• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jquant2.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009, 2014-2015, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains 2-pass color quantization (color mapping) routines.
12  * These routines provide selection of a custom color map for an image,
13  * followed by mapping of the image to that color map, with optional
14  * Floyd-Steinberg dithering.
15  * It is also possible to use just the second pass to map to an arbitrary
16  * externally-given color map.
17  *
18  * Note: ordered dithering is not supported, since there isn't any fast
19  * way to compute intercolor distances; it's unclear that ordered dither's
20  * fundamental assumptions even hold with an irregularly spaced color map.
21  */
22 
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 
27 #ifdef QUANT_2PASS_SUPPORTED
28 
29 
30 /*
31  * This module implements the well-known Heckbert paradigm for color
32  * quantization.  Most of the ideas used here can be traced back to
33  * Heckbert's seminal paper
34  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
35  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
36  *
37  * In the first pass over the image, we accumulate a histogram showing the
38  * usage count of each possible color.  To keep the histogram to a reasonable
39  * size, we reduce the precision of the input; typical practice is to retain
40  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
41  * in the same histogram cell.
42  *
43  * Next, the color-selection step begins with a box representing the whole
44  * color space, and repeatedly splits the "largest" remaining box until we
45  * have as many boxes as desired colors.  Then the mean color in each
46  * remaining box becomes one of the possible output colors.
47  *
48  * The second pass over the image maps each input pixel to the closest output
49  * color (optionally after applying a Floyd-Steinberg dithering correction).
50  * This mapping is logically trivial, but making it go fast enough requires
51  * considerable care.
52  *
53  * Heckbert-style quantizers vary a good deal in their policies for choosing
54  * the "largest" box and deciding where to cut it.  The particular policies
55  * used here have proved out well in experimental comparisons, but better ones
56  * may yet be found.
57  *
58  * In earlier versions of the IJG code, this module quantized in YCbCr color
59  * space, processing the raw upsampled data without a color conversion step.
60  * This allowed the color conversion math to be done only once per colormap
61  * entry, not once per pixel.  However, that optimization precluded other
62  * useful optimizations (such as merging color conversion with upsampling)
63  * and it also interfered with desired capabilities such as quantizing to an
64  * externally-supplied colormap.  We have therefore abandoned that approach.
65  * The present code works in the post-conversion color space, typically RGB.
66  *
67  * To improve the visual quality of the results, we actually work in scaled
68  * RGB space, giving G distances more weight than R, and R in turn more than
69  * B.  To do everything in integer math, we must use integer scale factors.
70  * The 2/3/1 scale factors used here correspond loosely to the relative
71  * weights of the colors in the NTSC grayscale equation.
72  * If you want to use this code to quantize a non-RGB color space, you'll
73  * probably need to change these scale factors.
74  */
75 
76 #define R_SCALE 2               /* scale R distances by this much */
77 #define G_SCALE 3               /* scale G distances by this much */
78 #define B_SCALE 1               /* and B by this much */
79 
80 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
81 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
82 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
83 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
84 
85 /*
86  * First we have the histogram data structure and routines for creating it.
87  *
88  * The number of bits of precision can be adjusted by changing these symbols.
89  * We recommend keeping 6 bits for G and 5 each for R and B.
90  * If you have plenty of memory and cycles, 6 bits all around gives marginally
91  * better results; if you are short of memory, 5 bits all around will save
92  * some space but degrade the results.
93  * To maintain a fully accurate histogram, we'd need to allocate a "long"
94  * (preferably unsigned long) for each cell.  In practice this is overkill;
95  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
96  * and clamping those that do overflow to the maximum value will give close-
97  * enough results.  This reduces the recommended histogram size from 256Kb
98  * to 128Kb, which is a useful savings on PC-class machines.
99  * (In the second pass the histogram space is re-used for pixel mapping data;
100  * in that capacity, each cell must be able to store zero to the number of
101  * desired colors.  16 bits/cell is plenty for that too.)
102  * Since the JPEG code is intended to run in small memory model on 80x86
103  * machines, we can't just allocate the histogram in one chunk.  Instead
104  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
105  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
106  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
107  */
108 
109 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
110 
111 /* These will do the right thing for either R,G,B or B,G,R color order,
112  * but you may not like the results for other color orders.
113  */
114 #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
115 #define HIST_C1_BITS  6         /* bits of precision in G histogram */
116 #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
117 
118 /* Number of elements along histogram axes. */
119 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
120 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
121 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
122 
123 /* These are the amounts to shift an input value to get a histogram index. */
124 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
125 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
126 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
127 
128 
129 typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
130 
131 typedef histcell *histptr; /* for pointers to histogram cells */
132 
133 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
134 typedef hist1d *hist2d;         /* type for the 2nd-level pointers */
135 typedef hist2d *hist3d;         /* type for top-level pointer */
136 
137 
138 /* Declarations for Floyd-Steinberg dithering.
139  *
140  * Errors are accumulated into the array fserrors[], at a resolution of
141  * 1/16th of a pixel count.  The error at a given pixel is propagated
142  * to its not-yet-processed neighbors using the standard F-S fractions,
143  *              ...     (here)  7/16
144  *              3/16    5/16    1/16
145  * We work left-to-right on even rows, right-to-left on odd rows.
146  *
147  * We can get away with a single array (holding one row's worth of errors)
148  * by using it to store the current row's errors at pixel columns not yet
149  * processed, but the next row's errors at columns already processed.  We
150  * need only a few extra variables to hold the errors immediately around the
151  * current column.  (If we are lucky, those variables are in registers, but
152  * even if not, they're probably cheaper to access than array elements are.)
