush current row if needed
1182 if (row->fWidth < fWidth) {
1183 AppendRun(*row->fData, 0, fWidth - row->fWidth);
1184 row->fWidth = fWidth;
1185 }
1186 }
1187
flushRow(bool readyForAnother)1188 Row* flushRow(bool readyForAnother) {
1189 Row* next = nullptr;
1190 int count = fRows.count();
1191 if (count > 0) {
1192 this->flushRowH(&fRows[count - 1]);
1193 }
1194 if (count > 1) {
1195 // are our last two runs the same?
1196 Row* prev = &fRows[count - 2];
1197 Row* curr = &fRows[count - 1];
1198 SkASSERT(prev->fWidth == fWidth);
1199 SkASSERT(curr->fWidth == fWidth);
1200 if (*prev->fData == *curr->fData) {
1201 prev->fY = curr->fY;
1202 if (readyForAnother) {
1203 curr->fData->rewind();
1204 next = curr;
1205 } else {
1206 delete curr->fData;
1207 fRows.removeShuffle(count - 1);
1208 }
1209 } else {
1210 if (readyForAnother) {
1211 next = fRows.append();
1212 next->fData = new SkTDArray<uint8_t>;
1213 }
1214 }
1215 } else {
1216 if (readyForAnother) {
1217 next = fRows.append();
1218 next->fData = new SkTDArray<uint8_t>;
1219 }
1220 }
1221 return next;
1222 }
1223
AppendRun(SkTDArray<uint8_t> & data,U8CPU alpha,int count)1224 static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) {
1225 do {
1226 int n = count;
1227 if (n > 255) {
1228 n = 255;
1229 }
1230 uint8_t* ptr = data.append(2);
1231 ptr[0] = n;
1232 ptr[1] = alpha;
1233 count -= n;
1234 } while (count > 0);
1235 }
1236 };
1237
1238 class SkAAClip::BuilderBlitter : public SkBlitter {
1239 int fLastY;
1240
1241 /*
1242 If we see a gap of 1 or more empty scanlines while building in Y-order,
1243 we inject an explicit empty scanline (alpha==0)
1244
1245 See AAClipTest.cpp : test_path_with_hole()
1246 */
checkForYGap(int y)1247 void checkForYGap(int y) {
1248 SkASSERT(y >= fLastY);
1249 if (fLastY > -SK_MaxS32) {
1250 int gap = y - fLastY;
1251 if (gap > 1) {
1252 fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft);
1253 }
1254 }
1255 fLastY = y;
1256 }
1257
1258 public:
1259
BuilderBlitter(Builder * builder)1260 BuilderBlitter(Builder* builder) {
1261 fBuilder = builder;
1262 fLeft = builder->getBounds().fLeft;
1263 fRight = builder->getBounds().fRight;
1264 fMinY = SK_MaxS32;
1265 fLastY = -SK_MaxS32; // sentinel
1266 }
1267
finish()1268 void finish() {
1269 if (fMinY < SK_MaxS32) {
1270 fBuilder->setMinY(fMinY);
1271 }
1272 }
1273
1274 /**
1275 Must evaluate clips in scan-line order, so don't want to allow blitV(),
1276 but an AAClip can be clipped down to a single pixel wide, so we
1277 must support it (given AntiRect semantics: minimum width is 2).
1278 Instead we'll rely on the runtime asserts to guarantee Y monotonicity;
1279 any failure cases that misses may have minor artifacts.
1280 */
blitV(int x,int y,int height,SkAlpha alpha)1281 void blitV(int x, int y, int height, SkAlpha alpha) override {
1282 if (height == 1) {
1283 // We're still in scan-line order if height is 1
1284 // This is useful for Analytic AA
1285 const SkAlpha alphas[2] = {alpha, 0};
1286 const int16_t runs[2] = {1, 0};
1287 this->blitAntiH(x, y, alphas, runs);
1288 } else {
1289 this->recordMinY(y);
1290 fBuilder->addColumn(x, y, alpha, height);
1291 fLastY = y + height - 1;
1292 }
1293 }
1294
blitRect(int x,int y,int width,int height)1295 void blitRect(int x, int y, int width, int height) override {
1296 this->recordMinY(y);
1297 this->checkForYGap(y);
1298 fBuilder->addRectRun(x, y, width, height);
1299 fLastY = y + height - 1;
1300 }
1301
blitAntiRect(int x,int y,int width,int height,SkAlpha leftAlpha,SkAlpha rightAlpha)1302 virtual void blitAntiRect(int x, int y, int width, int height,
1303 SkAlpha leftAlpha, SkAlpha rightAlpha) override {
1304 this->recordMinY(y);
1305 this->checkForYGap(y);
1306 fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha);
1307 fLastY = y + height - 1;
1308 }
1309
blitMask(const SkMask &,const SkIRect & clip)1310 void blitMask(const SkMask&, const SkIRect& clip) override
1311 { unexpected(); }
1312
justAnOpaqueColor(uint32_t *)1313 const SkPixmap* justAnOpaqueColor(uint32_t*) override {
1314 return nullptr;
1315 }
1316
blitH(int x,int y,int width)1317 void blitH(int x, int y, int width) override {
1318 this->recordMinY(y);
1319 this->checkForYGap(y);
1320 fBuilder->addRun(x, y, 0xFF, width);
1321 }
1322
blitAntiH(int x,int y,const SkAlpha alpha[],const int16_t runs[])1323 virtual void blitAntiH(int x, int y, const SkAlpha alpha[],
1324 const int16_t runs[]) override {
1325 this->recordMinY(y);
1326 this->checkForYGap(y);
1327 for (;;) {
1328 int count = *runs;
1329 if (count <= 0) {
1330 return;
1331 }
1332
1333 // The supersampler's buffer can be the width of the device, so
1334 // we may have to trim the run to our bounds. Previously, we assert that
1335 // the extra spans are always alpha==0.
