• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs.cpp
25  *
26  * This file drives the GLSL IR -> LIR translation, contains the
27  * optimizations on the LIR, and drives the generation of native code
28  * from the LIR.
29  */
30 
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44 
45 using namespace brw;
46 
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48                                        const fs_inst *inst);
49 
50 void
init(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg * src,unsigned sources)51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52               const fs_reg *src, unsigned sources)
53 {
54    memset(this, 0, sizeof(*this));
55 
56    this->src = new fs_reg[MAX2(sources, 3)];
57    for (unsigned i = 0; i < sources; i++)
58       this->src[i] = src[i];
59 
60    this->opcode = opcode;
61    this->dst = dst;
62    this->sources = sources;
63    this->exec_size = exec_size;
64    this->base_mrf = -1;
65 
66    assert(dst.file != IMM && dst.file != UNIFORM);
67 
68    assert(this->exec_size != 0);
69 
70    this->conditional_mod = BRW_CONDITIONAL_NONE;
71 
72    /* This will be the case for almost all instructions. */
73    switch (dst.file) {
74    case VGRF:
75    case ARF:
76    case FIXED_GRF:
77    case MRF:
78    case ATTR:
79       this->size_written = dst.component_size(exec_size);
80       break;
81    case BAD_FILE:
82       this->size_written = 0;
83       break;
84    case IMM:
85    case UNIFORM:
86       unreachable("Invalid destination register file");
87    }
88 
89    this->writes_accumulator = false;
90 }
91 
fs_inst()92 fs_inst::fs_inst()
93 {
94    init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96 
fs_inst(enum opcode opcode,uint8_t exec_size)97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99    init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst)102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104    init(opcode, exec_size, dst, NULL, 0);
105 }
106 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0)107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108                  const fs_reg &src0)
109 {
110    const fs_reg src[1] = { src0 };
111    init(opcode, exec_size, dst, src, 1);
112 }
113 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1)114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115                  const fs_reg &src0, const fs_reg &src1)
116 {
117    const fs_reg src[2] = { src0, src1 };
118    init(opcode, exec_size, dst, src, 2);
119 }
120 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1,const fs_reg & src2)121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122                  const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124    const fs_reg src[3] = { src0, src1, src2 };
125    init(opcode, exec_size, dst, src, 3);
126 }
127 
fs_inst(enum opcode opcode,uint8_t exec_width,const fs_reg & dst,const fs_reg src[],unsigned sources)128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129                  const fs_reg src[], unsigned sources)
130 {
131    init(opcode, exec_width, dst, src, sources);
132 }
133 
fs_inst(const fs_inst & that)134 fs_inst::fs_inst(const fs_inst &that)
135 {
136    memcpy(this, &that, sizeof(that));
137 
138    this->src = new fs_reg[MAX2(that.sources, 3)];
139 
140    for (unsigned i = 0; i < that.sources; i++)
141       this->src[i] = that.src[i];
142 }
143 
~fs_inst()144 fs_inst::~fs_inst()
145 {
146    delete[] this->src;
147 }
148 
149 void
resize_sources(uint8_t num_sources)150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152    if (this->sources != num_sources) {
153       fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154 
155       for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156          src[i] = this->src[i];
157 
158       delete[] this->src;
159       this->src = src;
160       this->sources = num_sources;
161    }
162 }
163 
164 void
VARYING_PULL_CONSTANT_LOAD(const fs_builder & bld,const fs_reg & dst,const fs_reg & surf_index,const fs_reg & varying_offset,uint32_t const_offset)165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166                                        const fs_reg &dst,
167                                        const fs_reg &surf_index,
168                                        const fs_reg &varying_offset,
169                                        uint32_t const_offset)
170 {
171    /* We have our constant surface use a pitch of 4 bytes, so our index can
172     * be any component of a vector, and then we load 4 contiguous
173     * components starting from that.
174     *
175     * We break down the const_offset to a portion added to the variable offset
176     * and a portion done using fs_reg::offset, which means that if you have
177     * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178     * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179     * later notice that those loads are all the same and eliminate the
180     * redundant ones.
181     */
182    fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183    bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184 
185    /* The pull load message will load a vec4 (16 bytes). If we are loading
186     * a double this means we are only loading 2 elements worth of data.
187     * We also want to use a 32-bit data type for the dst of the load operation
188     * so other parts of the driver don't get confused about the size of the
189     * result.
190     */
191    fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192    fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193                             vec4_result, surf_index, vec4_offset);
194    inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195 
196    if (type_sz(dst.type) == 8) {
197       shuffle_32bit_load_result_to_64bit_data(
198          bld, retype(vec4_result, dst.type), vec4_result, 2);
199    }
200 
201    vec4_result.type = dst.type;
202    bld.MOV(dst, offset(vec4_result, bld,
203                        (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205 
206 /**
207  * A helper for MOV generation for fixing up broken hardware SEND dependency
208  * handling.
209  */
210 void
DEP_RESOLVE_MOV(const fs_builder & bld,int grf)211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213    /* The caller always wants uncompressed to emit the minimal extra
214     * dependencies, and to avoid having to deal with aligning its regs to 2.
215     */
216    const fs_builder ubld = bld.annotate("send dependency resolve")
217                               .half(0);
218 
219    ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221 
222 bool
equals(fs_inst * inst) const223 fs_inst::equals(fs_inst *inst) const
224 {
225    return (opcode == inst->opcode &&
226            dst.equals(inst->dst) &&
227            src[0].equals(inst->src[0]) &&
228            src[1].equals(inst->src[1]) &&
229            src[2].equals(inst->src[2]) &&
230            saturate == inst->saturate &&
231            predicate == inst->predicate &&
232            conditional_mod == inst->conditional_mod &&
233            mlen == inst->mlen &&
234            base_mrf == inst->base_mrf &&
235            target == inst->target &&
236            eot == inst->eot &&
237            header_size == inst->header_size &&
238            shadow_compare == inst->shadow_compare &&
239            exec_size == inst->exec_size &&
240            offset == inst->offset);
241 }
242 
243 bool
is_send_from_grf() const244 fs_inst::is_send_from_grf() const
245 {
246    switch (opcode) {
247    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248    case SHADER_OPCODE_SHADER_TIME_ADD:
249    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252    case SHADER_OPCODE_UNTYPED_ATOMIC:
253    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255    case SHADER_OPCODE_TYPED_ATOMIC:
256    case SHADER_OPCODE_TYPED_SURFACE_READ:
257    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258    case SHADER_OPCODE_URB_WRITE_SIMD8:
259    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262    case SHADER_OPCODE_URB_READ_SIMD8:
263    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264       return true;
265    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266       return src[1].file == VGRF;
267    case FS_OPCODE_FB_WRITE:
268    case FS_OPCODE_FB_READ:
269       return src[0].file == VGRF;
270    default:
271       if (is_tex())
272          return src[0].file == VGRF;
273 
274       return false;
275    }
276 }
277 
278 /**
279  * Returns true if this instruction's sources and destinations cannot
280  * safely be the same register.
281  *
282  * In most cases, a register can be written over safely by the same
283  * instruction that is its last use.  For a single instruction, the
284  * sources are dereferenced before writing of the destination starts
285  * (naturally).
286  *
287  * However, there are a few cases where this can be problematic:
288  *
289  * - Virtual opcodes that translate to multiple instructions in the
290  *   code generator: if src == dst and one instruction writes the
291  *   destination before a later instruction reads the source, then
292  *   src will have been clobbered.
293  *
294  * - SIMD16 compressed instructions with certain regioning (see below).
295  *
296  * The register allocator uses this information to set up conflicts between
297  * GRF sources and the destination.
298  */
299 bool
has_source_and_destination_hazard() const300 fs_inst::has_source_and_destination_hazard() const
301 {
302    switch (opcode) {
303    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304       /* Multiple partial writes to the destination */
305       return true;
306    default:
307       /* The SIMD16 compressed instruction
308        *
309        * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
310        *
311        * is actually decoded in hardware as:
312        *
313        * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
314        * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
315        *
316        * Which is safe.  However, if we have uniform accesses
317        * happening, we get into trouble:
318        *
319        * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
320        * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
321        *
322        * Now our destination for the first instruction overwrote the
323        * second instruction's src0, and we get garbage for those 8
324        * pixels.  There's a similar issue for the pre-gen6
325        * pixel_x/pixel_y, which are registers of 16-bit values and thus
326        * would get stomped by the first decode as well.