153  *
154  * The fserrors[] array has (#columns + 2) entries; the extra entry at
155  * each end saves us from special-casing the first and last pixels.
156  * Each entry is three values long, one value for each color component.
157  */
158 
159 #if BITS_IN_JSAMPLE == 8
160 typedef INT16 FSERROR;          /* 16 bits should be enough */
161 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
162 #else
163 typedef JLONG FSERROR;          /* may need more than 16 bits */
164 typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
165 #endif
166 
167 typedef FSERROR *FSERRPTR;      /* pointer to error array */
168 
169 
170 /* Private subobject */
171 
172 typedef struct {
173   struct jpeg_color_quantizer pub; /* public fields */
174 
175   /* Space for the eventually created colormap is stashed here */
176   JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
177   int desired;                  /* desired # of colors = size of colormap */
178 
179   /* Variables for accumulating image statistics */
180   hist3d histogram;             /* pointer to the histogram */
181 
182   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
183 
184   /* Variables for Floyd-Steinberg dithering */
185   FSERRPTR fserrors;            /* accumulated errors */
186   boolean on_odd_row;           /* flag to remember which row we are on */
187   int *error_limiter;           /* table for clamping the applied error */
188 } my_cquantizer;
189 
190 typedef my_cquantizer *my_cquantize_ptr;
191 
192 
193 /*
194  * Prescan some rows of pixels.
195  * In this module the prescan simply updates the histogram, which has been
196  * initialized to zeroes by start_pass.
197  * An output_buf parameter is required by the method signature, but no data
198  * is actually output (in fact the buffer controller is probably passing a
199  * NULL pointer).
200  */
201 
202 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)203 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
204                   JSAMPARRAY output_buf, int num_rows)
205 {
206   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
207   register JSAMPROW ptr;
208   register histptr histp;
209   register hist3d histogram = cquantize->histogram;
210   int row;
211   JDIMENSION col;
212   JDIMENSION width = cinfo->output_width;
213 
214   for (row = 0; row < num_rows; row++) {
215     ptr = input_buf[row];
216     for (col = width; col > 0; col--) {
217       /* get pixel value and index into the histogram */
218       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
219                          [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
220                          [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
221       /* increment, check for overflow and undo increment if so. */
222       if (++(*histp) <= 0)
223         (*histp)--;
224       ptr += 3;
225     }
226   }
227 }
228 
229 
230 /*
231  * Next we have the really interesting routines: selection of a colormap
232  * given the completed histogram.
233  * These routines work with a list of "boxes", each representing a rectangular
234  * subset of the input color space (to histogram precision).
235  */
236 
237 typedef struct {
238   /* The bounds of the box (inclusive); expressed as histogram indexes */
239   int c0min, c0max;
240   int c1min, c1max;
241   int c2min, c2max;
242   /* The volume (actually 2-norm) of the box */
243   JLONG volume;
244   /* The number of nonzero histogram cells within this box */
245   long colorcount;
246 } box;
247 
248 typedef box *boxptr;
249 
250 
251 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)252 find_biggest_color_pop (boxptr boxlist, int numboxes)
253 /* Find the splittable box with the largest color population */
254 /* Returns NULL if no splittable boxes remain */
255 {
256   register boxptr boxp;
257   register int i;
258   register long maxc = 0;
259   boxptr which = NULL;
260 
261   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
262     if (boxp->colorcount > maxc && boxp->volume > 0) {
263       which = boxp;
264       maxc = boxp->colorcount;
265     }
266   }
267   return which;
268 }
269 
270 
271 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)272 find_biggest_volume (boxptr boxlist, int numboxes)
273 /* Find the splittable box with the largest (scaled) volume */
274 /* Returns NULL if no splittable boxes remain */
275 {
276   register boxptr boxp;
277   register int i;
278   register JLONG maxv = 0;
279   boxptr which = NULL;
280 
281   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
282     if (boxp->volume > maxv) {
283       which = boxp;
284       maxv = boxp->volume;
285     }
286   }
287   return which;
288 }
289 
290 
291 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)292 update_box (j_decompress_ptr cinfo, boxptr boxp)
293 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
294 /* and recompute its volume and population */
295 {
296   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
297   hist3d histogram = cquantize->histogram;
298   histptr histp;
299   int c0,c1,c2;
300   int c0min,c0max,c1min,c1max,c2min,c2max;
301   JLONG dist0,dist1,dist2;
302   long ccount;
303 
304   c0min = boxp->c0min;  c0max = boxp->c0max;
305   c1min = boxp->c1min;  c1max = boxp->c1max;
306   c2min = boxp->c2min;  c2max = boxp->c2max;
307 
308   if (c0max > c0min)
309     for (c0 = c0min; c0 <= c0max; c0++)
310       for (c1 = c1min; c1 <= c1max; c1++) {
311         histp = & histogram[c0][c1][c2min];
312         for (c2 = c2min; c2 <= c2max; c2++)
313           if (*histp++ != 0) {
314             boxp->c0min = c0min = c0;
315             goto have_c0min;
316           }
317       }
318  have_c0min:
319   if (c0max > c0min)
320     for (c0 = c0max; c0 >= c0min; c0--)
321       for (c1 = c1min; c1 <= c1max; c1++) {
322         histp = & histogram[c0][c1][c2min];
323         for (c2 = c2min; c2 <= c2max; c2++)
324           if (*histp++ != 0) {
325             boxp->c0max = c0max = c0;
326             goto have_c0max;
327           }
328       }
329  have_c0max:
330   if (c1max > c1min)
331     for (c1 = c1min; c1 <= c1max; c1++)
332       for (c0 = c0min; c0 <= c0max; c0++) {
333         histp = & histogram[c0][c1][c2min];
334         for (c2 = c2min; c2 <= c2max; c2++)
335           if (*histp++ != 0) {
336             boxp->c1min = c1min = c1;
337             goto have_c1min;
338           }
339       }
340  have_c1min:
341   if (c1max > c1min)
342     for (c1 = c1max; c1 >= c1min; c1--)
343       for (c0 = c0min; c0 <= c0max; c0++) {
344         histp = & histogram[c0][c1][c2min];
345         for (c2 = c2min; c2 <= c2max; c2++)
346           if (*histp++ != 0) {
347             boxp->c1max = c1max = c1;
348             goto have_c1max;
349           }
350       }
351  have_c1max:
352   if (c2max > c2min)
353     for (c2 = c2min; c2 <= c2max; c2++)
354       for (c0 = c0min; c0 <= c0max; c0++) {
355         histp = & histogram[c0][c1min][c2];
356         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
357           if (*histp != 0) {
358             boxp->c2min = c2min = c2;
359             goto have_c2min;
360           }
361       }
362  have_c2min:
363   if (c2max > c2min)
364     for (c2 = c2max; c2 >= c2min; c2--)
365       for (c0 = c0min; c0 <= c0max; c0++) {
366         histp = & histogram[c0][c1min][c2];
367         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
368           if (*histp != 0) {
369             boxp->c2max = c2max = c2;
370             goto have_c2max;
371           }
372       }
373  have_c2max:
374 
375   /* Update box volume.