1336 // However, the analytic AA is too sensitive to precision errors
1337 // so it may have extra spans with very tiny alpha because after several
1338 // arithmatic operations, the edge may bleed the path boundary a little bit.
1339 // Therefore, instead of always asserting alpha==0, we assert alpha < 0x10.
1340 int localX = x;
1341 int localCount = count;
1342 if (x < fLeft) {
1343 SkASSERT(0x10 > *alpha);
1344 int gap = fLeft - x;
1345 SkASSERT(gap <= count);
1346 localX += gap;
1347 localCount -= gap;
1348 }
1349 int right = x + count;
1350 if (right > fRight) {
1351 SkASSERT(0x10 > *alpha);
1352 localCount -= right - fRight;
1353 SkASSERT(localCount >= 0);
1354 }
1355
1356 if (localCount) {
1357 fBuilder->addRun(localX, y, *alpha, localCount);
1358 }
1359 // Next run
1360 runs += count;
1361 alpha += count;
1362 x += count;
1363 }
1364 }
1365
1366 private:
1367 Builder* fBuilder;
1368 int fLeft; // cache of builder's bounds' left edge
1369 int fRight;
1370 int fMinY;
1371
1372 /*
1373 * We track this, in case the scan converter skipped some number of
1374 * scanlines at the (relative to the bounds it was given). This allows
1375 * the builder, during its finish, to trip its bounds down to the "real"
1376 * top.
1377 */
recordMinY(int y)1378 void recordMinY(int y) {
1379 if (y < fMinY) {
1380 fMinY = y;
1381 }
1382 }
1383
unexpected()1384 void unexpected() {
1385 SkDebugf("---- did not expect to get called here");
1386 sk_throw();
1387 }
1388 };
1389
setPath(const SkPath & path,const SkRegion * clip,bool doAA)1390 bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) {
1391 AUTO_AACLIP_VALIDATE(*this);
1392
1393 if (clip && clip->isEmpty()) {
1394 return this->setEmpty();
1395 }
1396
1397 SkIRect ibounds;
1398 path.getBounds().roundOut(&ibounds);
1399
1400 SkRegion tmpClip;
1401 if (nullptr == clip) {
1402 tmpClip.setRect(ibounds);
1403 clip = &tmpClip;
1404 }
1405
1406 // Since we assert that the BuilderBlitter will never blit outside the intersection
1407 // of clip and ibounds, we create this snugClip to be that intersection and send it
1408 // to the scan-converter.