327        */
328       if (exec_size == 16) {
329          for (int i = 0; i < sources; i++) {
330             if (src[i].file == VGRF && (src[i].stride == 0 ||
331                                         src[i].type == BRW_REGISTER_TYPE_UW ||
332                                         src[i].type == BRW_REGISTER_TYPE_W ||
333                                         src[i].type == BRW_REGISTER_TYPE_UB ||
334                                         src[i].type == BRW_REGISTER_TYPE_B)) {
335                return true;
336             }
337          }
338       }
339       return false;
340    }
341 }
342 
343 bool
is_copy_payload(const brw::simple_allocator & grf_alloc) const344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346    if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347       return false;
348 
349    fs_reg reg = this->src[0];
350    if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351       return false;
352 
353    if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354       return false;
355 
356    for (int i = 0; i < this->sources; i++) {
357       reg.type = this->src[i].type;
358       if (!this->src[i].equals(reg))
359          return false;
360 
361       if (i < this->header_size) {
362          reg.offset += REG_SIZE;
363       } else {
364          reg = horiz_offset(reg, this->exec_size);
365       }
366    }
367 
368    return true;
369 }
370 
371 bool
can_do_source_mods(const struct gen_device_info * devinfo)372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374    if (devinfo->gen == 6 && is_math())
375       return false;
376 
377    if (is_send_from_grf())
378       return false;
379 
380    if (!backend_instruction::can_do_source_mods())
381       return false;
382 
383    return true;
384 }
385 
386 bool
can_change_types() const387 fs_inst::can_change_types() const
388 {
389    return dst.type == src[0].type &&
390           !src[0].abs && !src[0].negate && !saturate &&
391           (opcode == BRW_OPCODE_MOV ||
392            (opcode == BRW_OPCODE_SEL &&
393             dst.type == src[1].type &&
394             predicate != BRW_PREDICATE_NONE &&
395             !src[1].abs && !src[1].negate));
396 }
397 
398 bool
has_side_effects() const399 fs_inst::has_side_effects() const
400 {
401    return this->eot || backend_instruction::has_side_effects();
402 }
403 
404 void
init()405 fs_reg::init()
406 {
407    memset(this, 0, sizeof(*this));
408    stride = 1;
409 }
410 
411 /** Generic unset register constructor. */
fs_reg()412 fs_reg::fs_reg()
413 {
414    init();
415    this->file = BAD_FILE;
416 }
417 
fs_reg(struct::brw_reg reg)418 fs_reg::fs_reg(struct ::brw_reg reg) :
419    backend_reg(reg)
420 {
421    this->offset = 0;
422    this->stride = 1;
423    if (this->file == IMM &&
424        (this->type != BRW_REGISTER_TYPE_V &&
425         this->type != BRW_REGISTER_TYPE_UV &&
426         this->type != BRW_REGISTER_TYPE_VF)) {
427       this->stride = 0;
428    }
429 }
430 
431 bool
equals(const fs_reg & r) const432 fs_reg::equals(const fs_reg &r) const
433 {
434    return (this->backend_reg::equals(r) &&
435            stride == r.stride);
436 }
437 
438 bool
is_contiguous() const439 fs_reg::is_contiguous() const
440 {
441    return stride == 1;
442 }
443 
444 unsigned
component_size(unsigned width) const445 fs_reg::component_size(unsigned width) const
446 {
447    const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448                             hstride == 0 ? 0 :
449                             1 << (hstride - 1));
450    return MAX2(width * stride, 1) * type_sz(type);
451 }
452 
453 extern "C" int
type_size_scalar(const struct glsl_type * type)454 type_size_scalar(const struct glsl_type *type)
455 {
456    unsigned int size, i;
457 
458    switch (type->base_type) {
459    case GLSL_TYPE_UINT:
460    case GLSL_TYPE_INT:
461    case GLSL_TYPE_FLOAT:
462    case GLSL_TYPE_BOOL:
463       return type->components();
464    case GLSL_TYPE_DOUBLE:
465       return type->components() * 2;
466    case GLSL_TYPE_ARRAY:
467       return type_size_scalar(type->fields.array) * type->length;
468    case GLSL_TYPE_STRUCT:
469       size = 0;
470       for (i = 0; i < type->length; i++) {
471 	 size += type_size_scalar(type->fields.structure[i].type);
472       }
473       return size;
474    case GLSL_TYPE_SAMPLER:
475       /* Samplers take up no register space, since they're baked in at
476        * link time.
477        */
478       return 0;
479    case GLSL_TYPE_ATOMIC_UINT:
480       return 0;
481    case GLSL_TYPE_SUBROUTINE:
482       return 1;
483    case GLSL_TYPE_IMAGE:
484       return BRW_IMAGE_PARAM_SIZE;
485    case GLSL_TYPE_VOID:
486    case GLSL_TYPE_ERROR:
487    case GLSL_TYPE_INTERFACE:
488    case GLSL_TYPE_FUNCTION:
489       unreachable("not reached");
490    }
491 
492    return 0;
493 }
494 
495 /**
496  * Create a MOV to read the timestamp register.
497  *
498  * The caller is responsible for emitting the MOV.  The return value is
499  * the destination of the MOV, with extra parameters set.
500  */
501 fs_reg
get_timestamp(const fs_builder & bld)502 fs_visitor::get_timestamp(const fs_builder &bld)
503 {
504    assert(devinfo->gen >= 7);
505 
506    fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
507                                           BRW_ARF_TIMESTAMP,
508                                           0),
509                              BRW_REGISTER_TYPE_UD));
510 
511    fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
512 
513    /* We want to read the 3 fields we care about even if it's not enabled in
514     * the dispatch.
515     */
516    bld.group(4, 0).exec_all().MOV(dst, ts);
517 
518    return dst;
519 }
520 
521 void
emit_shader_time_begin()522 fs_visitor::emit_shader_time_begin()
523 {
524    /* We want only the low 32 bits of the timestamp.  Since it's running
525     * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526     * which is plenty of time for our purposes.  It is identical across the
527     * EUs, but since it's tracking GPU core speed it will increment at a
528     * varying rate as render P-states change.
529     */
530    shader_start_time = component(
531       get_timestamp(bld.annotate("shader time start")), 0);
532 }
533 
534 void
emit_shader_time_end()535 fs_visitor::emit_shader_time_end()
536 {
537    /* Insert our code just before the final SEND with EOT. */
538    exec_node *end = this->instructions.get_tail();
539    assert(end && ((fs_inst *) end)->eot);
540    const fs_builder ibld = bld.annotate("shader time end")
541                               .exec_all().at(NULL, end);
542    const fs_reg timestamp = get_timestamp(ibld);
543 
544    /* We only use the low 32 bits of the timestamp - see
545     * emit_shader_time_begin()).
546     *
547     * We could also check if render P-states have changed (or anything
548     * else that might disrupt timing) by setting smear to 2 and checking if
549     * that field is != 0.
550     */
551    const fs_reg shader_end_time = component(timestamp, 0);
552 
553    /* Check that there weren't any timestamp reset events (assuming these
554     * were the only two timestamp reads that happened).
555     */
556    const fs_reg reset = component(timestamp, 2);
557    set_condmod(BRW_CONDITIONAL_Z,
558                ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
559    ibld.IF(BRW_PREDICATE_NORMAL);
560 
561    fs_reg start = shader_start_time;
562    start.negate = true;
563    const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
564                                         BRW_REGISTER_TYPE_UD),
565                                  0);
566    const fs_builder cbld = ibld.group(1, 0);
567    cbld.group(1, 0).ADD(diff, start, shader_end_time);
568 
569    /* If there were no instructions between the two timestamp gets, the diff
570     * is 2 cycles.  Remove that overhead, so I can forget about that when
571     * trying to determine the time taken for single instructions.
572     */
573    cbld.ADD(diff, diff, brw_imm_ud(-2u));
574    SHADER_TIME_ADD(cbld, 0, diff);
575    SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
576    ibld.emit(BRW_OPCODE_ELSE);
577    SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
578    ibld.emit(BRW_OPCODE_ENDIF);
579 }
580 
581 void
SHADER_TIME_ADD(const fs_builder & bld,int shader_time_subindex,fs_reg value)582 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
583                             int shader_time_subindex,
584                             fs_reg value)
585 {
586    int index = shader_time_index * 3 + shader_time_subindex;
587    struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
588 
589    fs_reg payload;
590    if (dispatch_width == 8)
591       payload = vgrf(glsl_type::uvec2_type);
592    else
593       payload = vgrf(glsl_type::uint_type);
594 
595    bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
596 }
597 
598 void
vfail(const char * format,va_list va)599 fs_visitor::vfail(const char *format, va_list va)
600 {
601    char *msg;
602 
603    if (failed)
604       return;
605 
606    failed = true;
607 
608    msg = ralloc_vasprintf(mem_ctx, format, va);
609    msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
610 
611    this->fail_msg = msg;
612 
613    if (debug_enabled) {
614       fprintf(stderr, "%s",  msg);
615    }
616 }
617 
618 void
fail(const char * format,...)619 fs_visitor::fail(const char *format, ...)