376    * We use 2-norm rather than real volume here; this biases the method
377    * against making long narrow boxes, and it has the side benefit that
378    * a box is splittable iff norm > 0.
379    * Since the differences are expressed in histogram-cell units,
380    * we have to shift back to JSAMPLE units to get consistent distances;
381    * after which, we scale according to the selected distance scale factors.
382    */
383   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
384   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
385   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
386   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
387 
388   /* Now scan remaining volume of box and compute population */
389   ccount = 0;
390   for (c0 = c0min; c0 <= c0max; c0++)
391     for (c1 = c1min; c1 <= c1max; c1++) {
392       histp = & histogram[c0][c1][c2min];
393       for (c2 = c2min; c2 <= c2max; c2++, histp++)
394         if (*histp != 0) {
395           ccount++;
396         }
397     }
398   boxp->colorcount = ccount;
399 }
400 
401 
402 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)403 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
404             int desired_colors)
405 /* Repeatedly select and split the largest box until we have enough boxes */
406 {
407   int n,lb;
408   int c0,c1,c2,cmax;
409   register boxptr b1,b2;
410 
411   while (numboxes < desired_colors) {
412     /* Select box to split.
413      * Current algorithm: by population for first half, then by volume.
414      */
415     if (numboxes*2 <= desired_colors) {
416       b1 = find_biggest_color_pop(boxlist, numboxes);
417     } else {
418       b1 = find_biggest_volume(boxlist, numboxes);
419     }
420     if (b1 == NULL)             /* no splittable boxes left! */
421       break;
422     b2 = &boxlist[numboxes];    /* where new box will go */
423     /* Copy the color bounds to the new box. */
424     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
425     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
426     /* Choose which axis to split the box on.
427      * Current algorithm: longest scaled axis.
428      * See notes in update_box about scaling distances.
429      */
430     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
431     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
432     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
433     /* We want to break any ties in favor of green, then red, blue last.
434      * This code does the right thing for R,G,B or B,G,R color orders only.
435      */
436     if (rgb_red[cinfo->out_color_space] == 0) {
437       cmax = c1; n = 1;
438       if (c0 > cmax) { cmax = c0; n = 0; }
439       if (c2 > cmax) { n = 2; }
440     }
441     else {
442       cmax = c1; n = 1;
443       if (c2 > cmax) { cmax = c2; n = 2; }
444       if (c0 > cmax) { n = 0; }
445     }
446     /* Choose split point along selected axis, and update box bounds.
447      * Current algorithm: split at halfway point.
448      * (Since the box has been shrunk to minimum volume,
449      * any split will produce two nonempty subboxes.)
450      * Note that lb value is max for lower box, so must be < old max.
