1 /**************************************************************************
2 *
3 * Etherboot driver for Level 5 Etherfabric network cards
4 *
5 * Written by Michael Brown <mbrown@fensystems.co.uk>
6 *
7 * Copyright Fen Systems Ltd. 2005
8 * Copyright Level 5 Networks Inc. 2005
9 *
10 * This software may be used and distributed according to the terms of
11 * the GNU General Public License (GPL), incorporated herein by
12 * reference. Drivers based on or derived from this code fall under
13 * the GPL and must retain the authorship, copyright and license
14 * notice.
15 *
16 **************************************************************************
17 */
18
19 FILE_LICENCE ( GPL_ANY );
20
21 #include <stdint.h>
22 #include <stdlib.h>
23 #include <unistd.h>
24 #include <errno.h>
25 #include <assert.h>
26 #include <byteswap.h>
27 #include <console.h>
28 #include <gpxe/io.h>
29 #include <gpxe/pci.h>
30 #include <gpxe/malloc.h>
31 #include <gpxe/ethernet.h>
32 #include <gpxe/iobuf.h>
33 #include <gpxe/netdevice.h>
34 #include <gpxe/timer.h>
35 #include <mii.h>
36 #include "etherfabric.h"
37 #include "etherfabric_nic.h"
38
39 /**************************************************************************
40 *
41 * Constants and macros
42 *
43 **************************************************************************
44 */
45
46 #define EFAB_REGDUMP(...)
47 #define EFAB_TRACE(...) DBGP(__VA_ARGS__)
48
49 // printf() is not allowed within drivers. Use DBG() instead.
50 #define EFAB_LOG(...) DBG(__VA_ARGS__)
51 #define EFAB_ERR(...) DBG(__VA_ARGS__)
52
53 #define FALCON_USE_IO_BAR 0
54
55 #define HZ 100
56 #define EFAB_BYTE 1
57
58 /**************************************************************************
59 *
60 * Hardware data structures and sizing
61 *
62 **************************************************************************
63 */
64 extern int __invalid_queue_size;
65 #define FQS(_prefix, _x) \
66 ( ( (_x) == 512 ) ? _prefix ## _SIZE_512 : \
67 ( ( (_x) == 1024 ) ? _prefix ## _SIZE_1K : \
68 ( ( (_x) == 2048 ) ? _prefix ## _SIZE_2K : \
69 ( ( (_x) == 4096) ? _prefix ## _SIZE_4K : \
70 __invalid_queue_size ) ) ) )
71
72
73 #define EFAB_MAX_FRAME_LEN(mtu) \
74 ( ( ( ( mtu ) + 4/* FCS */ ) + 7 ) & ~7 )
75
76 /**************************************************************************
77 *
78 * GMII routines
79 *
80 **************************************************************************
81 */
82
83 static void falcon_mdio_write (struct efab_nic *efab, int device,
84 int location, int value );
85 static int falcon_mdio_read ( struct efab_nic *efab, int device, int location );
86
87 /* GMII registers */
88 #define GMII_PSSR 0x11 /* PHY-specific status register */
89
90 /* Pseudo extensions to the link partner ability register */
91 #define LPA_EF_1000FULL 0x00020000
92 #define LPA_EF_1000HALF 0x00010000
93 #define LPA_EF_10000FULL 0x00040000
94 #define LPA_EF_10000HALF 0x00080000
95
96 #define LPA_100 (LPA_100FULL | LPA_100HALF | LPA_100BASE4)
97 #define LPA_EF_1000 ( LPA_EF_1000FULL | LPA_EF_1000HALF )
98 #define LPA_EF_10000 ( LPA_EF_10000FULL | LPA_EF_10000HALF )
99 #define LPA_EF_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_EF_1000FULL | \
100 LPA_EF_10000FULL )
101
102 /* Mask of bits not associated with speed or duplexity. */
103 #define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
104 LPA_100HALF | LPA_EF_1000FULL | LPA_EF_1000HALF )
105
106 /* PHY-specific status register */
107 #define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */
108
109 /**
110 * Retrieve GMII autonegotiation advertised abilities
111 *
112 */
113 static unsigned int
gmii_autoneg_advertised(struct efab_nic * efab)114 gmii_autoneg_advertised ( struct efab_nic *efab )
115 {
116 unsigned int mii_advertise;
117 unsigned int gmii_advertise;
118
119 /* Extended bits are in bits 8 and 9 of MII_CTRL1000 */
120 mii_advertise = falcon_mdio_read ( efab, 0, MII_ADVERTISE );
121 gmii_advertise = ( ( falcon_mdio_read ( efab, 0, MII_CTRL1000 ) >> 8 )
122 & 0x03 );
123 return ( ( gmii_advertise << 16 ) | mii_advertise );
124 }
125
126 /**
127 * Retrieve GMII autonegotiation link partner abilities
128 *
129 */
130 static unsigned int
gmii_autoneg_lpa(struct efab_nic * efab)131 gmii_autoneg_lpa ( struct efab_nic *efab )
132 {
133 unsigned int mii_lpa;
134 unsigned int gmii_lpa;
135
136 /* Extended bits are in bits 10 and 11 of MII_STAT1000 */
137 mii_lpa = falcon_mdio_read ( efab, 0, MII_LPA );
138 gmii_lpa = ( falcon_mdio_read ( efab, 0, MII_STAT1000 ) >> 10 ) & 0x03;
139 return ( ( gmii_lpa << 16 ) | mii_lpa );
140 }
141
142 /**
143 * Calculate GMII autonegotiated link technology
144 *
145 */
146 static unsigned int
gmii_nway_result(unsigned int negotiated)147 gmii_nway_result ( unsigned int negotiated )
148 {
149 unsigned int other_bits;
150
151 /* Mask out the speed and duplexity bits */
152 other_bits = negotiated & LPA_OTHER;
153
154 if ( negotiated & LPA_EF_1000FULL )
155 return ( other_bits | LPA_EF_1000FULL );
156 else if ( negotiated & LPA_EF_1000HALF )
157 return ( other_bits | LPA_EF_1000HALF );
158 else if ( negotiated & LPA_100FULL )
159 return ( other_bits | LPA_100FULL );
160 else if ( negotiated & LPA_100BASE4 )
161 return ( other_bits | LPA_100BASE4 );
162 else if ( negotiated & LPA_100HALF )
163 return ( other_bits | LPA_100HALF );
164 else if ( negotiated & LPA_10FULL )
165 return ( other_bits | LPA_10FULL );
166 else return ( other_bits | LPA_10HALF );
167 }
168
169 /**
170 * Check GMII PHY link status
171 *
172 */
173 static int
gmii_link_ok(struct efab_nic * efab)174 gmii_link_ok ( struct efab_nic *efab )
175 {
176 int status;
177 int phy_status;
178
179 /* BMSR is latching - it returns "link down" if the link has
180 * been down at any point since the last read. To get a
181 * real-time status, we therefore read the register twice and
182 * use the result of the second read.
183 */
184 (void) falcon_mdio_read ( efab, 0, MII_BMSR );
185 status = falcon_mdio_read ( efab, 0, MII_BMSR );
186
187 /* Read the PHY-specific Status Register. This is
188 * non-latching, so we need do only a single read.
189 */
190 phy_status = falcon_mdio_read ( efab, 0, GMII_PSSR );
191
192 return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
193 }
194
195 /**************************************************************************
196 *
197 * MDIO routines
198 *
199 **************************************************************************
200 */
201
202 /* Numbering of the MDIO Manageable Devices (MMDs) */
203 /* Physical Medium Attachment/ Physical Medium Dependent sublayer */
204 #define MDIO_MMD_PMAPMD (1)
205 /* WAN Interface Sublayer */
206 #define MDIO_MMD_WIS (2)
207 /* Physical Coding Sublayer */
208 #define MDIO_MMD_PCS (3)
209 /* PHY Extender Sublayer */
210 #define MDIO_MMD_PHYXS (4)
211 /* Extender Sublayer */
212 #define MDIO_MMD_DTEXS (5)
213 /* Transmission convergence */
214 #define MDIO_MMD_TC (6)
215 /* Auto negotiation */
216 #define MDIO_MMD_AN (7)
217
218 /* Generic register locations */
219 #define MDIO_MMDREG_CTRL1 (0)
220 #define MDIO_MMDREG_STAT1 (1)
221 #define MDIO_MMDREG_DEVS0 (5)
222 #define MDIO_MMDREG_STAT2 (8)
223
224 /* Bits in MMDREG_CTRL1 */
225 /* Reset */
226 #define MDIO_MMDREG_CTRL1_RESET_LBN (15)
227 #define MDIO_MMDREG_CTRL1_RESET_WIDTH (1)
228
229 /* Bits in MMDREG_STAT1 */
230 #define MDIO_MMDREG_STAT1_FAULT_LBN (7)
231 #define MDIO_MMDREG_STAT1_FAULT_WIDTH (1)
232
233 /* Link state */
234 #define MDIO_MMDREG_STAT1_LINK_LBN (2)
235 #define MDIO_MMDREG_STAT1_LINK_WIDTH (1)
236
237 /* Bits in MMDREG_DEVS0. */
238 #define DEV_PRESENT_BIT(_b) (1 << _b)
239
240 #define MDIO_MMDREG_DEVS0_DTEXS DEV_PRESENT_BIT(MDIO_MMD_DTEXS)
241 #define MDIO_MMDREG_DEVS0_PHYXS DEV_PRESENT_BIT(MDIO_MMD_PHYXS)
242 #define MDIO_MMDREG_DEVS0_PCS DEV_PRESENT_BIT(MDIO_MMD_PCS)
243 #define MDIO_MMDREG_DEVS0_WIS DEV_PRESENT_BIT(MDIO_MMD_WIS)
244 #define MDIO_MMDREG_DEVS0_PMAPMD DEV_PRESENT_BIT(MDIO_MMD_PMAPMD)
245
246 #define MDIO_MMDREG_DEVS0_AN DEV_PRESENT_BIT(MDIO_MMD_AN)
247
248 /* Bits in MMDREG_STAT2 */
249 #define MDIO_MMDREG_STAT2_PRESENT_VAL (2)
250 #define MDIO_MMDREG_STAT2_PRESENT_LBN (14)
251 #define MDIO_MMDREG_STAT2_PRESENT_WIDTH (2)
252
253 /* PHY XGXS lane state */
254 #define MDIO_PHYXS_LANE_STATE (0x18)
255 #define MDIO_PHYXS_LANE_ALIGNED_LBN (12)
256 #define MDIO_PHYXS_LANE_SYNC0_LBN (0)
257 #define MDIO_PHYXS_LANE_SYNC1_LBN (1)
258 #define MDIO_PHYXS_LANE_SYNC2_LBN (2)
259 #define MDIO_PHYXS_LANE_SYNC3_LBN (3)
260
261 /* This ought to be ridiculous overkill. We expect it to fail rarely */
262 #define MDIO45_RESET_TRIES 100
263 #define MDIO45_RESET_SPINTIME 10
264
265 static int
mdio_clause45_wait_reset_mmds(struct efab_nic * efab)266 mdio_clause45_wait_reset_mmds ( struct efab_nic* efab )
267 {
268 int tries = MDIO45_RESET_TRIES;
269 int in_reset;
270
271 while(tries) {
272 int mask = efab->phy_op->mmds;
273 int mmd = 0;
274 in_reset = 0;
275 while(mask) {
276 if (mask & 1) {
277 int stat = falcon_mdio_read ( efab, mmd,
278 MDIO_MMDREG_CTRL1 );
279 if (stat < 0) {
280 EFAB_ERR("Failed to read status of MMD %d\n",
281 mmd );
282 in_reset = 1;
283 break;
284 }
285 if (stat & (1 << MDIO_MMDREG_CTRL1_RESET_LBN))
286 in_reset |= (1 << mmd);
287 }
288 mask = mask >> 1;
289 mmd++;
290 }
291 if (!in_reset)
292 break;
293 tries--;
294 mdelay ( MDIO45_RESET_SPINTIME );
295 }
296 if (in_reset != 0) {
297 EFAB_ERR("Not all MMDs came out of reset in time. MMDs "
298 "still in reset: %x\n", in_reset);
299 return -ETIMEDOUT;
300 }
301 return 0;
302 }
303
304 static int
mdio_clause45_reset_mmd(struct efab_nic * efab,int mmd)305 mdio_clause45_reset_mmd ( struct efab_nic *efab, int mmd )
306 {
307 int tries = MDIO45_RESET_TRIES;
308 int ctrl;
309
310 falcon_mdio_write ( efab, mmd, MDIO_MMDREG_CTRL1,
311 ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) );
312
313 /* Wait for the reset bit to clear. */
314 do {
315 mdelay ( MDIO45_RESET_SPINTIME );
316
317 ctrl = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_CTRL1 );
318 if ( ~ctrl & ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) )
319 return 0;
320 } while ( --tries );
321
322 EFAB_ERR ( "Failed to reset mmd %d\n", mmd );
323
324 return -ETIMEDOUT;
325 }
326
327 static int
mdio_clause45_links_ok(struct efab_nic * efab)328 mdio_clause45_links_ok(struct efab_nic *efab )
329 {
330 int status, good;
331 int ok = 1;
332 int mmd = 0;
333 int mmd_mask = efab->phy_op->mmds;
334
335 while (mmd_mask) {
336 if (mmd_mask & 1) {
337 /* Double reads because link state is latched, and a
338 * read moves the current state into the register */
339 status = falcon_mdio_read ( efab, mmd,
340 MDIO_MMDREG_STAT1 );
341 status = falcon_mdio_read ( efab, mmd,
342 MDIO_MMDREG_STAT1 );
343
344 good = status & (1 << MDIO_MMDREG_STAT1_LINK_LBN);
345 ok = ok && good;
346 }
347 mmd_mask = (mmd_mask >> 1);
348 mmd++;
349 }
350 return ok;
351 }
352
353 static int
mdio_clause45_check_mmds(struct efab_nic * efab)354 mdio_clause45_check_mmds ( struct efab_nic *efab )
355 {
356 int mmd = 0;
357 int devices = falcon_mdio_read ( efab, MDIO_MMD_PHYXS,
358 MDIO_MMDREG_DEVS0 );
359 int mmd_mask = efab->phy_op->mmds;
360
361 /* Check all the expected MMDs are present */
362 if ( devices < 0 ) {
363 EFAB_ERR ( "Failed to read devices present\n" );
364 return -EIO;
365 }
366 if ( ( devices & mmd_mask ) != mmd_mask ) {
367 EFAB_ERR ( "required MMDs not present: got %x, wanted %x\n",
368 devices, mmd_mask );
369 return -EIO;
370 }
371
372 /* Check all required MMDs are responding and happy. */
373 while ( mmd_mask ) {
374 if ( mmd_mask & 1 ) {
375 efab_dword_t reg;
376 int status;
377 reg.opaque = falcon_mdio_read ( efab, mmd,
378 MDIO_MMDREG_STAT2 );
379 status = EFAB_DWORD_FIELD ( reg,
380 MDIO_MMDREG_STAT2_PRESENT );
381 if ( status != MDIO_MMDREG_STAT2_PRESENT_VAL ) {
382
383
384 return -EIO;
385 }
386 }
387 mmd_mask >>= 1;
388 mmd++;
389 }
390
391 return 0;
392 }
393
394 /* I/O BAR address register */
395 #define FCN_IOM_IND_ADR_REG 0x0
396
397 /* I/O BAR data register */
398 #define FCN_IOM_IND_DAT_REG 0x4
399
400 /* Address region register */
401 #define FCN_ADR_REGION_REG_KER 0x00
402 #define FCN_ADR_REGION0_LBN 0
403 #define FCN_ADR_REGION0_WIDTH 18
404 #define FCN_ADR_REGION1_LBN 32
405 #define FCN_ADR_REGION1_WIDTH 18
406 #define FCN_ADR_REGION2_LBN 64
407 #define FCN_ADR_REGION2_WIDTH 18
408 #define FCN_ADR_REGION3_LBN 96
409 #define FCN_ADR_REGION3_WIDTH 18
410
411 /* Interrupt enable register */
412 #define FCN_INT_EN_REG_KER 0x0010
413 #define FCN_MEM_PERR_INT_EN_KER_LBN 5
414 #define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
415 #define FCN_KER_INT_CHAR_LBN 4
416 #define FCN_KER_INT_CHAR_WIDTH 1
417 #define FCN_KER_INT_KER_LBN 3
418 #define FCN_KER_INT_KER_WIDTH 1
419 #define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
420 #define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
421 #define FCN_SRM_PERR_INT_EN_KER_LBN 1
422 #define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
423 #define FCN_DRV_INT_EN_KER_LBN 0
424 #define FCN_DRV_INT_EN_KER_WIDTH 1
425
426 /* Interrupt status register */
427 #define FCN_INT_ADR_REG_KER 0x0030
428 #define FCN_INT_ADR_KER_LBN 0
429 #define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )
430
431 /* Interrupt status register (B0 only) */
432 #define INT_ISR0_B0 0x90
433 #define INT_ISR1_B0 0xA0
434
435 /* Interrupt acknowledge register (A0/A1 only) */
436 #define FCN_INT_ACK_KER_REG_A1 0x0050
437 #define INT_ACK_DUMMY_DATA_LBN 0
438 #define INT_ACK_DUMMY_DATA_WIDTH 32
439
440 /* Interrupt acknowledge work-around register (A0/A1 only )*/
441 #define WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 0x0070
442
443 /* Hardware initialisation register */
444 #define FCN_HW_INIT_REG_KER 0x00c0
445 #define FCN_BCSR_TARGET_MASK_LBN 101
446 #define FCN_BCSR_TARGET_MASK_WIDTH 4
447
448 /* SPI host command register */
449 #define FCN_EE_SPI_HCMD_REG 0x0100
450 #define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
451 #define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
452 #define FCN_EE_WR_TIMER_ACTIVE_LBN 28
453 #define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
454 #define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
455 #define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
456 #define FCN_EE_SPI_EEPROM 0
457 #define FCN_EE_SPI_FLASH 1
458 #define FCN_EE_SPI_HCMD_DABCNT_LBN 16
459 #define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
460 #define FCN_EE_SPI_HCMD_READ_LBN 15
461 #define FCN_EE_SPI_HCMD_READ_WIDTH 1
462 #define FCN_EE_SPI_READ 1
463 #define FCN_EE_SPI_WRITE 0
464 #define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
465 #define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
466 #define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
467 #define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
468 #define FCN_EE_SPI_HCMD_ENC_LBN 0
469 #define FCN_EE_SPI_HCMD_ENC_WIDTH 8
470
471 /* SPI host address register */
472 #define FCN_EE_SPI_HADR_REG 0x0110
473 #define FCN_EE_SPI_HADR_DUBYTE_LBN 24
474 #define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
475 #define FCN_EE_SPI_HADR_ADR_LBN 0