620 {
621    va_list va;
622 
623    va_start(va, format);
624    vfail(format, va);
625    va_end(va);
626 }
627 
628 /**
629  * Mark this program as impossible to compile with dispatch width greater
630  * than n.
631  *
632  * During the SIMD8 compile (which happens first), we can detect and flag
633  * things that are unsupported in SIMD16+ mode, so the compiler can skip the
634  * SIMD16+ compile altogether.
635  *
636  * During a compile of dispatch width greater than n (if one happens anyway),
637  * this just calls fail().
638  */
639 void
limit_dispatch_width(unsigned n,const char * msg)640 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
641 {
642    if (dispatch_width > n) {
643       fail("%s", msg);
644    } else {
645       max_dispatch_width = n;
646       compiler->shader_perf_log(log_data,
647                                 "Shader dispatch width limited to SIMD%d: %s",
648                                 n, msg);
649    }
650 }
651 
652 /**
653  * Returns true if the instruction has a flag that means it won't
654  * update an entire destination register.
655  *
656  * For example, dead code elimination and live variable analysis want to know
657  * when a write to a variable screens off any preceding values that were in
658  * it.
659  */
660 bool
is_partial_write() const661 fs_inst::is_partial_write() const
662 {
663    return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
664            (this->exec_size * type_sz(this->dst.type)) < 32 ||
665            !this->dst.is_contiguous() ||
666            this->dst.offset % REG_SIZE != 0);
667 }
668 
669 unsigned
components_read(unsigned i) const670 fs_inst::components_read(unsigned i) const
671 {
672    /* Return zero if the source is not present. */
673    if (src[i].file == BAD_FILE)
674       return 0;
675 
676    switch (opcode) {
677    case FS_OPCODE_LINTERP:
678       if (i == 0)
679          return 2;
680       else
681          return 1;
682 
683    case FS_OPCODE_PIXEL_X:
684    case FS_OPCODE_PIXEL_Y:
685       assert(i == 0);
686       return 2;
687 
688    case FS_OPCODE_FB_WRITE_LOGICAL:
689       assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
690       /* First/second FB write color. */
691       if (i < 2)
692          return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
693       else
694          return 1;
695 
696    case SHADER_OPCODE_TEX_LOGICAL:
697    case SHADER_OPCODE_TXD_LOGICAL:
698    case SHADER_OPCODE_TXF_LOGICAL:
699    case SHADER_OPCODE_TXL_LOGICAL:
700    case SHADER_OPCODE_TXS_LOGICAL:
701    case FS_OPCODE_TXB_LOGICAL:
702    case SHADER_OPCODE_TXF_CMS_LOGICAL:
703    case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
704    case SHADER_OPCODE_TXF_UMS_LOGICAL:
705    case SHADER_OPCODE_TXF_MCS_LOGICAL:
706    case SHADER_OPCODE_LOD_LOGICAL:
707    case SHADER_OPCODE_TG4_LOGICAL:
708    case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
709    case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
710       assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
711              src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
712       /* Texture coordinates. */
713       if (i == TEX_LOGICAL_SRC_COORDINATE)
714          return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
715       /* Texture derivatives. */
716       else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
717                opcode == SHADER_OPCODE_TXD_LOGICAL)
718          return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
719       /* Texture offset. */
720       else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
721          return 2;
722       /* MCS */
723       else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
724          return 2;
725       else
726          return 1;
727 
728    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
729    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
730       assert(src[3].file == IMM);
731       /* Surface coordinates. */
732       if (i == 0)
733          return src[3].ud;
734       /* Surface operation source (ignored for reads). */
735       else if (i == 1)
736          return 0;
737       else
738          return 1;
739 
740    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
741    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
742       assert(src[3].file == IMM &&
743              src[4].file == IMM);
744       /* Surface coordinates. */
745       if (i == 0)
746          return src[3].ud;
747       /* Surface operation source. */
748       else if (i == 1)
749          return src[4].ud;
750       else
751          return 1;
752 
753    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
754    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
755       assert(src[3].file == IMM &&
756              src[4].file == IMM);
757       const unsigned op = src[4].ud;
758       /* Surface coordinates. */
759       if (i == 0)
760          return src[3].ud;
761       /* Surface operation source. */
762       else if (i == 1 && op == BRW_AOP_CMPWR)
763          return 2;
764       else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
765                           op == BRW_AOP_PREDEC))
766          return 0;
767       else
768          return 1;
769    }
770 
771    default:
772       return 1;
773    }
774 }
775 
776 unsigned
size_read(int arg) const777 fs_inst::size_read(int arg) const
778 {
779    switch (opcode) {
780    case FS_OPCODE_FB_WRITE:
781    case FS_OPCODE_FB_READ:
782    case SHADER_OPCODE_URB_WRITE_SIMD8:
783    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
784    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
785    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
786    case SHADER_OPCODE_URB_READ_SIMD8:
787    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
788    case SHADER_OPCODE_UNTYPED_ATOMIC:
789    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
790    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
791    case SHADER_OPCODE_TYPED_ATOMIC:
792    case SHADER_OPCODE_TYPED_SURFACE_READ:
793    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
794    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
795       if (arg == 0)
796          return mlen * REG_SIZE;
797       break;
798 
799    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
800       /* The payload is actually stored in src1 */
801       if (arg == 1)
802          return mlen * REG_SIZE;
803       break;
804 
805    case FS_OPCODE_LINTERP:
806       if (arg == 1)
807          return 16;
808       break;
809 
810    case SHADER_OPCODE_LOAD_PAYLOAD:
811       if (arg < this->header_size)
812          return REG_SIZE;
813       break;
814 
815    case CS_OPCODE_CS_TERMINATE:
816    case SHADER_OPCODE_BARRIER:
817       return REG_SIZE;
818 
819    case SHADER_OPCODE_MOV_INDIRECT:
820       if (arg == 0) {
821          assert(src[2].file == IMM);
822          return src[2].ud;
823       }
824       break;
825 
826    default:
827       if (is_tex() && arg == 0 && src[0].file == VGRF)
828          return mlen * REG_SIZE;
829       break;
830    }
831 
832    switch (src[arg].file) {
833    case UNIFORM:
834    case IMM:
835       return components_read(arg) * type_sz(src[arg].type);
836    case BAD_FILE:
837    case ARF:
838    case FIXED_GRF:
839    case VGRF:
840    case ATTR:
841       return components_read(arg) * src[arg].component_size(exec_size);
842    case MRF:
843       unreachable("MRF registers are not allowed as sources");
844    }
845    return 0;
846 }
847 
848 namespace {
849    /* Return the subset of flag registers that an instruction could
850     * potentially read or write based on the execution controls and flag
851     * subregister number of the instruction.
852     */
853    unsigned
flag_mask(const fs_inst * inst)854    flag_mask(const fs_inst *inst)
855    {
856       const unsigned start = inst->flag_subreg * 16 + inst->group;
857       const unsigned end = start + inst->exec_size;
858       return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
859    }
860 }
861 
862 unsigned
flags_read(const gen_device_info * devinfo) const863 fs_inst::flags_read(const gen_device_info *devinfo) const
864 {
865    /* XXX - This doesn't consider explicit uses of the flag register as source
866     *       region.
867     */
868    if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
869        predicate == BRW_PREDICATE_ALIGN1_ALLV) {
870       /* The vertical predication modes combine corresponding bits from
871        * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
872        */
873       const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
874       return flag_mask(this) << shift | flag_mask(this);
875    } else if (predicate) {
876       return flag_mask(this);
877    } else {
878       return 0;
879    }
880 }
881 
882 unsigned
flags_written() const883 fs_inst::flags_written() const
884 {
885    /* XXX - This doesn't consider explicit uses of the flag register as
886     *       destination region.
887     */
888    if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
889                             opcode != BRW_OPCODE_IF &&
890                             opcode != BRW_OPCODE_WHILE)) ||
891        opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
892       return flag_mask(this);
893    } else {
894       return 0;
895    }
896 }
897 
898 /**
899  * Returns how many MRFs an FS opcode will write over.