451      */
452     switch (n) {
453     case 0:
454       lb = (b1->c0max + b1->c0min) / 2;
455       b1->c0max = lb;
456       b2->c0min = lb+1;
457       break;
458     case 1:
459       lb = (b1->c1max + b1->c1min) / 2;
460       b1->c1max = lb;
461       b2->c1min = lb+1;
462       break;
463     case 2:
464       lb = (b1->c2max + b1->c2min) / 2;
465       b1->c2max = lb;
466       b2->c2min = lb+1;
467       break;
468     }
469     /* Update stats for boxes */
470     update_box(cinfo, b1);
471     update_box(cinfo, b2);
472     numboxes++;
473   }
474   return numboxes;
475 }
476 
477 
478 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)479 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
480 /* Compute representative color for a box, put it in colormap[icolor] */
481 {
482   /* Current algorithm: mean weighted by pixels (not colors) */
483   /* Note it is important to get the rounding correct! */
484   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
485   hist3d histogram = cquantize->histogram;
486   histptr histp;
487   int c0,c1,c2;
488   int c0min,c0max,c1min,c1max,c2min,c2max;
489   long count;
490   long total = 0;
491   long c0total = 0;
492   long c1total = 0;
493   long c2total = 0;
494 
495   c0min = boxp->c0min;  c0max = boxp->c0max;
496   c1min = boxp->c1min;  c1max = boxp->c1max;
497   c2min = boxp->c2min;  c2max = boxp->c2max;
498 
499   for (c0 = c0min; c0 <= c0max; c0++)
500     for (c1 = c1min; c1 <= c1max; c1++) {
501       histp = & histogram[c0][c1][c2min];
502       for (c2 = c2min; c2 <= c2max; c2++) {
503         if ((count = *histp++) != 0) {
504           total += count;
505           c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
506           c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
507           c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
508         }
509       }
510     }
511 
512   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
513   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
514   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
515 }
516 
517 
518 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)519 select_colors (j_decompress_ptr cinfo, int desired_colors)
520 /* Master routine for color selection */
521 {
522   boxptr boxlist;
523   int numboxes;
524   int i;
525 
526   /* Allocate workspace for box list */
527   boxlist = (boxptr) (*cinfo->mem->alloc_small)
528     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
529   /* Initialize one box containing whole space */
530   numboxes = 1;
531   boxlist[0].c0min = 0;
532   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
533   boxlist[0].c1min = 0;
534   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
535   boxlist[0].c2min = 0;
536   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
537   /* Shrink it to actually-used volume and set its statistics */
538   update_box(cinfo, & boxlist[0]);
539   /* Perform median-cut to produce final box list */
540   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
541   /* Compute the representative color for each box, fill colormap */
542   for (i = 0; i < numboxes; i++)
543     compute_color(cinfo, & boxlist[i], i);
544   cinfo->actual_number_of_colors = numboxes;
545   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
546 }
547 
548 
549 /*
550  * These routines are concerned with the time-critical task of mapping input
551  * colors to the nearest color in the selected colormap.
552  *
553  * We re-use the histogram space as an "inverse color map", essentially a
554  * cache for the results of nearest-color searches.  All colors within a
555  * histogram cell will be mapped to the same colormap entry, namely the one
556  * closest to the cell's center.  This may not be quite the closest entry to
557  * the actual input color, but it's almost as good.  A zero in the cache
558  * indicates we haven't found the nearest color for that cell yet; the array
559  * is cleared to zeroes before starting the mapping pass.  When we find the
560  * nearest color for a cell, its colormap index plus one is recorded in the
561  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
562  * when they need to use an unfilled entry in the cache.
563  *
564  * Our method of efficiently finding nearest colors is based on the "locally
565  * sorted search" idea described by Heckbert and on the incremental distance
566  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
567  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
568  * the distances from a given colormap entry to each cell of the histogram can
569  * be computed quickly using an incremental method: the differences between
570  * distances to adjacent cells themselves differ by a constant.  This allows a
571  * fairly fast implementation of the "brute force" approach of computing the
572  * distance from every colormap entry to every histogram cell.  Unfortunately,
573  * it needs a work array to hold the best-distance-so-far for each histogram
574  * cell (because the inner loop has to be over cells, not colormap entries).
575  * The work array elements have to be JLONGs, so the work array would need
576  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
577  *
578  * To get around these problems, we apply Thomas' method to compute the
579  * nearest colors for only the cells within a small subbox of the histogram.
580  * The work array need be only as big as the subbox, so the memory usage
581  * problem is solved.  Furthermore, we need not fill subboxes that are never
582  * referenced in pass2; many images use only part of the color gamut, so a
583  * fair amount of work is saved.  An additional advantage of this
584  * approach is that we can apply Heckbert's locality criterion to quickly
585  * eliminate colormap entries that are far away from the subbox; typically
586  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
587  * and we need not compute their distances to individual cells in the subbox.
588  * The speed of this approach is heavily influenced by the subbox size: too
589  * small means too much overhead, too big loses because Heckbert's criterion
590  * can't eliminate as many colormap entries.  Empirically the best subbox
591  * size seems to be about 1/512th of the histogram (1/8th in each direction).
592  *
593  * Thomas' article also describes a refined method which is asymptotically
594  * faster than the brute-force method, but it is also far more complex and
595  * cannot efficiently be applied to small subboxes.  It is therefore not
596  * useful for programs intended to be portable to DOS machines.  On machines
597  * with plenty of memory, filling the whole histogram in one shot with Thomas'
598  * refined method might be faster than the present code --- but then again,
599  * it might not be any faster, and it's certainly more complicated.
600  */
601 
602 
603 /* log2(histogram cells in update box) for each axis; this can be adjusted */
604 #define BOX_C0_LOG  (HIST_C0_BITS-3)
605 #define BOX_C1_LOG  (HIST_C1_BITS-3)
606 #define BOX_C2_LOG  (HIST_C2_BITS-3)
607 
608 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
609 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
610 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
611 
612 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
613 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
614 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
615 
616 
617 /*
618  * The next three routines implement inverse colormap filling.  They could
619  * all be folded into one big routine, but splitting them up this way saves
620  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
621  * and may allow some compilers to produce better code by registerizing more
622  * inner-loop variables.
623  */
624 
625 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])626 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
627                     JSAMPLE colorlist[])
628 /* Locate the colormap entries close enough to an update box to be candidates
629  * for the nearest entry to some cell(s) in the update box.  The update box
630  * is specified by the center coordinates of its first cell.  The number of
631  * candidate colormap entries is returned, and their colormap indexes are
632  * placed in colorlist[].
633  * This routine uses Heckbert's "locally sorted search" criterion to select
634  * the colors that need further consideration.
635  */
636 {
637   int numcolors = cinfo->actual_number_of_colors;
638   int maxc0, maxc1, maxc2;
639   int centerc0, centerc1, centerc2;
640   int i, x, ncolors;
641   JLONG minmaxdist, min_dist, max_dist, tdist;
642   JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
643 
644   /* Compute true coordinates of update box's upper corner and center.