1409 SkRegion snugClip(*clip);
1410
1411 if (path.isInverseFillType()) {
1412 ibounds = clip->getBounds();
1413 } else {
1414 if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) {
1415 return this->setEmpty();
1416 }
1417 snugClip.op(ibounds, SkRegion::kIntersect_Op);
1418 }
1419
1420 Builder builder(ibounds);
1421 BuilderBlitter blitter(&builder);
1422
1423 if (doAA) {
1424 if (gSkUseAnalyticAA.load()) {
1425 SkScan::AAAFillPath(path, snugClip, &blitter, true);
1426 } else {
1427 SkScan::AntiFillPath(path, snugClip, &blitter, true);
1428 }
1429 } else {
1430 SkScan::FillPath(path, snugClip, &blitter);
1431 }
1432
1433 blitter.finish();
1434 return builder.finish(this);
1435 }
1436
1437 ///////////////////////////////////////////////////////////////////////////////
1438
1439 typedef void (*RowProc)(SkAAClip::Builder&, int bottom,
1440 const uint8_t* rowA, const SkIRect& rectA,
1441 const uint8_t* rowB, const SkIRect& rectB);
1442
1443 typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB);
1444
sectAlphaProc(U8CPU alphaA,U8CPU alphaB)1445 static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1446 // Multiply
1447 return SkMulDiv255Round(alphaA, alphaB);
1448 }
1449
unionAlphaProc(U8CPU alphaA,U8CPU alphaB)1450 static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1451 // SrcOver
1452 return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB);
1453 }
1454
diffAlphaProc(U8CPU alphaA,U8CPU alphaB)1455 static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1456 // SrcOut
1457 return SkMulDiv255Round(alphaA, 0xFF - alphaB);
1458 }
1459
xorAlphaProc(U8CPU alphaA,U8CPU alphaB)1460 static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1461 // XOR
1462 return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB);
1463 }
1464
find_alpha_proc(SkRegion::Op op)1465 static AlphaProc find_alpha_proc(SkRegion::Op op) {
1466 switch (op) {
1467 case SkRegion::kIntersect_Op:
1468 return sectAlphaProc;
1469 case SkRegion::kDifference_Op:
1470 return diffAlphaProc;
1471 case SkRegion::kUnion_Op:
1472 return unionAlphaProc;
1473 case SkRegion::kXOR_Op:
1474 return xorAlphaProc;
1475 default:
1476 SkDEBUGFAIL("unexpected region op");
1477 return sectAlphaProc;
1478 }
1479 }
1480
1481 class RowIter {
1482 public:
RowIter(const uint8_t * row,const SkIRect & bounds)1483 RowIter(const uint8_t* row, const SkIRect& bounds) {
1484 fRow = row;
1485 fLeft = bounds.fLeft;
1486 fBoundsRight = bounds.fRight;
1487 if (row) {
1488 fRight = bounds.fLeft + row[0];
1489 SkASSERT(fRight <= fBoundsRight);
1490 fAlpha = row[1];
1491 fDone = false;
1492 } else {
1493 fDone = true;
1494 fRight = kMaxInt32;
1495 fAlpha = 0;
1496 }
1497 }
1498
done() const1499 bool done() const { return fDone; }
left() const1500 int left() const { return fLeft; }
right() const1501 int right() const { return fRight; }
alpha() const1502 U8CPU alpha() const { return fAlpha; }
next()1503 void next() {
1504 if (!fDone) {
1505 fLeft = fRight;
1506 if (fRight == fBoundsRight) {
1507 fDone = true;
1508 fRight = kMaxInt32;
1509 fAlpha = 0;
1510 } else {
1511 fRow += 2;
1512 fRight += fRow[0];
1513 fAlpha = fRow[1];
1514 SkASSERT(fRight <= fBoundsRight);
1515 }
1516 }
1517 }
1518
1519 private:
1520 const uint8_t* fRow;
1521 int fLeft;
1522 int fRight;
1523 int fBoundsRight;
1524 bool fDone;
1525 uint8_t fAlpha;
1526 };
1527
adjust_row(RowIter & iter,int & leftA,int & riteA,int rite)1528 static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) {
1529 if (rite == riteA) {
1530 iter.next();
1531 leftA = iter.left();
1532 riteA = iter.right();
1533 }
1534 }
1535
1536 #if 0 // UNUSED
1537 static bool intersect(int& min, int& max, int boundsMin, int boundsMax) {
1538 SkASSERT(min < max);
1539 SkASSERT(boundsMin < boundsMax);
1540 if (min >= boundsMax || max <= boundsMin) {
1541 return false;
1542 }
1543 if (min < boundsMin) {
1544 min = boundsMin;
1545 }
1546 if (max > boundsMax) {
1547 max = boundsMax;
1548 }
1549 return true;
1550 }
1551 #endif
1552
operatorX(SkAAClip::Builder & builder,int lastY,RowIter & iterA,RowIter & iterB,AlphaProc proc,const SkIRect & bounds)1553 static void operatorX(SkAAClip::Builder& builder, int lastY,
1554 RowIter& iterA, RowIter& iterB,
1555 AlphaProc proc, const SkIRect& bounds) {
1556 int leftA = iterA.left();
1557 int riteA = iterA.right();
1558 int leftB = iterB.left();
1559 int riteB = iterB.right();
1560
1561 int prevRite = bounds.fLeft;
1562
1563 do {
1564 U8CPU alphaA = 0;
1565 U8CPU alphaB = 0;
1566 int left, rite;
1567
1568 if (leftA < leftB) {
1569 left = leftA;
1570 alphaA = iterA.alpha();
1571 if (riteA <= leftB) {
1572 rite = riteA;
1573 } else {
1574 rite = leftA = leftB;
1575 }
1576 } else if (leftB < leftA) {
1577 left = leftB;
1578 alphaB = iterB.alpha();
1579 if (riteB <= leftA) {