900  *
901  * Note that this is not the 0 or 1 implied writes in an actual gen
902  * instruction -- the FS opcodes often generate MOVs in addition.
903  */
904 int
implied_mrf_writes(fs_inst * inst)905 fs_visitor::implied_mrf_writes(fs_inst *inst)
906 {
907    if (inst->mlen == 0)
908       return 0;
909 
910    if (inst->base_mrf == -1)
911       return 0;
912 
913    switch (inst->opcode) {
914    case SHADER_OPCODE_RCP:
915    case SHADER_OPCODE_RSQ:
916    case SHADER_OPCODE_SQRT:
917    case SHADER_OPCODE_EXP2:
918    case SHADER_OPCODE_LOG2:
919    case SHADER_OPCODE_SIN:
920    case SHADER_OPCODE_COS:
921       return 1 * dispatch_width / 8;
922    case SHADER_OPCODE_POW:
923    case SHADER_OPCODE_INT_QUOTIENT:
924    case SHADER_OPCODE_INT_REMAINDER:
925       return 2 * dispatch_width / 8;
926    case SHADER_OPCODE_TEX:
927    case FS_OPCODE_TXB:
928    case SHADER_OPCODE_TXD:
929    case SHADER_OPCODE_TXF:
930    case SHADER_OPCODE_TXF_CMS:
931    case SHADER_OPCODE_TXF_MCS:
932    case SHADER_OPCODE_TG4:
933    case SHADER_OPCODE_TG4_OFFSET:
934    case SHADER_OPCODE_TXL:
935    case SHADER_OPCODE_TXS:
936    case SHADER_OPCODE_LOD:
937    case SHADER_OPCODE_SAMPLEINFO:
938       return 1;
939    case FS_OPCODE_FB_WRITE:
940       return 2;
941    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
942    case SHADER_OPCODE_GEN4_SCRATCH_READ:
943       return 1;
944    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
945       return inst->mlen;
946    case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
947       return inst->mlen;
948    default:
949       unreachable("not reached");
950    }
951 }
952 
953 fs_reg
vgrf(const glsl_type * const type)954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956    int reg_width = dispatch_width / 8;
957    return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958                  brw_type_for_base_type(type));
959 }
960 
fs_reg(enum brw_reg_file file,int nr)961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963    init();
964    this->file = file;
965    this->nr = nr;
966    this->type = BRW_REGISTER_TYPE_F;
967    this->stride = (file == UNIFORM ? 0 : 1);
968 }
969 
fs_reg(enum brw_reg_file file,int nr,enum brw_reg_type type)970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972    init();
973    this->file = file;
974    this->nr = nr;
975    this->type = type;
976    this->stride = (file == UNIFORM ? 0 : 1);
977 }
978 
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980  * This brings in those uniform definitions
981  */
982 void
import_uniforms(fs_visitor * v)983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985    this->push_constant_loc = v->push_constant_loc;
986    this->pull_constant_loc = v->pull_constant_loc;
987    this->uniforms = v->uniforms;
988 }
989 
990 void
emit_fragcoord_interpolation(fs_reg wpos)991 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
992 {
993    assert(stage == MESA_SHADER_FRAGMENT);
994 
995    /* gl_FragCoord.x */
996    bld.MOV(wpos, this->pixel_x);
997    wpos = offset(wpos, bld, 1);
998 
999    /* gl_FragCoord.y */
1000    bld.MOV(wpos, this->pixel_y);
1001    wpos = offset(wpos, bld, 1);
1002 
1003    /* gl_FragCoord.z */
1004    if (devinfo->gen >= 6) {
1005       bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1006    } else {
1007       bld.emit(FS_OPCODE_LINTERP, wpos,
1008            this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1009            interp_reg(VARYING_SLOT_POS, 2));
1010    }
1011    wpos = offset(wpos, bld, 1);
1012 
1013    /* gl_FragCoord.w: Already set up in emit_interpolation */
1014    bld.MOV(wpos, this->wpos_w);
1015 }
1016 
1017 enum brw_barycentric_mode
brw_barycentric_mode(enum glsl_interp_mode mode,nir_intrinsic_op op)1018 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1019 {
1020    /* Barycentric modes don't make sense for flat inputs. */
1021    assert(mode != INTERP_MODE_FLAT);
1022 
1023    unsigned bary;
1024    switch (op) {
1025    case nir_intrinsic_load_barycentric_pixel:
1026    case nir_intrinsic_load_barycentric_at_offset:
1027       bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1028       break;
1029    case nir_intrinsic_load_barycentric_centroid:
1030       bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1031       break;
1032    case nir_intrinsic_load_barycentric_sample:
1033    case nir_intrinsic_load_barycentric_at_sample:
1034       bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1035       break;
1036    default:
1037       unreachable("invalid intrinsic");
1038    }
1039 
1040    if (mode == INTERP_MODE_NOPERSPECTIVE)
1041       bary += 3;
1042 
1043    return (enum brw_barycentric_mode) bary;
1044 }
1045 
1046 /**
1047  * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1048  */
1049 static enum brw_barycentric_mode
centroid_to_pixel(enum brw_barycentric_mode bary)1050 centroid_to_pixel(enum brw_barycentric_mode bary)
1051 {
1052    assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1053           bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1054    return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1055 }
1056 
1057 fs_reg *
emit_frontfacing_interpolation()1058 fs_visitor::emit_frontfacing_interpolation()
1059 {
1060    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1061 
1062    if (devinfo->gen >= 6) {
1063       /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1064        * a boolean result from this (~0/true or 0/false).
1065        *
1066        * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1067        * this task in only one instruction:
1068        *    - a negation source modifier will flip the bit; and
1069        *    - a W -> D type conversion will sign extend the bit into the high
1070        *      word of the destination.
1071        *
1072        * An ASR 15 fills the low word of the destination.
1073        */
1074       fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1075       g0.negate = true;
1076 
1077       bld.ASR(*reg, g0, brw_imm_d(15));
1078    } else {
1079       /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1080        * a boolean result from this (1/true or 0/false).
1081        *
1082        * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1083        * the negation source modifier to flip it. Unfortunately the SHR
1084        * instruction only operates on UD (or D with an abs source modifier)
1085        * sources without negation.
1086        *
1087        * Instead, use ASR (which will give ~0/true or 0/false).
1088        */
1089       fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1090       g1_6.negate = true;
1091 
1092       bld.ASR(*reg, g1_6, brw_imm_d(31));
1093    }
1094 
1095    return reg;
1096 }
1097 
1098 void
compute_sample_position(fs_reg dst,fs_reg int_sample_pos)1099 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1100 {
1101    assert(stage == MESA_SHADER_FRAGMENT);
1102    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1103    assert(dst.type == BRW_REGISTER_TYPE_F);
1104 
1105    if (wm_prog_data->persample_dispatch) {
1106       /* Convert int_sample_pos to floating point */
1107       bld.MOV(dst, int_sample_pos);
1108       /* Scale to the range [0, 1] */
1109       bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1110    }
1111    else {
1112       /* From ARB_sample_shading specification:
1113        * "When rendering to a non-multisample buffer, or if multisample
1114        *  rasterization is disabled, gl_SamplePosition will always be
1115        *  (0.5, 0.5).
1116        */
1117       bld.MOV(dst, brw_imm_f(0.5f));
1118    }
1119 }
1120 
1121 fs_reg *
emit_samplepos_setup()1122 fs_visitor::emit_samplepos_setup()
1123 {
1124    assert(devinfo->gen >= 6);
1125 
1126    const fs_builder abld = bld.annotate("compute sample position");
1127    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1128    fs_reg pos = *reg;
1129    fs_reg int_sample_x = vgrf(glsl_type::int_type);
1130    fs_reg int_sample_y = vgrf(glsl_type::int_type);
1131 
1132    /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1133     * mode will be enabled.
1134     *
1135     * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1136     * R31.1:0         Position Offset X/Y for Slot[3:0]
1137     * R31.3:2         Position Offset X/Y for Slot[7:4]
1138     * .....
1139     *
1140     * The X, Y sample positions come in as bytes in  thread payload. So, read
1141     * the positions using vstride=16, width=8, hstride=2.