645    * Actually we compute the coordinates of the center of the upper-corner
646    * histogram cell, which are the upper bounds of the volume we care about.
647    * Note that since ">>" rounds down, the "center" values may be closer to
648    * min than to max; hence comparisons to them must be "<=", not "<".
649    */
650   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
651   centerc0 = (minc0 + maxc0) >> 1;
652   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
653   centerc1 = (minc1 + maxc1) >> 1;
654   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
655   centerc2 = (minc2 + maxc2) >> 1;
656 
657   /* For each color in colormap, find:
658    *  1. its minimum squared-distance to any point in the update box
659    *     (zero if color is within update box);
660    *  2. its maximum squared-distance to any point in the update box.
661    * Both of these can be found by considering only the corners of the box.
662    * We save the minimum distance for each color in mindist[];
663    * only the smallest maximum distance is of interest.
664    */
665   minmaxdist = 0x7FFFFFFFL;
666 
667   for (i = 0; i < numcolors; i++) {
668     /* We compute the squared-c0-distance term, then add in the other two. */
669     x = GETJSAMPLE(cinfo->colormap[0][i]);
670     if (x < minc0) {
671       tdist = (x - minc0) * C0_SCALE;
672       min_dist = tdist*tdist;
673       tdist = (x - maxc0) * C0_SCALE;
674       max_dist = tdist*tdist;
675     } else if (x > maxc0) {
676       tdist = (x - maxc0) * C0_SCALE;
677       min_dist = tdist*tdist;
678       tdist = (x - minc0) * C0_SCALE;
679       max_dist = tdist*tdist;
680     } else {
681       /* within cell range so no contribution to min_dist */
682       min_dist = 0;
683       if (x <= centerc0) {
684         tdist = (x - maxc0) * C0_SCALE;
685         max_dist = tdist*tdist;
686       } else {
687         tdist = (x - minc0) * C0_SCALE;
688         max_dist = tdist*tdist;
689       }
690     }
691 
692     x = GETJSAMPLE(cinfo->colormap[1][i]);
693     if (x < minc1) {
694       tdist = (x - minc1) * C1_SCALE;
695       min_dist += tdist*tdist;
696       tdist = (x - maxc1) * C1_SCALE;
697       max_dist += tdist*tdist;
698     } else if (x > maxc1) {
699       tdist = (x - maxc1) * C1_SCALE;
700       min_dist += tdist*tdist;
701       tdist = (x - minc1) * C1_SCALE;
702       max_dist += tdist*tdist;
703     } else {
704       /* within cell range so no contribution to min_dist */
705       if (x <= centerc1) {
706         tdist = (x - maxc1) * C1_SCALE;
707         max_dist += tdist*tdist;
708       } else {
709         tdist = (x - minc1) * C1_SCALE;
710         max_dist += tdist*tdist;
711       }
712     }
713 
714     x = GETJSAMPLE(cinfo->colormap[2][i]);
715     if (x < minc2) {
716       tdist = (x - minc2) * C2_SCALE;
717       min_dist += tdist*tdist;
718       tdist = (x - maxc2) * C2_SCALE;
719       max_dist += tdist*tdist;
720     } else if (x > maxc2) {
721       tdist = (x - maxc2) * C2_SCALE;
722       min_dist += tdist*tdist;
723       tdist = (x - minc2) * C2_SCALE;
724       max_dist += tdist*tdist;
725     } else {
726       /* within cell range so no contribution to min_dist */
727       if (x <= centerc2) {
728         tdist = (x - maxc2) * C2_SCALE;
729         max_dist += tdist*tdist;
730       } else {
731         tdist = (x - minc2) * C2_SCALE;
732         max_dist += tdist*tdist;
733       }
734     }
735 
736     mindist[i] = min_dist;      /* save away the results */
737     if (max_dist < minmaxdist)
738       minmaxdist = max_dist;
739   }
740 
741   /* Now we know that no cell in the update box is more than minmaxdist
742    * away from some colormap entry.  Therefore, only colors that are
743    * within minmaxdist of some part of the box need be considered.
744    */
745   ncolors = 0;
746   for (i = 0; i < numcolors; i++) {
747     if (mindist[i] <= minmaxdist)
748       colorlist[ncolors++] = (JSAMPLE) i;
749   }
750   return ncolors;
751 }
752 
753 
754 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])755 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
756                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
757 /* Find the closest colormap entry for each cell in the update box,
758  * given the list of candidate colors prepared by find_nearby_colors.
759  * Return the indexes of the closest entries in the bestcolor[] array.
760  * This routine uses Thomas' incremental distance calculation method to
761  * find the distance from a colormap entry to successive cells in the box.
762  */
763 {
764   int ic0, ic1, ic2;
765   int i, icolor;
766   register JLONG *bptr;         /* pointer into bestdist[] array */
767   JSAMPLE *cptr;                /* pointer into bestcolor[] array */
768   JLONG dist0, dist1;           /* initial distance values */
769   register JLONG dist2;         /* current distance in inner loop */
770   JLONG xx0, xx1;               /* distance increments */
771   register JLONG xx2;
772   JLONG inc0, inc1, inc2;       /* initial values for increments */
773   /* This array holds the distance to the nearest-so-far color for each cell */
774   JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
775 
776   /* Initialize best-distance for each cell of the update box */
777   bptr = bestdist;
778   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
779     *bptr++ = 0x7FFFFFFFL;
780 
781   /* For each color selected by find_nearby_colors,
782    * compute its distance to the center of each cell in the box.
783    * If that's less than best-so-far, update best distance and color number.