1580 rite = riteB;
1581 } else {
1582 rite = leftB = leftA;
1583 }
1584 } else {
1585 left = leftA; // or leftB, since leftA == leftB
1586 rite = leftA = leftB = SkMin32(riteA, riteB);
1587 alphaA = iterA.alpha();
1588 alphaB = iterB.alpha();
1589 }
1590
1591 if (left >= bounds.fRight) {
1592 break;
1593 }
1594 if (rite > bounds.fRight) {
1595 rite = bounds.fRight;
1596 }
1597
1598 if (left >= bounds.fLeft) {
1599 SkASSERT(rite > left);
1600 builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left);
1601 prevRite = rite;
1602 }
1603
1604 adjust_row(iterA, leftA, riteA, rite);
1605 adjust_row(iterB, leftB, riteB, rite);
1606 } while (!iterA.done() || !iterB.done());
1607
1608 if (prevRite < bounds.fRight) {
1609 builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite);
1610 }
1611 }
1612
adjust_iter(SkAAClip::Iter & iter,int & topA,int & botA,int bot)1613 static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) {
1614 if (bot == botA) {
1615 iter.next();
1616 topA = botA;
1617 SkASSERT(botA == iter.top());
1618 botA = iter.bottom();
1619 }
1620 }
1621
operateY(SkAAClip::Builder & builder,const SkAAClip & A,const SkAAClip & B,SkRegion::Op op)1622 static void operateY(SkAAClip::Builder& builder, const SkAAClip& A,
1623 const SkAAClip& B, SkRegion::Op op) {
1624 AlphaProc proc = find_alpha_proc(op);
1625 const SkIRect& bounds = builder.getBounds();
1626
1627 SkAAClip::Iter iterA(A);
1628 SkAAClip::Iter iterB(B);
1629
1630 SkASSERT(!iterA.done());
1631 int topA = iterA.top();
1632 int botA = iterA.bottom();
1633 SkASSERT(!iterB.done());
1634 int topB = iterB.top();
1635 int botB = iterB.bottom();
1636
1637 do {
1638 const uint8_t* rowA = nullptr;
1639 const uint8_t* rowB = nullptr;
1640 int top, bot;
1641
1642 if (topA < topB) {
1643 top = topA;
1644 rowA = iterA.data();
1645 if (botA <= topB) {
1646 bot = botA;
1647 } else {
1648 bot = topA = topB;
1649 }
1650
1651 } else if (topB < topA) {
1652 top = topB;
1653 rowB = iterB.data();
1654 if (botB <= topA) {
1655 bot = botB;
1656 } else {
1657 bot = topB = topA;
1658 }
1659 } else {
1660 top = topA; // or topB, since topA == topB
1661 bot = topA = topB = SkMin32(botA, botB);
1662 rowA = iterA.data();
1663 rowB = iterB.data();
1664 }
1665
1666 if (top >= bounds.fBottom) {
1667 break;
1668 }
1669
1670 if (bot > bounds.fBottom) {
1671 bot = bounds.fBottom;
1672 }
1673 SkASSERT(top < bot);
1674
1675 if (!rowA && !rowB) {
1676 builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width());
1677 } else if (top >= bounds.fTop) {
1678 SkASSERT(bot <= bounds.fBottom);
1679 RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds);
1680 RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds);
1681 operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds);
1682 }
1683
1684 adjust_iter(iterA, topA, botA, bot);
1685 adjust_iter(iterB, topB, botB, bot);
1686 } while (!iterA.done() || !iterB.done());
1687 }
1688
op(const SkAAClip & clipAOrig,const SkAAClip & clipBOrig,SkRegion::Op op)1689 bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig,
1690 SkRegion::Op op) {
1691 AUTO_AACLIP_VALIDATE(*this);
1692
1693 if (SkRegion::kReplace_Op == op) {
1694 return this->set(clipBOrig);
1695 }
1696
1697 const SkAAClip* clipA = &clipAOrig;
1698 const SkAAClip* clipB = &clipBOrig;
1699
1700 if (SkRegion::kReverseDifference_Op == op) {
1701 SkTSwap(clipA, clipB);
1702 op = SkRegion::kDifference_Op;
1703 }
1704
1705 bool a_empty = clipA->isEmpty();
1706 bool b_empty = clipB->isEmpty();
1707
1708 SkIRect bounds;
1709 switch (op) {
1710 case SkRegion::kDifference_Op:
1711 if (a_empty) {
1712 return this->setEmpty();
1713 }
1714 if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) {
1715 return this->set(*clipA);
1716 }
1717 bounds = clipA->fBounds;
1718 break;
1719
1720 case SkRegion::kIntersect_Op:
1721 if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds,
1722 clipB->fBounds)) {
1723 return this->setEmpty();
1724 }
1725 break;
1726
1727 case SkRegion::kUnion_Op:
1728 case SkRegion::kXOR_Op:
1729 if (a_empty) {
1730 return this->set(*clipB);
1731 }
1732 if (b_empty) {
1733 return this->set(*clipA);
1734 }
1735 bounds = clipA->fBounds;
1736 bounds.join(clipB->fBounds);
1737 break;
1738
1739 default:
1740 SkDEBUGFAIL("unknown region op");
1741 return !this->isEmpty();
1742 }
1743
1744 SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
1745 SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
1746
1747 Builder builder(bounds);
1748 operateY(builder, *clipA, *clipB, op);
1749
1750 return builder.finish(this);
1751 }
1752
1753 /*
1754 * It can be expensive to build a local aaclip before applying the op, so
1755 * we first see if we can restrict the bounds of new rect to our current
1756 * bounds, or note that the new rect subsumes our current clip.