1142     */
1143    struct brw_reg sample_pos_reg =
1144       stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1145                     BRW_REGISTER_TYPE_B), 16, 8, 2);
1146 
1147    if (dispatch_width == 8) {
1148       abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1149    } else {
1150       abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1151       abld.half(1).MOV(half(int_sample_x, 1),
1152                        fs_reg(suboffset(sample_pos_reg, 16)));
1153    }
1154    /* Compute gl_SamplePosition.x */
1155    compute_sample_position(pos, int_sample_x);
1156    pos = offset(pos, abld, 1);
1157    if (dispatch_width == 8) {
1158       abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1159    } else {
1160       abld.half(0).MOV(half(int_sample_y, 0),
1161                        fs_reg(suboffset(sample_pos_reg, 1)));
1162       abld.half(1).MOV(half(int_sample_y, 1),
1163                        fs_reg(suboffset(sample_pos_reg, 17)));
1164    }
1165    /* Compute gl_SamplePosition.y */
1166    compute_sample_position(pos, int_sample_y);
1167    return reg;
1168 }
1169 
1170 fs_reg *
emit_sampleid_setup()1171 fs_visitor::emit_sampleid_setup()
1172 {
1173    assert(stage == MESA_SHADER_FRAGMENT);
1174    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1175    assert(devinfo->gen >= 6);
1176 
1177    const fs_builder abld = bld.annotate("compute sample id");
1178    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1179 
1180    if (!key->multisample_fbo) {
1181       /* As per GL_ARB_sample_shading specification:
1182        * "When rendering to a non-multisample buffer, or if multisample
1183        *  rasterization is disabled, gl_SampleID will always be zero."
1184        */
1185       abld.MOV(*reg, brw_imm_d(0));
1186    } else if (devinfo->gen >= 8) {
1187       /* Sample ID comes in as 4-bit numbers in g1.0:
1188        *
1189        *    15:12 Slot 3 SampleID (only used in SIMD16)
1190        *     11:8 Slot 2 SampleID (only used in SIMD16)
1191        *      7:4 Slot 1 SampleID
1192        *      3:0 Slot 0 SampleID
1193        *
1194        * Each slot corresponds to four channels, so we want to replicate each
1195        * half-byte value to 4 channels in a row:
1196        *
1197        *    dst+0:    .7    .6    .5    .4    .3    .2    .1    .0
1198        *             7:4   7:4   7:4   7:4   3:0   3:0   3:0   3:0
1199        *
1200        *    dst+1:    .7    .6    .5    .4    .3    .2    .1    .0  (if SIMD16)
1201        *           15:12 15:12 15:12 15:12  11:8  11:8  11:8  11:8
1202        *
1203        * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1204        * channels to read the first byte (7:0), and the second group of 8
1205        * channels to read the second byte (15:8).  Then, we shift right by
1206        * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1207        * values into place.  Finally, we AND with 0xf to keep the low nibble.
1208        *
1209        *    shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1210        *    and(16) dst<1>D tmp<8,8,1>W  0xf:W
1211        *
1212        * TODO: These payload bits exist on Gen7 too, but they appear to always
1213        *       be zero, so this code fails to work.  We should find out why.
1214        */
1215       fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1216 
1217       abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1218                                          BRW_REGISTER_TYPE_B), 1, 8, 0)),
1219                     brw_imm_v(0x44440000));
1220       abld.AND(*reg, tmp, brw_imm_w(0xf));
1221    } else {
1222       const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1223                                          BRW_REGISTER_TYPE_D), 0);
1224       const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1225 
1226       /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1227        * 8x multisampling, subspan 0 will represent sample N (where N
1228        * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1229        * 7. We can find the value of N by looking at R0.0 bits 7:6
1230        * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1231        * (since samples are always delivered in pairs). That is, we
1232        * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1233        * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1234        * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1235        * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1236        * populating a temporary variable with the sequence (0, 1, 2, 3),
1237        * and then reading from it using vstride=1, width=4, hstride=0.
1238        * These computations hold good for 4x multisampling as well.
1239        *
1240        * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1241        * the first four slots are sample 0 of subspan 0; the next four
1242        * are sample 1 of subspan 0; the third group is sample 0 of
1243        * subspan 1, and finally sample 1 of subspan 1.
1244        */
1245 
1246       /* SKL+ has an extra bit for the Starting Sample Pair Index to
1247        * accomodate 16x MSAA.
1248        */
1249       abld.exec_all().group(1, 0)
1250           .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1251                brw_imm_ud(0xc0));
1252       abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1253 
1254       /* This works for both SIMD8 and SIMD16 */
1255       abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1256 
1257       /* This special instruction takes care of setting vstride=1,
1258        * width=4, hstride=0 of t2 during an ADD instruction.
1259        */
1260       abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1261    }
1262 
1263    return reg;
1264 }
1265 
1266 fs_reg *
emit_samplemaskin_setup()1267 fs_visitor::emit_samplemaskin_setup()
1268 {
1269    assert(stage == MESA_SHADER_FRAGMENT);
1270    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1271    assert(devinfo->gen >= 6);
1272 
1273    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1274 
1275    fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1276                                BRW_REGISTER_TYPE_D));
1277 
1278    if (wm_prog_data->persample_dispatch) {
1279       /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1280        * and a mask representing which sample is being processed by the
1281        * current shader invocation.
1282        *
1283        * From the OES_sample_variables specification:
1284        * "When per-sample shading is active due to the use of a fragment input
1285        *  qualified by "sample" or due to the use of the gl_SampleID or
1286        *  gl_SamplePosition variables, only the bit for the current sample is
1287        *  set in gl_SampleMaskIn."
1288        */
1289       const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1290 
1291       if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1292          nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1293 
1294       fs_reg one = vgrf(glsl_type::int_type);
1295       fs_reg enabled_mask = vgrf(glsl_type::int_type);
1296       abld.MOV(one, brw_imm_d(1));
1297       abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1298       abld.AND(*reg, enabled_mask, coverage_mask);
1299    } else {
1300       /* In per-pixel mode, the coverage mask is sufficient. */
1301       *reg = coverage_mask;
1302    }
1303    return reg;
1304 }
1305 
1306 fs_reg
resolve_source_modifiers(const fs_reg & src)1307 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1308 {
1309    if (!src.abs && !src.negate)
1310       return src;
1311 
1312    fs_reg temp = bld.vgrf(src.type);
1313    bld.MOV(temp, src);
1314 
1315    return temp;
1316 }
1317 
1318 void
emit_discard_jump()1319 fs_visitor::emit_discard_jump()
1320 {
1321    assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1322 
1323    /* For performance, after a discard, jump to the end of the
1324     * shader if all relevant channels have been discarded.
1325     */
1326    fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1327    discard_jump->flag_subreg = 1;
1328 
1329    discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1330    discard_jump->predicate_inverse = true;
1331 }
1332 
1333 void
emit_gs_thread_end()1334 fs_visitor::emit_gs_thread_end()
1335 {
1336    assert(stage == MESA_SHADER_GEOMETRY);
1337 
1338    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1339 
1340    if (gs_compile->control_data_header_size_bits > 0) {
1341       emit_gs_control_data_bits(this->final_gs_vertex_count);
1342    }
1343 
1344    const fs_builder abld = bld.annotate("thread end");
1345    fs_inst *inst;
1346 
1347    if (gs_prog_data->static_vertex_count != -1) {
1348       foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1349          if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1350              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1351              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1352              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1353             prev->eot = true;
1354 
1355             /* Delete now dead instructions. */
1356             foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1357                if (dead == prev)
1358                   break;
1359                dead->remove();
1360             }
1361             return;
1362          } else if (prev->is_control_flow() || prev->has_side_effects()) {
1363             break;
1364          }
1365       }
1366       fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1367       abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1368       inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1369       inst->mlen = 1;
1370    } else {
1371       fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1372       fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1373       sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1374       sources[1] = this->final_gs_vertex_count;
1375       abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1376       inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1377       inst->mlen = 2;
1378    }
1379    inst->eot = true;
1380    inst->offset = 0;
1381 }
1382 
1383 void
assign_curb_setup()1384 fs_visitor::assign_curb_setup()
1385 {
1386    prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1387 
1388    /* Map the offsets in the UNIFORM file to fixed HW regs. */
1389    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1390       for (unsigned int i = 0; i < inst->sources; i++) {
1391 	 if (inst->src[i].file == UNIFORM) {
1392             int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1393             int constant_nr;
1394             if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1395                constant_nr = push_constant_loc[uniform_nr];
1396             } else {
1397                /* Section 5.11 of the OpenGL 4.1 spec says:
1398                 * "Out-of-bounds reads return undefined values, which include
1399                 *  values from other variables of the active program or zero."
1400                 * Just return the first push constant.