784    */
785 
786   /* Nominal steps between cell centers ("x" in Thomas article) */
787 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
788 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
789 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
790 
791   for (i = 0; i < numcolors; i++) {
792     icolor = GETJSAMPLE(colorlist[i]);
793     /* Compute (square of) distance from minc0/c1/c2 to this color */
794     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
795     dist0 = inc0*inc0;
796     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
797     dist0 += inc1*inc1;
798     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
799     dist0 += inc2*inc2;
800     /* Form the initial difference increments */
801     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
802     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
803     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
804     /* Now loop over all cells in box, updating distance per Thomas method */
805     bptr = bestdist;
806     cptr = bestcolor;
807     xx0 = inc0;
808     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
809       dist1 = dist0;
810       xx1 = inc1;
811       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
812         dist2 = dist1;
813         xx2 = inc2;
814         for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
815           if (dist2 < *bptr) {
816             *bptr = dist2;
817             *cptr = (JSAMPLE) icolor;
818           }
819           dist2 += xx2;
820           xx2 += 2 * STEP_C2 * STEP_C2;
821           bptr++;
822           cptr++;
823         }
824         dist1 += xx1;
825         xx1 += 2 * STEP_C1 * STEP_C1;
826       }
827       dist0 += xx0;
828       xx0 += 2 * STEP_C0 * STEP_C0;
829     }
830   }
831 }
832 
833 
834 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)835 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
836 /* Fill the inverse-colormap entries in the update box that contains */
837 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
838 /* we can fill as many others as we wish.) */
839 {
840   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
841   hist3d histogram = cquantize->histogram;
842   int minc0, minc1, minc2;      /* lower left corner of update box */
843   int ic0, ic1, ic2;
844   register JSAMPLE *cptr;       /* pointer into bestcolor[] array */
845   register histptr cachep;      /* pointer into main cache array */
846   /* This array lists the candidate colormap indexes. */
847   JSAMPLE colorlist[MAXNUMCOLORS];
848   int numcolors;                /* number of candidate colors */
849   /* This array holds the actually closest colormap index for each cell. */
850   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
851 
852   /* Convert cell coordinates to update box ID */
853   c0 >>= BOX_C0_LOG;
854   c1 >>= BOX_C1_LOG;
855   c2 >>= BOX_C2_LOG;
856 
857   /* Compute true coordinates of update box's origin corner.
858    * Actually we compute the coordinates of the center of the corner
859    * histogram cell, which are the lower bounds of the volume we care about.
860    */
861   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
862   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
863   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
864 
865   /* Determine which colormap entries are close enough to be candidates
866    * for the nearest entry to some cell in the update box.
867    */
868   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
869 
870   /* Determine the actually nearest colors. */
871   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
872                    bestcolor);
873 
874   /* Save the best color numbers (plus 1) in the main cache array */
875   c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
876   c1 <<= BOX_C1_LOG;
877   c2 <<= BOX_C2_LOG;
878   cptr = bestcolor;
879   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
880     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
881       cachep = & histogram[c0+ic0][c1+ic1][c2];
882       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
883         *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
884       }
885     }
886   }
887 }
888 
889 
890 /*
891  * Map some rows of pixels to the output colormapped representation.
892  */
893 
894 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)895 pass2_no_dither (j_decompress_ptr cinfo,
896                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
897 /* This version performs no dithering */
898 {
899   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
900   hist3d histogram = cquantize->histogram;
901   register JSAMPROW inptr, outptr;
902   register histptr cachep;
903   register int c0, c1, c2;
904   int row;
905   JDIMENSION col;
906   JDIMENSION width = cinfo->output_width;
907 
908   for (row = 0; row < num_rows; row++) {
909     inptr = input_buf[row];
910     outptr = output_buf[row];
911     for (col = width; col > 0; col--) {
912       /* get pixel value and index into the cache */
913       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
914       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
915       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
916       cachep = & histogram[c0][c1][c2];
917       /* If we have not seen this color before, find nearest colormap entry */
918       /* and update the cache */
919       if (*cachep == 0)
920         fill_inverse_cmap(cinfo, c0,c1,c2);
921       /* Now emit the colormap index for this cell */
922       *outptr++ = (JSAMPLE) (*cachep - 1);
923     }
924   }
925 }
926 
927 
928 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)929 pass2_fs_dither (j_decompress_ptr cinfo,
930                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
931 /* This version performs Floyd-Steinberg dithering */
932 {
933   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
934   hist3d histogram = cquantize->histogram;
935   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
936   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
937   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
938   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
939   JSAMPROW inptr;               /* => current input pixel */
940   JSAMPROW outptr;              /* => current output pixel */
941   histptr cachep;
942   int dir;                      /* +1 or -1 depending on direction */
943   int dir3;                     /* 3*dir, for advancing inptr & errorptr */
944   int row;
945   JDIMENSION col;
946   JDIMENSION width = cinfo->output_width;
947   JSAMPLE *range_limit = cinfo->sample_range_limit;
948   int *error_limit = cquantize->error_limiter;
949   JSAMPROW colormap0 = cinfo->colormap[0];
950   JSAMPROW colormap1 = cinfo->colormap[1];
951   JSAMPROW colormap2 = cinfo->colormap[2];
952   SHIFT_TEMPS
953 
954   for (row = 0; row < num_rows; row++) {
955     inptr = input_buf[row];
956     outptr = output_buf[row];
957     if (cquantize->on_odd_row) {
958       /* work right to left in this row */
959       inptr += (width-1) * 3;   /* so point to rightmost pixel */
960       outptr += width-1;
961       dir = -1;
962       dir3 = -3;
963       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
964       cquantize->on_odd_row = FALSE; /* flip for next time */
965     } else {
966       /* work left to right in this row */
967       dir = 1;
968       dir3 = 3;
969       errorptr = cquantize->fserrors; /* => entry before first real column */
970       cquantize->on_odd_row = TRUE; /* flip for next time */
971     }
972     /* Preset error values: no error propagated to first pixel from left */
973     cur0 = cur1 = cur2 = 0;
974     /* and no error propagated to row below yet */
975     belowerr0 = belowerr1 = belowerr2 = 0;
976     bpreverr0 = bpreverr1 = bpreverr2 = 0;
977 
978     for (col = width; col > 0; col--) {
979       /* curN holds the error propagated from the previous pixel on the
980        * current line.  Add the error propagated from the previous line
981        * to form the complete error correction term for this pixel, and
982        * round the error term (which is expressed * 16) to an integer.
