1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /********************************************************************
4 * COPYRIGHT:
5 * Copyright (c) 1997-2016, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 ********************************************************************/
8
9 #include "unicode/utypes.h"
10
11 #if !UCONFIG_NO_NORMALIZATION
12
13 #include "unicode/uchar.h"
14 #include "unicode/errorcode.h"
15 #include "unicode/normlzr.h"
16 #include "unicode/uniset.h"
17 #include "unicode/usetiter.h"
18 #include "unicode/schriter.h"
19 #include "unicode/utf16.h"
20 #include "cmemory.h"
21 #include "cstring.h"
22 #include "normalizer2impl.h"
23 #include "tstnorm.h"
24
25 #define ARRAY_LENGTH(array) UPRV_LENGTHOF(array)
26
27 #define CASE(id,test) case id: \
28 name = #test; \
29 if (exec) { \
30 logln(#test "---"); \
31 logln((UnicodeString)""); \
32 test(); \
33 } \
34 break
35
36 static UErrorCode status = U_ZERO_ERROR;
37
runIndexedTest(int32_t index,UBool exec,const char * & name,char *)38 void BasicNormalizerTest::runIndexedTest(int32_t index, UBool exec,
39 const char* &name, char* /*par*/) {
40 switch (index) {
41 CASE(0,TestDecomp);
42 CASE(1,TestCompatDecomp);
43 CASE(2,TestCanonCompose);
44 CASE(3,TestCompatCompose);
45 CASE(4,TestPrevious);
46 CASE(5,TestHangulDecomp);
47 CASE(6,TestHangulCompose);
48 CASE(7,TestTibetan);
49 CASE(8,TestCompositionExclusion);
50 CASE(9,TestZeroIndex);
51 CASE(10,TestVerisign);
52 CASE(11,TestPreviousNext);
53 CASE(12,TestNormalizerAPI);
54 CASE(13,TestConcatenate);
55 CASE(14,FindFoldFCDExceptions);
56 CASE(15,TestCompare);
57 CASE(16,TestSkippable);
58 #if !UCONFIG_NO_FILE_IO && !UCONFIG_NO_LEGACY_CONVERSION
59 CASE(17,TestCustomComp);
60 CASE(18,TestCustomFCC);
61 #endif
62 CASE(19,TestFilteredNormalizer2Coverage);
63 default: name = ""; break;
64 }
65 }
66
67 /**
68 * Convert Java-style strings with \u Unicode escapes into UnicodeString objects
69 */
str(const char * input)70 static UnicodeString str(const char *input)
71 {
72 UnicodeString str(input, ""); // Invariant conversion
73 return str.unescape();
74 }
75
76
BasicNormalizerTest()77 BasicNormalizerTest::BasicNormalizerTest()
78 {
79 // canonTest
80 // Input Decomposed Composed
81
82 canonTests[0][0] = str("cat"); canonTests[0][1] = str("cat"); canonTests[0][2] = str("cat");
83
84 canonTests[1][0] = str("\\u00e0ardvark"); canonTests[1][1] = str("a\\u0300ardvark"); canonTests[1][2] = str("\\u00e0ardvark");
85
86 canonTests[2][0] = str("\\u1e0a"); canonTests[2][1] = str("D\\u0307"); canonTests[2][2] = str("\\u1e0a"); // D-dot_above
87
88 canonTests[3][0] = str("D\\u0307"); canonTests[3][1] = str("D\\u0307"); canonTests[3][2] = str("\\u1e0a"); // D dot_above
89
90 canonTests[4][0] = str("\\u1e0c\\u0307"); canonTests[4][1] = str("D\\u0323\\u0307"); canonTests[4][2] = str("\\u1e0c\\u0307"); // D-dot_below dot_above
91
92 canonTests[5][0] = str("\\u1e0a\\u0323"); canonTests[5][1] = str("D\\u0323\\u0307"); canonTests[5][2] = str("\\u1e0c\\u0307"); // D-dot_above dot_below
93
94 canonTests[6][0] = str("D\\u0307\\u0323"); canonTests[6][1] = str("D\\u0323\\u0307"); canonTests[6][2] = str("\\u1e0c\\u0307"); // D dot_below dot_above
95
96 canonTests[7][0] = str("\\u1e10\\u0307\\u0323"); canonTests[7][1] = str("D\\u0327\\u0323\\u0307"); canonTests[7][2] = str("\\u1e10\\u0323\\u0307"); // D dot_below cedilla dot_above
97
98 canonTests[8][0] = str("D\\u0307\\u0328\\u0323"); canonTests[8][1] = str("D\\u0328\\u0323\\u0307"); canonTests[8][2] = str("\\u1e0c\\u0328\\u0307"); // D dot_above ogonek dot_below
99
100 canonTests[9][0] = str("\\u1E14"); canonTests[9][1] = str("E\\u0304\\u0300"); canonTests[9][2] = str("\\u1E14"); // E-macron-grave
101
102 canonTests[10][0] = str("\\u0112\\u0300"); canonTests[10][1] = str("E\\u0304\\u0300"); canonTests[10][2] = str("\\u1E14"); // E-macron + grave
103
104 canonTests[11][0] = str("\\u00c8\\u0304"); canonTests[11][1] = str("E\\u0300\\u0304"); canonTests[11][2] = str("\\u00c8\\u0304"); // E-grave + macron
105
106 canonTests[12][0] = str("\\u212b"); canonTests[12][1] = str("A\\u030a"); canonTests[12][2] = str("\\u00c5"); // angstrom_sign
107
108 canonTests[13][0] = str("\\u00c5"); canonTests[13][1] = str("A\\u030a"); canonTests[13][2] = str("\\u00c5"); // A-ring
109
110 canonTests[14][0] = str("\\u00C4ffin"); canonTests[14][1] = str("A\\u0308ffin"); canonTests[14][2] = str("\\u00C4ffin");
111
112 canonTests[15][0] = str("\\u00C4\\uFB03n"); canonTests[15][1] = str("A\\u0308\\uFB03n"); canonTests[15][2] = str("\\u00C4\\uFB03n");
113
114 canonTests[16][0] = str("Henry IV"); canonTests[16][1] = str("Henry IV"); canonTests[16][2] = str("Henry IV");
115
116 canonTests[17][0] = str("Henry \\u2163"); canonTests[17][1] = str("Henry \\u2163"); canonTests[17][2] = str("Henry \\u2163");
117
118 canonTests[18][0] = str("\\u30AC"); canonTests[18][1] = str("\\u30AB\\u3099"); canonTests[18][2] = str("\\u30AC"); // ga (Katakana)
119
120 canonTests[19][0] = str("\\u30AB\\u3099"); canonTests[19][1] = str("\\u30AB\\u3099"); canonTests[19][2] = str("\\u30AC"); // ka + ten
121
122 canonTests[20][0] = str("\\uFF76\\uFF9E"); canonTests[20][1] = str("\\uFF76\\uFF9E"); canonTests[20][2] = str("\\uFF76\\uFF9E"); // hw_ka + hw_ten
123
124 canonTests[21][0] = str("\\u30AB\\uFF9E"); canonTests[21][1] = str("\\u30AB\\uFF9E"); canonTests[21][2] = str("\\u30AB\\uFF9E"); // ka + hw_ten
125
126 canonTests[22][0] = str("\\uFF76\\u3099"); canonTests[22][1] = str("\\uFF76\\u3099"); canonTests[22][2] = str("\\uFF76\\u3099"); // hw_ka + ten
127
128 canonTests[23][0] = str("A\\u0300\\u0316"); canonTests[23][1] = str("A\\u0316\\u0300"); canonTests[23][2] = str("\\u00C0\\u0316");
129
130 /* compatTest */
131 // Input Decomposed Composed
132 compatTests[0][0] = str("cat"); compatTests[0][1] = str("cat"); compatTests[0][2] = str("cat") ;
133
134 compatTests[1][0] = str("\\uFB4f"); compatTests[1][1] = str("\\u05D0\\u05DC"); compatTests[1][2] = str("\\u05D0\\u05DC"); // Alef-Lamed vs. Alef, Lamed
135
136 compatTests[2][0] = str("\\u00C4ffin"); compatTests[2][1] = str("A\\u0308ffin"); compatTests[2][2] = str("\\u00C4ffin") ;
137