1401                 */
1402                constant_nr = 0;
1403             }
1404 
1405 	    struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1406 						  constant_nr / 8,
1407 						  constant_nr % 8);
1408             brw_reg.abs = inst->src[i].abs;
1409             brw_reg.negate = inst->src[i].negate;
1410 
1411             assert(inst->src[i].stride == 0);
1412             inst->src[i] = byte_offset(
1413                retype(brw_reg, inst->src[i].type),
1414                inst->src[i].offset % 4);
1415 	 }
1416       }
1417    }
1418 
1419    /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1420    this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1421 }
1422 
1423 void
calculate_urb_setup()1424 fs_visitor::calculate_urb_setup()
1425 {
1426    assert(stage == MESA_SHADER_FRAGMENT);
1427    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1428    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1429 
1430    memset(prog_data->urb_setup, -1,
1431           sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1432 
1433    int urb_next = 0;
1434    /* Figure out where each of the incoming setup attributes lands. */
1435    if (devinfo->gen >= 6) {
1436       if (_mesa_bitcount_64(nir->info->inputs_read &
1437                             BRW_FS_VARYING_INPUT_MASK) <= 16) {
1438          /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1439           * first 16 varying inputs, so we can put them wherever we want.
1440           * Just put them in order.
1441           *
1442           * This is useful because it means that (a) inputs not used by the
1443           * fragment shader won't take up valuable register space, and (b) we
1444           * won't have to recompile the fragment shader if it gets paired with
1445           * a different vertex (or geometry) shader.
1446           */
1447          for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1448             if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1449                 BITFIELD64_BIT(i)) {
1450                prog_data->urb_setup[i] = urb_next++;
1451             }
1452          }
1453       } else {
1454          bool include_vue_header =
1455             nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1456 
1457          /* We have enough input varyings that the SF/SBE pipeline stage can't
1458           * arbitrarily rearrange them to suit our whim; we have to put them
1459           * in an order that matches the output of the previous pipeline stage
1460           * (geometry or vertex shader).
1461           */
1462          struct brw_vue_map prev_stage_vue_map;
1463          brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1464                              key->input_slots_valid,
1465                              nir->info->separate_shader);
1466          int first_slot =
1467             include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1468 
1469          assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1470          for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1471               slot++) {
1472             int varying = prev_stage_vue_map.slot_to_varying[slot];
1473             if (varying != BRW_VARYING_SLOT_PAD &&
1474                 (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1475                  BITFIELD64_BIT(varying))) {
1476                prog_data->urb_setup[varying] = slot - first_slot;
1477             }
1478          }
1479          urb_next = prev_stage_vue_map.num_slots - first_slot;
1480       }
1481    } else {
1482       /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1483       for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1484          /* Point size is packed into the header, not as a general attribute */
1485          if (i == VARYING_SLOT_PSIZ)
1486             continue;
1487 
1488 	 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1489 	    /* The back color slot is skipped when the front color is
1490 	     * also written to.  In addition, some slots can be
1491 	     * written in the vertex shader and not read in the
1492 	     * fragment shader.  So the register number must always be
1493 	     * incremented, mapped or not.
1494 	     */
1495 	    if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1496 	       prog_data->urb_setup[i] = urb_next;
1497             urb_next++;
1498 	 }
1499       }
1500 
1501       /*
1502        * It's a FS only attribute, and we did interpolation for this attribute
1503        * in SF thread. So, count it here, too.
1504        *
1505        * See compile_sf_prog() for more info.
1506        */
1507       if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1508          prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1509    }
1510 
1511    prog_data->num_varying_inputs = urb_next;
1512 }
1513 
1514 void
assign_urb_setup()1515 fs_visitor::assign_urb_setup()
1516 {
1517    assert(stage == MESA_SHADER_FRAGMENT);
1518    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1519 
1520    int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1521 
1522    /* Offset all the urb_setup[] index by the actual position of the
1523     * setup regs, now that the location of the constants has been chosen.
1524     */
1525    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1526       if (inst->opcode == FS_OPCODE_LINTERP) {
1527 	 assert(inst->src[1].file == FIXED_GRF);
1528          inst->src[1].nr += urb_start;
1529       }
1530 
1531       if (inst->opcode == FS_OPCODE_CINTERP) {
1532 	 assert(inst->src[0].file == FIXED_GRF);
1533          inst->src[0].nr += urb_start;
1534       }
1535    }
1536 
1537    /* Each attribute is 4 setup channels, each of which is half a reg. */
1538    this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1539 }
1540 
1541 void
convert_attr_sources_to_hw_regs(fs_inst * inst)1542 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1543 {
1544    for (int i = 0; i < inst->sources; i++) {
1545       if (inst->src[i].file == ATTR) {
1546          int grf = payload.num_regs +
1547                    prog_data->curb_read_length +
1548                    inst->src[i].nr +
1549                    inst->src[i].offset / REG_SIZE;
1550 
1551          /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1552           *
1553           * VertStride must be used to cross GRF register boundaries. This
1554           * rule implies that elements within a 'Width' cannot cross GRF
1555           * boundaries.
1556           *
1557           * So, for registers that are large enough, we have to split the exec
1558           * size in two and trust the compression state to sort it out.
1559           */
1560          unsigned total_size = inst->exec_size *
1561                                inst->src[i].stride *
1562                                type_sz(inst->src[i].type);
1563 
1564          assert(total_size <= 2 * REG_SIZE);
1565          const unsigned exec_size =
1566             (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1567 
1568          unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1569          struct brw_reg reg =
1570             stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1571                                inst->src[i].offset % REG_SIZE),
1572                    exec_size * inst->src[i].stride,
1573                    width, inst->src[i].stride);
1574          reg.abs = inst->src[i].abs;
1575          reg.negate = inst->src[i].negate;
1576 
1577          inst->src[i] = reg;
1578       }
1579    }
1580 }
1581 
1582 void
assign_vs_urb_setup()1583 fs_visitor::assign_vs_urb_setup()
1584 {
1585    struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1586 
1587    assert(stage == MESA_SHADER_VERTEX);
1588 
1589    /* Each attribute is 4 regs. */
1590    this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1591 
1592    assert(vs_prog_data->base.urb_read_length <= 15);
1593 
1594    /* Rewrite all ATTR file references to the hw grf that they land in. */
1595    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1596       convert_attr_sources_to_hw_regs(inst);
1597    }
1598 }
1599 
1600 void
assign_tcs_single_patch_urb_setup()1601 fs_visitor::assign_tcs_single_patch_urb_setup()
1602 {
1603    assert(stage == MESA_SHADER_TESS_CTRL);
1604 
1605    /* Rewrite all ATTR file references to HW_REGs. */
1606    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1607       convert_attr_sources_to_hw_regs(inst);
1608    }
1609 }
1610 
1611 void
assign_tes_urb_setup()1612 fs_visitor::assign_tes_urb_setup()
1613 {
1614    assert(stage == MESA_SHADER_TESS_EVAL);
1615 
1616    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1617 
1618    first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1619 
1620    /* Rewrite all ATTR file references to HW_REGs. */
1621    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1622       convert_attr_sources_to_hw_regs(inst);
1623    }
1624 }
1625 
1626 void
assign_gs_urb_setup()1627 fs_visitor::assign_gs_urb_setup()
1628 {
1629    assert(stage == MESA_SHADER_GEOMETRY);
1630 
1631    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1632 
1633    first_non_payload_grf +=
1634       8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
1635 
1636    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1637       /* Rewrite all ATTR file references to GRFs. */
1638       convert_attr_sources_to_hw_regs(inst);
1639    }
1640 }
1641 
1642 
1643 /**
1644  * Split large virtual GRFs into separate components if we can.
1645  *
1646  * This is mostly duplicated with what brw_fs_vector_splitting does,
1647  * but that's really conservative because it's afraid of doing
1648  * splitting that doesn't result in real progress after the rest of
1649  * the optimization phases, which would cause infinite looping in
1650  * optimization.  We can do it once here, safely.  This also has the
1651  * opportunity to split interpolated values, or maybe even uniforms,
1652  * which we don't have at the IR level.
1653  *
1654  * We want to split, because virtual GRFs are what we register
1655  * allocate and spill (due to contiguousness requirements for some
1656  * instructions), and they're what we naturally generate in the
1657  * codegen process, but most virtual GRFs don't actually need to be
1658  * contiguous sets of GRFs.  If we split, we'll end up with reduced
1659  * live intervals and better dead code elimination and coalescing.
1660  */
1661 void
split_virtual_grfs()1662 fs_visitor::split_virtual_grfs()
1663 {
1664    /* Compact the register file so we eliminate dead vgrfs.  This
1665     * only defines split points for live registers, so if we have
1666     * too large dead registers they will hit assertions later.