1757 */
1758
op(const SkIRect & rOrig,SkRegion::Op op)1759 bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) {
1760 SkIRect rStorage;
1761 const SkIRect* r = &rOrig;
1762
1763 switch (op) {
1764 case SkRegion::kIntersect_Op:
1765 if (!rStorage.intersect(rOrig, fBounds)) {
1766 // no overlap, so we're empty
1767 return this->setEmpty();
1768 }
1769 if (rStorage == fBounds) {
1770 // we were wholly inside the rect, no change
1771 return !this->isEmpty();
1772 }
1773 if (this->quickContains(rStorage)) {
1774 // the intersection is wholly inside us, we're a rect
1775 return this->setRect(rStorage);
1776 }
1777 r = &rStorage; // use the intersected bounds
1778 break;
1779 case SkRegion::kDifference_Op:
1780 break;
1781 case SkRegion::kUnion_Op:
1782 if (rOrig.contains(fBounds)) {
1783 return this->setRect(rOrig);
1784 }
1785 break;
1786 default:
1787 break;
1788 }
1789
1790 SkAAClip clip;
1791 clip.setRect(*r);
1792 return this->op(*this, clip, op);
1793 }
1794
op(const SkRect & rOrig,SkRegion::Op op,bool doAA)1795 bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) {
1796 SkRect rStorage, boundsStorage;
1797 const SkRect* r = &rOrig;
1798
1799 boundsStorage.set(fBounds);
1800 switch (op) {
1801 case SkRegion::kIntersect_Op:
1802 case SkRegion::kDifference_Op:
1803 if (!rStorage.intersect(rOrig, boundsStorage)) {
1804 if (SkRegion::kIntersect_Op == op) {
1805 return this->setEmpty();
1806 } else { // kDifference
1807 return !this->isEmpty();
1808 }
1809 }
1810 r = &rStorage; // use the intersected bounds
1811 break;
1812 case SkRegion::kUnion_Op:
1813 if (rOrig.contains(boundsStorage)) {
1814 return this->setRect(rOrig);
1815 }
1816 break;
1817 default:
1818 break;
1819 }
1820
1821 SkAAClip clip;
1822 clip.setRect(*r, doAA);
1823 return this->op(*this, clip, op);
1824 }
1825
op(const SkAAClip & clip,SkRegion::Op op)1826 bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) {
1827 return this->op(*this, clip, op);
1828 }
1829
1830 ///////////////////////////////////////////////////////////////////////////////
1831
translate(int dx,int dy,SkAAClip * dst) const1832 bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const {
1833 if (nullptr == dst) {
1834 return !this->isEmpty();
1835 }
1836
1837 if (this->isEmpty()) {
1838 return dst->setEmpty();
1839 }
1840
1841 if (this != dst) {
1842 sk_atomic_inc(&fRunHead->fRefCnt);
1843 dst->freeRuns();
1844 dst->fRunHead = fRunHead;
1845 dst->fBounds = fBounds;
1846 }
1847 dst->fBounds.offset(dx, dy);
1848 return true;
1849 }
1850
expand_row_to_mask(uint8_t * SK_RESTRICT mask,const uint8_t * SK_RESTRICT row,int width)1851 static void expand_row_to_mask(uint8_t* SK_RESTRICT mask,
1852 const uint8_t* SK_RESTRICT row,
1853 int width) {
1854 while (width > 0) {
1855 int n = row[0];
1856 SkASSERT(width >= n);
1857 memset(mask, row[1], n);
1858 mask += n;
1859 row += 2;
1860 width -= n;
1861 }
1862 SkASSERT(0 == width);
1863 }
1864
copyToMask(SkMask * mask) const1865 void SkAAClip::copyToMask(SkMask* mask) const {
1866 mask->fFormat = SkMask::kA8_Format;
1867 if (this->isEmpty()) {
1868 mask->fBounds.setEmpty();
1869 mask->fImage = nullptr;
1870 mask->fRowBytes = 0;
1871 return;
1872 }
1873
1874 mask->fBounds = fBounds;
1875 mask->fRowBytes = fBounds.width();
1876 size_t size = mask->computeImageSize();
1877 mask->fImage = SkMask::AllocImage(size);
1878
1879 Iter iter(*this);
1880 uint8_t* dst = mask->fImage;
1881 const int width = fBounds.width();
1882
1883 int y = fBounds.fTop;
1884 while (!iter.done()) {
1885 do {
1886 expand_row_to_mask(dst, iter.data(), width);
1887 dst += mask->fRowBytes;
1888 } while (++y < iter.bottom());
1889 iter.next();
1890 }
1891 }
1892
1893 ///////////////////////////////////////////////////////////////////////////////
1894 ///////////////////////////////////////////////////////////////////////////////
1895
expandToRuns(const uint8_t * SK_RESTRICT data,int initialCount,int width,int16_t * SK_RESTRICT runs,SkAlpha * SK_RESTRICT aa)1896 static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width,
1897 int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) {
1898 // we don't read our initial n from data, since the caller may have had to
1899 // clip it, hence the initialCount parameter.