138 compatTests[3][0] = str("\\u00C4\\uFB03n"); compatTests[3][1] = str("A\\u0308ffin"); compatTests[3][2] = str("\\u00C4ffin") ; // ffi ligature -> f + f + i
139
140 compatTests[4][0] = str("Henry IV"); compatTests[4][1] = str("Henry IV"); compatTests[4][2] = str("Henry IV") ;
141
142 compatTests[5][0] = str("Henry \\u2163"); compatTests[5][1] = str("Henry IV"); compatTests[5][2] = str("Henry IV") ;
143
144 compatTests[6][0] = str("\\u30AC"); compatTests[6][1] = str("\\u30AB\\u3099"); compatTests[6][2] = str("\\u30AC") ; // ga (Katakana)
145
146 compatTests[7][0] = str("\\u30AB\\u3099"); compatTests[7][1] = str("\\u30AB\\u3099"); compatTests[7][2] = str("\\u30AC") ; // ka + ten
147
148 compatTests[8][0] = str("\\uFF76\\u3099"); compatTests[8][1] = str("\\u30AB\\u3099"); compatTests[8][2] = str("\\u30AC") ; // hw_ka + ten
149
150 /* These two are broken in Unicode 2.1.2 but fixed in 2.1.5 and later */
151 compatTests[9][0] = str("\\uFF76\\uFF9E"); compatTests[9][1] = str("\\u30AB\\u3099"); compatTests[9][2] = str("\\u30AC") ; // hw_ka + hw_ten
152
153 compatTests[10][0] = str("\\u30AB\\uFF9E"); compatTests[10][1] = str("\\u30AB\\u3099"); compatTests[10][2] = str("\\u30AC") ; // ka + hw_ten
154
155 /* Hangul Canonical */
156 // Input Decomposed Composed
157 hangulCanon[0][0] = str("\\ud4db"); hangulCanon[0][1] = str("\\u1111\\u1171\\u11b6"); hangulCanon[0][2] = str("\\ud4db") ;
158
159 hangulCanon[1][0] = str("\\u1111\\u1171\\u11b6"), hangulCanon[1][1] = str("\\u1111\\u1171\\u11b6"), hangulCanon[1][2] = str("\\ud4db");
160 }
161
~BasicNormalizerTest()162 BasicNormalizerTest::~BasicNormalizerTest()
163 {
164 }
165
TestPrevious()166 void BasicNormalizerTest::TestPrevious()
167 {
168 Normalizer* norm = new Normalizer("", UNORM_NFD);
169
170 logln("testing decomp...");
171 uint32_t i;
172 for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
173 backAndForth(norm, canonTests[i][0]);
174 }
175
176 logln("testing compose...");
177 norm->setMode(UNORM_NFC);
178 for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
179 backAndForth(norm, canonTests[i][0]);
180 }
181
182 delete norm;
183 }
184
TestDecomp()185 void BasicNormalizerTest::TestDecomp()
186 {
187 Normalizer* norm = new Normalizer("", UNORM_NFD);
188 iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 1);
189 staticTest(UNORM_NFD, 0, canonTests, ARRAY_LENGTH(canonTests), 1);
190 delete norm;
191 }
192
TestCompatDecomp()193 void BasicNormalizerTest::TestCompatDecomp()
194 {
195 Normalizer* norm = new Normalizer("", UNORM_NFKD);
196 iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 1);
197
198 staticTest(UNORM_NFKD, 0,
199 compatTests, ARRAY_LENGTH(compatTests), 1);
200 delete norm;
201 }
202
TestCanonCompose()203 void BasicNormalizerTest::TestCanonCompose()
204 {
205 Normalizer* norm = new Normalizer("", UNORM_NFC);
206 iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 2);
207
208 staticTest(UNORM_NFC, 0, canonTests,
209 ARRAY_LENGTH(canonTests), 2);
210 delete norm;
211 }
212
TestCompatCompose()213 void BasicNormalizerTest::TestCompatCompose()
214 {
215 Normalizer* norm = new Normalizer("", UNORM_NFKC);
216 iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 2);
217
218 staticTest(UNORM_NFKC, 0,
219 compatTests, ARRAY_LENGTH(compatTests), 2);
220 delete norm;
221 }
222
223
224 //-------------------------------------------------------------------------------
225
TestHangulCompose()226 void BasicNormalizerTest::TestHangulCompose()
227 {
228 // Make sure that the static composition methods work
229 logln("Canonical composition...");
230 staticTest(UNORM_NFC, 0, hangulCanon, ARRAY_LENGTH(hangulCanon), 2);
231 logln("Compatibility composition...");
232
233 // Now try iterative composition....
234 logln("Static composition...");
235 Normalizer* norm = new Normalizer("", UNORM_NFC);
236 iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 2);
237 norm->setMode(UNORM_NFKC);
238
239 // And finally, make sure you can do it in reverse too
240 logln("Reverse iteration...");
241 norm->setMode(UNORM_NFC);
242 for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
243 backAndForth(norm, hangulCanon[i][0]);
244 }
245 delete norm;
246 }
247
TestHangulDecomp()248 void BasicNormalizerTest::TestHangulDecomp()
249 {
250 // Make sure that the static decomposition methods work
251 logln("Canonical decomposition...");
252 staticTest(UNORM_NFD, 0, hangulCanon, ARRAY_LENGTH(hangulCanon), 1);
253 logln("Compatibility decomposition...");
254
255 // Now the iterative decomposition methods...
256 logln("Iterative decomposition...");
257 Normalizer* norm = new Normalizer("", UNORM_NFD);
258 iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 1);
259 norm->setMode(UNORM_NFKD);
260
261 // And finally, make sure you can do it in reverse too
262 logln("Reverse iteration...");
263 norm->setMode(UNORM_NFD);
264 for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
265 backAndForth(norm, hangulCanon[i][0]);
266 }
267 delete norm;
268 }
269
270 /**
271 * The Tibetan vowel sign AA, 0f71, was messed up prior to Unicode version 2.1.9.
272 */
TestTibetan(void)273 void BasicNormalizerTest::TestTibetan(void) {
274 UnicodeString decomp[1][3];
275 decomp[0][0] = str("\\u0f77");
276 decomp[0][1] = str("\\u0f77");
277 decomp[0][2] = str("\\u0fb2\\u0f71\\u0f80");
278
279 UnicodeString compose[1][3];
280 compose[0][0] = str("\\u0fb2\\u0f71\\u0f80");
281 compose[0][1] = str("\\u0fb2\\u0f71\\u0f80");
282 compose[0][2] = str("\\u0fb2\\u0f71\\u0f80");
283
284 staticTest(UNORM_NFD, 0, decomp, ARRAY_LENGTH(decomp), 1);
285 staticTest(UNORM_NFKD, 0, decomp, ARRAY_LENGTH(decomp), 2);
286 staticTest(UNORM_NFC, 0, compose, ARRAY_LENGTH(compose), 1);
287 staticTest(UNORM_NFKC, 0, compose, ARRAY_LENGTH(compose), 2);
288 }
289
290 /**
291 * Make sure characters in the CompositionExclusion.txt list do not get
292 * composed to.
293 */
TestCompositionExclusion(void)294 void BasicNormalizerTest::TestCompositionExclusion(void) {
295 // This list is generated from CompositionExclusion.txt.
296 // Update whenever the normalizer tables are updated. Note
297 // that we test all characters listed, even those that can be
298 // derived from the Unicode DB and are therefore commented
299 // out.