476 #define FCN_EE_SPI_HADR_ADR_WIDTH 24
477
478 /* SPI host data register */
479 #define FCN_EE_SPI_HDATA_REG 0x0120
480 #define FCN_EE_SPI_HDATA3_LBN 96
481 #define FCN_EE_SPI_HDATA3_WIDTH 32
482 #define FCN_EE_SPI_HDATA2_LBN 64
483 #define FCN_EE_SPI_HDATA2_WIDTH 32
484 #define FCN_EE_SPI_HDATA1_LBN 32
485 #define FCN_EE_SPI_HDATA1_WIDTH 32
486 #define FCN_EE_SPI_HDATA0_LBN 0
487 #define FCN_EE_SPI_HDATA0_WIDTH 32
488
489 /* VPD Config 0 Register register */
490 #define FCN_EE_VPD_CFG_REG 0x0140
491 #define FCN_EE_VPD_EN_LBN 0
492 #define FCN_EE_VPD_EN_WIDTH 1
493 #define FCN_EE_VPD_EN_AD9_MODE_LBN 1
494 #define FCN_EE_VPD_EN_AD9_MODE_WIDTH 1
495 #define FCN_EE_EE_CLOCK_DIV_LBN 112
496 #define FCN_EE_EE_CLOCK_DIV_WIDTH 7
497 #define FCN_EE_SF_CLOCK_DIV_LBN 120
498 #define FCN_EE_SF_CLOCK_DIV_WIDTH 7
499
500
501 /* NIC status register */
502 #define FCN_NIC_STAT_REG 0x0200
503 #define FCN_ONCHIP_SRAM_LBN 16
504 #define FCN_ONCHIP_SRAM_WIDTH 1
505 #define FCN_SF_PRST_LBN 9
506 #define FCN_SF_PRST_WIDTH 1
507 #define FCN_EE_PRST_LBN 8
508 #define FCN_EE_PRST_WIDTH 1
509 #define FCN_EE_STRAP_LBN 7
510 #define FCN_EE_STRAP_WIDTH 1
511 #define FCN_PCI_PCIX_MODE_LBN 4
512 #define FCN_PCI_PCIX_MODE_WIDTH 3
513 #define FCN_PCI_PCIX_MODE_PCI33_DECODE 0
514 #define FCN_PCI_PCIX_MODE_PCI66_DECODE 1
515 #define FCN_PCI_PCIX_MODE_PCIX66_DECODE 5
516 #define FCN_PCI_PCIX_MODE_PCIX100_DECODE 6
517 #define FCN_PCI_PCIX_MODE_PCIX133_DECODE 7
518 #define FCN_STRAP_ISCSI_EN_LBN 3
519 #define FCN_STRAP_ISCSI_EN_WIDTH 1
520 #define FCN_STRAP_PINS_LBN 0
521 #define FCN_STRAP_PINS_WIDTH 3
522 #define FCN_STRAP_10G_LBN 2
523 #define FCN_STRAP_10G_WIDTH 1
524 #define FCN_STRAP_DUAL_PORT_LBN 1
525 #define FCN_STRAP_DUAL_PORT_WIDTH 1
526 #define FCN_STRAP_PCIE_LBN 0
527 #define FCN_STRAP_PCIE_WIDTH 1
528
529 /* Falcon revisions */
530 #define FALCON_REV_A0 0
531 #define FALCON_REV_A1 1
532 #define FALCON_REV_B0 2
533
534 /* GPIO control register */
535 #define FCN_GPIO_CTL_REG_KER 0x0210
536 #define FCN_GPIO_CTL_REG_KER 0x0210
537
538 #define FCN_GPIO3_OEN_LBN 27
539 #define FCN_GPIO3_OEN_WIDTH 1
540 #define FCN_GPIO2_OEN_LBN 26
541 #define FCN_GPIO2_OEN_WIDTH 1
542 #define FCN_GPIO1_OEN_LBN 25
543 #define FCN_GPIO1_OEN_WIDTH 1
544 #define FCN_GPIO0_OEN_LBN 24
545 #define FCN_GPIO0_OEN_WIDTH 1
546
547 #define FCN_GPIO3_OUT_LBN 19
548 #define FCN_GPIO3_OUT_WIDTH 1
549 #define FCN_GPIO2_OUT_LBN 18
550 #define FCN_GPIO2_OUT_WIDTH 1
551 #define FCN_GPIO1_OUT_LBN 17
552 #define FCN_GPIO1_OUT_WIDTH 1
553 #define FCN_GPIO0_OUT_LBN 16
554 #define FCN_GPIO0_OUT_WIDTH 1
555
556 #define FCN_GPIO3_IN_LBN 11
557 #define FCN_GPIO3_IN_WIDTH 1
558 #define FCN_GPIO2_IN_LBN 10
559 #define FCN_GPIO2_IN_WIDTH 1
560 #define FCN_GPIO1_IN_LBN 9
561 #define FCN_GPIO1_IN_WIDTH 1
562 #define FCN_GPIO0_IN_LBN 8
563 #define FCN_GPIO0_IN_WIDTH 1
564
565 #define FCN_FLASH_PRESENT_LBN 7
566 #define FCN_FLASH_PRESENT_WIDTH 1
567 #define FCN_EEPROM_PRESENT_LBN 6
568 #define FCN_EEPROM_PRESENT_WIDTH 1
569 #define FCN_BOOTED_USING_NVDEVICE_LBN 3
570 #define FCN_BOOTED_USING_NVDEVICE_WIDTH 1
571
572 /* Defines for extra non-volatile storage */
573 #define FCN_NV_MAGIC_NUMBER 0xFA1C
574
575 /* Global control register */
576 #define FCN_GLB_CTL_REG_KER 0x0220
577 #define FCN_EXT_PHY_RST_CTL_LBN 63
578 #define FCN_EXT_PHY_RST_CTL_WIDTH 1
579 #define FCN_PCIE_SD_RST_CTL_LBN 61
580 #define FCN_PCIE_SD_RST_CTL_WIDTH 1
581 #define FCN_PCIE_STCK_RST_CTL_LBN 59
582 #define FCN_PCIE_STCK_RST_CTL_WIDTH 1
583 #define FCN_PCIE_NSTCK_RST_CTL_LBN 58
584 #define FCN_PCIE_NSTCK_RST_CTL_WIDTH 1
585 #define FCN_PCIE_CORE_RST_CTL_LBN 57
586 #define FCN_PCIE_CORE_RST_CTL_WIDTH 1
587 #define FCN_EE_RST_CTL_LBN 49
588 #define FCN_EE_RST_CTL_WIDTH 1
589 #define FCN_RST_EXT_PHY_LBN 31
590 #define FCN_RST_EXT_PHY_WIDTH 1
591 #define FCN_EXT_PHY_RST_DUR_LBN 1
592 #define FCN_EXT_PHY_RST_DUR_WIDTH 3
593 #define FCN_SWRST_LBN 0
594 #define FCN_SWRST_WIDTH 1
595 #define INCLUDE_IN_RESET 0
596 #define EXCLUDE_FROM_RESET 1
597
598 /* FPGA build version */
599 #define FCN_ALTERA_BUILD_REG_KER 0x0300
600 #define FCN_VER_MAJOR_LBN 24
601 #define FCN_VER_MAJOR_WIDTH 8
602 #define FCN_VER_MINOR_LBN 16
603 #define FCN_VER_MINOR_WIDTH 8
604 #define FCN_VER_BUILD_LBN 0
605 #define FCN_VER_BUILD_WIDTH 16
606 #define FCN_VER_ALL_LBN 0
607 #define FCN_VER_ALL_WIDTH 32
608
609 /* Spare EEPROM bits register (flash 0x390) */
610 #define FCN_SPARE_REG_KER 0x310
611 #define FCN_MEM_PERR_EN_TX_DATA_LBN 72
612 #define FCN_MEM_PERR_EN_TX_DATA_WIDTH 2
613
614 /* Timer table for kernel access */
615 #define FCN_TIMER_CMD_REG_KER 0x420
616 #define FCN_TIMER_MODE_LBN 12
617 #define FCN_TIMER_MODE_WIDTH 2
618 #define FCN_TIMER_MODE_DIS 0
619 #define FCN_TIMER_MODE_INT_HLDOFF 1
620 #define FCN_TIMER_VAL_LBN 0
621 #define FCN_TIMER_VAL_WIDTH 12
622
623 /* Receive configuration register */
624 #define FCN_RX_CFG_REG_KER 0x800
625 #define FCN_RX_XOFF_EN_LBN 0
626 #define FCN_RX_XOFF_EN_WIDTH 1
627
628 /* SRAM receive descriptor cache configuration register */
629 #define FCN_SRM_RX_DC_CFG_REG_KER 0x610
630 #define FCN_SRM_RX_DC_BASE_ADR_LBN 0
631 #define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21
632
633 /* SRAM transmit descriptor cache configuration register */
634 #define FCN_SRM_TX_DC_CFG_REG_KER 0x620
635 #define FCN_SRM_TX_DC_BASE_ADR_LBN 0
636 #define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21
637
638 /* SRAM configuration register */
639 #define FCN_SRM_CFG_REG_KER 0x630
640 #define FCN_SRAM_OOB_ADR_INTEN_LBN 5
641 #define FCN_SRAM_OOB_ADR_INTEN_WIDTH 1
642 #define FCN_SRAM_OOB_BUF_INTEN_LBN 4
643 #define FCN_SRAM_OOB_BUF_INTEN_WIDTH 1
644 #define FCN_SRAM_OOB_BT_INIT_EN_LBN 3
645 #define FCN_SRAM_OOB_BT_INIT_EN_WIDTH 1
646 #define FCN_SRM_NUM_BANK_LBN 2
647 #define FCN_SRM_NUM_BANK_WIDTH 1
648 #define FCN_SRM_BANK_SIZE_LBN 0
649 #define FCN_SRM_BANK_SIZE_WIDTH 2
650 #define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_LBN 0
651 #define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_WIDTH 3
652
653 #define FCN_RX_CFG_REG_KER 0x800
654 #define FCN_RX_INGR_EN_B0_LBN 47
655 #define FCN_RX_INGR_EN_B0_WIDTH 1
656 #define FCN_RX_USR_BUF_SIZE_B0_LBN 19
657 #define FCN_RX_USR_BUF_SIZE_B0_WIDTH 9
658 #define FCN_RX_XON_MAC_TH_B0_LBN 10
659 #define FCN_RX_XON_MAC_TH_B0_WIDTH 9
660 #define FCN_RX_XOFF_MAC_TH_B0_LBN 1
661 #define FCN_RX_XOFF_MAC_TH_B0_WIDTH 9
662 #define FCN_RX_XOFF_MAC_EN_B0_LBN 0
663 #define FCN_RX_XOFF_MAC_EN_B0_WIDTH 1
664 #define FCN_RX_USR_BUF_SIZE_A1_LBN 11
665 #define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9
666 #define FCN_RX_XON_MAC_TH_A1_LBN 6
667 #define FCN_RX_XON_MAC_TH_A1_WIDTH 5
668 #define FCN_RX_XOFF_MAC_TH_A1_LBN 1
669 #define FCN_RX_XOFF_MAC_TH_A1_WIDTH 5
670 #define FCN_RX_XOFF_MAC_EN_A1_LBN 0
671 #define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1
672
673 #define FCN_RX_USR_BUF_SIZE_A1_LBN 11
674 #define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9
675 #define FCN_RX_XOFF_MAC_EN_A1_LBN 0
676 #define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1
677
678 /* Receive filter control register */
679 #define FCN_RX_FILTER_CTL_REG_KER 0x810
680 #define FCN_UDP_FULL_SRCH_LIMIT_LBN 32
681 #define FCN_UDP_FULL_SRCH_LIMIT_WIDTH 8
682 #define FCN_NUM_KER_LBN 24
683 #define FCN_NUM_KER_WIDTH 2
684 #define FCN_UDP_WILD_SRCH_LIMIT_LBN 16
685 #define FCN_UDP_WILD_SRCH_LIMIT_WIDTH 8
686 #define FCN_TCP_WILD_SRCH_LIMIT_LBN 8
687 #define FCN_TCP_WILD_SRCH_LIMIT_WIDTH 8
688 #define FCN_TCP_FULL_SRCH_LIMIT_LBN 0
689 #define FCN_TCP_FULL_SRCH_LIMIT_WIDTH 8
690
691 /* RX queue flush register */
692 #define FCN_RX_FLUSH_DESCQ_REG_KER 0x0820
693 #define FCN_RX_FLUSH_DESCQ_CMD_LBN 24
694 #define FCN_RX_FLUSH_DESCQ_CMD_WIDTH 1
695 #define FCN_RX_FLUSH_DESCQ_LBN 0
696 #define FCN_RX_FLUSH_DESCQ_WIDTH 12
697
698 /* Receive descriptor update register */
699 #define FCN_RX_DESC_UPD_REG_KER 0x0830
700 #define FCN_RX_DESC_WPTR_LBN 96
701 #define FCN_RX_DESC_WPTR_WIDTH 12
702 #define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
703 #define FCN_RX_DESC_WPTR_DWORD_LBN 0
704 #define FCN_RX_DESC_WPTR_DWORD_WIDTH 12
705
706 /* Receive descriptor cache configuration register */
707 #define FCN_RX_DC_CFG_REG_KER 0x840
708 #define FCN_RX_DC_SIZE_LBN 0
709 #define FCN_RX_DC_SIZE_WIDTH 2
710
711 #define FCN_RX_SELF_RST_REG_KER 0x890
712 #define FCN_RX_ISCSI_DIS_LBN 17
713 #define FCN_RX_ISCSI_DIS_WIDTH 1
714 #define FCN_RX_NODESC_WAIT_DIS_LBN 9
715 #define FCN_RX_NODESC_WAIT_DIS_WIDTH 1
716 #define FCN_RX_RECOVERY_EN_LBN 8
717 #define FCN_RX_RECOVERY_EN_WIDTH 1
718
719 /* TX queue flush register */
720 #define FCN_TX_FLUSH_DESCQ_REG_KER 0x0a00
721 #define FCN_TX_FLUSH_DESCQ_CMD_LBN 12
722 #define FCN_TX_FLUSH_DESCQ_CMD_WIDTH 1
723 #define FCN_TX_FLUSH_DESCQ_LBN 0
724 #define FCN_TX_FLUSH_DESCQ_WIDTH 12
725
726 /* Transmit configuration register 2 */
727 #define FCN_TX_CFG2_REG_KER 0xa80
728 #define FCN_TX_DIS_NON_IP_EV_LBN 17
729 #define FCN_TX_DIS_NON_IP_EV_WIDTH 1
730
731 /* Transmit descriptor update register */
732 #define FCN_TX_DESC_UPD_REG_KER 0x0a10
733 #define FCN_TX_DESC_WPTR_LBN 96
734 #define FCN_TX_DESC_WPTR_WIDTH 12
735 #define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
736 #define FCN_TX_DESC_WPTR_DWORD_LBN 0
737 #define FCN_TX_DESC_WPTR_DWORD_WIDTH 12
738
739 /* Transmit descriptor cache configuration register */
740 #define FCN_TX_DC_CFG_REG_KER 0xa20
741 #define FCN_TX_DC_SIZE_LBN 0
742 #define FCN_TX_DC_SIZE_WIDTH 2
743
744 /* PHY management transmit data register */
745 #define FCN_MD_TXD_REG_KER 0xc00
746 #define FCN_MD_TXD_LBN 0
747 #define FCN_MD_TXD_WIDTH 16
748
749 /* PHY management receive data register */
750 #define FCN_MD_RXD_REG_KER 0xc10
751 #define FCN_MD_RXD_LBN 0
752 #define FCN_MD_RXD_WIDTH 16
753
754 /* PHY management configuration & status register */
755 #define FCN_MD_CS_REG_KER 0xc20
756 #define FCN_MD_GC_LBN 4
757 #define FCN_MD_GC_WIDTH 1
758 #define FCN_MD_RIC_LBN 2
759 #define FCN_MD_RIC_WIDTH 1
760 #define FCN_MD_RDC_LBN 1
761 #define FCN_MD_RDC_WIDTH 1
762 #define FCN_MD_WRC_LBN 0
763 #define FCN_MD_WRC_WIDTH 1
764
765 /* PHY management PHY address register */
766 #define FCN_MD_PHY_ADR_REG_KER 0xc30
767 #define FCN_MD_PHY_ADR_LBN 0
768 #define FCN_MD_PHY_ADR_WIDTH 16
769
770 /* PHY management ID register */
771 #define FCN_MD_ID_REG_KER 0xc40
772 #define FCN_MD_PRT_ADR_LBN 11
773 #define FCN_MD_PRT_ADR_WIDTH 5
774 #define FCN_MD_DEV_ADR_LBN 6
775 #define FCN_MD_DEV_ADR_WIDTH 5
776
777 /* PHY management status & mask register */
778 #define FCN_MD_STAT_REG_KER 0xc50
779 #define FCN_MD_PINT_LBN 4
780 #define FCN_MD_PINT_WIDTH 1
781 #define FCN_MD_DONE_LBN 3
782 #define FCN_MD_DONE_WIDTH 1
783 #define FCN_MD_BSERR_LBN 2
784 #define FCN_MD_BSERR_WIDTH 1
785 #define FCN_MD_LNFL_LBN 1
786 #define FCN_MD_LNFL_WIDTH 1
787 #define FCN_MD_BSY_LBN 0
788 #define FCN_MD_BSY_WIDTH 1
789
790 /* Port 0 and 1 MAC control registers */
791 #define FCN_MAC0_CTRL_REG_KER 0xc80
792 #define FCN_MAC1_CTRL_REG_KER 0xc90
793 #define FCN_MAC_XOFF_VAL_LBN 16
794 #define FCN_MAC_XOFF_VAL_WIDTH 16
795 #define FCN_MAC_BCAD_ACPT_LBN 4
796 #define FCN_MAC_BCAD_ACPT_WIDTH 1
797 #define FCN_MAC_UC_PROM_LBN 3
798 #define FCN_MAC_UC_PROM_WIDTH 1
799 #define FCN_MAC_LINK_STATUS_LBN 2
800 #define FCN_MAC_LINK_STATUS_WIDTH 1
801 #define FCN_MAC_SPEED_LBN 0
802 #define FCN_MAC_SPEED_WIDTH 2
803
804 /* 10Gig Xaui XGXS Default Values */
805 #define XX_TXDRV_DEQ_DEFAULT 0xe /* deq=.6 */
806 #define XX_TXDRV_DTX_DEFAULT 0x5 /* 1.25 */
807 #define XX_SD_CTL_DRV_DEFAULT 0 /* 20mA */
808
809 /* GMAC registers */
810 #define FALCON_GMAC_REGBANK 0xe00
811 #define FALCON_GMAC_REGBANK_SIZE 0x200
812 #define FALCON_GMAC_REG_SIZE 0x10
813
814 /* XGMAC registers */
815 #define FALCON_XMAC_REGBANK 0x1200
816 #define FALCON_XMAC_REGBANK_SIZE 0x200
817 #define FALCON_XMAC_REG_SIZE 0x10
818
819 /* XGMAC address register low */
820 #define FCN_XM_ADR_LO_REG_MAC 0x00
821 #define FCN_XM_ADR_3_LBN 24
822 #define FCN_XM_ADR_3_WIDTH 8
823 #define FCN_XM_ADR_2_LBN 16
824 #define FCN_XM_ADR_2_WIDTH 8
825 #define FCN_XM_ADR_1_LBN 8
826 #define FCN_XM_ADR_1_WIDTH 8
827 #define FCN_XM_ADR_0_LBN 0
828 #define FCN_XM_ADR_0_WIDTH 8
829
830 /* XGMAC address register high */
831 #define FCN_XM_ADR_HI_REG_MAC 0x01
832 #define FCN_XM_ADR_5_LBN 8
833 #define FCN_XM_ADR_5_WIDTH 8
834 #define FCN_XM_ADR_4_LBN 0
835 #define FCN_XM_ADR_4_WIDTH 8
836
837 /* XGMAC global configuration - port 0*/
838 #define FCN_XM_GLB_CFG_REG_MAC 0x02
839 #define FCN_XM_RX_STAT_EN_LBN 11
840 #define FCN_XM_RX_STAT_EN_WIDTH 1
841 #define FCN_XM_TX_STAT_EN_LBN 10
842 #define FCN_XM_TX_STAT_EN_WIDTH 1
843 #define FCN_XM_RX_JUMBO_MODE_LBN 6
844 #define FCN_XM_RX_JUMBO_MODE_WIDTH 1
845 #define FCN_XM_CORE_RST_LBN 0
846 #define FCN_XM_CORE_RST_WIDTH 1
847
848 /* XGMAC transmit configuration - port 0 */
849 #define FCN_XM_TX_CFG_REG_MAC 0x03
850 #define FCN_XM_IPG_LBN 16
851 #define FCN_XM_IPG_WIDTH 4
852 #define FCN_XM_FCNTL_LBN 10
853 #define FCN_XM_FCNTL_WIDTH 1
854 #define FCN_XM_TXCRC_LBN 8
855 #define FCN_XM_TXCRC_WIDTH 1
856 #define FCN_XM_AUTO_PAD_LBN 5
857 #define FCN_XM_AUTO_PAD_WIDTH 1
858 #define FCN_XM_TX_PRMBL_LBN 2
859 #define FCN_XM_TX_PRMBL_WIDTH 1
860 #define FCN_XM_TXEN_LBN 1
861 #define FCN_XM_TXEN_WIDTH 1
862
863 /* XGMAC receive configuration - port 0 */
864 #define FCN_XM_RX_CFG_REG_MAC 0x04
865 #define FCN_XM_PASS_CRC_ERR_LBN 25
866 #define FCN_XM_PASS_CRC_ERR_WIDTH 1
867 #define FCN_XM_AUTO_DEPAD_LBN 8
868 #define FCN_XM_AUTO_DEPAD_WIDTH 1
869 #define FCN_XM_RXEN_LBN 1
870 #define FCN_XM_RXEN_WIDTH 1
871
872 /* XGMAC management interrupt mask register */
873 #define FCN_XM_MGT_INT_MSK_REG_MAC_B0 0x5
874 #define FCN_XM_MSK_PRMBLE_ERR_LBN 2
875 #define FCN_XM_MSK_PRMBLE_ERR_WIDTH 1
876 #define FCN_XM_MSK_RMTFLT_LBN 1
877 #define FCN_XM_MSK_RMTFLT_WIDTH 1
878 #define FCN_XM_MSK_LCLFLT_LBN 0
879 #define FCN_XM_MSK_LCLFLT_WIDTH 1
880
881 /* XGMAC flow control register */
882 #define FCN_XM_FC_REG_MAC 0x7
883 #define FCN_XM_PAUSE_TIME_LBN 16
884 #define FCN_XM_PAUSE_TIME_WIDTH 16
885 #define FCN_XM_DIS_FCNTL_LBN 0
886 #define FCN_XM_DIS_FCNTL_WIDTH 1
887
888 /* XGMAC transmit parameter register */
889 #define FCN_XM_TX_PARAM_REG_MAC 0x0d
890 #define FCN_XM_TX_JUMBO_MODE_LBN 31
891 #define FCN_XM_TX_JUMBO_MODE_WIDTH 1
892 #define FCN_XM_MAX_TX_FRM_SIZE_LBN 16
893 #define FCN_XM_MAX_TX_FRM_SIZE_WIDTH 14
894 #define FCN_XM_ACPT_ALL_MCAST_LBN 11
895 #define FCN_XM_ACPT_ALL_MCAST_WIDTH 1
896
897 /* XGMAC receive parameter register */
898 #define FCN_XM_RX_PARAM_REG_MAC 0x0e
899 #define FCN_XM_MAX_RX_FRM_SIZE_LBN 0
900 #define FCN_XM_MAX_RX_FRM_SIZE_WIDTH 14
901
902 /* XGMAC management interrupt status register */
903 #define FCN_XM_MGT_INT_REG_MAC_B0 0x0f
904 #define FCN_XM_PRMBLE_ERR 2
905 #define FCN_XM_PRMBLE_WIDTH 1
906 #define FCN_XM_RMTFLT_LBN 1
907 #define FCN_XM_RMTFLT_WIDTH 1
908 #define FCN_XM_LCLFLT_LBN 0
909 #define FCN_XM_LCLFLT_WIDTH 1
910
911 /* XAUI XGXS core status register */
912 #define FCN_XX_ALIGN_DONE_LBN 20
913 #define FCN_XX_ALIGN_DONE_WIDTH 1
914 #define FCN_XX_CORE_STAT_REG_MAC 0x16
915 #define FCN_XX_SYNC_STAT_LBN 16
916 #define FCN_XX_SYNC_STAT_WIDTH 4