1900 int n = initialCount;
1901 for (;;) {
1902 if (n > width) {
1903 n = width;
1904 }
1905 SkASSERT(n > 0);
1906 runs[0] = n;
1907 runs += n;
1908
1909 aa[0] = data[1];
1910 aa += n;
1911
1912 data += 2;
1913 width -= n;
1914 if (0 == width) {
1915 break;
1916 }
1917 // load the next count
1918 n = data[0];
1919 }
1920 runs[0] = 0; // sentinel
1921 }
1922
~SkAAClipBlitter()1923 SkAAClipBlitter::~SkAAClipBlitter() {
1924 sk_free(fScanlineScratch);
1925 }
1926
ensureRunsAndAA()1927 void SkAAClipBlitter::ensureRunsAndAA() {
1928 if (nullptr == fScanlineScratch) {
1929 // add 1 so we can store the terminating run count of 0
1930 int count = fAAClipBounds.width() + 1;
1931 // we use this either for fRuns + fAA, or a scaline of a mask
1932 // which may be as deep as 32bits
1933 fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor));
1934 fRuns = (int16_t*)fScanlineScratch;
1935 fAA = (SkAlpha*)(fRuns + count);
1936 }
1937 }
1938
blitH(int x,int y,int width)1939 void SkAAClipBlitter::blitH(int x, int y, int width) {
1940 SkASSERT(width > 0);
1941 SkASSERT(fAAClipBounds.contains(x, y));
1942 SkASSERT(fAAClipBounds.contains(x + width - 1, y));
1943
1944 const uint8_t* row = fAAClip->findRow(y);
1945 int initialCount;
1946 row = fAAClip->findX(row, x, &initialCount);
1947
1948 if (initialCount >= width) {
1949 SkAlpha alpha = row[1];
1950 if (0 == alpha) {
1951 return;
1952 }
1953 if (0xFF == alpha) {
1954 fBlitter->blitH(x, y, width);
1955 return;
1956 }
1957 }
1958
1959 this->ensureRunsAndAA();
1960 expandToRuns(row, initialCount, width, fRuns, fAA);
1961
1962 fBlitter->blitAntiH(x, y, fAA, fRuns);
1963 }
1964
merge(const uint8_t * SK_RESTRICT row,int rowN,const SkAlpha * SK_RESTRICT srcAA,const int16_t * SK_RESTRICT srcRuns,SkAlpha * SK_RESTRICT dstAA,int16_t * SK_RESTRICT dstRuns,int width)1965 static void merge(const uint8_t* SK_RESTRICT row, int rowN,
1966 const SkAlpha* SK_RESTRICT srcAA,
1967 const int16_t* SK_RESTRICT srcRuns,
1968 SkAlpha* SK_RESTRICT dstAA,
1969 int16_t* SK_RESTRICT dstRuns,
1970 int width) {
1971 SkDEBUGCODE(int accumulated = 0;)
1972 int srcN = srcRuns[0];
1973 // do we need this check?