300 // ### TODO read composition exclusion from source/data/unidata file
301 // and test against that
302 UnicodeString EXCLUDED = str(
303 "\\u0340\\u0341\\u0343\\u0344\\u0374\\u037E\\u0387\\u0958"
304 "\\u0959\\u095A\\u095B\\u095C\\u095D\\u095E\\u095F\\u09DC"
305 "\\u09DD\\u09DF\\u0A33\\u0A36\\u0A59\\u0A5A\\u0A5B\\u0A5E"
306 "\\u0B5C\\u0B5D\\u0F43\\u0F4D\\u0F52\\u0F57\\u0F5C\\u0F69"
307 "\\u0F73\\u0F75\\u0F76\\u0F78\\u0F81\\u0F93\\u0F9D\\u0FA2"
308 "\\u0FA7\\u0FAC\\u0FB9\\u1F71\\u1F73\\u1F75\\u1F77\\u1F79"
309 "\\u1F7B\\u1F7D\\u1FBB\\u1FBE\\u1FC9\\u1FCB\\u1FD3\\u1FDB"
310 "\\u1FE3\\u1FEB\\u1FEE\\u1FEF\\u1FF9\\u1FFB\\u1FFD\\u2000"
311 "\\u2001\\u2126\\u212A\\u212B\\u2329\\u232A\\uF900\\uFA10"
312 "\\uFA12\\uFA15\\uFA20\\uFA22\\uFA25\\uFA26\\uFA2A\\uFB1F"
313 "\\uFB2A\\uFB2B\\uFB2C\\uFB2D\\uFB2E\\uFB2F\\uFB30\\uFB31"
314 "\\uFB32\\uFB33\\uFB34\\uFB35\\uFB36\\uFB38\\uFB39\\uFB3A"
315 "\\uFB3B\\uFB3C\\uFB3E\\uFB40\\uFB41\\uFB43\\uFB44\\uFB46"
316 "\\uFB47\\uFB48\\uFB49\\uFB4A\\uFB4B\\uFB4C\\uFB4D\\uFB4E"
317 );
318 for (int32_t i=0; i<EXCLUDED.length(); ++i) {
319 UnicodeString a(EXCLUDED.charAt(i));
320 UnicodeString b;
321 UnicodeString c;
322 Normalizer::normalize(a, UNORM_NFKD, 0, b, status);
323 Normalizer::normalize(b, UNORM_NFC, 0, c, status);
324 if (c == a) {
325 errln("FAIL: " + hex(a) + " x DECOMP_COMPAT => " +
326 hex(b) + " x COMPOSE => " +
327 hex(c));
328 } else if (verbose) {
329 logln("Ok: " + hex(a) + " x DECOMP_COMPAT => " +
330 hex(b) + " x COMPOSE => " +
331 hex(c));
332 }
333 }
334 }
335
336 /**
337 * Test for a problem that showed up just before ICU 1.6 release
338 * having to do with combining characters with an index of zero.
339 * Such characters do not participate in any canonical
340 * decompositions. However, having an index of zero means that
341 * they all share one typeMask[] entry, that is, they all have to
342 * map to the same canonical class, which is not the case, in
343 * reality.
344 */
TestZeroIndex(void)345 void BasicNormalizerTest::TestZeroIndex(void) {
346 const char* DATA[] = {
347 // Expect col1 x COMPOSE_COMPAT => col2
348 // Expect col2 x DECOMP => col3
349 "A\\u0316\\u0300", "\\u00C0\\u0316", "A\\u0316\\u0300",
350 "A\\u0300\\u0316", "\\u00C0\\u0316", "A\\u0316\\u0300",
351 "A\\u0327\\u0300", "\\u00C0\\u0327", "A\\u0327\\u0300",
352 "c\\u0321\\u0327", "c\\u0321\\u0327", "c\\u0321\\u0327",
353 "c\\u0327\\u0321", "\\u00E7\\u0321", "c\\u0327\\u0321",
354 };
355 int32_t DATA_length = UPRV_LENGTHOF(DATA);
356
357 for (int32_t i=0; i<DATA_length; i+=3) {
358 UErrorCode status = U_ZERO_ERROR;
359 UnicodeString a(DATA[i], "");
360 a = a.unescape();
361 UnicodeString b;
362 Normalizer::normalize(a, UNORM_NFKC, 0, b, status);
363 if (U_FAILURE(status)) {
364 dataerrln("Error calling normalize UNORM_NFKC: %s", u_errorName(status));
365 } else {
366 UnicodeString exp(DATA[i+1], "");
367 exp = exp.unescape();
368 if (b == exp) {
369 logln((UnicodeString)"Ok: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b));
370 } else {
371 errln((UnicodeString)"FAIL: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b) +
372 ", expect " + hex(exp));
373 }
374 }
375 Normalizer::normalize(b, UNORM_NFD, 0, a, status);
376 if (U_FAILURE(status)) {
377 dataerrln("Error calling normalize UNORM_NFD: %s", u_errorName(status));
378 } else {
379 UnicodeString exp = UnicodeString(DATA[i+2], "").unescape();
380 if (a == exp) {
381 logln((UnicodeString)"Ok: " + hex(b) + " x DECOMP => " + hex(a));
382 } else {
383 errln((UnicodeString)"FAIL: " + hex(b) + " x DECOMP => " + hex(a) +
384 ", expect " + hex(exp));
385 }
386 }
387 }
388 }
389
390 /**
391 * Run a few specific cases that are failing for Verisign.
392 */
TestVerisign(void)393 void BasicNormalizerTest::TestVerisign(void) {
394 /*
395 > Their input:
396 > 05B8 05B9 05B1 0591 05C3 05B0 05AC 059F
397 > Their output (supposedly from ICU):
398 > 05B8 05B1 05B9 0591 05C3 05B0 05AC 059F
399 > My output from charlint:
400 > 05B1 05B8 05B9 0591 05C3 05B0 05AC 059F
401
402 05B8 05B9 05B1 0591 05C3 05B0 05AC 059F => 05B1 05B8 05B9 0591 05C3 05B0
403 05AC 059F
404
405 U+05B8 18 E HEBREW POINT QAMATS
406 U+05B9 19 F HEBREW POINT HOLAM
407 U+05B1 11 HEBREW POINT HATAF SEGOL
408 U+0591 220 HEBREW ACCENT ETNAHTA
409 U+05C3 0 HEBREW PUNCTUATION SOF PASUQ
410 U+05B0 10 HEBREW POINT SHEVA
411 U+05AC 230 HEBREW ACCENT ILUY
412 U+059F 230 HEBREW ACCENT QARNEY PARA
413
414 U+05B1 11 HEBREW POINT HATAF SEGOL
415 U+05B8 18 HEBREW POINT QAMATS
416 U+05B9 19 HEBREW POINT HOLAM
417 U+0591 220 HEBREW ACCENT ETNAHTA
418 U+05C3 0 HEBREW PUNCTUATION SOF PASUQ
419 U+05B0 10 HEBREW POINT SHEVA
420 U+05AC 230 HEBREW ACCENT ILUY
421 U+059F 230 HEBREW ACCENT QARNEY PARA
422
423 Wrong result:
424 U+05B8 18 HEBREW POINT QAMATS
425 U+05B1 11 HEBREW POINT HATAF SEGOL
426 U+05B9 19 HEBREW POINT HOLAM
427 U+0591 220 HEBREW ACCENT ETNAHTA
428 U+05C3 0 HEBREW PUNCTUATION SOF PASUQ
429 U+05B0 10 HEBREW POINT SHEVA
430 U+05AC 230 HEBREW ACCENT ILUY
431 U+059F 230 HEBREW ACCENT QARNEY PARA
432
433
434 > Their input:
435 >0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD
436 >Their output (supposedly from ICU):
437 >0592 05B0 05B7 05BC 05A5 05C0 05AD 05C4
438 >My output from charlint:
439 >05B0 05B7 05BC 05A5 0592 05C0 05AD 05C4
440
441 0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD => 05B0 05B7 05BC 05A5 0592 05C0
442 05AD 05C4
443
444 U+0592 230 HEBREW ACCENT SEGOL
445 U+05B7 17 HEBREW POINT PATAH
446 U+05BC 21 HEBREW POINT DAGESH OR MAPIQ
447 U+05A5 220 HEBREW ACCENT MERKHA
448 U+05B0 10 HEBREW POINT SHEVA
449 U+05C0 0 HEBREW PUNCTUATION PASEQ
450 U+05C4 230 HEBREW MARK UPPER DOT
451 U+05AD 222 HEBREW ACCENT DEHI
452
453 U+05B0 10 HEBREW POINT SHEVA
454 U+05B7 17 HEBREW POINT PATAH
455 U+05BC 21 HEBREW POINT DAGESH OR MAPIQ
456 U+05A5 220 HEBREW ACCENT MERKHA
457 U+0592 230 HEBREW ACCENT SEGOL
458 U+05C0 0 HEBREW PUNCTUATION PASEQ
459 U+05AD 222 HEBREW ACCENT DEHI
460 U+05C4 230 HEBREW MARK UPPER DOT
461
462 Wrong result:
463 U+0592 230 HEBREW ACCENT SEGOL
464 U+05B0 10 HEBREW POINT SHEVA
465 U+05B7 17 HEBREW POINT PATAH
466 U+05BC 21 HEBREW POINT DAGESH OR MAPIQ
467 U+05A5 220 HEBREW ACCENT MERKHA
468 U+05C0 0 HEBREW PUNCTUATION PASEQ
469 U+05AD 222 HEBREW ACCENT DEHI
470 U+05C4 230 HEBREW MARK UPPER DOT
471 */
472 UnicodeString data[2][3];
473 data[0][0] = str("\\u05B8\\u05B9\\u05B1\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
474 data[0][1] = str("\\u05B1\\u05B8\\u05B9\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
475 data[0][2] = str("");
476 data[1][0] = str("\\u0592\\u05B7\\u05BC\\u05A5\\u05B0\\u05C0\\u05C4\\u05AD");
477 data[1][1] = str("\\u05B0\\u05B7\\u05BC\\u05A5\\u0592\\u05C0\\u05AD\\u05C4");
478 data[1][2] = str("");
479
480 staticTest(UNORM_NFD, 0, data, ARRAY_LENGTH(data), 1);
481 staticTest(UNORM_NFC, 0, data, ARRAY_LENGTH(data), 1);
482 }
483
484 //------------------------------------------------------------------------
485 // Internal utilities
486 //
487
hex(UChar ch)488 UnicodeString BasicNormalizerTest::hex(UChar ch) {
489 UnicodeString result;
490 return appendHex(ch, 4, result);
491 }
492