1667     */
1668    compact_virtual_grfs();
1669 
1670    int num_vars = this->alloc.count;
1671 
1672    /* Count the total number of registers */
1673    int reg_count = 0;
1674    int vgrf_to_reg[num_vars];
1675    for (int i = 0; i < num_vars; i++) {
1676       vgrf_to_reg[i] = reg_count;
1677       reg_count += alloc.sizes[i];
1678    }
1679 
1680    /* An array of "split points".  For each register slot, this indicates
1681     * if this slot can be separated from the previous slot.  Every time an
1682     * instruction uses multiple elements of a register (as a source or
1683     * destination), we mark the used slots as inseparable.  Then we go
1684     * through and split the registers into the smallest pieces we can.
1685     */
1686    bool split_points[reg_count];
1687    memset(split_points, 0, sizeof(split_points));
1688 
1689    /* Mark all used registers as fully splittable */
1690    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1691       if (inst->dst.file == VGRF) {
1692          int reg = vgrf_to_reg[inst->dst.nr];
1693          for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1694             split_points[reg + j] = true;
1695       }
1696 
1697       for (int i = 0; i < inst->sources; i++) {
1698          if (inst->src[i].file == VGRF) {
1699             int reg = vgrf_to_reg[inst->src[i].nr];
1700             for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1701                split_points[reg + j] = true;
1702          }
1703       }
1704    }
1705 
1706    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1707       if (inst->dst.file == VGRF) {
1708          int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1709          for (unsigned j = 1; j < regs_written(inst); j++)
1710             split_points[reg + j] = false;
1711       }
1712       for (int i = 0; i < inst->sources; i++) {
1713          if (inst->src[i].file == VGRF) {
1714             int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1715             for (unsigned j = 1; j < regs_read(inst, i); j++)
1716                split_points[reg + j] = false;
1717          }
1718       }
1719    }
1720 
1721    int new_virtual_grf[reg_count];
1722    int new_reg_offset[reg_count];
1723 
1724    int reg = 0;
1725    for (int i = 0; i < num_vars; i++) {
1726       /* The first one should always be 0 as a quick sanity check. */
1727       assert(split_points[reg] == false);
1728 
1729       /* j = 0 case */
1730       new_reg_offset[reg] = 0;
1731       reg++;
1732       int offset = 1;
1733 
1734       /* j > 0 case */
1735       for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1736          /* If this is a split point, reset the offset to 0 and allocate a
1737           * new virtual GRF for the previous offset many registers
1738           */
1739          if (split_points[reg]) {
1740             assert(offset <= MAX_VGRF_SIZE);
1741             int grf = alloc.allocate(offset);
1742             for (int k = reg - offset; k < reg; k++)
1743                new_virtual_grf[k] = grf;
1744             offset = 0;
1745          }
1746          new_reg_offset[reg] = offset;
1747          offset++;
1748          reg++;
1749       }
1750 
1751       /* The last one gets the original register number */
1752       assert(offset <= MAX_VGRF_SIZE);
1753       alloc.sizes[i] = offset;
1754       for (int k = reg - offset; k < reg; k++)
1755          new_virtual_grf[k] = i;
1756    }
1757    assert(reg == reg_count);
1758 
1759    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1760       if (inst->dst.file == VGRF) {
1761          reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1762          inst->dst.nr = new_virtual_grf[reg];
1763          inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1764                             inst->dst.offset % REG_SIZE;
1765          assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1766       }
1767       for (int i = 0; i < inst->sources; i++) {
1768 	 if (inst->src[i].file == VGRF) {
1769             reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1770             inst->src[i].nr = new_virtual_grf[reg];
1771             inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1772                                   inst->src[i].offset % REG_SIZE;
1773             assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1774          }
1775       }
1776    }
1777    invalidate_live_intervals();
1778 }
1779 
1780 /**
1781  * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1782  *
1783  * During code generation, we create tons of temporary variables, many of
1784  * which get immediately killed and are never used again.  Yet, in later
1785  * optimization and analysis passes, such as compute_live_intervals, we need
1786  * to loop over all the virtual GRFs.  Compacting them can save a lot of
1787  * overhead.
1788  */
1789 bool
compact_virtual_grfs()1790 fs_visitor::compact_virtual_grfs()
1791 {
1792    bool progress = false;
1793    int remap_table[this->alloc.count];
1794    memset(remap_table, -1, sizeof(remap_table));
1795 
1796    /* Mark which virtual GRFs are used. */
1797    foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1798       if (inst->dst.file == VGRF)
1799          remap_table[inst->dst.nr] = 0;
1800 
1801       for (int i = 0; i < inst->sources; i++) {
1802          if (inst->src[i].file == VGRF)
1803             remap_table[inst->src[i].nr] = 0;
1804       }
1805    }
1806 
1807    /* Compact the GRF arrays. */
1808    int new_index = 0;
1809    for (unsigned i = 0; i < this->alloc.count; i++) {
1810       if (remap_table[i] == -1) {
1811          /* We just found an unused register.  This means that we are
1812           * actually going to compact something.
1813           */
1814          progress = true;
1815       } else {
1816          remap_table[i] = new_index;
1817          alloc.sizes[new_index] = alloc.sizes[i];
1818          invalidate_live_intervals();
1819          ++new_index;
1820       }
1821    }
1822 
1823    this->alloc.count = new_index;
1824 
1825    /* Patch all the instructions to use the newly renumbered registers */
1826    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1827       if (inst->dst.file == VGRF)
1828          inst->dst.nr = remap_table[inst->dst.nr];
1829 
1830       for (int i = 0; i < inst->sources; i++) {
1831          if (inst->src[i].file == VGRF)
1832             inst->src[i].nr = remap_table[inst->src[i].nr];
1833       }
1834    }
1835 
1836    /* Patch all the references to delta_xy, since they're used in register
1837     * allocation.  If they're unused, switch them to BAD_FILE so we don't
1838     * think some random VGRF is delta_xy.
1839     */
1840    for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1841       if (delta_xy[i].file == VGRF) {
1842          if (remap_table[delta_xy[i].nr] != -1) {
1843             delta_xy[i].nr = remap_table[delta_xy[i].nr];
1844          } else {
1845             delta_xy[i].file = BAD_FILE;
1846          }
1847       }
1848    }
1849 
1850    return progress;
1851 }
1852 
1853 static void
set_push_pull_constant_loc(unsigned uniform,int * chunk_start,unsigned * max_chunk_bitsize,bool contiguous,unsigned bitsize,const unsigned target_bitsize,int * push_constant_loc,int * pull_constant_loc,unsigned * num_push_constants,unsigned * num_pull_constants,const unsigned max_push_components,const unsigned max_chunk_size,struct brw_stage_prog_data * stage_prog_data)1854 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1855                            unsigned *max_chunk_bitsize,
1856                            bool contiguous, unsigned bitsize,
1857                            const unsigned target_bitsize,
1858                            int *push_constant_loc, int *pull_constant_loc,
1859                            unsigned *num_push_constants,
1860                            unsigned *num_pull_constants,
1861                            const unsigned max_push_components,
1862                            const unsigned max_chunk_size,
1863                            struct brw_stage_prog_data *stage_prog_data)
1864 {
1865    /* This is the first live uniform in the chunk */
1866    if (*chunk_start < 0)
1867       *chunk_start = uniform;
1868 
1869    /* Keep track of the maximum bit size access in contiguous uniforms */
1870    *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1871 
1872    /* If this element does not need to be contiguous with the next, we
1873     * split at this point and everything between chunk_start and u forms a
1874     * single chunk.
1875     */
1876    if (!contiguous) {
1877       /* If bitsize doesn't match the target one, skip it */
1878       if (*max_chunk_bitsize != target_bitsize) {
1879          /* FIXME: right now we only support 32 and 64-bit accesses */
1880          assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1881          *max_chunk_bitsize = 0;
1882          *chunk_start = -1;
1883          return;
1884       }
1885 
1886       unsigned chunk_size = uniform - *chunk_start + 1;
1887 
1888       /* Decide whether we should push or pull this parameter.  In the
1889        * Vulkan driver, push constants are explicitly exposed via the API
1890        * so we push everything.  In GL, we only push small arrays.