917 #define FCN_XX_SYNC_STAT_DECODE_SYNCED 0xf
918 #define FCN_XX_COMMA_DET_LBN 12
919 #define FCN_XX_COMMA_DET_WIDTH 4
920 #define FCN_XX_COMMA_DET_RESET 0xf
921 #define FCN_XX_CHARERR_LBN 4
922 #define FCN_XX_CHARERR_WIDTH 4
923 #define FCN_XX_CHARERR_RESET 0xf
924 #define FCN_XX_DISPERR_LBN 0
925 #define FCN_XX_DISPERR_WIDTH 4
926 #define FCN_XX_DISPERR_RESET 0xf
927
928 /* XGXS/XAUI powerdown/reset register */
929 #define FCN_XX_PWR_RST_REG_MAC 0x10
930 #define FCN_XX_PWRDND_EN_LBN 15
931 #define FCN_XX_PWRDND_EN_WIDTH 1
932 #define FCN_XX_PWRDNC_EN_LBN 14
933 #define FCN_XX_PWRDNC_EN_WIDTH 1
934 #define FCN_XX_PWRDNB_EN_LBN 13
935 #define FCN_XX_PWRDNB_EN_WIDTH 1
936 #define FCN_XX_PWRDNA_EN_LBN 12
937 #define FCN_XX_PWRDNA_EN_WIDTH 1
938 #define FCN_XX_RSTPLLCD_EN_LBN 9
939 #define FCN_XX_RSTPLLCD_EN_WIDTH 1
940 #define FCN_XX_RSTPLLAB_EN_LBN 8
941 #define FCN_XX_RSTPLLAB_EN_WIDTH 1
942 #define FCN_XX_RESETD_EN_LBN 7
943 #define FCN_XX_RESETD_EN_WIDTH 1
944 #define FCN_XX_RESETC_EN_LBN 6
945 #define FCN_XX_RESETC_EN_WIDTH 1
946 #define FCN_XX_RESETB_EN_LBN 5
947 #define FCN_XX_RESETB_EN_WIDTH 1
948 #define FCN_XX_RESETA_EN_LBN 4
949 #define FCN_XX_RESETA_EN_WIDTH 1
950 #define FCN_XX_RSTXGXSRX_EN_LBN 2
951 #define FCN_XX_RSTXGXSRX_EN_WIDTH 1
952 #define FCN_XX_RSTXGXSTX_EN_LBN 1
953 #define FCN_XX_RSTXGXSTX_EN_WIDTH 1
954 #define FCN_XX_RST_XX_EN_LBN 0
955 #define FCN_XX_RST_XX_EN_WIDTH 1
956
957
958 /* XGXS/XAUI powerdown/reset control register */
959 #define FCN_XX_SD_CTL_REG_MAC 0x11
960 #define FCN_XX_TERMADJ1_LBN 17
961 #define FCN_XX_TERMADJ1_WIDTH 1
962 #define FCN_XX_TERMADJ0_LBN 16
963 #define FCN_XX_TERMADJ0_WIDTH 1
964 #define FCN_XX_HIDRVD_LBN 15
965 #define FCN_XX_HIDRVD_WIDTH 1
966 #define FCN_XX_LODRVD_LBN 14
967 #define FCN_XX_LODRVD_WIDTH 1
968 #define FCN_XX_HIDRVC_LBN 13
969 #define FCN_XX_HIDRVC_WIDTH 1
970 #define FCN_XX_LODRVC_LBN 12
971 #define FCN_XX_LODRVC_WIDTH 1
972 #define FCN_XX_HIDRVB_LBN 11
973 #define FCN_XX_HIDRVB_WIDTH 1
974 #define FCN_XX_LODRVB_LBN 10
975 #define FCN_XX_LODRVB_WIDTH 1
976 #define FCN_XX_HIDRVA_LBN 9
977 #define FCN_XX_HIDRVA_WIDTH 1
978 #define FCN_XX_LODRVA_LBN 8
979 #define FCN_XX_LODRVA_WIDTH 1
980 #define FCN_XX_LPBKD_LBN 3
981 #define FCN_XX_LPBKD_WIDTH 1
982 #define FCN_XX_LPBKC_LBN 2
983 #define FCN_XX_LPBKC_WIDTH 1
984 #define FCN_XX_LPBKB_LBN 1
985 #define FCN_XX_LPBKB_WIDTH 1
986 #define FCN_XX_LPBKA_LBN 0
987 #define FCN_XX_LPBKA_WIDTH 1
988
989 #define FCN_XX_TXDRV_CTL_REG_MAC 0x12
990 #define FCN_XX_DEQD_LBN 28
991 #define FCN_XX_DEQD_WIDTH 4
992 #define FCN_XX_DEQC_LBN 24
993 #define FCN_XX_DEQC_WIDTH 4
994 #define FCN_XX_DEQB_LBN 20
995 #define FCN_XX_DEQB_WIDTH 4
996 #define FCN_XX_DEQA_LBN 16
997 #define FCN_XX_DEQA_WIDTH 4
998 #define FCN_XX_DTXD_LBN 12
999 #define FCN_XX_DTXD_WIDTH 4
1000 #define FCN_XX_DTXC_LBN 8
1001 #define FCN_XX_DTXC_WIDTH 4
1002 #define FCN_XX_DTXB_LBN 4
1003 #define FCN_XX_DTXB_WIDTH 4
1004 #define FCN_XX_DTXA_LBN 0
1005 #define FCN_XX_DTXA_WIDTH 4
1006
1007 /* Receive filter table */
1008 #define FCN_RX_FILTER_TBL0 0xF00000
1009
1010 /* Receive descriptor pointer table */
1011 #define FCN_RX_DESC_PTR_TBL_KER_A1 0x11800
1012 #define FCN_RX_DESC_PTR_TBL_KER_B0 0xF40000
1013 #define FCN_RX_ISCSI_DDIG_EN_LBN 88
1014 #define FCN_RX_ISCSI_DDIG_EN_WIDTH 1
1015 #define FCN_RX_ISCSI_HDIG_EN_LBN 87
1016 #define FCN_RX_ISCSI_HDIG_EN_WIDTH 1
1017 #define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
1018 #define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
1019 #define FCN_RX_DESCQ_EVQ_ID_LBN 24
1020 #define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
1021 #define FCN_RX_DESCQ_OWNER_ID_LBN 10
1022 #define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
1023 #define FCN_RX_DESCQ_SIZE_LBN 3
1024 #define FCN_RX_DESCQ_SIZE_WIDTH 2
1025 #define FCN_RX_DESCQ_SIZE_4K 3
1026 #define FCN_RX_DESCQ_SIZE_2K 2
1027 #define FCN_RX_DESCQ_SIZE_1K 1
1028 #define FCN_RX_DESCQ_SIZE_512 0
1029 #define FCN_RX_DESCQ_TYPE_LBN 2
1030 #define FCN_RX_DESCQ_TYPE_WIDTH 1
1031 #define FCN_RX_DESCQ_JUMBO_LBN 1
1032 #define FCN_RX_DESCQ_JUMBO_WIDTH 1
1033 #define FCN_RX_DESCQ_EN_LBN 0
1034 #define FCN_RX_DESCQ_EN_WIDTH 1
1035
1036 /* Transmit descriptor pointer table */
1037 #define FCN_TX_DESC_PTR_TBL_KER_A1 0x11900
1038 #define FCN_TX_DESC_PTR_TBL_KER_B0 0xF50000
1039 #define FCN_TX_NON_IP_DROP_DIS_B0_LBN 91
1040 #define FCN_TX_NON_IP_DROP_DIS_B0_WIDTH 1
1041 #define FCN_TX_DESCQ_EN_LBN 88
1042 #define FCN_TX_DESCQ_EN_WIDTH 1
1043 #define FCN_TX_ISCSI_DDIG_EN_LBN 87
1044 #define FCN_TX_ISCSI_DDIG_EN_WIDTH 1
1045 #define FCN_TX_ISCSI_HDIG_EN_LBN 86
1046 #define FCN_TX_ISCSI_HDIG_EN_WIDTH 1
1047 #define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
1048 #define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
1049 #define FCN_TX_DESCQ_EVQ_ID_LBN 24
1050 #define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
1051 #define FCN_TX_DESCQ_OWNER_ID_LBN 10
1052 #define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
1053 #define FCN_TX_DESCQ_SIZE_LBN 3
1054 #define FCN_TX_DESCQ_SIZE_WIDTH 2
1055 #define FCN_TX_DESCQ_SIZE_4K 3
1056 #define FCN_TX_DESCQ_SIZE_2K 2
1057 #define FCN_TX_DESCQ_SIZE_1K 1
1058 #define FCN_TX_DESCQ_SIZE_512 0
1059 #define FCN_TX_DESCQ_TYPE_LBN 1
1060 #define FCN_TX_DESCQ_TYPE_WIDTH 2
1061 #define FCN_TX_DESCQ_FLUSH_LBN 0
1062 #define FCN_TX_DESCQ_FLUSH_WIDTH 1
1063
1064 /* Event queue pointer */
1065 #define FCN_EVQ_PTR_TBL_KER_A1 0x11a00
1066 #define FCN_EVQ_PTR_TBL_KER_B0 0xf60000
1067 #define FCN_EVQ_EN_LBN 23
1068 #define FCN_EVQ_EN_WIDTH 1
1069 #define FCN_EVQ_SIZE_LBN 20
1070 #define FCN_EVQ_SIZE_WIDTH 3
1071 #define FCN_EVQ_SIZE_32K 6
1072 #define FCN_EVQ_SIZE_16K 5
1073 #define FCN_EVQ_SIZE_8K 4
1074 #define FCN_EVQ_SIZE_4K 3
1075 #define FCN_EVQ_SIZE_2K 2
1076 #define FCN_EVQ_SIZE_1K 1
1077 #define FCN_EVQ_SIZE_512 0
1078 #define FCN_EVQ_BUF_BASE_ID_LBN 0
1079 #define FCN_EVQ_BUF_BASE_ID_WIDTH 20
1080
1081 /* RSS indirection table */
1082 #define FCN_RX_RSS_INDIR_TBL_B0 0xFB0000
1083
1084 /* Event queue read pointer */
1085 #define FCN_EVQ_RPTR_REG_KER_A1 0x11b00
1086 #define FCN_EVQ_RPTR_REG_KER_B0 0xfa0000
1087 #define FCN_EVQ_RPTR_LBN 0
1088 #define FCN_EVQ_RPTR_WIDTH 14
1089 #define FCN_EVQ_RPTR_REG_KER_DWORD_A1 ( FCN_EVQ_RPTR_REG_KER_A1 + 0 )
1090 #define FCN_EVQ_RPTR_REG_KER_DWORD_B0 ( FCN_EVQ_RPTR_REG_KER_B0 + 0 )
1091 #define FCN_EVQ_RPTR_DWORD_LBN 0
1092 #define FCN_EVQ_RPTR_DWORD_WIDTH 14
1093
1094 /* Special buffer descriptors */
1095 #define FCN_BUF_FULL_TBL_KER_A1 0x18000
1096 #define FCN_BUF_FULL_TBL_KER_B0 0x800000
1097 #define FCN_IP_DAT_BUF_SIZE_LBN 50
1098 #define FCN_IP_DAT_BUF_SIZE_WIDTH 1
1099 #define FCN_IP_DAT_BUF_SIZE_8K 1
1100 #define FCN_IP_DAT_BUF_SIZE_4K 0
1101 #define FCN_BUF_ADR_FBUF_LBN 14
1102 #define FCN_BUF_ADR_FBUF_WIDTH 34
1103 #define FCN_BUF_OWNER_ID_FBUF_LBN 0
1104 #define FCN_BUF_OWNER_ID_FBUF_WIDTH 14
1105
1106 /** Offset of a GMAC register within Falcon */
1107 #define FALCON_GMAC_REG( efab, mac_reg ) \
1108 ( FALCON_GMAC_REGBANK + \
1109 ( (mac_reg) * FALCON_GMAC_REG_SIZE ) )
1110
1111 /** Offset of an XMAC register within Falcon */
1112 #define FALCON_XMAC_REG( efab_port, mac_reg ) \
1113 ( FALCON_XMAC_REGBANK + \
1114 ( (mac_reg) * FALCON_XMAC_REG_SIZE ) )
1115
1116 #define FCN_MAC_DATA_LBN 0
1117 #define FCN_MAC_DATA_WIDTH 32
1118
1119 /* Transmit descriptor */
1120 #define FCN_TX_KER_PORT_LBN 63
1121 #define FCN_TX_KER_PORT_WIDTH 1
1122 #define FCN_TX_KER_BYTE_CNT_LBN 48
1123 #define FCN_TX_KER_BYTE_CNT_WIDTH 14
1124 #define FCN_TX_KER_BUF_ADR_LBN 0
1125 #define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
1126
1127
1128 /* Receive descriptor */
1129 #define FCN_RX_KER_BUF_SIZE_LBN 48
1130 #define FCN_RX_KER_BUF_SIZE_WIDTH 14
1131 #define FCN_RX_KER_BUF_ADR_LBN 0
1132 #define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
1133
1134 /* Event queue entries */
1135 #define FCN_EV_CODE_LBN 60
1136 #define FCN_EV_CODE_WIDTH 4
1137 #define FCN_RX_IP_EV_DECODE 0
1138 #define FCN_TX_IP_EV_DECODE 2
1139 #define FCN_DRIVER_EV_DECODE 5
1140
1141 /* Receive events */
1142 #define FCN_RX_EV_PKT_OK_LBN 56
1143 #define FCN_RX_EV_PKT_OK_WIDTH 1
1144 #define FCN_RX_PORT_LBN 30
1145 #define FCN_RX_PORT_WIDTH 1
1146 #define FCN_RX_EV_BYTE_CNT_LBN 16
1147 #define FCN_RX_EV_BYTE_CNT_WIDTH 14
1148 #define FCN_RX_EV_DESC_PTR_LBN 0
1149 #define FCN_RX_EV_DESC_PTR_WIDTH 12
1150
1151 /* Transmit events */
1152 #define FCN_TX_EV_DESC_PTR_LBN 0
1153 #define FCN_TX_EV_DESC_PTR_WIDTH 12
1154
1155 /*******************************************************************************
1156 *
1157 *
1158 * Low-level hardware access
1159 *
1160 *
1161 *******************************************************************************/
1162
1163 #define FCN_REVISION_REG(efab, reg) \
1164 ( ( efab->pci_revision == FALCON_REV_B0 ) ? reg ## _B0 : reg ## _A1 )
1165
1166 #define EFAB_SET_OWORD_FIELD_VER(efab, reg, field, val) \
1167 if ( efab->pci_revision == FALCON_REV_B0 ) \
1168 EFAB_SET_OWORD_FIELD ( reg, field ## _B0, val ); \
1169 else \
1170 EFAB_SET_OWORD_FIELD ( reg, field ## _A1, val );
1171
1172 #if FALCON_USE_IO_BAR
1173
1174 /* Write dword via the I/O BAR */
_falcon_writel(struct efab_nic * efab,uint32_t value,unsigned int reg)1175 static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
1176 unsigned int reg ) {
1177 outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
1178 outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
1179 }
1180
1181 /* Read dword via the I/O BAR */
_falcon_readl(struct efab_nic * efab,unsigned int reg)1182 static inline uint32_t _falcon_readl ( struct efab_nic *efab,
1183 unsigned int reg ) {
1184 outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
1185 return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
1186 }
1187
1188 #else /* FALCON_USE_IO_BAR */
1189
1190 #define _falcon_writel( efab, value, reg ) \
1191 writel ( (value), (efab)->membase + (reg) )
1192 #define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )
1193
1194 #endif /* FALCON_USE_IO_BAR */
1195
1196 /**
1197 * Write to a Falcon register
1198 *
1199 */
1200 static inline void
falcon_write(struct efab_nic * efab,efab_oword_t * value,unsigned int reg)1201 falcon_write ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg )
1202 {
1203
1204 EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
1205 reg, EFAB_OWORD_VAL ( *value ) );
1206
1207 _falcon_writel ( efab, value->u32[0], reg + 0 );
1208 _falcon_writel ( efab, value->u32[1], reg + 4 );
1209 _falcon_writel ( efab, value->u32[2], reg + 8 );
1210 wmb();
1211 _falcon_writel ( efab, value->u32[3], reg + 12 );
1212 wmb();
1213 }
1214
1215 /**
1216 * Write to Falcon SRAM
1217 *
1218 */
1219 static inline void
falcon_write_sram(struct efab_nic * efab,efab_qword_t * value,unsigned int index)1220 falcon_write_sram ( struct efab_nic *efab, efab_qword_t *value,
1221 unsigned int index )
1222 {
1223 unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) +
1224 ( index * sizeof ( *value ) ) );
1225
1226 EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
1227 reg, EFAB_QWORD_VAL ( *value ) );
1228
1229 _falcon_writel ( efab, value->u32[0], reg + 0 );
1230 _falcon_writel ( efab, value->u32[1], reg + 4 );
1231 wmb();
1232 }
1233
1234 /**
1235 * Write dword to Falcon register that allows partial writes
1236 *
1237 */
1238 static inline void
falcon_writel(struct efab_nic * efab,efab_dword_t * value,unsigned int reg)1239 falcon_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg )
1240 {
1241 EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
1242 reg, EFAB_DWORD_VAL ( *value ) );
1243 _falcon_writel ( efab, value->u32[0], reg );
1244 }
1245
1246 /**
1247 * Read from a Falcon register
1248 *
1249 */
1250 static inline void
falcon_read(struct efab_nic * efab,efab_oword_t * value,unsigned int reg)1251 falcon_read ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg )
1252 {
1253 value->u32[0] = _falcon_readl ( efab, reg + 0 );
1254 wmb();
1255 value->u32[1] = _falcon_readl ( efab, reg + 4 );
1256 value->u32[2] = _falcon_readl ( efab, reg + 8 );
1257 value->u32[3] = _falcon_readl ( efab, reg + 12 );
1258
1259 EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
1260 reg, EFAB_OWORD_VAL ( *value ) );
1261 }
1262
1263 /**
1264 * Read from Falcon SRAM
1265 *
1266 */
1267 static inline void
falcon_read_sram(struct efab_nic * efab,efab_qword_t * value,unsigned int index)1268 falcon_read_sram ( struct efab_nic *efab, efab_qword_t *value,
1269 unsigned int index )
1270 {
1271 unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) +
1272 ( index * sizeof ( *value ) ) );
1273
1274 value->u32[0] = _falcon_readl ( efab, reg + 0 );
1275 value->u32[1] = _falcon_readl ( efab, reg + 4 );
1276 EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
1277 reg, EFAB_QWORD_VAL ( *value ) );
1278 }
1279
1280 /**
1281 * Read dword from a portion of a Falcon register
1282 *
1283 */
1284 static inline void
falcon_readl(struct efab_nic * efab,efab_dword_t * value,unsigned int reg)1285 falcon_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg )
1286 {
1287 value->u32[0] = _falcon_readl ( efab, reg );
1288 EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
1289 reg, EFAB_DWORD_VAL ( *value ) );
1290 }
1291
1292 #define FCN_DUMP_REG( efab, _reg ) do { \
1293 efab_oword_t reg; \
1294 falcon_read ( efab, ®, _reg ); \
1295 EFAB_LOG ( #_reg " = " EFAB_OWORD_FMT "\n", \
1296 EFAB_OWORD_VAL ( reg ) ); \
1297 } while ( 0 );
1298
1299 #define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \
1300 efab_dword_t reg; \
1301 efab->mac_op->mac_readl ( efab, ®, _mac_reg ); \
1302 EFAB_LOG ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \
1303 EFAB_DWORD_VAL ( reg ) ); \
1304 } while ( 0 );
1305
1306 /**
1307 * See if an event is present
1308 *
1309 * @v event Falcon event structure
1310 * @ret True An event is pending
1311 * @ret False No event is pending
1312 *
1313 * We check both the high and low dword of the event for all ones. We
1314 * wrote all ones when we cleared the event, and no valid event can
1315 * have all ones in either its high or low dwords. This approach is
1316 * robust against reordering.
1317 *
1318 * Note that using a single 64-bit comparison is incorrect; even
1319 * though the CPU read will be atomic, the DMA write may not be.
1320 */
1321 static inline int
falcon_event_present(falcon_event_t * event)1322 falcon_event_present ( falcon_event_t* event )
1323 {
1324 return ( ! ( EFAB_DWORD_IS_ALL_ONES ( event->dword[0] ) |
1325 EFAB_DWORD_IS_ALL_ONES ( event->dword[1] ) ) );
1326 }
1327
1328 static void
falcon_eventq_read_ack(struct efab_nic * efab,struct efab_ev_queue * ev_queue)1329 falcon_eventq_read_ack ( struct efab_nic *efab, struct efab_ev_queue *ev_queue )
1330 {
1331 efab_dword_t reg;
1332
1333 EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD, ev_queue->read_ptr );
1334 falcon_writel ( efab, ®,
1335 FCN_REVISION_REG ( efab, FCN_EVQ_RPTR_REG_KER_DWORD ) );
1336 }
1337
1338 #if 0
1339 /**
1340 * Dump register contents (for debugging)
1341 *
1342 * Marked as static inline so that it will not be compiled in if not
1343 * used.