1974 if (0 == srcN) {
1975 return;
1976 }
1977
1978 for (;;) {
1979 SkASSERT(rowN > 0);
1980 SkASSERT(srcN > 0);
1981
1982 unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]);
1983 int minN = SkMin32(srcN, rowN);
1984 dstRuns[0] = minN;
1985 dstRuns += minN;
1986 dstAA[0] = newAlpha;
1987 dstAA += minN;
1988
1989 if (0 == (srcN -= minN)) {
1990 srcN = srcRuns[0]; // refresh
1991 srcRuns += srcN;
1992 srcAA += srcN;
1993 srcN = srcRuns[0]; // reload
1994 if (0 == srcN) {
1995 break;
1996 }
1997 }
1998 if (0 == (rowN -= minN)) {
1999 row += 2;
2000 rowN = row[0]; // reload
2001 }
2002
2003 SkDEBUGCODE(accumulated += minN;)
2004 SkASSERT(accumulated <= width);
2005 }
2006 dstRuns[0] = 0;
2007 }
2008
blitAntiH(int x,int y,const SkAlpha aa[],const int16_t runs[])2009 void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
2010 const int16_t runs[]) {
2011
2012 const uint8_t* row = fAAClip->findRow(y);
2013 int initialCount;
2014 row = fAAClip->findX(row, x, &initialCount);
2015
2016 this->ensureRunsAndAA();
2017
2018 merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width());
2019 fBlitter->blitAntiH(x, y, fAA, fRuns);
2020 }
2021
blitV(int x,int y,int height,SkAlpha alpha)2022 void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
2023 if (fAAClip->quickContains(x, y, x + 1, y + height)) {
2024 fBlitter->blitV(x, y, height, alpha);
2025 return;
2026 }
2027
2028 for (;;) {
2029 int lastY SK_INIT_TO_AVOID_WARNING;
2030 const uint8_t* row = fAAClip->findRow(y, &lastY);
2031 int dy = lastY - y + 1;
2032 if (dy > height) {
2033 dy = height;
2034 }
2035 height -= dy;
2036
2037 row = fAAClip->findX(row, x);
2038 SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]);
2039 if (newAlpha) {
2040 fBlitter->blitV(x, y, dy, newAlpha);
2041 }
2042 SkASSERT(height >= 0);
2043 if (height <= 0) {
2044 break;
2045 }
2046 y = lastY + 1;
2047 }
2048 }
2049
blitRect(int x,int y,int width,int height)2050 void SkAAClipBlitter::blitRect(int x, int y, int width, int height) {
2051 if (fAAClip->quickContains(x, y, x + width, y + height)) {
2052 fBlitter->blitRect(x, y, width, height);
2053 return;
2054 }
2055
2056 while (--height >= 0) {
2057 this->blitH(x, y, width);
2058 y += 1;
2059 }
2060 }
2061
2062 typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row,
2063 int initialRowCount, void* dst);
2064
small_memcpy(void * dst,const void * src,size_t n)2065 static void small_memcpy(void* dst, const void* src, size_t n) {
2066 memcpy(dst, src, n);
2067 }
2068
small_bzero(void * dst,size_t n)2069 static void small_bzero(void* dst, size_t n) {
2070 sk_bzero(dst, n);
2071 }
2072
mergeOne(uint8_t value,unsigned alpha)2073 static inline uint8_t mergeOne(uint8_t value, unsigned alpha) {
2074 return SkMulDiv255Round(value, alpha);
2075 }
2076
mergeOne(uint16_t value,unsigned alpha)2077 static inline uint16_t mergeOne(uint16_t value, unsigned alpha) {
2078 unsigned r = SkGetPackedR16(value);
2079 unsigned g = SkGetPackedG16(value);
2080 unsigned b = SkGetPackedB16(value);
2081 return SkPackRGB16(SkMulDiv255Round(r, alpha),
2082 SkMulDiv255Round(g, alpha),
2083 SkMulDiv255Round(b, alpha));
2084 }
2085
2086 template <typename T>
mergeT(const void * inSrc,int srcN,const uint8_t * SK_RESTRICT row,int rowN,void * inDst)2087 void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) {
2088 const T* SK_RESTRICT src = static_cast<const T*>(inSrc);
2089 T* SK_RESTRICT dst = static_cast<T*>(inDst);
2090 for (;;) {
2091 SkASSERT(rowN > 0);
2092 SkASSERT(srcN > 0);
2093
2094 int n = SkMin32(rowN, srcN);
2095 unsigned rowA = row[1];
2096 if (0xFF == rowA) {
2097 small_memcpy(dst, src, n * sizeof(T));
2098 } else if (0 == rowA) {
2099 small_bzero(dst, n * sizeof(T));
2100 } else {
2101 for (int i = 0; i < n; ++i) {
2102 dst[i] = mergeOne(src[i], rowA);
2103 }
2104 }
2105
2106 if (0 == (srcN -= n)) {
2107 break;
2108 }
2109
2110 src += n;
2111 dst += n;
2112
2113 SkASSERT(rowN == n);
2114 row += 2;
2115 rowN = row[0];
2116 }
2117 }
2118
find_merge_aa_proc(SkMask::Format format)2119 static MergeAAProc find_merge_aa_proc(SkMask::Format format) {
2120 switch (format) {
2121 case SkMask::kBW_Format:
2122 SkDEBUGFAIL("unsupported");
2123 return nullptr;