hex(const UnicodeString & s)493 UnicodeString BasicNormalizerTest::hex(const UnicodeString& s) {
494 UnicodeString result;
495 for (int i = 0; i < s.length(); ++i) {
496 if (i != 0) result += (UChar)0x2c/*,*/;
497 appendHex(s[i], 4, result);
498 }
499 return result;
500 }
501
502
insert(UnicodeString & dest,int pos,UChar32 ch)503 inline static void insert(UnicodeString& dest, int pos, UChar32 ch)
504 {
505 dest.replace(pos, 0, ch);
506 }
507
backAndForth(Normalizer * iter,const UnicodeString & input)508 void BasicNormalizerTest::backAndForth(Normalizer* iter, const UnicodeString& input)
509 {
510 UChar32 ch;
511 iter->setText(input, status);
512
513 // Run through the iterator forwards and stick it into a StringBuffer
514 UnicodeString forward;
515 for (ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
516 forward += ch;
517 }
518
519 // Now do it backwards
520 UnicodeString reverse;
521 for (ch = iter->last(); ch != iter->DONE; ch = iter->previous()) {
522 insert(reverse, 0, ch);
523 }
524
525 if (forward != reverse) {
526 errln("Forward/reverse mismatch for input " + hex(input)
527 + ", forward: " + hex(forward) + ", backward: " + hex(reverse));
528 }
529 }
530
staticTest(UNormalizationMode mode,int options,UnicodeString tests[][3],int length,int outCol)531 void BasicNormalizerTest::staticTest(UNormalizationMode mode, int options,
532 UnicodeString tests[][3], int length,
533 int outCol)
534 {
535 for (int i = 0; i < length; i++)
536 {
537 UnicodeString& input = tests[i][0];
538 UnicodeString& expect = tests[i][outCol];
539
540 logln("Normalizing '" + input + "' (" + hex(input) + ")" );
541
542 UnicodeString output;
543 Normalizer::normalize(input, mode, options, output, status);
544
545 if (output != expect) {
546 dataerrln(UnicodeString("ERROR: case ") + i + " normalized " + hex(input) + "\n"
547 + " expected " + hex(expect) + "\n"
548 + " static got " + hex(output) );
549 }
550 }
551 }
552
iterateTest(Normalizer * iter,UnicodeString tests[][3],int length,int outCol)553 void BasicNormalizerTest::iterateTest(Normalizer* iter,
554 UnicodeString tests[][3], int length,
555 int outCol)
556 {
557 for (int i = 0; i < length; i++)
558 {
559 UnicodeString& input = tests[i][0];
560 UnicodeString& expect = tests[i][outCol];
561
562 logln("Normalizing '" + input + "' (" + hex(input) + ")" );
563
564 iter->setText(input, status);
565 assertEqual(input, expect, iter, UnicodeString("ERROR: case ") + i + " ");
566 }
567 }
568
assertEqual(const UnicodeString & input,const UnicodeString & expected,Normalizer * iter,const UnicodeString & errPrefix)569 void BasicNormalizerTest::assertEqual(const UnicodeString& input,
570 const UnicodeString& expected,
571 Normalizer* iter,
572 const UnicodeString& errPrefix)
573 {
574 UnicodeString result;
575
576 for (UChar32 ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
577 result += ch;
578 }
579 if (result != expected) {
580 dataerrln(errPrefix + "normalized " + hex(input) + "\n"
581 + " expected " + hex(expected) + "\n"
582 + " iterate got " + hex(result) );
583 }
584 }
585
586 // helper class for TestPreviousNext()
587 // simple UTF-32 character iterator
588 class UChar32Iterator {
589 public:
UChar32Iterator(const UChar32 * text,int32_t len,int32_t index)590 UChar32Iterator(const UChar32 *text, int32_t len, int32_t index) :
591 s(text), length(len), i(index) {}
592
current()593 UChar32 current() {
594 if(i<length) {
595 return s[i];
596 } else {
597 return 0xffff;
598 }
599 }
600
next()601 UChar32 next() {
602 if(i<length) {
603 return s[i++];
604 } else {
605 return 0xffff;
606 }
607 }
608
previous()609 UChar32 previous() {
610 if(i>0) {
611 return s[--i];
612 } else {
613 return 0xffff;
614 }
615 }
616
getIndex()617 int32_t getIndex() {
618 return i;
619 }
620 private:
621 const UChar32 *s;
622 int32_t length, i;
623 };
624
625 void
TestPreviousNext(const UChar * src,int32_t srcLength,const UChar32 * expect,int32_t expectLength,const int32_t * expectIndex,int32_t srcMiddle,int32_t expectMiddle,const char * moves,UNormalizationMode mode,const char * name)626 BasicNormalizerTest::TestPreviousNext(const UChar *src, int32_t srcLength,
627 const UChar32 *expect, int32_t expectLength,
628 const int32_t *expectIndex, // its length=expectLength+1
629 int32_t srcMiddle, int32_t expectMiddle,
630 const char *moves,
631 UNormalizationMode mode,
632 const char *name) {
633 // iterators
634 Normalizer iter(src, srcLength, mode);
635
636 // test getStaticClassID and getDynamicClassID
637 if(iter.getDynamicClassID() != Normalizer::getStaticClassID()) {
638 errln("getStaticClassID != getDynamicClassID for Normalizer.");
639 }
640
641 UChar32Iterator iter32(expect, expectLength, expectMiddle);
642
643 UChar32 c1, c2;
644 char m;
645
646 // initially set the indexes into the middle of the strings
647 iter.setIndexOnly(srcMiddle);
648
649 // move around and compare the iteration code points with
650 // the expected ones
651 const char *move=moves;
652 while((m=*move++)!=0) {
653 if(m=='-') {
654 c1=iter.previous();
655 c2=iter32.previous();
656 } else if(m=='0') {
657 c1=iter.current();
658 c2=iter32.current();
659 } else /* m=='+' */ {
660 c1=iter.next();
661 c2=iter32.next();
662 }
663
664 // compare results
665 if(c1!=c2) {
666 // copy the moves until the current (m) move, and terminate
667 char history[64];
668 uprv_strcpy(history, moves);
669 history[move-moves]=0;
670 dataerrln("error: mismatch in Normalizer iteration (%s) at %s: "
671 "got c1=U+%04lx != expected c2=U+%04lx",
672 name, history, c1, c2);
673 break;
674 }
675
676 // compare indexes
677 if(iter.getIndex()!=expectIndex[iter32.getIndex()]) {
678 // copy the moves until the current (m) move, and terminate
679 char history[64];
680 uprv_strcpy(history, moves);
681 history[move-moves]=0;
682 errln("error: index mismatch in Normalizer iteration (%s) at %s: "
683 "Normalizer index %ld expected %ld\n",
684 name, history, iter.getIndex(), expectIndex[iter32.getIndex()]);
685 break;
686 }
687 }
688 }
689
690 void
TestPreviousNext()691 BasicNormalizerTest::TestPreviousNext() {
692 // src and expect strings
693 static const UChar src[]={
694 U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
695 U16_LEAD(0x1d15f), U16_TRAIL(0x1d15f),
696 0xc4,
697 0x1ed0
698 };
699 static const UChar32 expect[]={
700 0x831d,
701 0x1d158, 0x1d165,
702 0x41, 0x308,
703 0x4f, 0x302, 0x301
704 };
705
706 // expected src indexes corresponding to expect indexes
707 static const int32_t expectIndex[]={
708 0,
709 2, 2,
710 4, 4,
711 5, 5, 5,
712 6 // behind last character
713 };
714
715 // src and expect strings for regression test for j2911
716 static const UChar src_j2911[]={
717 U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
718 0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
719 0xc4,
720 0x4f, 0x302, 0x301
721 };
722 static const UChar32 expect_j2911[]={
723 0x831d,
724 0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
725 0xc4,
726 0x1ed0
727 };
728
729 // expected src indexes corresponding to expect indexes
730 static const int32_t expectIndex_j2911[]={
731 0,
732 2, 3,
733 4,
734 5,
735 8 // behind last character