1344 */
1345 static inline void
1346 falcon_dump_regs ( struct efab_nic *efab )
1347 {
1348 FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
1349 FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
1350 FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
1351 FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
1352 FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
1353 FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
1354 FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
1355 FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
1356 FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
1357 FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
1358 FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
1359 FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
1360 FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
1361 FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
1362 FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
1363 FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
1364 FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
1365 FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
1366 FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
1367 FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
1368 FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
1369 FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
1370 FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
1371 FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
1372 FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
1373 FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
1374 }
1375 #endif
1376
1377 static void
falcon_interrupts(struct efab_nic * efab,int enabled,int force)1378 falcon_interrupts ( struct efab_nic *efab, int enabled, int force )
1379 {
1380 efab_oword_t int_en_reg_ker;
1381
1382 EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
1383 FCN_KER_INT_KER, force,
1384 FCN_DRV_INT_EN_KER, enabled );
1385 falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );
1386 }
1387
1388 /*******************************************************************************
1389 *
1390 *
1391 * SPI access
1392 *
1393 *
1394 *******************************************************************************/
1395
1396
1397 /** Maximum length for a single SPI transaction */
1398 #define FALCON_SPI_MAX_LEN 16
1399
1400 static int
falcon_spi_wait(struct efab_nic * efab)1401 falcon_spi_wait ( struct efab_nic *efab )
1402 {
1403 efab_oword_t reg;
1404 int count;
1405
1406 count = 0;
1407 do {
1408 udelay ( 100 );
1409 falcon_read ( efab, ®, FCN_EE_SPI_HCMD_REG );
1410 if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
1411 return 0;
1412 } while ( ++count < 1000 );
1413
1414 EFAB_ERR ( "Timed out waiting for SPI\n" );
1415 return -ETIMEDOUT;
1416 }
1417
1418 static int
falcon_spi_rw(struct spi_bus * bus,struct spi_device * device,unsigned int command,int address,const void * data_out,void * data_in,size_t len)1419 falcon_spi_rw ( struct spi_bus* bus, struct spi_device *device,
1420 unsigned int command, int address,
1421 const void* data_out, void *data_in, size_t len )
1422 {
1423 struct efab_nic *efab = container_of ( bus, struct efab_nic, spi_bus );
1424 int address_len, rc, device_id, read_cmd;
1425 efab_oword_t reg;
1426
1427 /* falcon_init_spi_device() should have reduced the block size
1428 * down so this constraint holds */
1429 assert ( len <= FALCON_SPI_MAX_LEN );
1430
1431 /* Is this the FLASH or EEPROM device? */
1432 if ( device == &efab->spi_flash )
1433 device_id = FCN_EE_SPI_FLASH;
1434 else if ( device == &efab->spi_eeprom )
1435 device_id = FCN_EE_SPI_EEPROM;
1436 else {
1437 EFAB_ERR ( "Unknown device %p\n", device );
1438 return -EINVAL;
1439 }
1440
1441 EFAB_TRACE ( "Executing spi command %d on device %d at %d for %zd bytes\n",
1442 command, device_id, address, len );
1443
1444 /* The bus must be idle */
1445 rc = falcon_spi_wait ( efab );
1446 if ( rc )
1447 goto fail1;
1448
1449 /* Copy data out */
1450 if ( data_out ) {
1451 memcpy ( ®, data_out, len );
1452 falcon_write ( efab, ®, FCN_EE_SPI_HDATA_REG );
1453 }
1454
1455 /* Program address register */
1456 if ( address >= 0 ) {
1457 EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
1458 falcon_write ( efab, ®, FCN_EE_SPI_HADR_REG );
1459 }
1460
1461 /* Issue command */
1462 address_len = ( address >= 0 ) ? device->address_len / 8 : 0;
1463 read_cmd = ( data_in ? FCN_EE_SPI_READ : FCN_EE_SPI_WRITE );
1464 EFAB_POPULATE_OWORD_7 ( reg,
1465 FCN_EE_SPI_HCMD_CMD_EN, 1,
1466 FCN_EE_SPI_HCMD_SF_SEL, device_id,
1467 FCN_EE_SPI_HCMD_DABCNT, len,
1468 FCN_EE_SPI_HCMD_READ, read_cmd,
1469 FCN_EE_SPI_HCMD_DUBCNT, 0,
1470 FCN_EE_SPI_HCMD_ADBCNT, address_len,
1471 FCN_EE_SPI_HCMD_ENC, command );
1472 falcon_write ( efab, ®, FCN_EE_SPI_HCMD_REG );
1473
1474 /* Wait for the command to complete */
1475 rc = falcon_spi_wait ( efab );
1476 if ( rc )
1477 goto fail2;
1478
1479 /* Copy data in */
1480 if ( data_in ) {
1481 falcon_read ( efab, ®, FCN_EE_SPI_HDATA_REG );
1482 memcpy ( data_in, ®, len );
1483 }
1484
1485 return 0;
1486
1487 fail2:
1488 fail1:
1489 EFAB_ERR ( "Failed SPI command %d to device %d address 0x%x len 0x%zx\n",
1490 command, device_id, address, len );
1491
1492 return rc;
1493 }
1494
1495 /** Portion of EEPROM available for non-volatile options */
1496 static struct nvo_fragment falcon_nvo_fragments[] = {
1497 { 0x100, 0xf0 },
1498 { 0, 0 }
1499 };
1500
1501 /*******************************************************************************
1502 *
1503 *
1504 * Falcon bit-bashed I2C interface
1505 *
1506 *
1507 *******************************************************************************/
1508
1509 static void
falcon_i2c_bit_write(struct bit_basher * basher,unsigned int bit_id,unsigned long data)1510 falcon_i2c_bit_write ( struct bit_basher *basher, unsigned int bit_id,
1511 unsigned long data )
1512 {
1513 struct efab_nic *efab = container_of ( basher, struct efab_nic,
1514 i2c_bb.basher );
1515 efab_oword_t reg;
1516
1517 falcon_read ( efab, ®, FCN_GPIO_CTL_REG_KER );
1518 switch ( bit_id ) {
1519 case I2C_BIT_SCL:
1520 EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO0_OEN, ( data ? 0 : 1 ) );
1521 break;
1522 case I2C_BIT_SDA:
1523 EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO3_OEN, ( data ? 0 : 1 ) );
1524 break;
1525 default:
1526 EFAB_ERR ( "%s bit=%d\n", __func__, bit_id );
1527 break;
1528 }
1529
1530 falcon_write ( efab, ®, FCN_GPIO_CTL_REG_KER );
1531 }
1532
1533 static int
falcon_i2c_bit_read(struct bit_basher * basher,unsigned int bit_id)1534 falcon_i2c_bit_read ( struct bit_basher *basher, unsigned int bit_id )
1535 {
1536 struct efab_nic *efab = container_of ( basher, struct efab_nic,
1537 i2c_bb.basher );
1538 efab_oword_t reg;
1539
1540 falcon_read ( efab, ®, FCN_GPIO_CTL_REG_KER );
1541 switch ( bit_id ) {
1542 case I2C_BIT_SCL:
1543 return EFAB_OWORD_FIELD ( reg, FCN_GPIO0_IN );
1544 break;
1545 case I2C_BIT_SDA:
1546 return EFAB_OWORD_FIELD ( reg, FCN_GPIO3_IN );
1547 break;
1548 default:
1549 EFAB_ERR ( "%s bit=%d\n", __func__, bit_id );
1550 break;
1551 }
1552
1553 return -1;
1554 }
1555
1556 static struct bit_basher_operations falcon_i2c_bit_ops = {
1557 .read = falcon_i2c_bit_read,
1558 .write = falcon_i2c_bit_write,
1559 };
1560
1561
1562 /*******************************************************************************
1563 *
1564 *
1565 * MDIO access
1566 *
1567 *
1568 *******************************************************************************/
1569
1570 static int
falcon_gmii_wait(struct efab_nic * efab)1571 falcon_gmii_wait ( struct efab_nic *efab )
1572 {
1573 efab_dword_t md_stat;
1574 int count;
1575
1576 /* wait upto 10ms */
1577 for (count = 0; count < 1000; count++) {
1578 falcon_readl ( efab, &md_stat, FCN_MD_STAT_REG_KER );
1579 if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 ) {
1580 if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_LNFL ) != 0 ||
1581 EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSERR ) != 0 ) {
1582 EFAB_ERR ( "Error from GMII access "
1583 EFAB_DWORD_FMT"\n",
1584 EFAB_DWORD_VAL ( md_stat ));
1585 return -EIO;
1586 }
1587 return 0;
1588 }
1589 udelay(10);
1590 }
1591
1592 EFAB_ERR ( "Timed out waiting for GMII\n" );
1593 return -ETIMEDOUT;
1594 }
1595
1596 static void
falcon_mdio_write(struct efab_nic * efab,int device,int location,int value)1597 falcon_mdio_write ( struct efab_nic *efab, int device,
1598 int location, int value )
1599 {
1600 efab_oword_t reg;
1601
1602 EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
1603 device, location, value );
1604
1605 /* Check MII not currently being accessed */
1606 if ( falcon_gmii_wait ( efab ) )
1607 return;
1608
1609 /* Write the address/ID register */
1610 EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location );
1611 falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER );
1612
1613 if ( efab->phy_10g ) {
1614 /* clause45 */
1615 EFAB_POPULATE_OWORD_2 ( reg,
1616 FCN_MD_PRT_ADR, efab->phy_addr,
1617 FCN_MD_DEV_ADR, device );
1618 }
1619 else {
1620 /* clause22 */
1621 assert ( device == 0 );
1622
1623 EFAB_POPULATE_OWORD_2 ( reg,
1624 FCN_MD_PRT_ADR, efab->phy_addr,
1625 FCN_MD_DEV_ADR, location );
1626 }
1627 falcon_write ( efab, ®, FCN_MD_ID_REG_KER );
1628
1629
1630 /* Write data */
1631 EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
1632 falcon_write ( efab, ®, FCN_MD_TXD_REG_KER );
1633
1634 EFAB_POPULATE_OWORD_2 ( reg,
1635 FCN_MD_WRC, 1,
1636 FCN_MD_GC, ( efab->phy_10g ? 0 : 1 ) );
1637 falcon_write ( efab, ®, FCN_MD_CS_REG_KER );
1638
1639 /* Wait for data to be written */
1640 if ( falcon_gmii_wait ( efab ) ) {
1641 /* Abort the write operation */
1642 EFAB_POPULATE_OWORD_2 ( reg,
1643 FCN_MD_WRC, 0,
1644 FCN_MD_GC, 1);
1645 falcon_write ( efab, ®, FCN_MD_CS_REG_KER );
1646 udelay(10);
1647 }
1648 }
1649
1650 static int
falcon_mdio_read(struct efab_nic * efab,int device,int location)1651 falcon_mdio_read ( struct efab_nic *efab, int device, int location )
1652 {
1653 efab_oword_t reg;
1654 int value;
1655
1656 /* Check MII not currently being accessed */
1657 if ( falcon_gmii_wait ( efab ) )
1658 return -1;
1659
1660 if ( efab->phy_10g ) {
1661 /* clause45 */
1662 EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location );
1663 falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER );
1664
1665 EFAB_POPULATE_OWORD_2 ( reg,
1666 FCN_MD_PRT_ADR, efab->phy_addr,
1667 FCN_MD_DEV_ADR, device );
1668 falcon_write ( efab, ®, FCN_MD_ID_REG_KER);
1669
1670 /* request data to be read */
1671 EFAB_POPULATE_OWORD_2 ( reg,
1672 FCN_MD_RDC, 1,
1673 FCN_MD_GC, 0 );
1674 }
1675 else {
1676 /* clause22 */
1677 assert ( device == 0 );
1678
1679 EFAB_POPULATE_OWORD_2 ( reg,
1680 FCN_MD_PRT_ADR, efab->phy_addr,
1681 FCN_MD_DEV_ADR, location );
1682 falcon_write ( efab, ®, FCN_MD_ID_REG_KER );
1683
1684 /* Request data to be read */
1685 EFAB_POPULATE_OWORD_2 ( reg,
1686 FCN_MD_RIC, 1,
1687 FCN_MD_GC, 1 );
1688 }
1689
1690 falcon_write ( efab, ®, FCN_MD_CS_REG_KER );
1691
1692 /* Wait for data to become available */
1693 if ( falcon_gmii_wait ( efab ) ) {
1694 /* Abort the read operation */
1695 EFAB_POPULATE_OWORD_2 ( reg,
1696 FCN_MD_RIC, 0,
1697 FCN_MD_GC, 1 );
1698 falcon_write ( efab, ®, FCN_MD_CS_REG_KER );
1699 udelay ( 10 );
1700 value = -1;
1701 }
1702 else {
1703 /* Read the data */
1704 falcon_read ( efab, ®, FCN_MD_RXD_REG_KER );
1705 value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );
1706 }
1707
1708 EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
1709 device, location, value );
1710
1711 return value;
1712 }
1713
1714 /*******************************************************************************
1715 *
1716 *
1717 * MAC wrapper
1718 *
1719 *
1720 *******************************************************************************/
1721
1722 static void
falcon_reconfigure_mac_wrapper(struct efab_nic * efab)1723 falcon_reconfigure_mac_wrapper ( struct efab_nic *efab )
1724 {
1725 efab_oword_t reg;
1726 int link_speed;
1727
1728 if ( efab->link_options & LPA_EF_10000 ) {
1729 link_speed = 0x3;
1730 } else if ( efab->link_options & LPA_EF_1000 ) {
1731 link_speed = 0x2;
1732 } else if ( efab->link_options & LPA_100 ) {
1733 link_speed = 0x1;
1734 } else {
1735 link_speed = 0x0;
1736 }
1737 EFAB_POPULATE_OWORD_5 ( reg,
1738 FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
1739 FCN_MAC_BCAD_ACPT, 1,
1740 FCN_MAC_UC_PROM, 0,
1741 FCN_MAC_LINK_STATUS, 1,
1742 FCN_MAC_SPEED, link_speed );
1743
1744 falcon_write ( efab, ®, FCN_MAC0_CTRL_REG_KER );
1745 }
1746
1747 /*******************************************************************************
1748 *
1749 *
1750 * GMAC handling
1751 *
1752 *
1753 *******************************************************************************/
1754
1755 /* GMAC configuration register 1 */
1756 #define GM_CFG1_REG_MAC 0x00
1757 #define GM_SW_RST_LBN 31
1758 #define GM_SW_RST_WIDTH 1
1759 #define GM_RX_FC_EN_LBN 5
1760 #define GM_RX_FC_EN_WIDTH 1
1761 #define GM_TX_FC_EN_LBN 4
1762 #define GM_TX_FC_EN_WIDTH 1
1763 #define GM_RX_EN_LBN 2
1764 #define GM_RX_EN_WIDTH 1
1765 #define GM_TX_EN_LBN 0
1766 #define GM_TX_EN_WIDTH 1
1767
1768 /* GMAC configuration register 2 */
1769 #define GM_CFG2_REG_MAC 0x01
1770 #define GM_PAMBL_LEN_LBN 12
1771 #define GM_PAMBL_LEN_WIDTH 4
1772 #define GM_IF_MODE_LBN 8
1773 #define GM_IF_MODE_WIDTH 2
1774 #define GM_PAD_CRC_EN_LBN 2
1775 #define GM_PAD_CRC_EN_WIDTH 1
1776 #define GM_FD_LBN 0
1777 #define GM_FD_WIDTH 1
1778
1779 /* GMAC maximum frame length register */
1780 #define GM_MAX_FLEN_REG_MAC 0x04
1781 #define GM_MAX_FLEN_LBN 0
1782 #define GM_MAX_FLEN_WIDTH 16
1783
1784 /* GMAC MII management configuration register */
1785 #define GM_MII_MGMT_CFG_REG_MAC 0x08
1786 #define GM_MGMT_CLK_SEL_LBN 0
1787 #define GM_MGMT_CLK_SEL_WIDTH 3
1788
1789 /* GMAC MII management command register */
1790 #define GM_MII_MGMT_CMD_REG_MAC 0x09
1791 #define GM_MGMT_SCAN_CYC_LBN 1
1792 #define GM_MGMT_SCAN_CYC_WIDTH 1
1793 #define GM_MGMT_RD_CYC_LBN 0
1794 #define GM_MGMT_RD_CYC_WIDTH 1
1795
1796 /* GMAC MII management address register */
1797 #define GM_MII_MGMT_ADR_REG_MAC 0x0a
1798 #define GM_MGMT_PHY_ADDR_LBN 8
1799 #define GM_MGMT_PHY_ADDR_WIDTH 5
1800 #define GM_MGMT_REG_ADDR_LBN 0
1801 #define GM_MGMT_REG_ADDR_WIDTH 5
1802
1803 /* GMAC MII management control register */
1804 #define GM_MII_MGMT_CTL_REG_MAC 0x0b
1805 #define GM_MGMT_CTL_LBN 0
1806 #define GM_MGMT_CTL_WIDTH 16
1807
1808 /* GMAC MII management status register */
1809 #define GM_MII_MGMT_STAT_REG_MAC 0x0c
1810 #define GM_MGMT_STAT_LBN 0
1811 #define GM_MGMT_STAT_WIDTH 16
1812
1813 /* GMAC MII management indicators register */
1814 #define GM_MII_MGMT_IND_REG_MAC 0x0d
1815 #define GM_MGMT_BUSY_LBN 0
1816 #define GM_MGMT_BUSY_WIDTH 1
1817
1818 /* GMAC station address register 1 */
1819 #define GM_ADR1_REG_MAC 0x10
1820 #define GM_HWADDR_5_LBN 24
1821 #define GM_HWADDR_5_WIDTH 8
1822 #define GM_HWADDR_4_LBN 16
1823 #define GM_HWADDR_4_WIDTH 8
1824 #define GM_HWADDR_3_LBN 8
1825 #define GM_HWADDR_3_WIDTH 8
1826 #define GM_HWADDR_2_LBN 0
1827 #define GM_HWADDR_2_WIDTH 8
1828
1829 /* GMAC station address register 2 */
1830 #define GM_ADR2_REG_MAC 0x11
1831 #define GM_HWADDR_1_LBN 24
1832 #define GM_HWADDR_1_WIDTH 8
1833 #define GM_HWADDR_0_LBN 16
1834 #define GM_HWADDR_0_WIDTH 8
1835
1836 /* GMAC FIFO configuration register 0 */
1837 #define GMF_CFG0_REG_MAC 0x12
1838 #define GMF_FTFENREQ_LBN 12
1839 #define GMF_FTFENREQ_WIDTH 1
1840 #define GMF_STFENREQ_LBN 11
1841 #define GMF_STFENREQ_WIDTH 1
1842 #define GMF_FRFENREQ_LBN 10
1843 #define GMF_FRFENREQ_WIDTH 1
1844 #define GMF_SRFENREQ_LBN 9
1845 #define GMF_SRFENREQ_WIDTH 1
1846 #define GMF_WTMENREQ_LBN 8
1847 #define GMF_WTMENREQ_WIDTH 1
1848
1849 /* GMAC FIFO configuration register 1 */
1850 #define GMF_CFG1_REG_MAC 0x13
1851 #define GMF_CFGFRTH_LBN 16
1852 #define GMF_CFGFRTH_WIDTH 5
1853 #define GMF_CFGXOFFRTX_LBN 0
1854 #define GMF_CFGXOFFRTX_WIDTH 16
1855
1856 /* GMAC FIFO configuration register 2 */
1857 #define GMF_CFG2_REG_MAC 0x14
1858 #define GMF_CFGHWM_LBN 16
1859 #define GMF_CFGHWM_WIDTH 6
1860 #define GMF_CFGLWM_LBN 0
1861 #define GMF_CFGLWM_WIDTH 6
1862
1863 /* GMAC FIFO configuration register 3 */
1864 #define GMF_CFG3_REG_MAC 0x15
1865 #define GMF_CFGHWMFT_LBN 16
1866 #define GMF_CFGHWMFT_WIDTH 6
1867 #define GMF_CFGFTTH_LBN 0
1868 #define GMF_CFGFTTH_WIDTH 6
1869
1870 /* GMAC FIFO configuration register 4 */
1871 #define GMF_CFG4_REG_MAC 0x16
1872 #define GMF_HSTFLTRFRM_PAUSE_LBN 12
1873 #define GMF_HSTFLTRFRM_PAUSE_WIDTH 12
1874
1875 /* GMAC FIFO configuration register 5 */
1876 #define GMF_CFG5_REG_MAC 0x17
1877 #define GMF_CFGHDPLX_LBN 22
1878 #define GMF_CFGHDPLX_WIDTH 1
1879 #define GMF_CFGBYTMODE_LBN 19
1880 #define GMF_CFGBYTMODE_WIDTH 1
1881 #define GMF_HSTDRPLT64_LBN 18
1882 #define GMF_HSTDRPLT64_WIDTH 1
1883 #define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
1884 #define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1
1885
1886 static void
falcon_gmac_writel(struct efab_nic * efab,efab_dword_t * value,unsigned int mac_reg)1887 falcon_gmac_writel ( struct efab_nic *efab, efab_dword_t *value,
1888 unsigned int mac_reg )
1889 {
1890 efab_oword_t temp;
1891
1892 EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
1893 EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
1894 falcon_write ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
1895 }
1896
1897 static void
falcon_gmac_readl(struct efab_nic * efab,efab_dword_t * value,unsigned int mac_reg)1898 falcon_gmac_readl ( struct efab_nic *efab, efab_dword_t *value,
1899 unsigned int mac_reg )
1900 {
1901 efab_oword_t temp;
1902
1903 falcon_read ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
1904 EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
1905 EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
1906 }
1907
1908 static void
mentormac_reset(struct efab_nic * efab)1909 mentormac_reset ( struct efab_nic *efab )
1910 {
1911 efab_dword_t reg;
1912
1913 /* Take into reset */
1914 EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 1 );
1915 falcon_gmac_writel ( efab, ®, GM_CFG1_REG_MAC );
1916 udelay ( 1000 );
1917
1918 /* Take out of reset */
1919 EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 0 );
1920 falcon_gmac_writel ( efab, ®, GM_CFG1_REG_MAC );
1921 udelay ( 1000 );
1922
1923 /* Configure GMII interface so PHY is accessible. Note that
1924 * GMII interface is connected only to port 0, and that on
1925 * Falcon this is a no-op.