983        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
984        * for either sign of the error value.
985        * Note: errorptr points to *previous* column's array entry.
986        */
987       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
988       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
989       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
990       /* Limit the error using transfer function set by init_error_limit.
991        * See comments with init_error_limit for rationale.
992        */
993       cur0 = error_limit[cur0];
994       cur1 = error_limit[cur1];
995       cur2 = error_limit[cur2];
996       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
997        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
998        * this sets the required size of the range_limit array.
999        */
1000       cur0 += GETJSAMPLE(inptr[0]);
1001       cur1 += GETJSAMPLE(inptr[1]);
1002       cur2 += GETJSAMPLE(inptr[2]);
1003       cur0 = GETJSAMPLE(range_limit[cur0]);
1004       cur1 = GETJSAMPLE(range_limit[cur1]);
1005       cur2 = GETJSAMPLE(range_limit[cur2]);
1006       /* Index into the cache with adjusted pixel value */
1007       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1008       /* If we have not seen this color before, find nearest colormap */
1009       /* entry and update the cache */
1010       if (*cachep == 0)
1011         fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1012       /* Now emit the colormap index for this cell */
1013       { register int pixcode = *cachep - 1;
1014         *outptr = (JSAMPLE) pixcode;
1015         /* Compute representation error for this pixel */
1016         cur0 -= GETJSAMPLE(colormap0[pixcode]);
1017         cur1 -= GETJSAMPLE(colormap1[pixcode]);
1018         cur2 -= GETJSAMPLE(colormap2[pixcode]);
1019       }
1020       /* Compute error fractions to be propagated to adjacent pixels.
1021        * Add these into the running sums, and simultaneously shift the
1022        * next-line error sums left by 1 column.
1023        */
1024       { register LOCFSERROR bnexterr;
1025 
1026         bnexterr = cur0;        /* Process component 0 */
1027         errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3);
1028         bpreverr0 = belowerr0 + cur0 * 5;
1029         belowerr0 = bnexterr;
1030         cur0 *= 7;
1031         bnexterr = cur1;        /* Process component 1 */
1032         errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3);
1033         bpreverr1 = belowerr1 + cur1 * 5;
1034         belowerr1 = bnexterr;
1035         cur1 *= 7;
1036         bnexterr = cur2;        /* Process component 2 */
1037         errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3);
1038         bpreverr2 = belowerr2 + cur2 * 5;
1039         belowerr2 = bnexterr;
1040         cur2 *= 7;
1041       }
1042       /* At this point curN contains the 7/16 error value to be propagated
1043        * to the next pixel on the current line, and all the errors for the
1044        * next line have been shifted over.  We are therefore ready to move on.
1045        */
1046       inptr += dir3;            /* Advance pixel pointers to next column */
1047       outptr += dir;
1048       errorptr += dir3;         /* advance errorptr to current column */
1049     }
1050     /* Post-loop cleanup: we must unload the final error values into the
1051      * final fserrors[] entry.  Note we need not unload belowerrN because
1052      * it is for the dummy column before or after the actual array.
1053      */
1054     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1055     errorptr[1] = (FSERROR) bpreverr1;
1056     errorptr[2] = (FSERROR) bpreverr2;
1057   }
1058 }
1059 
1060 
1061 /*
1062  * Initialize the error-limiting transfer function (lookup table).
1063  * The raw F-S error computation can potentially compute error values of up to
1064  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1065  * much less, otherwise obviously wrong pixels will be created.  (Typical
1066  * effects include weird fringes at color-area boundaries, isolated bright
1067  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1068  * is to ensure that the "corners" of the color cube are allocated as output
1069  * colors; then repeated errors in the same direction cannot cause cascading
1070  * error buildup.  However, that only prevents the error from getting
1071  * completely out of hand; Aaron Giles reports that error limiting improves
1072  * the results even with corner colors allocated.
1073  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1074  * well, but the smoother transfer function used below is even better.  Thanks
1075  * to Aaron Giles for this idea.
1076  */
1077 
1078 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1079 init_error_limit (j_decompress_ptr cinfo)
1080 /* Allocate and fill in the error_limiter table */
1081 {
1082   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1083   int *table;
1084   int in, out;
1085 
1086   table = (int *) (*cinfo->mem->alloc_small)
1087     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int));
1088   table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1089   cquantize->error_limiter = table;
1090 
1091 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1092   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1093   out = 0;
1094   for (in = 0; in < STEPSIZE; in++, out++) {
1095     table[in] = out; table[-in] = -out;
1096   }
1097   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1098   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1099     table[in] = out; table[-in] = -out;
1100   }
1101   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1102   for (; in <= MAXJSAMPLE; in++) {
1103     table[in] = out; table[-in] = -out;
1104   }
1105 #undef STEPSIZE
1106 }
1107 
1108 
1109 /*
1110  * Finish up at the end of each pass.