736 };
737
738 // initial indexes into the src and expect strings
739 // for both sets of test data
740 enum {
741 SRC_MIDDLE=4,
742 EXPECT_MIDDLE=3,
743 SRC_MIDDLE_2=2,
744 EXPECT_MIDDLE_2=1
745 };
746
747 // movement vector
748 // - for previous(), 0 for current(), + for next()
749 // for both sets of test data
750 static const char *const moves="0+0+0--0-0-+++0--+++++++0--------";
751
752 TestPreviousNext(src, UPRV_LENGTHOF(src),
753 expect, UPRV_LENGTHOF(expect),
754 expectIndex,
755 SRC_MIDDLE, EXPECT_MIDDLE,
756 moves, UNORM_NFD, "basic");
757
758 TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
759 expect_j2911, UPRV_LENGTHOF(expect_j2911),
760 expectIndex_j2911,
761 SRC_MIDDLE, EXPECT_MIDDLE,
762 moves, UNORM_NFKC, "j2911");
763
764 // try again from different "middle" indexes
765 TestPreviousNext(src, UPRV_LENGTHOF(src),
766 expect, UPRV_LENGTHOF(expect),
767 expectIndex,
768 SRC_MIDDLE_2, EXPECT_MIDDLE_2,
769 moves, UNORM_NFD, "basic_2");
770
771 TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
772 expect_j2911, UPRV_LENGTHOF(expect_j2911),
773 expectIndex_j2911,
774 SRC_MIDDLE_2, EXPECT_MIDDLE_2,
775 moves, UNORM_NFKC, "j2911_2");
776 }
777
TestConcatenate()778 void BasicNormalizerTest::TestConcatenate() {
779 static const char *const
780 cases[][4]={
781 /* mode, left, right, result */
782 {
783 "C",
784 "re",
785 "\\u0301sum\\u00e9",
786 "r\\u00e9sum\\u00e9"
787 },
788 {
789 "C",
790 "a\\u1100",
791 "\\u1161bcdefghijk",
792 "a\\uac00bcdefghijk"
793 },
794 /* ### TODO: add more interesting cases */
795 {
796 "D",
797 "\\u03B1\\u0345",
798 "\\u0C4D\\U000110BA\\U0001D169",
799 "\\u03B1\\U0001D169\\U000110BA\\u0C4D\\u0345"
800 }
801 };
802
803 UnicodeString left, right, expect, result, r;
804 UErrorCode errorCode;
805 UNormalizationMode mode;
806 int32_t i;
807
808 /* test concatenation */
809 for(i=0; i<UPRV_LENGTHOF(cases); ++i) {
810 switch(*cases[i][0]) {
811 case 'C': mode=UNORM_NFC; break;
812 case 'D': mode=UNORM_NFD; break;
813 case 'c': mode=UNORM_NFKC; break;
814 case 'd': mode=UNORM_NFKD; break;
815 default: mode=UNORM_NONE; break;
816 }
817
818 left=UnicodeString(cases[i][1], "").unescape();
819 right=UnicodeString(cases[i][2], "").unescape();
820 expect=UnicodeString(cases[i][3], "").unescape();
821
822 //result=r=UnicodeString();
823 errorCode=U_ZERO_ERROR;
824
825 r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
826 if(U_FAILURE(errorCode) || /*result!=r ||*/ result!=expect) {
827 dataerrln("error in Normalizer::concatenate(), cases[] fails with "+
828 UnicodeString(u_errorName(errorCode))+", result==expect: expected: "+
829 hex(expect)+" =========> got: " + hex(result));
830 }
831 }
832
833 /* test error cases */
834
835 /* left.getBuffer()==result.getBuffer() */
836 result=r=expect=UnicodeString("zz", "");
837 errorCode=U_UNEXPECTED_TOKEN;
838 r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
839 if(errorCode!=U_UNEXPECTED_TOKEN || result!=r || !result.isBogus()) {
840 errln("error in Normalizer::concatenate(), violates UErrorCode protocol");
841 }
842
843 left.setToBogus();
844 errorCode=U_ZERO_ERROR;
845 r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
846 if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR || result!=r || !result.isBogus()) {
847 errln("error in Normalizer::concatenate(), does not detect left.isBogus()");
848 }
849 }
850
851 // reference implementation of Normalizer::compare
852 static int32_t
ref_norm_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options,UErrorCode & errorCode)853 ref_norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
854 UnicodeString r1, r2, t1, t2;
855 int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
856
857 if(options&U_COMPARE_IGNORE_CASE) {
858 Normalizer::decompose(s1, FALSE, normOptions, r1, errorCode);
859 Normalizer::decompose(s2, FALSE, normOptions, r2, errorCode);
860
861 r1.foldCase(options);
862 r2.foldCase(options);
863 } else {
864 r1=s1;
865 r2=s2;
866 }
867
868 Normalizer::decompose(r1, FALSE, normOptions, t1, errorCode);
869 Normalizer::decompose(r2, FALSE, normOptions, t2, errorCode);
870
871 if(options&U_COMPARE_CODE_POINT_ORDER) {
872 return t1.compareCodePointOrder(t2);
873 } else {
874 return t1.compare(t2);
875 }
876 }
877
878 // test wrapper for Normalizer::compare, sets UNORM_INPUT_IS_FCD appropriately
879 static int32_t
_norm_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options,UErrorCode & errorCode)880 _norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
881 int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
882
883 if( UNORM_YES==Normalizer::quickCheck(s1, UNORM_FCD, normOptions, errorCode) &&
884 UNORM_YES==Normalizer::quickCheck(s2, UNORM_FCD, normOptions, errorCode)) {
885 options|=UNORM_INPUT_IS_FCD;
886 }
887
888 return Normalizer::compare(s1, s2, options, errorCode);
889 }
890
891 // reference implementation of UnicodeString::caseCompare
892 static int32_t
ref_case_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options)893 ref_case_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options) {
894 UnicodeString t1, t2;
895
896 t1=s1;
897 t2=s2;
898
899 t1.foldCase(options);
900 t2.foldCase(options);
901
902 if(options&U_COMPARE_CODE_POINT_ORDER) {
903 return t1.compareCodePointOrder(t2);
904 } else {
905 return t1.compare(t2);
906 }
907 }
908
909 // reduce an integer to -1/0/1
910 static inline int32_t
_sign(int32_t value)911 _sign(int32_t value) {
912 if(value==0) {
913 return 0;
914 } else {
915 return (value>>31)|1;
916 }
917 }
918
919 static const char *
_signString(int32_t value)920 _signString(int32_t value) {
921 if(value<0) {
922 return "<0";
923 } else if(value==0) {
924 return "=0";
925 } else /* value>0 */ {
926 return ">0";
927 }
928 }
929
930 void
TestCompare()931 BasicNormalizerTest::TestCompare() {
932 // test Normalizer::compare and unorm_compare (thinly wrapped by the former)
933 // by comparing it with its semantic equivalent
934 // since we trust the pieces, this is sufficient
935
936 // test each string with itself and each other
937 // each time with all options
938 static const char *const
939 strings[]={
940 // some cases from NormalizationTest.txt
941 // 0..3
942 "D\\u031B\\u0307\\u0323",
943 "\\u1E0C\\u031B\\u0307",
944 "D\\u031B\\u0323\\u0307",
945 "d\\u031B\\u0323\\u0307",
946
947 // 4..6
948 "\\u00E4",
949 "a\\u0308",
950 "A\\u0308",
951
952 // Angstrom sign = A ring
953 // 7..10
954 "\\u212B",
955 "\\u00C5",
956 "A\\u030A",
957 "a\\u030A",
958
959 // 11.14
960 "a\\u059A\\u0316\\u302A\\u032Fb",
961 "a\\u302A\\u0316\\u032F\\u059Ab",
962 "a\\u302A\\u0316\\u032F\\u059Ab",
963 "A\\u059A\\u0316\\u302A\\u032Fb",
964
965 // from ICU case folding tests
966 // 15..20
967 "A\\u00df\\u00b5\\ufb03\\U0001040c\\u0131",
968 "ass\\u03bcffi\\U00010434i",
969 "\\u0061\\u0042\\u0131\\u03a3\\u00df\\ufb03\\ud93f\\udfff",
970 "\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udfff",
971 "\\u0041\\u0062\\u0131\\u03c3\\u0053\\u0073\\u0066\\u0046\\u0069\\ud93f\\udfff",
972 "\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udffd",
973
974 // U+d800 U+10001 see implementation comment in unorm_cmpEquivFold