1926 */
1927 EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
1928 falcon_gmac_writel ( efab, ®, GM_MII_MGMT_CFG_REG_MAC );
1929 udelay ( 10 );
1930 }
1931
1932 static void
mentormac_init(struct efab_nic * efab)1933 mentormac_init ( struct efab_nic *efab )
1934 {
1935 int pause, if_mode, full_duplex, bytemode, half_duplex;
1936 efab_dword_t reg;
1937
1938 /* Configuration register 1 */
1939 pause = ( efab->link_options & LPA_PAUSE_CAP ) ? 1 : 0;
1940 if ( ! ( efab->link_options & LPA_EF_DUPLEX ) ) {
1941 /* Half-duplex operation requires TX flow control */
1942 pause = 1;
1943 }
1944 EFAB_POPULATE_DWORD_4 ( reg,
1945 GM_TX_EN, 1,
1946 GM_TX_FC_EN, pause,
1947 GM_RX_EN, 1,
1948 GM_RX_FC_EN, 1 );
1949 falcon_gmac_writel ( efab, ®, GM_CFG1_REG_MAC );
1950 udelay ( 10 );
1951
1952 /* Configuration register 2 */
1953 if_mode = ( efab->link_options & LPA_EF_1000 ) ? 2 : 1;
1954 full_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 1 : 0;
1955 EFAB_POPULATE_DWORD_4 ( reg,
1956 GM_IF_MODE, if_mode,
1957 GM_PAD_CRC_EN, 1,
1958 GM_FD, full_duplex,
1959 GM_PAMBL_LEN, 0x7 /* ? */ );
1960 falcon_gmac_writel ( efab, ®, GM_CFG2_REG_MAC );
1961 udelay ( 10 );
1962
1963 /* Max frame len register */
1964 EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN,
1965 EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN ) );
1966 falcon_gmac_writel ( efab, ®, GM_MAX_FLEN_REG_MAC );
1967 udelay ( 10 );
1968
1969 /* FIFO configuration register 0 */
1970 EFAB_POPULATE_DWORD_5 ( reg,
1971 GMF_FTFENREQ, 1,
1972 GMF_STFENREQ, 1,
1973 GMF_FRFENREQ, 1,
1974 GMF_SRFENREQ, 1,
1975 GMF_WTMENREQ, 1 );
1976 falcon_gmac_writel ( efab, ®, GMF_CFG0_REG_MAC );
1977 udelay ( 10 );
1978
1979 /* FIFO configuration register 1 */
1980 EFAB_POPULATE_DWORD_2 ( reg,
1981 GMF_CFGFRTH, 0x12,
1982 GMF_CFGXOFFRTX, 0xffff );
1983 falcon_gmac_writel ( efab, ®, GMF_CFG1_REG_MAC );
1984 udelay ( 10 );
1985
1986 /* FIFO configuration register 2 */
1987 EFAB_POPULATE_DWORD_2 ( reg,
1988 GMF_CFGHWM, 0x3f,
1989 GMF_CFGLWM, 0xa );
1990 falcon_gmac_writel ( efab, ®, GMF_CFG2_REG_MAC );
1991 udelay ( 10 );
1992
1993 /* FIFO configuration register 3 */
1994 EFAB_POPULATE_DWORD_2 ( reg,
1995 GMF_CFGHWMFT, 0x1c,
1996 GMF_CFGFTTH, 0x08 );
1997 falcon_gmac_writel ( efab, ®, GMF_CFG3_REG_MAC );
1998 udelay ( 10 );
1999
2000 /* FIFO configuration register 4 */
2001 EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
2002 falcon_gmac_writel ( efab, ®, GMF_CFG4_REG_MAC );
2003 udelay ( 10 );
2004
2005 /* FIFO configuration register 5 */
2006 bytemode = ( efab->link_options & LPA_EF_1000 ) ? 1 : 0;
2007 half_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 0 : 1;
2008 falcon_gmac_readl ( efab, ®, GMF_CFG5_REG_MAC );
2009 EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
2010 EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
2011 EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
2012 EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
2013 falcon_gmac_writel ( efab, ®, GMF_CFG5_REG_MAC );
2014 udelay ( 10 );
2015
2016 /* MAC address */
2017 EFAB_POPULATE_DWORD_4 ( reg,
2018 GM_HWADDR_5, efab->mac_addr[5],
2019 GM_HWADDR_4, efab->mac_addr[4],
2020 GM_HWADDR_3, efab->mac_addr[3],
2021 GM_HWADDR_2, efab->mac_addr[2] );
2022 falcon_gmac_writel ( efab, ®, GM_ADR1_REG_MAC );
2023 udelay ( 10 );
2024 EFAB_POPULATE_DWORD_2 ( reg,
2025 GM_HWADDR_1, efab->mac_addr[1],
2026 GM_HWADDR_0, efab->mac_addr[0] );
2027 falcon_gmac_writel ( efab, ®, GM_ADR2_REG_MAC );
2028 udelay ( 10 );
2029 }
2030
2031 static int
falcon_init_gmac(struct efab_nic * efab)2032 falcon_init_gmac ( struct efab_nic *efab )
2033 {
2034 /* Reset the MAC */
2035 mentormac_reset ( efab );
2036
2037 /* Initialise PHY */
2038 efab->phy_op->init ( efab );
2039
2040 /* check the link is up */
2041 if ( !efab->link_up )
2042 return -EAGAIN;
2043
2044 /* Initialise MAC */
2045 mentormac_init ( efab );
2046
2047 /* reconfigure the MAC wrapper */
2048 falcon_reconfigure_mac_wrapper ( efab );
2049
2050 return 0;
2051 }
2052
2053 static struct efab_mac_operations falcon_gmac_operations = {
2054 .init = falcon_init_gmac,
2055 };
2056
2057
2058 /*******************************************************************************
2059 *
2060 *
2061 * XMAC handling
2062 *
2063 *
2064 *******************************************************************************/
2065
2066 /**
2067 * Write dword to a Falcon XMAC register
2068 *
2069 */
2070 static void
falcon_xmac_writel(struct efab_nic * efab,efab_dword_t * value,unsigned int mac_reg)2071 falcon_xmac_writel ( struct efab_nic *efab, efab_dword_t *value,
2072 unsigned int mac_reg )
2073 {
2074 efab_oword_t temp;
2075
2076 EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
2077 EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
2078 falcon_write ( efab, &temp,
2079 FALCON_XMAC_REG ( efab, mac_reg ) );
2080 }
2081
2082 /**
2083 * Read dword from a Falcon XMAC register
2084 *
2085 */
2086 static void
falcon_xmac_readl(struct efab_nic * efab,efab_dword_t * value,unsigned int mac_reg)2087 falcon_xmac_readl ( struct efab_nic *efab, efab_dword_t *value,
2088 unsigned int mac_reg )
2089 {
2090 efab_oword_t temp;
2091
2092 falcon_read ( efab, &temp,
2093 FALCON_XMAC_REG ( efab, mac_reg ) );
2094 EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
2095 EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
2096 }
2097
2098 /**
2099 * Configure Falcon XAUI output
2100 */
2101 static void
falcon_setup_xaui(struct efab_nic * efab)2102 falcon_setup_xaui ( struct efab_nic *efab )
2103 {
2104 efab_dword_t sdctl, txdrv;
2105
2106 falcon_xmac_readl ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC );
2107 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVD, XX_SD_CTL_DRV_DEFAULT );
2108 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVD, XX_SD_CTL_DRV_DEFAULT );
2109 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVC, XX_SD_CTL_DRV_DEFAULT );
2110 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVC, XX_SD_CTL_DRV_DEFAULT );
2111 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVB, XX_SD_CTL_DRV_DEFAULT );
2112 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVB, XX_SD_CTL_DRV_DEFAULT );
2113 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVA, XX_SD_CTL_DRV_DEFAULT );
2114 EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVA, XX_SD_CTL_DRV_DEFAULT );
2115 falcon_xmac_writel ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC );
2116
2117 EFAB_POPULATE_DWORD_8 ( txdrv,
2118 FCN_XX_DEQD, XX_TXDRV_DEQ_DEFAULT,
2119 FCN_XX_DEQC, XX_TXDRV_DEQ_DEFAULT,
2120 FCN_XX_DEQB, XX_TXDRV_DEQ_DEFAULT,
2121 FCN_XX_DEQA, XX_TXDRV_DEQ_DEFAULT,
2122 FCN_XX_DTXD, XX_TXDRV_DTX_DEFAULT,
2123 FCN_XX_DTXC, XX_TXDRV_DTX_DEFAULT,
2124 FCN_XX_DTXB, XX_TXDRV_DTX_DEFAULT,
2125 FCN_XX_DTXA, XX_TXDRV_DTX_DEFAULT);
2126 falcon_xmac_writel ( efab, &txdrv, FCN_XX_TXDRV_CTL_REG_MAC);
2127 }
2128
2129 static int
falcon_xgmii_status(struct efab_nic * efab)2130 falcon_xgmii_status ( struct efab_nic *efab )
2131 {
2132 efab_dword_t reg;
2133
2134 if ( efab->pci_revision < FALCON_REV_B0 )
2135 return 1;
2136 /* The ISR latches, so clear it and re-read */
2137 falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_REG_MAC_B0 );
2138 falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_REG_MAC_B0 );
2139
2140 if ( EFAB_DWORD_FIELD ( reg, FCN_XM_LCLFLT ) ||
2141 EFAB_DWORD_FIELD ( reg, FCN_XM_RMTFLT ) ) {
2142 EFAB_TRACE ( "MGT_INT: "EFAB_DWORD_FMT"\n",
2143 EFAB_DWORD_VAL ( reg ) );
2144 return 0;
2145 }
2146
2147 return 1;
2148 }
2149
2150 static void
falcon_mask_status_intr(struct efab_nic * efab,int enable)2151 falcon_mask_status_intr ( struct efab_nic *efab, int enable )
2152 {
2153 efab_dword_t reg;
2154
2155 if ( efab->pci_revision < FALCON_REV_B0 )
2156 return;
2157
2158 /* Flush the ISR */
2159 if ( enable )
2160 falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_REG_MAC_B0 );
2161
2162 EFAB_POPULATE_DWORD_2 ( reg,
2163 FCN_XM_MSK_RMTFLT, !enable,
2164 FCN_XM_MSK_LCLFLT, !enable);
2165 falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_MSK_REG_MAC_B0 );
2166 }
2167
2168 /**
2169 * Reset 10G MAC connected to port
2170 *
2171 */
2172 static int
falcon_reset_xmac(struct efab_nic * efab)2173 falcon_reset_xmac ( struct efab_nic *efab )
2174 {
2175 efab_dword_t reg;
2176 int count;
2177
2178 EFAB_POPULATE_DWORD_1 ( reg, FCN_XM_CORE_RST, 1 );
2179 falcon_xmac_writel ( efab, ®, FCN_XM_GLB_CFG_REG_MAC );
2180
2181 for ( count = 0 ; count < 1000 ; count++ ) {
2182 udelay ( 10 );
2183 falcon_xmac_readl ( efab, ®,
2184 FCN_XM_GLB_CFG_REG_MAC );
2185 if ( EFAB_DWORD_FIELD ( reg, FCN_XM_CORE_RST ) == 0 )
2186 return 0;
2187 }
2188 return -ETIMEDOUT;
2189 }
2190
2191
2192 static int
falcon_reset_xaui(struct efab_nic * efab)2193 falcon_reset_xaui ( struct efab_nic *efab )
2194 {
2195 efab_dword_t reg;
2196 int count;
2197
2198 if (!efab->is_asic)
2199 return 0;
2200
2201 EFAB_POPULATE_DWORD_1 ( reg, FCN_XX_RST_XX_EN, 1 );
2202 falcon_xmac_writel ( efab, ®, FCN_XX_PWR_RST_REG_MAC );
2203
2204 /* Give some time for the link to establish */
2205 for (count = 0; count < 1000; count++) { /* wait upto 10ms */
2206 falcon_xmac_readl ( efab, ®, FCN_XX_PWR_RST_REG_MAC );
2207 if ( EFAB_DWORD_FIELD ( reg, FCN_XX_RST_XX_EN ) == 0 ) {
2208 falcon_setup_xaui ( efab );
2209 return 0;
2210 }
2211 udelay(10);
2212 }
2213 EFAB_ERR ( "timed out waiting for XAUI/XGXS reset\n" );
2214 return -ETIMEDOUT;
2215 }
2216
2217 static int
falcon_xaui_link_ok(struct efab_nic * efab)2218 falcon_xaui_link_ok ( struct efab_nic *efab )
2219 {
2220 efab_dword_t reg;
2221 int align_done, lane_status, sync;
2222 int has_phyxs;
2223 int link_ok = 1;
2224
2225 /* Read Falcon XAUI side */
2226 if ( efab->is_asic ) {
2227 /* Read link status */
2228 falcon_xmac_readl ( efab, ®, FCN_XX_CORE_STAT_REG_MAC );
2229 align_done = EFAB_DWORD_FIELD ( reg, FCN_XX_ALIGN_DONE );
2230
2231 sync = EFAB_DWORD_FIELD ( reg, FCN_XX_SYNC_STAT );
2232 sync = ( sync == FCN_XX_SYNC_STAT_DECODE_SYNCED );
2233
2234 link_ok = align_done && sync;
2235 }
2236
2237 /* Clear link status ready for next read */
2238 EFAB_SET_DWORD_FIELD ( reg, FCN_XX_COMMA_DET, FCN_XX_COMMA_DET_RESET );
2239 EFAB_SET_DWORD_FIELD ( reg, FCN_XX_CHARERR, FCN_XX_CHARERR_RESET);
2240 EFAB_SET_DWORD_FIELD ( reg, FCN_XX_DISPERR, FCN_XX_DISPERR_RESET);
2241 falcon_xmac_writel ( efab, ®, FCN_XX_CORE_STAT_REG_MAC );
2242
2243 has_phyxs = ( efab->phy_op->mmds & ( 1 << MDIO_MMD_PHYXS ) );
2244 if ( link_ok && has_phyxs ) {
2245 lane_status = falcon_mdio_read ( efab, MDIO_MMD_PHYXS,
2246 MDIO_PHYXS_LANE_STATE );
2247 link_ok = ( lane_status & ( 1 << MDIO_PHYXS_LANE_ALIGNED_LBN ) );
2248
2249 if (!link_ok )
2250 EFAB_LOG ( "XGXS lane status: %x\n", lane_status );
2251 }
2252
2253 return link_ok;
2254 }
2255
2256 /**
2257 * Initialise XMAC
2258 *
2259 */
2260 static void
falcon_reconfigure_xmac(struct efab_nic * efab)2261 falcon_reconfigure_xmac ( struct efab_nic *efab )
2262 {
2263 efab_dword_t reg;
2264 int max_frame_len;
2265
2266 /* Configure MAC - cut-thru mode is hard wired on */
2267 EFAB_POPULATE_DWORD_3 ( reg,
2268 FCN_XM_RX_JUMBO_MODE, 1,
2269 FCN_XM_TX_STAT_EN, 1,
2270 FCN_XM_RX_STAT_EN, 1);
2271 falcon_xmac_writel ( efab, ®, FCN_XM_GLB_CFG_REG_MAC );
2272
2273 /* Configure TX */
2274 EFAB_POPULATE_DWORD_6 ( reg,
2275 FCN_XM_TXEN, 1,
2276 FCN_XM_TX_PRMBL, 1,
2277 FCN_XM_AUTO_PAD, 1,
2278 FCN_XM_TXCRC, 1,
2279 FCN_XM_FCNTL, 1,
2280 FCN_XM_IPG, 0x3 );
2281 falcon_xmac_writel ( efab, ®, FCN_XM_TX_CFG_REG_MAC );
2282
2283 /* Configure RX */
2284 EFAB_POPULATE_DWORD_4 ( reg,
2285 FCN_XM_RXEN, 1,
2286 FCN_XM_AUTO_DEPAD, 0,
2287 FCN_XM_ACPT_ALL_MCAST, 1,
2288 FCN_XM_PASS_CRC_ERR, 1 );
2289 falcon_xmac_writel ( efab, ®, FCN_XM_RX_CFG_REG_MAC );
2290
2291 /* Set frame length */
2292 max_frame_len = EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN );
2293 EFAB_POPULATE_DWORD_1 ( reg,
2294 FCN_XM_MAX_RX_FRM_SIZE, max_frame_len );
2295 falcon_xmac_writel ( efab, ®, FCN_XM_RX_PARAM_REG_MAC );
2296 EFAB_POPULATE_DWORD_2 ( reg,
2297 FCN_XM_MAX_TX_FRM_SIZE, max_frame_len,
2298 FCN_XM_TX_JUMBO_MODE, 1 );
2299 falcon_xmac_writel ( efab, ®, FCN_XM_TX_PARAM_REG_MAC );
2300
2301 /* Enable flow control receipt */
2302 EFAB_POPULATE_DWORD_2 ( reg,
2303 FCN_XM_PAUSE_TIME, 0xfffe,
2304 FCN_XM_DIS_FCNTL, 0 );
2305 falcon_xmac_writel ( efab, ®, FCN_XM_FC_REG_MAC );
2306
2307 /* Set MAC address */
2308 EFAB_POPULATE_DWORD_4 ( reg,
2309 FCN_XM_ADR_0, efab->mac_addr[0],
2310 FCN_XM_ADR_1, efab->mac_addr[1],
2311 FCN_XM_ADR_2, efab->mac_addr[2],
2312 FCN_XM_ADR_3, efab->mac_addr[3] );
2313 falcon_xmac_writel ( efab, ®, FCN_XM_ADR_LO_REG_MAC );
2314 EFAB_POPULATE_DWORD_2 ( reg,
2315 FCN_XM_ADR_4, efab->mac_addr[4],
2316 FCN_XM_ADR_5, efab->mac_addr[5] );
2317 falcon_xmac_writel ( efab, ®, FCN_XM_ADR_HI_REG_MAC );
2318 }
2319
2320 static int
falcon_init_xmac(struct efab_nic * efab)2321 falcon_init_xmac ( struct efab_nic *efab )
2322 {
2323 int count, rc;
2324
2325 /* Mask the PHY management interrupt */
2326 falcon_mask_status_intr ( efab, 0 );
2327
2328 /* Initialise the PHY to instantiate the clock. */
2329 rc = efab->phy_op->init ( efab );
2330 if ( rc ) {
2331 EFAB_ERR ( "unable to initialise PHY\n" );
2332 goto fail1;
2333 }
2334
2335 falcon_reset_xaui ( efab );
2336
2337 /* Give the PHY and MAC time to faff */
2338 mdelay ( 100 );
2339
2340 /* Reset and reconfigure the XMAC */
2341 rc = falcon_reset_xmac ( efab );
2342 if ( rc )
2343 goto fail2;
2344 falcon_reconfigure_xmac ( efab );
2345 falcon_reconfigure_mac_wrapper ( efab );
2346 /**
2347 * Now wait for the link to come up. This may take a while
2348 * for some slower PHY's.