1111  */
1112 
1113 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1114 finish_pass1 (j_decompress_ptr cinfo)
1115 {
1116   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1117 
1118   /* Select the representative colors and fill in cinfo->colormap */
1119   cinfo->colormap = cquantize->sv_colormap;
1120   select_colors(cinfo, cquantize->desired);
1121   /* Force next pass to zero the color index table */
1122   cquantize->needs_zeroed = TRUE;
1123 }
1124 
1125 
1126 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1127 finish_pass2 (j_decompress_ptr cinfo)
1128 {
1129   /* no work */
1130 }
1131 
1132 
1133 /*
1134  * Initialize for each processing pass.
1135  */
1136 
1137 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1138 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1139 {
1140   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1141   hist3d histogram = cquantize->histogram;
1142   int i;
1143 
1144   /* Only F-S dithering or no dithering is supported. */
1145   /* If user asks for ordered dither, give him F-S. */
1146   if (cinfo->dither_mode != JDITHER_NONE)
1147     cinfo->dither_mode = JDITHER_FS;
1148 
1149   if (is_pre_scan) {
1150     /* Set up method pointers */
1151     cquantize->pub.color_quantize = prescan_quantize;
1152     cquantize->pub.finish_pass = finish_pass1;
1153     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1154   } else {
1155     /* Set up method pointers */
1156     if (cinfo->dither_mode == JDITHER_FS)
1157       cquantize->pub.color_quantize = pass2_fs_dither;
1158     else
1159       cquantize->pub.color_quantize = pass2_no_dither;
1160     cquantize->pub.finish_pass = finish_pass2;
1161 
1162     /* Make sure color count is acceptable */
1163     i = cinfo->actual_number_of_colors;
1164     if (i < 1)
1165       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1166     if (i > MAXNUMCOLORS)
1167       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1168 
1169     if (cinfo->dither_mode == JDITHER_FS) {
1170       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1171                                    (3 * sizeof(FSERROR)));
1172       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1173       if (cquantize->fserrors == NULL)
1174         cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1175           ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1176       /* Initialize the propagated errors to zero. */
1177       jzero_far((void *) cquantize->fserrors, arraysize);
1178       /* Make the error-limit table if we didn't already. */
1179       if (cquantize->error_limiter == NULL)
1180         init_error_limit(cinfo);
1181       cquantize->on_odd_row = FALSE;
1182     }
1183 
1184   }
1185   /* Zero the histogram or inverse color map, if necessary */
1186   if (cquantize->needs_zeroed) {
1187     for (i = 0; i < HIST_C0_ELEMS; i++) {
1188       jzero_far((void *) histogram[i],
1189                 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1190     }
1191     cquantize->needs_zeroed = FALSE;
1192   }
1193 }
1194 
1195 
1196 /*
1197  * Switch to a new external colormap between output passes.
1198  */
1199 
1200 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1201 new_color_map_2_quant (j_decompress_ptr cinfo)
1202 {
1203   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1204 
1205   /* Reset the inverse color map */
1206   cquantize->needs_zeroed = TRUE;
1207 }
1208 
1209 
1210 /*
1211  * Module initialization routine for 2-pass color quantization.
1212  */
1213 
1214 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1215 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1216 {
1217   my_cquantize_ptr cquantize;
1218   int i;
1219 
1220   cquantize = (my_cquantize_ptr)
1221     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1222                                 sizeof(my_cquantizer));
1223   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1224   cquantize->pub.start_pass = start_pass_2_quant;
1225   cquantize->pub.new_color_map = new_color_map_2_quant;
1226   cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1227   cquantize->error_limiter = NULL;
1228 
1229   /* Make sure jdmaster didn't give me a case I can't handle */
1230   if (cinfo->out_color_components != 3)
1231     ERREXIT(cinfo, JERR_NOTIMPL);
1232 
1233   /* Allocate the histogram/inverse colormap storage */
1234   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1235     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1236   for (i = 0; i < HIST_C0_ELEMS; i++) {
1237     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1238       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1239        HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1240   }
1241   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1242 
1243   /* Allocate storage for the completed colormap, if required.
1244    * We do this now since it may affect the memory manager's space
1245    * calculations.
1246    */
1247   if (cinfo->enable_2pass_quant) {
1248     /* Make sure color count is acceptable */
1249     int desired = cinfo->desired_number_of_colors;
1250     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1251     if (desired < 8)
1252       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1253     /* Make sure colormap indexes can be represented by JSAMPLEs */
1254     if (desired > MAXNUMCOLORS)
1255       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1256     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1257       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1258     cquantize->desired = desired;
1259   } else
1260     cquantize->sv_colormap = NULL;
1261 
1262   /* Only F-S dithering or no dithering is supported. */
1263   /* If user asks for ordered dither, give him F-S. */
1264   if (cinfo->dither_mode != JDITHER_NONE)
1265     cinfo->dither_mode = JDITHER_FS;
1266 
1267   /* Allocate Floyd-Steinberg workspace if necessary.
1268    * This isn't really needed until pass 2, but again it may affect the memory
1269    * manager's space calculations.  Although we will cope with a later change
1270    * in dither_mode, we do not promise to honor max_memory_to_use if
1271    * dither_mode changes.
1272    */
1273   if (cinfo->dither_mode == JDITHER_FS) {
1274     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1275       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1276        (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1277     /* Might as well create the error-limiting table too. */
1278     init_error_limit(cinfo);
1279   }
1280 }
1281 
1282 #endif /* QUANT_2PASS_SUPPORTED */
1283