975 // vs. U+10000 at bottom - code point order
976 // 21..22
977 "\\ud800\\ud800\\udc01",
978 "\\ud800\\udc00",
979
980 // other code point order tests from ustrtest.cpp
981 // 23..31
982 "\\u20ac\\ud801",
983 "\\u20ac\\ud800\\udc00",
984 "\\ud800",
985 "\\ud800\\uff61",
986 "\\udfff",
987 "\\uff61\\udfff",
988 "\\uff61\\ud800\\udc02",
989 "\\ud800\\udc02",
990 "\\ud84d\\udc56",
991
992 // long strings, see cnormtst.c/TestNormCoverage()
993 // equivalent if case-insensitive
994 // 32..33
995 "\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
996 "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
997 "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
998 "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
999 "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1000 "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1001 "aaaaaaaaaaaaaaaaaazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
1002 "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
1003 "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
1004 "ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
1005 "\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
1006 "d\\u031B\\u0307\\u0323",
1007
1008 "\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
1009 "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1010 "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1011 "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1012 "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1013 "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1014 "aaaaaaaaaaAAAAAAAAZZZZZZZZZZZZZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
1015 "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
1016 "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
1017 "ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
1018 "\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
1019 "\\u1E0C\\u031B\\u0307",
1020
1021 // some strings that may make a difference whether the compare function
1022 // case-folds or decomposes first
1023 // 34..41
1024 "\\u0360\\u0345\\u0334",
1025 "\\u0360\\u03b9\\u0334",
1026
1027 "\\u0360\\u1f80\\u0334",
1028 "\\u0360\\u03b1\\u0313\\u03b9\\u0334",
1029
1030 "\\u0360\\u1ffc\\u0334",
1031 "\\u0360\\u03c9\\u03b9\\u0334",
1032
1033 "a\\u0360\\u0345\\u0360\\u0345b",
1034 "a\\u0345\\u0360\\u0345\\u0360b",
1035
1036 // interesting cases for canonical caseless match with turkic i handling
1037 // 42..43
1038 "\\u00cc",
1039 "\\u0069\\u0300",
1040
1041 // strings with post-Unicode 3.2 normalization or normalization corrections
1042 // 44..45
1043 "\\u00e4\\u193b\\U0002f868",
1044 "\\u0061\\u193b\\u0308\\u36fc",
1045
1046 // empty string
1047 // 46
1048 ""
1049 };
1050
1051 UnicodeString s[100]; // at least as many items as in strings[] !
1052
1053 // all combinations of options
1054 // UNORM_INPUT_IS_FCD is set automatically if both input strings fulfill FCD conditions
1055 // set UNORM_UNICODE_3_2 in one additional combination
1056 static const struct {
1057 uint32_t options;
1058 const char *name;
1059 } opt[]={
1060 { 0, "default" },
1061 { U_COMPARE_CODE_POINT_ORDER, "c.p. order" },
1062 { U_COMPARE_IGNORE_CASE, "ignore case" },
1063 { U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE, "c.p. order & ignore case" },
1064 { U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "ignore case & special i" },
1065 { U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "c.p. order & ignore case & special i" },
1066 { UNORM_UNICODE_3_2<<UNORM_COMPARE_NORM_OPTIONS_SHIFT, "Unicode 3.2" }
1067 };
1068
1069 int32_t i, j, k, count=UPRV_LENGTHOF(strings);
1070 int32_t result, refResult;
1071
1072 UErrorCode errorCode;
1073
1074 // create the UnicodeStrings
1075 for(i=0; i<count; ++i) {
1076 s[i]=UnicodeString(strings[i], "").unescape();
1077 }
1078
1079 // test them each with each other
1080 for(i=0; i<count; ++i) {
1081 for(j=i; j<count; ++j) {
1082 for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
1083 // test Normalizer::compare
1084 errorCode=U_ZERO_ERROR;
1085 result=_norm_compare(s[i], s[j], opt[k].options, errorCode);
1086 refResult=ref_norm_compare(s[i], s[j], opt[k].options, errorCode);
1087 if(_sign(result)!=_sign(refResult)) {
1088 errln("Normalizer::compare(%d, %d, %s)%s should be %s %s",
1089 i, j, opt[k].name, _signString(result), _signString(refResult),
1090 U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1091 }
1092
1093 // test UnicodeString::caseCompare - same internal implementation function
1094 if(opt[k].options&U_COMPARE_IGNORE_CASE) {
1095 errorCode=U_ZERO_ERROR;
1096 result=s[i].caseCompare(s[j], opt[k].options);
1097 refResult=ref_case_compare(s[i], s[j], opt[k].options);
1098 if(_sign(result)!=_sign(refResult)) {
1099 errln("UniStr::caseCompare(%d, %d, %s)%s should be %s %s",
1100 i, j, opt[k].name, _signString(result), _signString(refResult),
1101 U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1102 }
1103 }
1104 }
1105 }
1106 }
1107
1108 // test cases with i and I to make sure Turkic works
1109 static const UChar iI[]={ 0x49, 0x69, 0x130, 0x131 };
1110 UnicodeSet iSet, set;
1111
1112 UnicodeString s1, s2;
1113
1114 const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode);
1115 if(U_FAILURE(errorCode) || !nfcImpl->ensureCanonIterData(errorCode)) {
1116 dataerrln("Normalizer2Factory::getNFCImpl().ensureCanonIterData() failed: %s",
1117 u_errorName(errorCode));
1118 return;
1119 }
1120
1121 // collect all sets into one for contiguous output
1122 for(i=0; i<UPRV_LENGTHOF(iI); ++i) {
1123 if(nfcImpl->getCanonStartSet(iI[i], iSet)) {
1124 set.addAll(iSet);
1125 }
1126 }
1127
1128 // test all of these precomposed characters
1129 const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
1130 UnicodeSetIterator it(set);
1131 while(it.next() && !it.isString()) {
1132 UChar32 c=it.getCodepoint();
1133 if(!nfcNorm2->getDecomposition(c, s2)) {
1134 dataerrln("NFC.getDecomposition(i-composite U+%04lx) failed", (long)c);
1135 return;
1136 }
1137
1138 s1.setTo(c);
1139 for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
1140 // test Normalizer::compare
1141 errorCode=U_ZERO_ERROR;
1142 result=_norm_compare(s1, s2, opt[k].options, errorCode);
1143 refResult=ref_norm_compare(s1, s2, opt[k].options, errorCode);
1144 if(_sign(result)!=_sign(refResult)) {
1145 errln("Normalizer::compare(U+%04x with its NFD, %s)%s should be %s %s",
1146 c, opt[k].name, _signString(result), _signString(refResult),
1147 U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1148 }
1149
1150 // test UnicodeString::caseCompare - same internal implementation function
1151 if(opt[k].options&U_COMPARE_IGNORE_CASE) {
1152 errorCode=U_ZERO_ERROR;
1153 result=s1.caseCompare(s2, opt[k].options);
1154 refResult=ref_case_compare(s1, s2, opt[k].options);
1155 if(_sign(result)!=_sign(refResult)) {
1156 errln("UniStr::caseCompare(U+%04x with its NFD, %s)%s should be %s %s",
1157 c, opt[k].name, _signString(result), _signString(refResult),
1158 U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1159 }
1160 }
1161 }
1162 }
1163
1164 // test getDecomposition() for some characters that do not decompose