2124 case SkMask::kA8_Format:
2125 case SkMask::k3D_Format:
2126 return mergeT<uint8_t> ;
2127 case SkMask::kLCD16_Format:
2128 return mergeT<uint16_t>;
2129 default:
2130 SkDEBUGFAIL("unsupported");
2131 return nullptr;
2132 }
2133 }
2134
bit2byte(int bitInAByte)2135 static U8CPU bit2byte(int bitInAByte) {
2136 SkASSERT(bitInAByte <= 0xFF);
2137 // negation turns any non-zero into 0xFFFFFF??, so we just shift down
2138 // some value >= 8 to get a full FF value
2139 return -bitInAByte >> 8;
2140 }
2141
upscaleBW2A8(SkMask * dstMask,const SkMask & srcMask)2142 static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) {
2143 SkASSERT(SkMask::kBW_Format == srcMask.fFormat);
2144 SkASSERT(SkMask::kA8_Format == dstMask->fFormat);
2145
2146 const int width = srcMask.fBounds.width();
2147 const int height = srcMask.fBounds.height();
2148
2149 const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage;
2150 const size_t srcRB = srcMask.fRowBytes;
2151 uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage;
2152 const size_t dstRB = dstMask->fRowBytes;
2153
2154 const int wholeBytes = width >> 3;
2155 const int leftOverBits = width & 7;
2156
2157 for (int y = 0; y < height; ++y) {
2158 uint8_t* SK_RESTRICT d = dst;
2159 for (int i = 0; i < wholeBytes; ++i) {
2160 int srcByte = src[i];
2161 d[0] = bit2byte(srcByte & (1 << 7));
2162 d[1] = bit2byte(srcByte & (1 << 6));
2163 d[2] = bit2byte(srcByte & (1 << 5));
2164 d[3] = bit2byte(srcByte & (1 << 4));
2165 d[4] = bit2byte(srcByte & (1 << 3));
2166 d[5] = bit2byte(srcByte & (1 << 2));
2167 d[6] = bit2byte(srcByte & (1 << 1));
2168 d[7] = bit2byte(srcByte & (1 << 0));
2169 d += 8;
2170 }
2171 if (leftOverBits) {
2172 int srcByte = src[wholeBytes];
2173 for (int x = 0; x < leftOverBits; ++x) {
2174 *d++ = bit2byte(srcByte & 0x80);
2175 srcByte <<= 1;
2176 }
2177 }
2178 src += srcRB;
2179 dst += dstRB;
2180 }
2181 }
2182
blitMask(const SkMask & origMask,const SkIRect & clip)2183 void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) {
2184 SkASSERT(fAAClip->getBounds().contains(clip));
2185
2186 if (fAAClip->quickContains(clip)) {
2187 fBlitter->blitMask(origMask, clip);
2188 return;
2189 }
2190
2191 const SkMask* mask = &origMask;
2192
2193 // if we're BW, we need to upscale to A8 (ugh)
2194 SkMask grayMask;
2195 if (SkMask::kBW_Format == origMask.fFormat) {
2196 grayMask.fFormat = SkMask::kA8_Format;
2197 grayMask.fBounds = origMask.fBounds;
2198 grayMask.fRowBytes = origMask.fBounds.width();
2199 size_t size = grayMask.computeImageSize();
2200 grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size,
2201 SkAutoMalloc::kReuse_OnShrink);
2202
2203 upscaleBW2A8(&grayMask, origMask);
2204 mask = &grayMask;
2205 }
2206
2207 this->ensureRunsAndAA();
2208
2209 // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D
2210 // data into a temp block to support it better (ugh)
2211
2212 const void* src = mask->getAddr(clip.fLeft, clip.fTop);
2213 const size_t srcRB = mask->fRowBytes;
2214 const int width = clip.width();
2215 MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat);
2216
2217 SkMask rowMask;
2218 rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat;
2219 rowMask.fBounds.fLeft = clip.fLeft;
2220 rowMask.fBounds.fRight = clip.fRight;
2221 rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1
2222 rowMask.fImage = (uint8_t*)fScanlineScratch;
2223
2224 int y = clip.fTop;
2225 const int stopY = y + clip.height();
2226
2227 do {
2228 int localStopY SK_INIT_TO_AVOID_WARNING;
2229 const uint8_t* row = fAAClip->findRow(y, &localStopY);
2230 // findRow returns last Y, not stop, so we add 1
2231 localStopY = SkMin32(localStopY + 1, stopY);
2232
2233 int initialCount;
2234 row = fAAClip->findX(row, clip.fLeft, &initialCount);
2235 do {
2236 mergeProc(src, width, row, initialCount, rowMask.fImage);
2237 rowMask.fBounds.fTop = y;
2238 rowMask.fBounds.fBottom = y + 1;
2239 fBlitter->blitMask(rowMask, rowMask.fBounds);
2240 src = (const void*)((const char*)src + srcRB);
2241 } while (++y < localStopY);
2242 } while (y < stopY);
2243 }
2244
justAnOpaqueColor(uint32_t * value)2245 const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) {
2246 return nullptr;
2247 }
2248