2349 */
2350 for (count=0; count<50; count++) {
2351 int link_ok = 1;
2352
2353 /* Wait a while for the link to come up. */
2354 mdelay ( 100 );
2355 if ((count % 5) == 0)
2356 putchar ( '.' );
2357
2358 /* Does the PHY think the wire-side link is up? */
2359 link_ok = mdio_clause45_links_ok ( efab );
2360 /* Ensure the XAUI link to the PHY is good */
2361 if ( link_ok ) {
2362 link_ok = falcon_xaui_link_ok ( efab );
2363 if ( !link_ok )
2364 falcon_reset_xaui ( efab );
2365 }
2366
2367 /* Check fault indication */
2368 if ( link_ok )
2369 link_ok = falcon_xgmii_status ( efab );
2370
2371 efab->link_up = link_ok;
2372 if ( link_ok ) {
2373 /* unmask the status interrupt */
2374 falcon_mask_status_intr ( efab, 1 );
2375 return 0;
2376 }
2377 }
2378
2379 /* Link failed to come up, but initialisation was fine. */
2380 rc = -ETIMEDOUT;
2381
2382 fail2:
2383 fail1:
2384 return rc;
2385 }
2386
2387 static struct efab_mac_operations falcon_xmac_operations = {
2388 .init = falcon_init_xmac,
2389 };
2390
2391 /*******************************************************************************
2392 *
2393 *
2394 * Null PHY handling
2395 *
2396 *
2397 *******************************************************************************/
2398
2399 static int
falcon_xaui_phy_init(struct efab_nic * efab)2400 falcon_xaui_phy_init ( struct efab_nic *efab )
2401 {
2402 /* CX4 is always 10000FD only */
2403 efab->link_options = LPA_EF_10000FULL;
2404
2405 /* There is no PHY! */
2406 return 0;
2407 }
2408
2409 static struct efab_phy_operations falcon_xaui_phy_ops = {
2410 .init = falcon_xaui_phy_init,
2411 .mmds = 0,
2412 };
2413
2414
2415 /*******************************************************************************
2416 *
2417 *
2418 * Alaska PHY
2419 *
2420 *
2421 *******************************************************************************/
2422
2423 /**
2424 * Initialise Alaska PHY
2425 *
2426 */
2427 static int
alaska_init(struct efab_nic * efab)2428 alaska_init ( struct efab_nic *efab )
2429 {
2430 unsigned int advertised, lpa;
2431
2432 /* Read link up status */
2433 efab->link_up = gmii_link_ok ( efab );
2434
2435 if ( ! efab->link_up )
2436 return -EIO;
2437
2438 /* Determine link options from PHY. */
2439 advertised = gmii_autoneg_advertised ( efab );
2440 lpa = gmii_autoneg_lpa ( efab );
2441 efab->link_options = gmii_nway_result ( advertised & lpa );
2442
2443 return 0;
2444 }
2445
2446 static struct efab_phy_operations falcon_alaska_phy_ops = {
2447 .init = alaska_init,
2448 };
2449
2450 /*******************************************************************************
2451 *
2452 *
2453 * xfp
2454 *
2455 *
2456 *******************************************************************************/
2457
2458 #define XFP_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS | \
2459 MDIO_MMDREG_DEVS0_PMAPMD | \
2460 MDIO_MMDREG_DEVS0_PHYXS )
2461
2462 static int
falcon_xfp_phy_init(struct efab_nic * efab)2463 falcon_xfp_phy_init ( struct efab_nic *efab )
2464 {
2465 int rc;
2466
2467 /* Optical link is always 10000FD only */
2468 efab->link_options = LPA_EF_10000FULL;
2469
2470 /* Reset the PHY */
2471 rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PHYXS );
2472 if ( rc )
2473 return rc;
2474
2475 return 0;
2476 }
2477
2478 static struct efab_phy_operations falcon_xfp_phy_ops = {
2479 .init = falcon_xfp_phy_init,
2480 .mmds = XFP_REQUIRED_DEVS,
2481 };
2482
2483 /*******************************************************************************
2484 *
2485 *
2486 * txc43128
2487 *
2488 *
2489 *******************************************************************************/
2490
2491 /* Command register */
2492 #define TXC_GLRGS_GLCMD (0xc004)
2493 #define TXC_GLCMD_LMTSWRST_LBN (14)
2494
2495 /* Amplitude on lanes 0+1, 2+3 */
2496 #define TXC_ALRGS_ATXAMP0 (0xc041)
2497 #define TXC_ALRGS_ATXAMP1 (0xc042)
2498 /* Bit position of value for lane 0+2, 1+3 */
2499 #define TXC_ATXAMP_LANE02_LBN (3)
2500 #define TXC_ATXAMP_LANE13_LBN (11)
2501
2502 #define TXC_ATXAMP_1280_mV (0)
2503 #define TXC_ATXAMP_1200_mV (8)
2504 #define TXC_ATXAMP_1120_mV (12)
2505 #define TXC_ATXAMP_1060_mV (14)
2506 #define TXC_ATXAMP_0820_mV (25)
2507 #define TXC_ATXAMP_0720_mV (26)
2508 #define TXC_ATXAMP_0580_mV (27)
2509 #define TXC_ATXAMP_0440_mV (28)
2510
2511 #define TXC_ATXAMP_0820_BOTH ( (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE02_LBN) | \
2512 (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE13_LBN) )
2513
2514 #define TXC_ATXAMP_DEFAULT (0x6060) /* From databook */
2515
2516 /* Preemphasis on lanes 0+1, 2+3 */
2517 #define TXC_ALRGS_ATXPRE0 (0xc043)
2518 #define TXC_ALRGS_ATXPRE1 (0xc044)
2519
2520 #define TXC_ATXPRE_NONE (0)
2521 #define TXC_ATXPRE_DEFAULT (0x1010) /* From databook */
2522
2523 #define TXC_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS | \
2524 MDIO_MMDREG_DEVS0_PMAPMD | \
2525 MDIO_MMDREG_DEVS0_PHYXS )
2526
2527 static int
falcon_txc_logic_reset(struct efab_nic * efab)2528 falcon_txc_logic_reset ( struct efab_nic *efab )
2529 {
2530 int val;
2531 int tries = 50;
2532
2533 val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD );
2534 val |= (1 << TXC_GLCMD_LMTSWRST_LBN);
2535 falcon_mdio_write ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD, val );
2536
2537 while ( tries--) {
2538 val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD );
2539 if ( ~val & ( 1 << TXC_GLCMD_LMTSWRST_LBN ) )
2540 return 0;
2541 udelay(1);
2542 }
2543
2544 EFAB_ERR ( "logic reset failed\n" );
2545
2546 return -ETIMEDOUT;
2547 }
2548
2549 static int
falcon_txc_phy_init(struct efab_nic * efab)2550 falcon_txc_phy_init ( struct efab_nic *efab )
2551 {
2552 int rc;
2553
2554 /* CX4 is always 10000FD only */
2555 efab->link_options = LPA_EF_10000FULL;
2556
2557 /* reset the phy */
2558 rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PMAPMD );
2559 if ( rc )
2560 goto fail1;
2561
2562 rc = mdio_clause45_check_mmds ( efab );
2563 if ( rc )
2564 goto fail2;
2565
2566 /* Turn amplitude down and preemphasis off on the host side
2567 * (PHY<->MAC) as this is believed less likely to upset falcon
2568 * and no adverse effects have been noted. It probably also
2569 * saves a picowatt or two */
2570
2571 /* Turn off preemphasis */
2572 falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE0,
2573 TXC_ATXPRE_NONE );
2574 falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE1,
2575 TXC_ATXPRE_NONE );
2576
2577 /* Turn down the amplitude */
2578 falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP0,
2579 TXC_ATXAMP_0820_BOTH );
2580 falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP1,
2581 TXC_ATXAMP_0820_BOTH );
2582
2583 /* Set the line side amplitude and preemphasis to the databook
2584 * defaults as an erratum causes them to be 0 on at least some
2585 * PHY rev.s */
2586 falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE0,
2587 TXC_ATXPRE_DEFAULT );
2588 falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE1,
2589 TXC_ATXPRE_DEFAULT );
2590 falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP0,
2591 TXC_ATXAMP_DEFAULT );
2592 falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP1,
2593 TXC_ATXAMP_DEFAULT );
2594
2595 rc = falcon_txc_logic_reset ( efab );
2596 if ( rc )
2597 goto fail3;
2598
2599 return 0;
2600
2601 fail3:
2602 fail2:
2603 fail1:
2604 return rc;
2605 }
2606
2607 static struct efab_phy_operations falcon_txc_phy_ops = {
2608 .init = falcon_txc_phy_init,
2609 .mmds = TXC_REQUIRED_DEVS,
2610 };
2611
2612 /*******************************************************************************
2613 *
2614 *
2615 * tenxpress
2616 *
2617 *
2618 *******************************************************************************/
2619
2620
2621 #define TENXPRESS_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PMAPMD | \
2622 MDIO_MMDREG_DEVS0_PCS | \
2623 MDIO_MMDREG_DEVS0_PHYXS )
2624
2625 #define PCS_TEST_SELECT_REG 0xd807 /* PRM 10.5.8 */
2626 #define CLK312_EN_LBN 3
2627 #define CLK312_EN_WIDTH 1
2628
2629 #define PCS_CLOCK_CTRL_REG 0xd801
2630 #define PLL312_RST_N_LBN 2
2631
2632 /* Special Software reset register */
2633 #define PMA_PMD_EXT_CTRL_REG 49152
2634 #define PMA_PMD_EXT_SSR_LBN 15
2635
2636 /* Boot status register */
2637 #define PCS_BOOT_STATUS_REG 0xd000
2638 #define PCS_BOOT_FATAL_ERR_LBN 0
2639 #define PCS_BOOT_PROGRESS_LBN 1
2640 #define PCS_BOOT_PROGRESS_WIDTH 2
2641 #define PCS_BOOT_COMPLETE_LBN 3
2642
2643 #define PCS_SOFT_RST2_REG 0xd806
2644 #define SERDES_RST_N_LBN 13
2645 #define XGXS_RST_N_LBN 12
2646
2647 static int
falcon_tenxpress_check_c11(struct efab_nic * efab)2648 falcon_tenxpress_check_c11 ( struct efab_nic *efab )
2649 {
2650 int count;
2651 uint32_t boot_stat;
2652
2653 /* Check that the C11 CPU has booted */
2654 for (count=0; count<10; count++) {
2655 boot_stat = falcon_mdio_read ( efab, MDIO_MMD_PCS,
2656 PCS_BOOT_STATUS_REG );
2657 if ( boot_stat & ( 1 << PCS_BOOT_COMPLETE_LBN ) )
2658 return 0;
2659
2660 udelay(10);
2661 }
2662
2663 EFAB_ERR ( "C11 failed to boot\n" );
2664 return -ETIMEDOUT;
2665 }
2666
2667 static int
falcon_tenxpress_phy_init(struct efab_nic * efab)2668 falcon_tenxpress_phy_init ( struct efab_nic *efab )
2669 {
2670 int rc, reg;
2671
2672 /* 10XPRESS is always 10000FD (at the moment) */
2673 efab->link_options = LPA_EF_10000FULL;
2674
2675 /* Wait for the blocks to come out of reset */
2676 rc = mdio_clause45_wait_reset_mmds ( efab );
2677 if ( rc )
2678 goto fail1;
2679
2680 rc = mdio_clause45_check_mmds ( efab );
2681 if ( rc )
2682 goto fail2;
2683
2684 /* Turn on the clock */
2685 reg = (1 << CLK312_EN_LBN);
2686 falcon_mdio_write ( efab, MDIO_MMD_PCS, PCS_TEST_SELECT_REG, reg);
2687
2688 /* Wait 200ms for the PHY to boot */
2689 mdelay(200);
2690
2691 rc = falcon_tenxpress_check_c11 ( efab );
2692 if ( rc )
2693 goto fail3;
2694
2695 return 0;
2696
2697 fail3:
2698 fail2:
2699 fail1:
2700 return rc;
2701 }
2702
2703 static struct efab_phy_operations falcon_tenxpress_phy_ops = {
2704 .init = falcon_tenxpress_phy_init,
2705 .mmds = TENXPRESS_REQUIRED_DEVS,
2706 };
2707
2708 /*******************************************************************************
2709 *
2710 *
2711 * PM8358
2712 *
2713 *
2714 *******************************************************************************/
2715
2716 /* The PM8358 just presents a DTE XS */
2717 #define PM8358_REQUIRED_DEVS (MDIO_MMDREG_DEVS0_DTEXS)
2718
2719 /* PHY-specific definitions */
2720 /* Master ID and Global Performance Monitor Update */
2721 #define PMC_MASTER_REG (0xd000)
2722 /* Analog Tx Rx settings under software control */
2723 #define PMC_MASTER_ANLG_CTRL (1<< 11)
2724
2725 /* Master Configuration register 2 */
2726 #define PMC_MCONF2_REG (0xd002)
2727 /* Drive Tx off centre of data eye (1) vs. clock edge (0) */
2728 #define PMC_MCONF2_TEDGE (1 << 2)
2729 /* Drive Rx off centre of data eye (1) vs. clock edge (0) */
2730 #define PMC_MCONF2_REDGE (1 << 3)
2731
2732 /* Analog Rx settings */
2733 #define PMC_ANALOG_RX_CFG0 (0xd025)
2734 #define PMC_ANALOG_RX_CFG1 (0xd02d)
2735 #define PMC_ANALOG_RX_CFG2 (0xd035)
2736 #define PMC_ANALOG_RX_CFG3 (0xd03d)
2737
2738
2739 #define PMC_ANALOG_RX_TERM (1 << 15) /* Bit 15 of RX CFG: 0 for 100 ohms float,
2740 1 for 50 to 1.2V */
2741 #define PMC_ANALOG_RX_EQ_MASK (3 << 8)
2742 #define PMC_ANALOG_RX_EQ_NONE (0 << 8)
2743 #define PMC_ANALOG_RX_EQ_HALF (1 << 8)
2744 #define PMC_ANALOG_RX_EQ_FULL (2 << 8)
2745 #define PMC_ANALOG_RX_EQ_RSVD (3 << 8)
2746
2747 static int
falcon_pm8358_phy_init(struct efab_nic * efab)2748 falcon_pm8358_phy_init ( struct efab_nic *efab )
2749 {
2750 int rc, reg, i;
2751
2752 /* This is a XAUI retimer part */
2753 efab->link_options = LPA_EF_10000FULL;
2754
2755 rc = mdio_clause45_reset_mmd ( efab, MDIO_MMDREG_DEVS0_DTEXS );
2756 if ( rc )
2757 return rc;
2758
2759 /* Enable software control of analogue settings */
2760 reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG );
2761 reg |= PMC_MASTER_ANLG_CTRL;
2762 falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG, reg );
2763
2764 /* Turn rx eq on for all channels */
2765 for (i=0; i< 3; i++) {
2766 /* The analog CFG registers are evenly spaced 8 apart */
2767 uint16_t addr = PMC_ANALOG_RX_CFG0 + 8*i;
2768 reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, addr );
2769 reg = ( reg & ~PMC_ANALOG_RX_EQ_MASK ) | PMC_ANALOG_RX_EQ_FULL;
2770 falcon_mdio_write ( efab, MDIO_MMD_DTEXS, addr, reg );
2771 }
2772
2773 /* Set TEDGE, clear REDGE */
2774 reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG );
2775 reg = ( reg & ~PMC_MCONF2_REDGE) | PMC_MCONF2_TEDGE;
2776 falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG, reg );
2777
2778 return 0;
2779 }
2780
2781 static struct efab_phy_operations falcon_pm8358_phy_ops = {
2782 .init = falcon_pm8358_phy_init,
2783 .mmds = PM8358_REQUIRED_DEVS,
2784 };
2785
2786 /*******************************************************************************
2787 *
2788 *
2789 * SFE4001 support
2790 *
2791 *
2792 *******************************************************************************/
2793
2794 #define MAX_TEMP_THRESH 90
2795
2796 /* I2C Expander */
2797 #define PCA9539 0x74
2798
2799 #define P0_IN 0x00
2800 #define P0_OUT 0x02
2801 #define P0_CONFIG 0x06
2802
2803 #define P0_EN_1V0X_LBN 0
2804 #define P0_EN_1V0X_WIDTH 1
2805 #define P0_EN_1V2_LBN 1
2806 #define P0_EN_1V2_WIDTH 1
2807 #define P0_EN_2V5_LBN 2
2808 #define P0_EN_2V5_WIDTH 1
2809 #define P0_EN_3V3X_LBN 3
2810 #define P0_EN_3V3X_WIDTH 1
2811 #define P0_EN_5V_LBN 4
2812 #define P0_EN_5V_WIDTH 1
2813 #define P0_X_TRST_LBN 6
2814 #define P0_X_TRST_WIDTH 1
2815
2816 #define P1_IN 0x01
2817 #define P1_CONFIG 0x07
2818
2819 #define P1_AFE_PWD_LBN 0
2820 #define P1_AFE_PWD_WIDTH 1
2821 #define P1_DSP_PWD25_LBN 1
2822 #define P1_DSP_PWD25_WIDTH 1
2823 #define P1_SPARE_LBN 4
2824 #define P1_SPARE_WIDTH 4
2825
2826 /* Temperature Sensor */
2827 #define MAX6647 0x4e
2828
2829 #define RSL 0x02
2830 #define RLHN 0x05
2831 #define WLHO 0x0b
2832
2833 static struct i2c_device i2c_pca9539 = {
2834 .dev_addr = PCA9539,
2835 .dev_addr_len = 1,
2836 .word_addr_len = 1,
2837 };
2838
2839
2840 static struct i2c_device i2c_max6647 = {
2841 .dev_addr = MAX6647,
2842 .dev_addr_len = 1,
2843 .word_addr_len = 1,
2844 };
2845
2846 static int
sfe4001_init(struct efab_nic * efab)2847 sfe4001_init ( struct efab_nic *efab )
2848 {
2849 struct i2c_interface *i2c = &efab->i2c_bb.i2c;
2850 efab_dword_t reg;
2851 uint8_t in, cfg, out;
2852 int count, rc;
2853
2854 EFAB_LOG ( "Initialise SFE4001 board\n" );
2855
2856 /* Ensure XGXS and XAUI SerDes are held in reset */
2857 EFAB_POPULATE_DWORD_7 ( reg,
2858 FCN_XX_PWRDNA_EN, 1,
2859 FCN_XX_PWRDNB_EN, 1,
2860 FCN_XX_RSTPLLAB_EN, 1,
2861 FCN_XX_RESETA_EN, 1,
2862 FCN_XX_RESETB_EN, 1,
2863 FCN_XX_RSTXGXSRX_EN, 1,
2864 FCN_XX_RSTXGXSTX_EN, 1 );
2865 falcon_xmac_writel ( efab, ®, FCN_XX_PWR_RST_REG_MAC);
2866 udelay(10);
2867
2868 /* Set DSP over-temperature alert threshold */
2869 cfg = MAX_TEMP_THRESH;
2870 rc = i2c->write ( i2c, &i2c_max6647, WLHO, &cfg, EFAB_BYTE );
2871 if ( rc )
2872 goto fail1;
2873
2874 /* Read it back and verify */
2875 rc = i2c->read ( i2c, &i2c_max6647, RLHN, &in, EFAB_BYTE );
2876 if ( rc )
2877 goto fail2;
2878
2879 if ( in != MAX_TEMP_THRESH ) {
2880 EFAB_ERR ( "Unable to verify MAX6647 limit (requested=%d "
2881 "confirmed=%d)\n", cfg, in );
2882 rc = -EIO;
2883 goto fail3;
2884 }
2885
2886 /* Clear any previous over-temperature alert */
2887 rc = i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE );
2888 if ( rc )
2889 goto fail4;
2890
2891 /* Enable port 0 and 1 outputs on IO expander */
2892 cfg = 0x00;
2893 rc = i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE );
2894 if ( rc )
2895 goto fail5;
2896 cfg = 0xff & ~(1 << P1_SPARE_LBN);
2897 rc = i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE );
2898 if ( rc )
2899 goto fail6;
2900
2901 /* Turn all power off then wait 1 sec. This ensures PHY is reset */
2902 out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) |
2903 (0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) |
2904 (0 << P0_EN_1V0X_LBN));
2905
2906 rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
2907 if ( rc )
2908 goto fail7;
2909
2910 mdelay(1000);
2911
2912 for (count=0; count<20; count++) {
2913 /* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */
2914 out = 0xff & ~( (1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) |
2915 (1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) |
2916 (1 << P0_X_TRST_LBN) );
2917
2918 rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
2919 if ( rc )
2920 goto fail8;
2921
2922 mdelay ( 10 );
2923
2924 /* Turn on the 1V power rail */
2925 out &= ~( 1 << P0_EN_1V0X_LBN );
2926 rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
2927 if ( rc )
2928 goto fail9;
2929
2930 EFAB_LOG ( "Waiting for power...(attempt %d)\n", count);
2931 mdelay ( 1000 );
2932
2933 /* Check DSP is powered */
2934 rc = i2c->read ( i2c, &i2c_pca9539, P1_IN, &in, EFAB_BYTE );
2935 if ( rc )
2936 goto fail10;
2937
2938 if ( in & ( 1 << P1_AFE_PWD_LBN ) )
2939 return 0;
2940 }
2941
2942 rc = -ETIMEDOUT;
2943
2944 fail10:
2945 fail9:
2946 fail8:
2947 fail7:
2948 /* Turn off power rails */
2949 out = 0xff;
2950 (void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
2951 /* Disable port 1 outputs on IO expander */
2952 out = 0xff;
2953 (void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE );
2954 fail6:
2955 /* Disable port 0 outputs */
2956 out = 0xff;
2957 (void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE );
2958 fail5:
2959 fail4:
2960 fail3:
2961 fail2:
2962 fail1:
2963 EFAB_ERR ( "Failed initialising SFE4001 board\n" );
2964 return rc;
2965 }
2966
2967 static void
sfe4001_fini(struct efab_nic * efab)2968 sfe4001_fini ( struct efab_nic *efab )
2969 {
2970 struct i2c_interface *i2c = &efab->i2c_bb.i2c;
2971 uint8_t in, cfg, out;
2972
2973 EFAB_ERR ( "Turning off SFE4001\n" );
2974
2975 /* Turn off all power rails */
2976 out = 0xff;
2977 (void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
2978
2979 /* Disable port 1 outputs on IO expander */
2980 cfg = 0xff;
2981 (void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE );
2982
2983 /* Disable port 0 outputs on IO expander */
2984 cfg = 0xff;
2985 (void) i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE );
2986
2987 /* Clear any over-temperature alert */
2988 (void) i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE );
2989 }
2990
2991 struct efab_board_operations sfe4001_ops = {
2992 .init = sfe4001_init,
2993 .fini = sfe4001_fini,
2994 };
2995
sfe4002_init(struct efab_nic * efab)2996 static int sfe4002_init ( struct efab_nic *efab __attribute__((unused)) )
2997 {
2998 return 0;
2999 }
sfe4002_fini(struct efab_nic * efab)3000 static void sfe4002_fini ( struct efab_nic *efab __attribute__((unused)) )
3001 {
3002 }
3003
3004 struct efab_board_operations sfe4002_ops = {
3005 .init = sfe4002_init,
3006 .fini = sfe4002_fini,
3007 };
3008
sfe4003_init(struct efab_nic * efab)3009 static int sfe4003_init ( struct efab_nic *efab __attribute__((unused)) )
3010 {
3011 return 0;
3012 }
sfe4003_fini(struct efab_nic * efab)3013 static void sfe4003_fini ( struct efab_nic *efab __attribute__((unused)) )
3014 {
3015 }
3016
3017 struct efab_board_operations sfe4003_ops = {
3018 .init = sfe4003_init,
3019 .fini = sfe4003_fini,
3020 };
3021
3022 /*******************************************************************************
3023 *
3024 *
3025 * Hardware initialisation
3026 *
3027 *
3028 *******************************************************************************/
3029
3030 static void
falcon_free_special_buffer(void * p)3031 falcon_free_special_buffer ( void *p )
3032 {
3033 /* We don't bother cleaning up the buffer table entries -
3034 * we're hardly limited */
3035 free_dma ( p, EFAB_BUF_ALIGN );
3036 }
3037
3038 static void*
falcon_alloc_special_buffer(struct efab_nic * efab,int bytes,struct efab_special_buffer * entry)3039 falcon_alloc_special_buffer ( struct efab_nic *efab, int bytes,
3040 struct efab_special_buffer *entry )
3041 {
3042 void* buffer;
3043 int remaining;
3044 efab_qword_t buf_desc;
3045 unsigned long dma_addr;
3046
3047 /* Allocate the buffer, aligned on a buffer address boundary */
3048 buffer = malloc_dma ( bytes, EFAB_BUF_ALIGN );
3049 if ( ! buffer )
3050 return NULL;
3051
3052 /* Push buffer table entries to back the buffer */
3053 entry->id = efab->buffer_head;
3054 entry->dma_addr = dma_addr = virt_to_bus ( buffer );
3055 assert ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );
3056
3057 remaining = bytes;
3058 while ( remaining > 0 ) {
3059 EFAB_POPULATE_QWORD_3 ( buf_desc,
3060 FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
3061 FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
3062 FCN_BUF_OWNER_ID_FBUF, 0 );
3063
3064 falcon_write_sram ( efab, &buf_desc, efab->buffer_head );
3065
3066 ++efab->buffer_head;
3067 dma_addr += EFAB_BUF_ALIGN;
3068 remaining -= EFAB_BUF_ALIGN;
3069 }
3070
3071 EFAB_TRACE ( "Allocated 0x%x bytes at %p backed by buffer table "
3072 "entries 0x%x..0x%x\n", bytes, buffer, entry->id,
3073 efab->buffer_head - 1 );
3074
3075 return buffer;
3076 }
3077
3078 static void
clear_b0_fpga_memories(struct efab_nic * efab)3079 clear_b0_fpga_memories ( struct efab_nic *efab)
3080 {
3081 efab_oword_t blanko, temp;
3082 efab_dword_t blankd;
3083 int offset;
3084
3085 EFAB_ZERO_OWORD ( blanko );
3086 EFAB_ZERO_DWORD ( blankd );
3087
3088 /* Clear the address region register */
3089 EFAB_POPULATE_OWORD_4 ( temp,
3090 FCN_ADR_REGION0, 0,
3091 FCN_ADR_REGION1, ( 1 << 16 ),
3092 FCN_ADR_REGION2, ( 2 << 16 ),
3093 FCN_ADR_REGION3, ( 3 << 16 ) );
3094 falcon_write ( efab, &temp, FCN_ADR_REGION_REG_KER );
3095
3096 EFAB_TRACE ( "Clearing filter and RSS tables\n" );
3097
3098 for ( offset = FCN_RX_FILTER_TBL0 ;
3099 offset < FCN_RX_RSS_INDIR_TBL_B0+0x800 ;
3100 offset += 0x10 ) {
3101 falcon_write ( efab, &blanko, offset );
3102 }
3103
3104 EFAB_TRACE ( "Wiping buffer tables\n" );
3105
3106 /* Notice the 8 byte access mode */
3107 for ( offset = 0x2800000 ;
3108 offset < 0x3000000 ;
3109 offset += 0x8) {
3110 _falcon_writel ( efab, 0, offset );
3111 _falcon_writel ( efab, 0, offset + 4 );
3112 wmb();
3113 }
3114 }
3115
3116 static int
falcon_reset(struct efab_nic * efab)3117 falcon_reset ( struct efab_nic *efab )
3118 {
3119 efab_oword_t glb_ctl_reg_ker;
3120
3121 /* Initiate software reset */
3122 EFAB_POPULATE_OWORD_6 ( glb_ctl_reg_ker,
3123 FCN_PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
3124 FCN_PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
3125 FCN_PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
3126 FCN_EE_RST_CTL, EXCLUDE_FROM_RESET,
3127 FCN_EXT_PHY_RST_DUR, 0x7, /* 10ms */
3128 FCN_SWRST, 1 );
3129
3130 falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
3131
3132 /* Allow 50ms for reset */
3133 mdelay ( 50 );
3134
3135 /* Check for device reset complete */
3136 falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
3137 if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) {
3138 EFAB_ERR ( "Reset failed\n" );
3139 return -ETIMEDOUT;
3140 }
3141
3142 if ( ( efab->pci_revision == FALCON_REV_B0 ) && !efab->is_asic ) {
3143 clear_b0_fpga_memories ( efab );
3144 }
3145
3146 return 0;
3147 }
3148
3149 /** Offset of MAC address within EEPROM or Flash */
3150 #define FALCON_MAC_ADDRESS_OFFSET 0x310
3151
3152 /*
3153 * Falcon EEPROM structure
3154 */
3155 #define SF_NV_CONFIG_BASE 0x300
3156 #define SF_NV_CONFIG_EXTRA 0xA0
3157
3158 struct falcon_nv_config_ver2 {
3159 uint16_t nports;
3160 uint8_t port0_phy_addr;
3161 uint8_t port0_phy_type;
3162 uint8_t port1_phy_addr;
3163 uint8_t port1_phy_type;
3164 uint16_t asic_sub_revision;
3165 uint16_t board_revision;
3166 uint8_t mac_location;
3167 };
3168
3169 struct falcon_nv_extra {
3170 uint16_t magicnumber;
3171 uint16_t structure_version;
3172 uint16_t checksum;
3173 union {
3174 struct falcon_nv_config_ver2 ver2;
3175 } ver_specific;
3176 };
3177
3178 #define BOARD_TYPE(_rev) (_rev >> 8)
3179
3180 static void
falcon_probe_nic_variant(struct efab_nic * efab,struct pci_device * pci)3181 falcon_probe_nic_variant ( struct efab_nic *efab, struct pci_device *pci )
3182 {
3183 efab_oword_t altera_build, nic_stat;
3184 int is_pcie, fpga_version;
3185 uint8_t revision;
3186
3187 /* PCI revision */
3188 pci_read_config_byte ( pci, PCI_CLASS_REVISION, &revision );
3189 efab->pci_revision = revision;
3190
3191 /* Asic vs FPGA */
3192 falcon_read ( efab, &altera_build, FCN_ALTERA_BUILD_REG_KER );
3193 fpga_version = EFAB_OWORD_FIELD ( altera_build, FCN_VER_ALL );
3194 efab->is_asic = (fpga_version == 0);
3195
3196 /* MAC and PCI type */
3197 falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG );
3198 if ( efab->pci_revision == FALCON_REV_B0 ) {
3199 is_pcie = 1;
3200 efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G );
3201 }
3202 else if ( efab->is_asic ) {
3203 is_pcie = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_PCIE );
3204 efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G );
3205 }
3206 else {
3207 int minor = EFAB_OWORD_FIELD ( altera_build, FCN_VER_MINOR );
3208 is_pcie = 0;
3209 efab->phy_10g = ( minor == 0x14 );
3210 }
3211 }
3212
3213 static void
falcon_init_spi_device(struct efab_nic * efab,struct spi_device * spi)3214 falcon_init_spi_device ( struct efab_nic *efab, struct spi_device *spi )
3215 {
3216 /* Falcon's SPI interface only supports reads/writes of up to 16 bytes.