1165 if( nfcNorm2->getDecomposition(0x20, s2) ||
1166 nfcNorm2->getDecomposition(0x4e00, s2) ||
1167 nfcNorm2->getDecomposition(0x20002, s2)
1168 ) {
1169 errln("NFC.getDecomposition() returns TRUE for characters which do not have decompositions");
1170 }
1171
1172 // test getRawDecomposition() for some characters that do not decompose
1173 if( nfcNorm2->getRawDecomposition(0x20, s2) ||
1174 nfcNorm2->getRawDecomposition(0x4e00, s2) ||
1175 nfcNorm2->getRawDecomposition(0x20002, s2)
1176 ) {
1177 errln("NFC.getRawDecomposition() returns TRUE for characters which do not have decompositions");
1178 }
1179
1180 // test composePair() for some pairs of characters that do not compose
1181 if( nfcNorm2->composePair(0x20, 0x301)>=0 ||
1182 nfcNorm2->composePair(0x61, 0x305)>=0 ||
1183 nfcNorm2->composePair(0x1100, 0x1160)>=0 ||
1184 nfcNorm2->composePair(0xac00, 0x11a7)>=0
1185 ) {
1186 errln("NFC.composePair() incorrectly composes some pairs of characters");
1187 }
1188
1189 // test FilteredNormalizer2::getDecomposition()
1190 UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff]"), errorCode);
1191 FilteredNormalizer2 fn2(*nfcNorm2, filter);
1192 if( fn2.getDecomposition(0xe4, s1) || !fn2.getDecomposition(0x100, s2) ||
1193 s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
1194 ) {
1195 errln("FilteredNormalizer2(NFC, ^A0-FF).getDecomposition() failed");
1196 }
1197
1198 // test FilteredNormalizer2::getRawDecomposition()
1199 if( fn2.getRawDecomposition(0xe4, s1) || !fn2.getRawDecomposition(0x100, s2) ||
1200 s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
1201 ) {
1202 errln("FilteredNormalizer2(NFC, ^A0-FF).getRawDecomposition() failed");
1203 }
1204
1205 // test FilteredNormalizer2::composePair()
1206 if( 0x100!=fn2.composePair(0x41, 0x304) ||
1207 fn2.composePair(0xc7, 0x301)>=0 // unfiltered result: U+1E08
1208 ) {
1209 errln("FilteredNormalizer2(NFC, ^A0-FF).composePair() failed");
1210 }
1211 }
1212
1213 // verify that case-folding does not un-FCD strings
1214 int32_t
countFoldFCDExceptions(uint32_t foldingOptions)1215 BasicNormalizerTest::countFoldFCDExceptions(uint32_t foldingOptions) {
1216 UnicodeString s, fold, d;
1217 UChar32 c;
1218 int32_t count;
1219 uint8_t cc, trailCC, foldCC, foldTrailCC;
1220 UNormalizationCheckResult qcResult;
1221 int8_t category;
1222 UBool isNFD;
1223 UErrorCode errorCode;
1224
1225 logln("Test if case folding may un-FCD a string (folding options %04lx)", foldingOptions);
1226
1227 count=0;
1228 for(c=0; c<=0x10ffff; ++c) {
1229 errorCode = U_ZERO_ERROR;
1230 category=u_charType(c);
1231 if(category==U_UNASSIGNED) {
1232 continue; // skip unassigned code points
1233 }
1234 if(c==0xac00) {
1235 c=0xd7a3; // skip Hangul - no case folding there
1236 continue;
1237 }
1238 // skip Han blocks - no case folding there either
1239 if(c==0x3400) {
1240 c=0x4db5;
1241 continue;
1242 }
1243 if(c==0x4e00) {
1244 c=0x9fa5;
1245 continue;
1246 }
1247 if(c==0x20000) {
1248 c=0x2a6d6;
1249 continue;
1250 }
1251
1252 s.setTo(c);
1253
1254 // get leading and trailing cc for c
1255 Normalizer::decompose(s, FALSE, 0, d, errorCode);
1256 isNFD= s==d;
1257 cc=u_getCombiningClass(d.char32At(0));
1258 trailCC=u_getCombiningClass(d.char32At(d.length()-1));
1259
1260 // get leading and trailing cc for the case-folding of c
1261 s.foldCase(foldingOptions);
1262 Normalizer::decompose(s, FALSE, 0, d, errorCode);
1263 foldCC=u_getCombiningClass(d.char32At(0));
1264 foldTrailCC=u_getCombiningClass(d.char32At(d.length()-1));
1265
1266 qcResult=Normalizer::quickCheck(s, UNORM_FCD, errorCode);
1267
1268 if (U_FAILURE(errorCode)) {
1269 ++count;
1270 dataerrln("U+%04lx: Failed with error %s", u_errorName(errorCode));
1271 }
1272
1273 // bad:
1274 // - character maps to empty string: adjacent characters may then need reordering
1275 // - folding has different leading/trailing cc's, and they don't become just 0
1276 // - folding itself is not FCD
1277 if( qcResult!=UNORM_YES ||
1278 s.isEmpty() ||
1279 (cc!=foldCC && foldCC!=0) || (trailCC!=foldTrailCC && foldTrailCC!=0)
1280 ) {
1281 ++count;
1282 dataerrln("U+%04lx: case-folding may un-FCD a string (folding options %04lx)", c, foldingOptions);
1283 dataerrln(" cc %02x trailCC %02x foldCC(U+%04lx) %02x foldTrailCC(U+%04lx) %02x quickCheck(folded)=%d", cc, trailCC, d.char32At(0), foldCC, d.char32At(d.length()-1), foldTrailCC, qcResult);
1284 continue;
1285 }
1286
1287 // also bad:
1288 // if a code point is in NFD but its case folding is not, then
1289 // unorm_compare will also fail
1290 if(isNFD && UNORM_YES!=Normalizer::quickCheck(s, UNORM_NFD, errorCode)) {
1291 ++count;
1292 errln("U+%04lx: case-folding un-NFDs this character (folding options %04lx)", c, foldingOptions);
1293 }
1294 }
1295
1296 logln("There are %ld code points for which case-folding may un-FCD a string (folding options %04lx)", count, foldingOptions);
1297 return count;
1298 }
1299
1300 void
FindFoldFCDExceptions()1301 BasicNormalizerTest::FindFoldFCDExceptions() {
1302 int32_t count;
1303
1304 count=countFoldFCDExceptions(0);
1305 count+=countFoldFCDExceptions(U_FOLD_CASE_EXCLUDE_SPECIAL_I);
1306 if(count>0) {
1307 /*
1308 * If case-folding un-FCDs any strings, then unorm_compare() must be
1309 * re-implemented.
1310 * It currently assumes that one can check for FCD then case-fold
1311 * and then still have FCD strings for raw decomposition without reordering.
1312 */
1313 dataerrln("error: There are %ld code points for which case-folding may un-FCD a string for all folding options.\n"
1314 "See comment in BasicNormalizerTest::FindFoldFCDExceptions()!", count);
1315 }
1316 }
1317
1318 static void
initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT],UErrorCode & errorCode)1319 initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT], UErrorCode &errorCode) {
1320 skipSets[UNORM_NFD].applyPattern(
1321 UNICODE_STRING_SIMPLE("[[:NFD_QC=Yes:]&[:ccc=0:]]"), errorCode);
1322 skipSets[UNORM_NFC].applyPattern(
1323 UNICODE_STRING_SIMPLE("[[:NFC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
1324 skipSets[UNORM_NFKD].applyPattern(
1325 UNICODE_STRING_SIMPLE("[[:NFKD_QC=Yes:]&[:ccc=0:]]"), errorCode);
1326 skipSets[UNORM_NFKC].applyPattern(
1327 UNICODE_STRING_SIMPLE("[[:NFKC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
1328
1329 // Remove from the NFC and NFKC sets all those characters that change
1330 // when a back-combining character is added.
1331 // First, get all of the back-combining characters and their combining classes.
1332 UnicodeSet combineBack("[:NFC_QC=Maybe:]", errorCode);
1333 int32_t numCombineBack=combineBack.size();
1334 int32_t *combineBackCharsAndCc=new int32_t[numCombineBack*2];
1335 UnicodeSetIterator iter(combineBack);
1336 for(int32_t i=0; i<numCombineBack; ++i) {
1337 iter.next();
1338 UChar32 c=iter.getCodepoint();
1339 combineBackCharsAndCc[2*i]=c;
1340 combineBackCharsAndCc[2*i+1]=u_getCombiningClass(c);
1341 }
1342
1343 // We need not look at control codes, Han characters nor Hangul LVT syllables because they
1344 // do not combine forward. LV syllables are already removed.
1345 UnicodeSet notInteresting("[[:C:][:Unified_Ideograph:][:HST=LVT:]]", errorCode);
1346 LocalPointer<UnicodeSet> unsure(&((UnicodeSet *)(skipSets[UNORM_NFC].clone()))->removeAll(notInteresting));
1347 // System.out.format("unsure.size()=%d\n", unsure.size());
1348
1349 // For each character about which we are unsure, see if it changes when we add
1350 // one of the back-combining characters.
1351 const Normalizer2 *norm2=Normalizer2::getNFCInstance(errorCode);
1352 UnicodeString s;
1353 iter.reset(*unsure);
1354 while(iter.next()) {
1355 UChar32 c=iter.getCodepoint();
1356 s.setTo(c);
1357 int32_t cLength=s.length();
1358 int32_t tccc=u_getIntPropertyValue(c, UCHAR_TRAIL_CANONICAL_COMBINING_CLASS);
1359 for(int32_t i=0; i<numCombineBack; ++i) {
1360 // If c's decomposition ends with a character with non-zero combining class, then
1361 // c can only change if it combines with a character with a non-zero combining class.
1362 int32_t cc2=combineBackCharsAndCc[2*i+1];
1363 if(tccc==0 || cc2!=0) {
1364 UChar32 c2=combineBackCharsAndCc[2*i];
1365 s.append(c2);
1366 if(!norm2->isNormalized(s, errorCode)) {
1367 // System.out.format("remove U+%04x (tccc=%d) + U+%04x (cc=%d)\n", c, tccc, c2, cc2);
1368 skipSets[UNORM_NFC].remove(c);
1369 skipSets[UNORM_NFKC].remove(c);
1370 break;
1371 }
1372 s.truncate(cLength);
1373 }
1374 }
1375 }
1376 delete [] combineBackCharsAndCc;
1377 }
1378
1379 void
TestSkippable()1380 BasicNormalizerTest::TestSkippable() {
1381 UnicodeSet diff, skipSets[UNORM_MODE_COUNT], expectSets[UNORM_MODE_COUNT];
1382 UnicodeString s, pattern;
1383
1384 /* build NF*Skippable sets from runtime data */
1385 IcuTestErrorCode errorCode(*this, "TestSkippable");
1386 skipSets[UNORM_NFD].applyPattern(UNICODE_STRING_SIMPLE("[:NFD_Inert:]"), errorCode);
1387 skipSets[UNORM_NFKD].applyPattern(UNICODE_STRING_SIMPLE("[:NFKD_Inert:]"), errorCode);
1388 skipSets[UNORM_NFC].applyPattern(UNICODE_STRING_SIMPLE("[:NFC_Inert:]"), errorCode);
1389 skipSets[UNORM_NFKC].applyPattern(UNICODE_STRING_SIMPLE("[:NFKC_Inert:]"), errorCode);
1390 if(errorCode.logDataIfFailureAndReset("UnicodeSet(NF..._Inert) failed")) {
1391 return;
1392 }
1393
1394 /* get expected sets from hardcoded patterns */
1395 initExpectedSkippables(expectSets, errorCode);
1396 errorCode.assertSuccess();
1397
1398 for(int32_t i=UNORM_NONE; i<UNORM_MODE_COUNT; ++i) {
1399 if(skipSets[i]!=expectSets[i]) {
1400 errln("error: TestSkippable skipSets[%d]!=expectedSets[%d]\n", i, i);
1401 // Note: This used to depend on hardcoded UnicodeSet patterns generated by
1402 // Mark's unicodetools.com.ibm.text.UCD.NFSkippable, by
1403 // running com.ibm.text.UCD.Main with the option NFSkippable.
1404 // Since ICU 4.6/Unicode 6, we are generating the
1405 // expectSets ourselves in initSkippables().
1406
1407 s=UNICODE_STRING_SIMPLE("skip-expect=");
1408 (diff=skipSets[i]).removeAll(expectSets[i]).toPattern(pattern, TRUE);
1409 s.append(pattern);
1410
1411 pattern.remove();
1412 s.append(UNICODE_STRING_SIMPLE("\n\nexpect-skip="));
1413 (diff=expectSets[i]).removeAll(skipSets[i]).toPattern(pattern, TRUE);
1414 s.append(pattern);
1415 s.append(UNICODE_STRING_SIMPLE("\n\n"));
1416
1417 errln(s);
1418 }
1419 }
1420 }
1421
1422 struct StringPair { const char *input, *expected; };
1423
1424 void
TestCustomComp()1425 BasicNormalizerTest::TestCustomComp() {
1426 static const StringPair pairs[]={
1427 { "\\uD801\\uE000\\uDFFE", "" },
1428 { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
1429 { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
1430 { "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE002\\U000110B9\\u0327\\u0345" },
1431 { "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
1432 { "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
1433 { "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
1434 { "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
1435 };
1436 IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomComp");
1437 const Normalizer2 *customNorm2=
1438 Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
1439 UNORM2_COMPOSE, errorCode);
1440 if(errorCode.logDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
1441 return;
1442 }
1443 for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
1444 const StringPair &pair=pairs[i];
1445 UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
1446 UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
1447 UnicodeString result=customNorm2->normalize(input, errorCode);
1448 if(result!=expected) {
1449 errln("custom compose Normalizer2 did not normalize input %d as expected", i);
1450 }
1451 }
1452 }
1453
1454 void
TestCustomFCC()1455 BasicNormalizerTest::TestCustomFCC() {
1456 static const StringPair pairs[]={
1457 { "\\uD801\\uE000\\uDFFE", "" },
1458 { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
1459 { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
1460 // The following expected result is different from CustomComp
1461 // because of only-contiguous composition.
1462 { "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE001\\U000110B9\\u0327\\u0308\\u0345" },
1463 { "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
1464 { "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
1465 { "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
1466 { "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
1467 };
1468 IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomFCC");
1469 const Normalizer2 *customNorm2=
1470 Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
1471 UNORM2_COMPOSE_CONTIGUOUS, errorCode);
1472 if(errorCode.logDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
1473 return;
1474 }
1475 for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
1476 const StringPair &pair=pairs[i];
1477 UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
1478 UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
1479 UnicodeString result=customNorm2->normalize(input, errorCode);
1480 if(result!=expected) {
1481 errln("custom FCC Normalizer2 did not normalize input %d as expected", i);
1482 }
1483 }
1484 }
1485
1486 /* Improve code coverage of Normalizer2 */
1487 void
TestFilteredNormalizer2Coverage()1488 BasicNormalizerTest::TestFilteredNormalizer2Coverage() {
1489 UErrorCode errorCode = U_ZERO_ERROR;
1490 const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
1491 if (U_FAILURE(errorCode)) {
1492 dataerrln("Normalizer2::getNFCInstance() call failed - %s", u_errorName(status));
1493 return;
1494 }
1495 UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff\\u0310-\\u031f]"), errorCode);
1496 FilteredNormalizer2 fn2(*nfcNorm2, filter);
1497
1498 UChar32 char32 = 0x0054;
1499
1500 if (fn2.isInert(char32)) {
1501 errln("FilteredNormalizer2.isInert() failed.");
1502 }
1503
1504 if (fn2.hasBoundaryAfter(char32)) {
1505 errln("FilteredNormalizer2.hasBoundaryAfter() failed.");
1506 }
1507
1508 UChar32 c;
1509 for(c=0; c<=0x3ff; ++c) {
1510 uint8_t expectedCC= filter.contains(c) ? nfcNorm2->getCombiningClass(c) : 0;
1511 uint8_t cc=fn2.getCombiningClass(c);
1512 if(cc!=expectedCC) {
1513 errln(
1514 UnicodeString("FilteredNormalizer2(NFC, ^A0-FF,310-31F).getCombiningClass(U+")+
1515 hex(c)+
1516 ")==filtered NFC.getCC()");
1517 }
1518 }
1519
1520 UnicodeString newString1 = UNICODE_STRING_SIMPLE("[^\\u0100-\\u01ff]");
1521 UnicodeString newString2 = UNICODE_STRING_SIMPLE("[^\\u0200-\\u02ff]");
1522 fn2.append(newString1, newString2, errorCode);
1523 if (U_FAILURE(errorCode)) {
1524 errln("FilteredNormalizer2.append() failed.");
1525 }
1526 }
1527
1528 #endif /* #if !UCONFIG_NO_NORMALIZATION */
1529