3217 * Reduce the nvs block size down to satisfy this - which means callers
3218 * should use the nvs_* functions rather than spi_*. */
3219 if ( spi->nvs.block_size > FALCON_SPI_MAX_LEN )
3220 spi->nvs.block_size = FALCON_SPI_MAX_LEN;
3221
3222 spi->bus = &efab->spi_bus;
3223 efab->spi = spi;
3224 }
3225
3226 static int
falcon_probe_spi(struct efab_nic * efab)3227 falcon_probe_spi ( struct efab_nic *efab )
3228 {
3229 efab_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
3230 int has_flash, has_eeprom, ad9bit;
3231
3232 falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG );
3233 falcon_read ( efab, &gpio_ctl, FCN_GPIO_CTL_REG_KER );
3234 falcon_read ( efab, &ee_vpd_cfg, FCN_EE_VPD_CFG_REG );
3235
3236 /* determine if FLASH / EEPROM is present */
3237 if ( ( efab->pci_revision >= FALCON_REV_B0 ) || efab->is_asic ) {
3238 has_flash = EFAB_OWORD_FIELD ( nic_stat, FCN_SF_PRST );
3239 has_eeprom = EFAB_OWORD_FIELD ( nic_stat, FCN_EE_PRST );
3240 } else {
3241 has_flash = EFAB_OWORD_FIELD ( gpio_ctl, FCN_FLASH_PRESENT );
3242 has_eeprom = EFAB_OWORD_FIELD ( gpio_ctl, FCN_EEPROM_PRESENT );
3243 }
3244 ad9bit = EFAB_OWORD_FIELD ( ee_vpd_cfg, FCN_EE_VPD_EN_AD9_MODE );
3245
3246 /* Configure the SPI and I2C bus */
3247 efab->spi_bus.rw = falcon_spi_rw;
3248 init_i2c_bit_basher ( &efab->i2c_bb, &falcon_i2c_bit_ops );
3249
3250 /* Configure the EEPROM SPI device. Generally, an Atmel 25040
3251 * (or similar) is used, but this is only possible if there is also
3252 * a flash device present to store the boot-time chip configuration.
3253 */
3254 if ( has_eeprom ) {
3255 if ( has_flash && ad9bit )
3256 init_at25040 ( &efab->spi_eeprom );
3257 else
3258 init_mc25xx640 ( &efab->spi_eeprom );
3259 falcon_init_spi_device ( efab, &efab->spi_eeprom );
3260 }
3261
3262 /* Configure the FLASH SPI device */
3263 if ( has_flash ) {
3264 init_at25f1024 ( &efab->spi_flash );
3265 falcon_init_spi_device ( efab, &efab->spi_flash );
3266 }
3267
3268 EFAB_LOG ( "flash is %s, EEPROM is %s%s\n",
3269 ( has_flash ? "present" : "absent" ),
3270 ( has_eeprom ? "present " : "absent" ),
3271 ( has_eeprom ? (ad9bit ? "(9bit)" : "(16bit)") : "") );
3272
3273 /* The device MUST have flash or eeprom */
3274 if ( ! efab->spi ) {
3275 EFAB_ERR ( "Device appears to have no flash or eeprom\n" );
3276 return -EIO;
3277 }
3278
3279 /* If the device has EEPROM attached, then advertise NVO space */
3280 if ( has_eeprom )
3281 nvo_init ( &efab->nvo, &efab->spi_eeprom.nvs, falcon_nvo_fragments,
3282 &efab->netdev->refcnt );
3283
3284 return 0;
3285 }
3286
3287 static int
falcon_probe_nvram(struct efab_nic * efab)3288 falcon_probe_nvram ( struct efab_nic *efab )
3289 {
3290 struct nvs_device *nvs = &efab->spi->nvs;
3291 struct falcon_nv_extra nv;
3292 int rc, board_revision;
3293
3294 /* Read the MAC address */
3295 rc = nvs_read ( nvs, FALCON_MAC_ADDRESS_OFFSET,
3296 efab->mac_addr, ETH_ALEN );
3297 if ( rc )
3298 return rc;
3299
3300 /* Poke through the NVRAM structure for the PHY type. */
3301 rc = nvs_read ( nvs, SF_NV_CONFIG_BASE + SF_NV_CONFIG_EXTRA,
3302 &nv, sizeof ( nv ) );
3303 if ( rc )
3304 return rc;
3305
3306 /* Handle each supported NVRAM version */
3307 if ( ( le16_to_cpu ( nv.magicnumber ) == FCN_NV_MAGIC_NUMBER ) &&
3308 ( le16_to_cpu ( nv.structure_version ) >= 2 ) ) {
3309 struct falcon_nv_config_ver2* ver2 = &nv.ver_specific.ver2;
3310
3311 /* Get the PHY type */
3312 efab->phy_addr = le16_to_cpu ( ver2->port0_phy_addr );
3313 efab->phy_type = le16_to_cpu ( ver2->port0_phy_type );
3314 board_revision = le16_to_cpu ( ver2->board_revision );
3315 }
3316 else {
3317 EFAB_ERR ( "NVram is not recognised\n" );
3318 return -EINVAL;
3319 }
3320
3321 efab->board_type = BOARD_TYPE ( board_revision );
3322
3323 EFAB_TRACE ( "Falcon board %d phy %d @ addr %d\n",
3324 efab->board_type, efab->phy_type, efab->phy_addr );
3325
3326 /* Patch in the board operations */
3327 switch ( efab->board_type ) {
3328 case EFAB_BOARD_SFE4001:
3329 efab->board_op = &sfe4001_ops;
3330 break;
3331 case EFAB_BOARD_SFE4002:
3332 efab->board_op = &sfe4002_ops;
3333 break;
3334 case EFAB_BOARD_SFE4003:
3335 efab->board_op = &sfe4003_ops;
3336 break;
3337 default:
3338 EFAB_ERR ( "Unrecognised board type\n" );
3339 return -EINVAL;
3340 }
3341
3342 /* Patch in MAC operations */
3343 if ( efab->phy_10g )
3344 efab->mac_op = &falcon_xmac_operations;
3345 else
3346 efab->mac_op = &falcon_gmac_operations;
3347
3348 /* Hook in the PHY ops */
3349 switch ( efab->phy_type ) {
3350 case PHY_TYPE_10XPRESS:
3351 efab->phy_op = &falcon_tenxpress_phy_ops;
3352 break;
3353 case PHY_TYPE_CX4:
3354 efab->phy_op = &falcon_xaui_phy_ops;
3355 break;
3356 case PHY_TYPE_XFP:
3357 efab->phy_op = &falcon_xfp_phy_ops;
3358 break;
3359 case PHY_TYPE_CX4_RTMR:
3360 efab->phy_op = &falcon_txc_phy_ops;
3361 break;
3362 case PHY_TYPE_PM8358:
3363 efab->phy_op = &falcon_pm8358_phy_ops;
3364 break;
3365 case PHY_TYPE_1GIG_ALASKA:
3366 efab->phy_op = &falcon_alaska_phy_ops;
3367 break;
3368 default:
3369 EFAB_ERR ( "Unknown PHY type: %d\n", efab->phy_type );
3370 return -EINVAL;
3371 }
3372
3373 return 0;
3374 }
3375
3376 static int
falcon_init_sram(struct efab_nic * efab)3377 falcon_init_sram ( struct efab_nic *efab )
3378 {
3379 efab_oword_t reg;
3380 int count;
3381
3382 /* use card in internal SRAM mode */
3383 falcon_read ( efab, ®, FCN_NIC_STAT_REG );
3384 EFAB_SET_OWORD_FIELD ( reg, FCN_ONCHIP_SRAM, 1 );
3385 falcon_write ( efab, ®, FCN_NIC_STAT_REG );
3386
3387 /* Deactivate any external SRAM that might be present */
3388 EFAB_POPULATE_OWORD_2 ( reg,
3389 FCN_GPIO1_OEN, 1,
3390 FCN_GPIO1_OUT, 1 );
3391 falcon_write ( efab, ®, FCN_GPIO_CTL_REG_KER );
3392
3393 /* Initiate SRAM reset */
3394 EFAB_POPULATE_OWORD_2 ( reg,
3395 FCN_SRAM_OOB_BT_INIT_EN, 1,
3396 FCN_SRM_NUM_BANKS_AND_BANK_SIZE, 0 );
3397 falcon_write ( efab, ®, FCN_SRM_CFG_REG_KER );
3398
3399 /* Wait for SRAM reset to complete */
3400 count = 0;
3401 do {
3402 /* SRAM reset is slow; expect around 16ms */
3403 mdelay ( 20 );
3404
3405 /* Check for reset complete */
3406 falcon_read ( efab, ®, FCN_SRM_CFG_REG_KER );
3407 if ( !EFAB_OWORD_FIELD ( reg, FCN_SRAM_OOB_BT_INIT_EN ) )
3408 return 0;
3409 } while (++count < 20); /* wait upto 0.4 sec */
3410
3411 EFAB_ERR ( "timed out waiting for SRAM reset\n");
3412 return -ETIMEDOUT;
3413 }
3414
3415 static void
falcon_setup_nic(struct efab_nic * efab)3416 falcon_setup_nic ( struct efab_nic *efab )
3417 {
3418 efab_dword_t timer_cmd;
3419 efab_oword_t reg;
3420 int tx_fc, xoff_thresh, xon_thresh;
3421
3422 /* bug5129: Clear the parity enables on the TX data fifos as
3423 * they produce false parity errors because of timing issues
3424 */
3425 falcon_read ( efab, ®, FCN_SPARE_REG_KER );
3426 EFAB_SET_OWORD_FIELD ( reg, FCN_MEM_PERR_EN_TX_DATA, 0 );
3427 falcon_write ( efab, ®, FCN_SPARE_REG_KER );
3428
3429 /* Set up TX and RX descriptor caches in SRAM */
3430 EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR, 0x130000 );
3431 falcon_write ( efab, ®, FCN_SRM_TX_DC_CFG_REG_KER );
3432 EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 1 /* 16 descriptors */ );
3433 falcon_write ( efab, ®, FCN_TX_DC_CFG_REG_KER );
3434 EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR, 0x100000 );
3435 falcon_write ( efab, ®, FCN_SRM_RX_DC_CFG_REG_KER );
3436 EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
3437 falcon_write ( efab, ®, FCN_RX_DC_CFG_REG_KER );
3438
3439 /* Set number of RSS CPUs
3440 * bug7244: Increase filter depth to reduce RX_RESET likelyhood
3441 */
3442 EFAB_POPULATE_OWORD_5 ( reg,
3443 FCN_NUM_KER, 0,
3444 FCN_UDP_FULL_SRCH_LIMIT, 8,
3445 FCN_UDP_WILD_SRCH_LIMIT, 8,
3446 FCN_TCP_WILD_SRCH_LIMIT, 8,
3447 FCN_TCP_FULL_SRCH_LIMIT, 8);
3448 falcon_write ( efab, ®, FCN_RX_FILTER_CTL_REG_KER );
3449 udelay ( 1000 );
3450
3451 /* Setup RX. Wait for descriptor is broken and must
3452 * be disabled. RXDP recovery shouldn't be needed, but is.
3453 * disable ISCSI parsing because we don't need it
3454 */
3455 falcon_read ( efab, ®, FCN_RX_SELF_RST_REG_KER );
3456 EFAB_SET_OWORD_FIELD ( reg, FCN_RX_NODESC_WAIT_DIS, 1 );
3457 EFAB_SET_OWORD_FIELD ( reg, FCN_RX_RECOVERY_EN, 1 );
3458 EFAB_SET_OWORD_FIELD ( reg, FCN_RX_ISCSI_DIS, 1 );
3459 falcon_write ( efab, ®, FCN_RX_SELF_RST_REG_KER );
3460
3461 /* Determine recommended flow control settings. *
3462 * Flow control is qualified on B0 and A1/1G, not on A1/10G */
3463 if ( efab->pci_revision == FALCON_REV_B0 ) {
3464 tx_fc = 1;
3465 xoff_thresh = 54272; /* ~80Kb - 3*max MTU */
3466 xon_thresh = 27648; /* ~3*max MTU */
3467 }
3468 else if ( !efab->phy_10g ) {
3469 tx_fc = 1;
3470 xoff_thresh = 2048;
3471 xon_thresh = 512;
3472 }
3473 else {
3474 tx_fc = xoff_thresh = xon_thresh = 0;
3475 }
3476
3477 /* Setup TX and RX */
3478 falcon_read ( efab, ®, FCN_TX_CFG2_REG_KER );
3479 EFAB_SET_OWORD_FIELD ( reg, FCN_TX_DIS_NON_IP_EV, 1 );
3480 falcon_write ( efab, ®, FCN_TX_CFG2_REG_KER );
3481
3482 falcon_read ( efab, ®, FCN_RX_CFG_REG_KER );
3483 EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_USR_BUF_SIZE,
3484 (3*4096) / 32 );
3485 if ( efab->pci_revision == FALCON_REV_B0)
3486 EFAB_SET_OWORD_FIELD ( reg, FCN_RX_INGR_EN_B0, 1 );
3487 EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XON_MAC_TH,
3488 xon_thresh / 256);
3489 EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_TH,
3490 xoff_thresh / 256);
3491 EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_EN, tx_fc);
3492 falcon_write ( efab, ®, FCN_RX_CFG_REG_KER );
3493
3494 /* Set timer register */
3495 EFAB_POPULATE_DWORD_2 ( timer_cmd,
3496 FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
3497 FCN_TIMER_VAL, 0 );
3498 falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
3499 }
3500
3501 static void
falcon_init_resources(struct efab_nic * efab)3502 falcon_init_resources ( struct efab_nic *efab )
3503 {
3504 struct efab_ev_queue *ev_queue = &efab->ev_queue;
3505 struct efab_rx_queue *rx_queue = &efab->rx_queue;
3506 struct efab_tx_queue *tx_queue = &efab->tx_queue;
3507
3508 efab_oword_t reg;
3509 int jumbo;
3510
3511 /* Initialise the ptrs */
3512 tx_queue->read_ptr = tx_queue->write_ptr = 0;
3513 rx_queue->read_ptr = rx_queue->write_ptr = 0;
3514 ev_queue->read_ptr = 0;
3515
3516 /* Push the event queue to the hardware */
3517 EFAB_POPULATE_OWORD_3 ( reg,
3518 FCN_EVQ_EN, 1,
3519 FCN_EVQ_SIZE, FQS(FCN_EVQ, EFAB_EVQ_SIZE),
3520 FCN_EVQ_BUF_BASE_ID, ev_queue->entry.id );
3521 falcon_write ( efab, ®,
3522 FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
3523
3524 /* Push the tx queue to the hardware */
3525 EFAB_POPULATE_OWORD_8 ( reg,
3526 FCN_TX_DESCQ_EN, 1,
3527 FCN_TX_ISCSI_DDIG_EN, 0,
3528 FCN_TX_ISCSI_DDIG_EN, 0,
3529 FCN_TX_DESCQ_BUF_BASE_ID, tx_queue->entry.id,
3530 FCN_TX_DESCQ_EVQ_ID, 0,
3531 FCN_TX_DESCQ_SIZE, FQS(FCN_TX_DESCQ, EFAB_TXD_SIZE),
3532 FCN_TX_DESCQ_TYPE, 0 /* kernel queue */,
3533 FCN_TX_NON_IP_DROP_DIS_B0, 1 );
3534 falcon_write ( efab, ®,
3535 FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
3536
3537 /* Push the rx queue to the hardware */
3538 jumbo = ( efab->pci_revision == FALCON_REV_B0 ) ? 0 : 1;
3539 EFAB_POPULATE_OWORD_8 ( reg,
3540 FCN_RX_ISCSI_DDIG_EN, 0,
3541 FCN_RX_ISCSI_HDIG_EN, 0,
3542 FCN_RX_DESCQ_BUF_BASE_ID, rx_queue->entry.id,
3543 FCN_RX_DESCQ_EVQ_ID, 0,
3544 FCN_RX_DESCQ_SIZE, FQS(FCN_RX_DESCQ, EFAB_RXD_SIZE),
3545 FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
3546 FCN_RX_DESCQ_JUMBO, jumbo,
3547 FCN_RX_DESCQ_EN, 1 );
3548 falcon_write ( efab, ®,
3549 FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
3550
3551 /* Program INT_ADR_REG_KER */
3552 EFAB_POPULATE_OWORD_1 ( reg,
3553 FCN_INT_ADR_KER, virt_to_bus ( &efab->int_ker ) );
3554 falcon_write ( efab, ®, FCN_INT_ADR_REG_KER );
3555
3556 /* Ack the event queue */
3557 falcon_eventq_read_ack ( efab, ev_queue );
3558 }
3559
3560 static void
falcon_fini_resources(struct efab_nic * efab)3561 falcon_fini_resources ( struct efab_nic *efab )
3562 {
3563 efab_oword_t cmd;
3564
3565 /* Disable interrupts */
3566 falcon_interrupts ( efab, 0, 0 );
3567
3568 /* Flush the dma queues */
3569 EFAB_POPULATE_OWORD_2 ( cmd,
3570 FCN_TX_FLUSH_DESCQ_CMD, 1,
3571 FCN_TX_FLUSH_DESCQ, 0 );
3572 falcon_write ( efab, &cmd,
3573 FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
3574
3575 EFAB_POPULATE_OWORD_2 ( cmd,
3576 FCN_RX_FLUSH_DESCQ_CMD, 1,
3577 FCN_RX_FLUSH_DESCQ, 0 );
3578 falcon_write ( efab, &cmd,
3579 FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
3580
3581 mdelay ( 100 );
3582
3583 /* Remove descriptor rings from card */
3584 EFAB_ZERO_OWORD ( cmd );
3585 falcon_write ( efab, &cmd,
3586 FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
3587 falcon_write ( efab, &cmd,
3588 FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
3589 falcon_write ( efab, &cmd,
3590 FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
3591 }
3592
3593 /*******************************************************************************
3594 *
3595 *
3596 * Hardware rx path
3597 *
3598 *
3599 *******************************************************************************/
3600
3601 static void
falcon_build_rx_desc(falcon_rx_desc_t * rxd,struct io_buffer * iob)3602 falcon_build_rx_desc ( falcon_rx_desc_t *rxd, struct io_buffer *iob )
3603 {
3604 EFAB_POPULATE_QWORD_2 ( *rxd,
3605 FCN_RX_KER_BUF_SIZE, EFAB_RX_BUF_SIZE,
3606 FCN_RX_KER_BUF_ADR, virt_to_bus ( iob->data ) );
3607 }
3608
3609 static void
falcon_notify_rx_desc(struct efab_nic * efab,struct efab_rx_queue * rx_queue)3610 falcon_notify_rx_desc ( struct efab_nic *efab, struct efab_rx_queue *rx_queue )
3611 {
3612 efab_dword_t reg;
3613 int ptr = rx_queue->write_ptr % EFAB_RXD_SIZE;
3614
3615 EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD, ptr );
3616 falcon_writel ( efab, ®, FCN_RX_DESC_UPD_REG_KER_DWORD );
3617 }
3618
3619
3620 /*******************************************************************************
3621 *
3622 *
3623 * Hardware tx path
3624 *
3625 *
3626 *******************************************************************************/
3627
3628 static void
falcon_build_tx_desc(falcon_tx_desc_t * txd,struct io_buffer * iob)3629 falcon_build_tx_desc ( falcon_tx_desc_t *txd, struct io_buffer *iob )
3630 {
3631 EFAB_POPULATE_QWORD_2 ( *txd,
3632 FCN_TX_KER_BYTE_CNT, iob_len ( iob ),
3633 FCN_TX_KER_BUF_ADR, virt_to_bus ( iob->data ) );
3634 }
3635
3636 static void
falcon_notify_tx_desc(struct efab_nic * efab,struct efab_tx_queue * tx_queue)3637 falcon_notify_tx_desc ( struct efab_nic *efab,
3638 struct efab_tx_queue *tx_queue )
3639 {
3640 efab_dword_t reg;
3641 int ptr = tx_queue->write_ptr % EFAB_TXD_SIZE;
3642
3643 EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD, ptr );
3644 falcon_writel ( efab, ®, FCN_TX_DESC_UPD_REG_KER_DWORD );
3645 }
3646
3647
3648 /*******************************************************************************
3649 *
3650 *
3651 * Software receive interface
3652 *
3653 *
3654 *******************************************************************************/
3655
3656 static int
efab_fill_rx_queue(struct efab_nic * efab,struct efab_rx_queue * rx_queue)3657 efab_fill_rx_queue ( struct efab_nic *efab,
3658 struct efab_rx_queue *rx_queue )
3659 {
3660 int fill_level = rx_queue->write_ptr - rx_queue->read_ptr;
3661 int space = EFAB_NUM_RX_DESC - fill_level - 1;
3662 int pushed = 0;
3663
3664 while ( space ) {
3665 int buf_id = rx_queue->write_ptr % EFAB_NUM_RX_DESC;
3666 int desc_id = rx_queue->write_ptr % EFAB_RXD_SIZE;
3667 struct io_buffer *iob;
3668 falcon_rx_desc_t *rxd;
3669
3670 assert ( rx_queue->buf[buf_id] == NULL );
3671 iob = alloc_iob ( EFAB_RX_BUF_SIZE );
3672 if ( !iob )
3673 break;
3674
3675 EFAB_TRACE ( "pushing rx_buf[%d] iob %p data %p\n",
3676 buf_id, iob, iob->data );
3677
3678 rx_queue->buf[buf_id] = iob;
3679 rxd = rx_queue->ring + desc_id;
3680 falcon_build_rx_desc ( rxd, iob );
3681 ++rx_queue->write_ptr;
3682 ++pushed;
3683 --space;
3684 }
3685
3686 if ( pushed ) {
3687 /* Push the ptr to hardware */
3688 falcon_notify_rx_desc ( efab, rx_queue );
3689
3690 fill_level = rx_queue->write_ptr - rx_queue->read_ptr;
3691 EFAB_TRACE ( "pushed %d rx buffers to fill level %d\n",
3692 pushed, fill_level );
3693 }
3694
3695 if ( fill_level == 0 )
3696 return -ENOMEM;
3697 return 0;
3698 }
3699
3700 static void
efab_receive(struct efab_nic * efab,unsigned int id,int len,int drop)3701 efab_receive ( struct efab_nic *efab, unsigned int id, int len, int drop )
3702 {
3703 struct efab_rx_queue *rx_queue = &efab->rx_queue;
3704 struct io_buffer *iob;
3705 unsigned int read_ptr = rx_queue->read_ptr % EFAB_RXD_SIZE;
3706 unsigned int buf_ptr = rx_queue->read_ptr % EFAB_NUM_RX_DESC;
3707
3708 assert ( id == read_ptr );
3709
3710 /* Pop this rx buffer out of the software ring */
3711 iob = rx_queue->buf[buf_ptr];
3712 rx_queue->buf[buf_ptr] = NULL;
3713
3714 EFAB_TRACE ( "popping rx_buf[%d] iob %p data %p with %d bytes %s\n",
3715 id, iob, iob->data, len, drop ? "bad" : "ok" );
3716
3717 /* Pass the packet up if required */
3718 if ( drop )
3719 free_iob ( iob );
3720 else {
3721 iob_put ( iob, len );
3722 netdev_rx ( efab->netdev, iob );
3723 }
3724
3725 ++rx_queue->read_ptr;
3726 }
3727
3728 /*******************************************************************************
3729 *
3730 *
3731 * Software transmit interface
3732 *
3733 *
3734 *******************************************************************************/
3735
3736 static int
efab_transmit(struct net_device * netdev,struct io_buffer * iob)3737 efab_transmit ( struct net_device *netdev, struct io_buffer *iob )
3738 {
3739 struct efab_nic *efab = netdev_priv ( netdev );
3740 struct efab_tx_queue *tx_queue = &efab->tx_queue;
3741 int fill_level, space;
3742 falcon_tx_desc_t *txd;
3743 int buf_id;
3744
3745 fill_level = tx_queue->write_ptr - tx_queue->read_ptr;
3746 space = EFAB_TXD_SIZE - fill_level - 1;
3747 if ( space < 1 )
3748 return -ENOBUFS;
3749
3750 /* Save the iobuffer for later completion */
3751 buf_id = tx_queue->write_ptr % EFAB_TXD_SIZE;
3752 assert ( tx_queue->buf[buf_id] == NULL );
3753 tx_queue->buf[buf_id] = iob;
3754
3755 EFAB_TRACE ( "tx_buf[%d] for iob %p data %p len %zd\n",
3756 buf_id, iob, iob->data, iob_len ( iob ) );
3757
3758 /* Form the descriptor, and push it to hardware */
3759 txd = tx_queue->ring + buf_id;
3760 falcon_build_tx_desc ( txd, iob );
3761 ++tx_queue->write_ptr;
3762 falcon_notify_tx_desc ( efab, tx_queue );
3763
3764 return 0;
3765 }
3766
3767 static int
efab_transmit_done(struct efab_nic * efab,int id)3768 efab_transmit_done ( struct efab_nic *efab, int id )
3769 {
3770 struct efab_tx_queue *tx_queue = &efab->tx_queue;
3771 unsigned int read_ptr, stop;
3772
3773 /* Complete all buffers from read_ptr up to and including id */
3774 read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE;
3775 stop = ( id + 1 ) % EFAB_TXD_SIZE;
3776
3777 while ( read_ptr != stop ) {
3778 struct io_buffer *iob = tx_queue->buf[read_ptr];
3779 assert ( iob );
3780
3781 /* Complete the tx buffer */
3782 if ( iob )
3783 netdev_tx_complete ( efab->netdev, iob );
3784 tx_queue->buf[read_ptr] = NULL;
3785
3786 ++tx_queue->read_ptr;
3787 read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE;
3788 }
3789
3790 return 0;
3791 }
3792
3793 /*******************************************************************************
3794 *
3795 *
3796 * Hardware event path
3797 *
3798 *
3799 *******************************************************************************/
3800
3801 static void
falcon_clear_interrupts(struct efab_nic * efab)3802 falcon_clear_interrupts ( struct efab_nic *efab )
3803 {
3804 efab_dword_t reg;
3805
3806 if ( efab->pci_revision == FALCON_REV_B0 ) {
3807 /* read the ISR */
3808 falcon_readl( efab, ®, INT_ISR0_B0 );
3809 }
3810 else {
3811 /* write to the INT_ACK register */
3812 falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG_A1 );
3813 mb();
3814 falcon_readl ( efab, ®,
3815 WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 );
3816 }
3817 }
3818
3819 static void
falcon_handle_event(struct efab_nic * efab,falcon_event_t * evt)3820 falcon_handle_event ( struct efab_nic *efab, falcon_event_t *evt )
3821 {
3822 int ev_code, desc_ptr, len, drop;
3823
3824 /* Decode event */
3825 ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
3826 switch ( ev_code ) {
3827 case FCN_TX_IP_EV_DECODE:
3828 desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_TX_EV_DESC_PTR );
3829 efab_transmit_done ( efab, desc_ptr );
3830 break;
3831
3832 case FCN_RX_IP_EV_DECODE:
3833 desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
3834 len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
3835 drop = !EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_PKT_OK );
3836
3837 efab_receive ( efab, desc_ptr, len, drop );
3838 break;
3839
3840 default:
3841 EFAB_TRACE ( "Unknown event type %d\n", ev_code );
3842 break;
3843 }
3844 }
3845
3846 /*******************************************************************************
3847 *
3848 *
3849 * Software (polling) interrupt handler
3850 *
3851 *
3852 *******************************************************************************/
3853
3854 static void
efab_poll(struct net_device * netdev)3855 efab_poll ( struct net_device *netdev )
3856 {
3857 struct efab_nic *efab = netdev_priv ( netdev );
3858 struct efab_ev_queue *ev_queue = &efab->ev_queue;
3859 struct efab_rx_queue *rx_queue = &efab->rx_queue;
3860 falcon_event_t *evt;
3861
3862 /* Read the event queue by directly looking for events
3863 * (we don't even bother to read the eventq write ptr) */
3864 evt = ev_queue->ring + ev_queue->read_ptr;
3865 while ( falcon_event_present ( evt ) ) {
3866
3867 EFAB_TRACE ( "Event at index 0x%x address %p is "
3868 EFAB_QWORD_FMT "\n", ev_queue->read_ptr,
3869 evt, EFAB_QWORD_VAL ( *evt ) );
3870
3871 falcon_handle_event ( efab, evt );
3872
3873 /* Clear the event */
3874 EFAB_SET_QWORD ( *evt );
3875
3876 /* Move to the next event. We don't ack the event
3877 * queue until the end */
3878 ev_queue->read_ptr = ( ( ev_queue->read_ptr + 1 ) %
3879 EFAB_EVQ_SIZE );
3880 evt = ev_queue->ring + ev_queue->read_ptr;
3881 }
3882
3883 /* Push more buffers if needed */
3884 (void) efab_fill_rx_queue ( efab, rx_queue );
3885
3886 /* Clear any pending interrupts */
3887 falcon_clear_interrupts ( efab );
3888
3889 /* Ack the event queue */
3890 falcon_eventq_read_ack ( efab, ev_queue );
3891 }
3892
3893 static void
efab_irq(struct net_device * netdev,int enable)3894 efab_irq ( struct net_device *netdev, int enable )
3895 {
3896 struct efab_nic *efab = netdev_priv ( netdev );
3897 struct efab_ev_queue *ev_queue = &efab->ev_queue;
3898
3899 switch ( enable ) {
3900 case 0:
3901 falcon_interrupts ( efab, 0, 0 );
3902 break;
3903 case 1:
3904 falcon_interrupts ( efab, 1, 0 );
3905 falcon_eventq_read_ack ( efab, ev_queue );
3906 break;
3907 case 2:
3908 falcon_interrupts ( efab, 1, 1 );
3909 break;
3910 }
3911 }
3912
3913 /*******************************************************************************
3914 *
3915 *
3916 * Software open/close
3917 *
3918 *
3919 *******************************************************************************/
3920
3921 static void
efab_free_resources(struct efab_nic * efab)3922 efab_free_resources ( struct efab_nic *efab )
3923 {
3924 struct efab_ev_queue *ev_queue = &efab->ev_queue;
3925 struct efab_rx_queue *rx_queue = &efab->rx_queue;
3926 struct efab_tx_queue *tx_queue = &efab->tx_queue;
3927 int i;
3928
3929 for ( i = 0; i < EFAB_NUM_RX_DESC; i++ ) {
3930 if ( rx_queue->buf[i] )
3931 free_iob ( rx_queue->buf[i] );
3932 }
3933
3934 for ( i = 0; i < EFAB_TXD_SIZE; i++ ) {
3935 if ( tx_queue->buf[i] )
3936 netdev_tx_complete ( efab->netdev, tx_queue->buf[i] );
3937 }
3938
3939 if ( rx_queue->ring )
3940 falcon_free_special_buffer ( rx_queue->ring );
3941
3942 if ( tx_queue->ring )
3943 falcon_free_special_buffer ( tx_queue->ring );
3944
3945 if ( ev_queue->ring )
3946 falcon_free_special_buffer ( ev_queue->ring );
3947
3948 memset ( rx_queue, 0, sizeof ( *rx_queue ) );
3949 memset ( tx_queue, 0, sizeof ( *tx_queue ) );
3950 memset ( ev_queue, 0, sizeof ( *ev_queue ) );
3951
3952 /* Ensure subsequent buffer allocations start at id 0 */
3953 efab->buffer_head = 0;
3954 }
3955
3956 static int
efab_alloc_resources(struct efab_nic * efab)3957 efab_alloc_resources ( struct efab_nic *efab )
3958 {
3959 struct efab_ev_queue *ev_queue = &efab->ev_queue;
3960 struct efab_rx_queue *rx_queue = &efab->rx_queue;
3961 struct efab_tx_queue *tx_queue = &efab->tx_queue;
3962 size_t bytes;
3963
3964 /* Allocate the hardware event queue */
3965 bytes = sizeof ( falcon_event_t ) * EFAB_TXD_SIZE;
3966 ev_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
3967 &ev_queue->entry );
3968 if ( !ev_queue->ring )
3969 goto fail1;
3970
3971 /* Initialise the hardware event queue */
3972 memset ( ev_queue->ring, 0xff, bytes );
3973
3974 /* Allocate the hardware tx queue */
3975 bytes = sizeof ( falcon_tx_desc_t ) * EFAB_TXD_SIZE;
3976 tx_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
3977 &tx_queue->entry );
3978 if ( ! tx_queue->ring )
3979 goto fail2;
3980
3981 /* Allocate the hardware rx queue */
3982 bytes = sizeof ( falcon_rx_desc_t ) * EFAB_RXD_SIZE;
3983 rx_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
3984 &rx_queue->entry );
3985 if ( ! rx_queue->ring )
3986 goto fail3;
3987
3988 return 0;
3989
3990 fail3:
3991 falcon_free_special_buffer ( tx_queue->ring );
3992 tx_queue->ring = NULL;
3993 fail2:
3994 falcon_free_special_buffer ( ev_queue->ring );
3995 ev_queue->ring = NULL;
3996 fail1:
3997 return -ENOMEM;
3998 }
3999
4000 static int
efab_init_mac(struct efab_nic * efab)4001 efab_init_mac ( struct efab_nic *efab )
4002 {
4003 int count, rc;
4004
4005 /* This can take several seconds */
4006 EFAB_LOG ( "Waiting for link..\n" );
4007 for ( count=0; count<5; count++ ) {
4008 rc = efab->mac_op->init ( efab );
4009 if ( rc ) {
4010 EFAB_ERR ( "Failed reinitialising MAC, error %s\n",
4011 strerror ( rc ));
4012 return rc;
4013 }
4014
4015 /* Sleep for 2s to wait for the link to settle, either
4016 * because we want to use it, or because we're about
4017 * to reset the mac anyway
4018 */
4019 sleep ( 2 );
4020
4021 if ( ! efab->link_up ) {
4022 EFAB_ERR ( "!\n" );
4023 continue;
4024 }
4025
4026 EFAB_LOG ( "\n%dMbps %s-duplex\n",
4027 ( efab->link_options & LPA_EF_10000 ? 10000 :
4028 ( efab->link_options & LPA_EF_1000 ? 1000 :
4029 ( efab->link_options & LPA_100 ? 100 : 10 ) ) ),
4030 ( efab->link_options & LPA_EF_DUPLEX ?
4031 "full" : "half" ) );
4032
4033 /* TODO: Move link state handling to the poll() routine */
4034 netdev_link_up ( efab->netdev );
4035 return 0;
4036 }
4037
4038 EFAB_ERR ( "timed initialising MAC\n" );
4039 return -ETIMEDOUT;
4040 }
4041
4042 static void
efab_close(struct net_device * netdev)4043 efab_close ( struct net_device *netdev )
4044 {
4045 struct efab_nic *efab = netdev_priv ( netdev );
4046
4047 falcon_fini_resources ( efab );
4048 efab_free_resources ( efab );
4049 efab->board_op->fini ( efab );
4050 falcon_reset ( efab );
4051 }
4052
4053 static int
efab_open(struct net_device * netdev)4054 efab_open ( struct net_device *netdev )
4055 {
4056 struct efab_nic *efab = netdev_priv ( netdev );
4057 struct efab_rx_queue *rx_queue = &efab->rx_queue;
4058 int rc;
4059
4060 rc = falcon_reset ( efab );
4061 if ( rc )
4062 goto fail1;
4063
4064 rc = efab->board_op->init ( efab );
4065 if ( rc )
4066 goto fail2;
4067
4068 rc = falcon_init_sram ( efab );
4069 if ( rc )
4070 goto fail3;
4071
4072 /* Configure descriptor caches before pushing hardware queues */
4073 falcon_setup_nic ( efab );
4074
4075 rc = efab_alloc_resources ( efab );
4076 if ( rc )
4077 goto fail4;
4078
4079 falcon_init_resources ( efab );
4080
4081 /* Push rx buffers */
4082 rc = efab_fill_rx_queue ( efab, rx_queue );
4083 if ( rc )
4084 goto fail5;
4085
4086 /* Try and bring the interface up */
4087 rc = efab_init_mac ( efab );
4088 if ( rc )
4089 goto fail6;
4090
4091 return 0;
4092
4093 fail6:
4094 fail5:
4095 efab_free_resources ( efab );
4096 fail4:
4097 fail3:
4098 efab->board_op->fini ( efab );
4099 fail2:
4100 falcon_reset ( efab );
4101 fail1:
4102 return rc;
4103 }
4104
4105 static struct net_device_operations efab_operations = {
4106 .open = efab_open,
4107 .close = efab_close,
4108 .transmit = efab_transmit,
4109 .poll = efab_poll,
4110 .irq = efab_irq,
4111 };
4112
4113 static void
efab_remove(struct pci_device * pci)4114 efab_remove ( struct pci_device *pci )
4115 {
4116 struct net_device *netdev = pci_get_drvdata ( pci );
4117 struct efab_nic *efab = netdev_priv ( netdev );
4118
4119 if ( efab->membase ) {
4120 falcon_reset ( efab );
4121
4122 iounmap ( efab->membase );
4123 efab->membase = NULL;
4124 }
4125
4126 if ( efab->nvo.nvs ) {
4127 unregister_nvo ( &efab->nvo );
4128 efab->nvo.nvs = NULL;
4129 }
4130
4131 unregister_netdev ( netdev );
4132 netdev_nullify ( netdev );
4133 netdev_put ( netdev );
4134 }
4135
4136 static int
efab_probe(struct pci_device * pci,const struct pci_device_id * id)4137 efab_probe ( struct pci_device *pci,
4138 const struct pci_device_id *id )
4139 {
4140 struct net_device *netdev;
4141 struct efab_nic *efab;
4142 unsigned long mmio_start, mmio_len;
4143 int rc;
4144
4145 /* Create the network adapter */
4146 netdev = alloc_etherdev ( sizeof ( struct efab_nic ) );
4147 if ( ! netdev ) {
4148 rc = -ENOMEM;
4149 goto fail1;
4150 }
4151
4152 /* Initialise the network adapter, and initialise private storage */
4153 netdev_init ( netdev, &efab_operations );
4154 pci_set_drvdata ( pci, netdev );
4155 netdev->dev = &pci->dev;
4156
4157 efab = netdev_priv ( netdev );
4158 memset ( efab, 0, sizeof ( *efab ) );
4159 efab->netdev = netdev;
4160
4161 /* Get iobase/membase */
4162 mmio_start = pci_bar_start ( pci, PCI_BASE_ADDRESS_2 );
4163 mmio_len = pci_bar_size ( pci, PCI_BASE_ADDRESS_2 );
4164 efab->membase = ioremap ( mmio_start, mmio_len );
4165 EFAB_TRACE ( "BAR of %lx bytes at phys %lx mapped at %p\n",
4166 mmio_len, mmio_start, efab->membase );
4167
4168 /* Enable the PCI device */
4169 adjust_pci_device ( pci );
4170 efab->iobase = pci->ioaddr & ~3;
4171
4172 /* Determine the NIC variant */
4173 falcon_probe_nic_variant ( efab, pci );
4174
4175 /* Read the SPI interface and determine the MAC address,
4176 * and the board and phy variant. Hook in the op tables */
4177 rc = falcon_probe_spi ( efab );
4178 if ( rc )
4179 goto fail2;
4180 rc = falcon_probe_nvram ( efab );
4181 if ( rc )
4182 goto fail3;
4183
4184 memcpy ( netdev->hw_addr, efab->mac_addr, ETH_ALEN );
4185
4186 netdev_link_up ( netdev );
4187 rc = register_netdev ( netdev );
4188 if ( rc )
4189 goto fail4;
4190
4191 /* Advertise non-volatile storage */
4192 if ( efab->nvo.nvs ) {
4193 rc = register_nvo ( &efab->nvo, netdev_settings ( netdev ) );
4194 if ( rc )
4195 goto fail5;
4196 }
4197
4198 EFAB_LOG ( "Found %s EtherFabric %s %s revision %d\n", id->name,
4199 efab->is_asic ? "ASIC" : "FPGA",
4200 efab->phy_10g ? "10G" : "1G",
4201 efab->pci_revision );
4202
4203 return 0;
4204
4205 fail5:
4206 unregister_netdev ( netdev );
4207 fail4:
4208 fail3:
4209 fail2:
4210 iounmap ( efab->membase );
4211 efab->membase = NULL;
4212 netdev_put ( netdev );
4213 fail1:
4214 return rc;
4215 }
4216
4217
4218 static struct pci_device_id efab_nics[] = {
4219 PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon", 0),
4220 PCI_ROM(0x1924, 0x0710, "falconb0", "EtherFabric FalconB0", 0),
4221 };
4222
4223 struct pci_driver etherfabric_driver __pci_driver = {
4224 .ids = efab_nics,
4225 .id_count = sizeof ( efab_nics ) / sizeof ( efab_nics[0] ),
4226 .probe = efab_probe,
4227 .remove = efab_remove,
4228 };
4229
4230 /*
4231 * Local variables:
4232 * c-basic-offset: 8
4233 * c-indent-level: 8
4234 * tab-width: 8
4235 * End:
4236 */
4237