1891        */
1892       if (stage_prog_data->pull_param == NULL ||
1893           (*num_push_constants + chunk_size <= max_push_components &&
1894            chunk_size <= max_chunk_size)) {
1895          assert(*num_push_constants + chunk_size <= max_push_components);
1896          for (unsigned j = *chunk_start; j <= uniform; j++)
1897             push_constant_loc[j] = (*num_push_constants)++;
1898       } else {
1899          for (unsigned j = *chunk_start; j <= uniform; j++)
1900             pull_constant_loc[j] = (*num_pull_constants)++;
1901       }
1902 
1903       *max_chunk_bitsize = 0;
1904       *chunk_start = -1;
1905    }
1906 }
1907 
1908 /**
1909  * Assign UNIFORM file registers to either push constants or pull constants.
1910  *
1911  * We allow a fragment shader to have more than the specified minimum
1912  * maximum number of fragment shader uniform components (64).  If
1913  * there are too many of these, they'd fill up all of register space.
1914  * So, this will push some of them out to the pull constant buffer and
1915  * update the program to load them.
1916  */
1917 void
assign_constant_locations()1918 fs_visitor::assign_constant_locations()
1919 {
1920    /* Only the first compile gets to decide on locations. */
1921    if (dispatch_width != min_dispatch_width)
1922       return;
1923 
1924    bool is_live[uniforms];
1925    memset(is_live, 0, sizeof(is_live));
1926    unsigned bitsize_access[uniforms];
1927    memset(bitsize_access, 0, sizeof(bitsize_access));
1928 
1929    /* For each uniform slot, a value of true indicates that the given slot and
1930     * the next slot must remain contiguous.  This is used to keep us from
1931     * splitting arrays apart.
1932     */
1933    bool contiguous[uniforms];
1934    memset(contiguous, 0, sizeof(contiguous));
1935 
1936    int thread_local_id_index =
1937       (stage == MESA_SHADER_COMPUTE) ?
1938       brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1939 
1940    /* First, we walk through the instructions and do two things:
1941     *
1942     *  1) Figure out which uniforms are live.
1943     *
1944     *  2) Mark any indirectly used ranges of registers as contiguous.
1945     *
1946     * Note that we don't move constant-indexed accesses to arrays.  No
1947     * testing has been done of the performance impact of this choice.
1948     */
1949    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1950       for (int i = 0 ; i < inst->sources; i++) {
1951          if (inst->src[i].file != UNIFORM)
1952             continue;
1953 
1954          int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1955 
1956          if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1957             assert(inst->src[2].ud % 4 == 0);
1958             unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1959             assert(last < uniforms);
1960 
1961             for (unsigned j = constant_nr; j < last; j++) {
1962                is_live[j] = true;
1963                contiguous[j] = true;
1964                bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1965             }
1966             is_live[last] = true;
1967             bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1968          } else {
1969             if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1970                int regs_read = inst->components_read(i) *
1971                   type_sz(inst->src[i].type) / 4;
1972                for (int j = 0; j < regs_read; j++) {
1973                   is_live[constant_nr + j] = true;
1974                   bitsize_access[constant_nr + j] =
1975                      MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
1976                }
1977             }
1978          }
1979       }
1980    }
1981 
1982    if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1983       thread_local_id_index = -1;
1984 
1985    /* Only allow 16 registers (128 uniform components) as push constants.
1986     *
1987     * Just demote the end of the list.  We could probably do better
1988     * here, demoting things that are rarely used in the program first.
1989     *
1990     * If changing this value, note the limitation about total_regs in
1991     * brw_curbe.c.
1992     */
1993    unsigned int max_push_components = 16 * 8;
1994    if (thread_local_id_index >= 0)
1995       max_push_components--; /* Save a slot for the thread ID */
1996 
1997    /* We push small arrays, but no bigger than 16 floats.  This is big enough
1998     * for a vec4 but hopefully not large enough to push out other stuff.  We
1999     * should probably use a better heuristic at some point.
2000     */
2001    const unsigned int max_chunk_size = 16;
2002 
2003    unsigned int num_push_constants = 0;
2004    unsigned int num_pull_constants = 0;
2005 
2006    push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2007    pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2008 
2009    /* Default to -1 meaning no location */
2010    memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2011    memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2012 
2013    int chunk_start = -1;
2014    unsigned max_chunk_bitsize = 0;
2015 
2016    /* First push 64-bit uniforms to ensure they are properly aligned */
2017    const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2018    for (unsigned u = 0; u < uniforms; u++) {
2019       if (!is_live[u])
2020          continue;
2021 
2022       set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2023                                  contiguous[u], bitsize_access[u],
2024                                  uniform_64_bit_size,
2025                                  push_constant_loc, pull_constant_loc,
2026                                  &num_push_constants, &num_pull_constants,
2027                                  max_push_components, max_chunk_size,
2028                                  stage_prog_data);
2029 
2030    }
2031 
2032    /* Then push the rest of uniforms */
2033    const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2034    for (unsigned u = 0; u < uniforms; u++) {
2035       if (!is_live[u])
2036          continue;
2037 
2038       /* Skip thread_local_id_index to put it in the last push register. */
2039       if (thread_local_id_index == (int)u)
2040          continue;
2041 
2042       set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2043                                  contiguous[u], bitsize_access[u],
2044                                  uniform_32_bit_size,
2045                                  push_constant_loc, pull_constant_loc,
2046                                  &num_push_constants, &num_pull_constants,
2047                                  max_push_components, max_chunk_size,
2048                                  stage_prog_data);
2049    }
2050 
2051    /* Add the CS local thread ID uniform at the end of the push constants */
2052    if (thread_local_id_index >= 0)
2053       push_constant_loc[thread_local_id_index] = num_push_constants++;
2054 
2055    /* As the uniforms are going to be reordered, take the data from a temporary
2056     * copy of the original param[].
2057     */
2058    gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2059                                             stage_prog_data->nr_params);
2060    memcpy(param, stage_prog_data->param,
2061           sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2062    stage_prog_data->nr_params = num_push_constants;
2063    stage_prog_data->nr_pull_params = num_pull_constants;
2064 
2065    /* Up until now, the param[] array has been indexed by reg + offset
2066     * of UNIFORM registers.  Move pull constants into pull_param[] and
2067     * condense param[] to only contain the uniforms we chose to push.
2068     *
2069     * NOTE: Because we are condensing the params[] array, we know that
2070     * push_constant_loc[i] <= i and we can do it in one smooth loop without
2071     * having to make a copy.
2072     */
2073    int new_thread_local_id_index = -1;
2074    for (unsigned int i = 0; i < uniforms; i++) {
2075       const gl_constant_value *value = param[i];
2076 
2077       if (pull_constant_loc[i] != -1) {
2078          stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2079       } else if (push_constant_loc[i] != -1) {
2080          stage_prog_data->param[push_constant_loc[i]] = value;
2081          if (thread_local_id_index == (int)i)
2082             new_thread_local_id_index = push_constant_loc[i];
2083       }
2084    }
2085    ralloc_free(param);
2086 
2087    if (stage == MESA_SHADER_COMPUTE)
2088       brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2089          new_thread_local_id_index;
2090 }
2091 
2092 /**
2093  * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2094  * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2095  */
2096 void
lower_constant_loads()2097 fs_visitor::lower_constant_loads()
2098 {
2099    const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2100 
2101    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2102       /* Set up the annotation tracking for new generated instructions. */
2103       const fs_builder ibld(this, block, inst);
2104 
2105       for (int i = 0; i < inst->sources; i++) {
2106 	 if (inst->src[i].file != UNIFORM)
2107 	    continue;
2108 
2109          /* We'll handle this case later */
2110          if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2111             continue;
2112 
2113          unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2114          if (location >= uniforms)
2115             continue; /* Out of bounds access */
2116 
2117          int pull_index = pull_constant_loc[location];
2118 
2119          if (pull_index == -1)
2120 	    continue;
2121 
2122          assert(inst->src[i].stride == 0);
2123 
2124          const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2125          const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2126          const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2127          const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2128          const unsigned base = pull_index * 4;
2129 
2130          ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2131                    dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2132 
2133          /* Rewrite the instruction to use the temporary VGRF. */
2134          inst->src[i].file = VGRF;
2135          inst->src[i].nr = dst.nr;
2136          inst->src[i].offset = (base & (block_sz - 1)) +
2137                                inst->src[i].offset % 4;
2138 
2139          brw_mark_surface_used(prog_data, index);
2140       }
2141 
2142       if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2143           inst->src[0].file == UNIFORM) {
2144 
2145          unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2146          if (location >= uniforms)
2147             continue; /* Out of bounds access */
2148 
2149          int pull_index = pull_constant_loc[location];
2150 
2151          if (pull_index == -1)
2152 	    continue;
2153 
2154          VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2155                                     brw_imm_ud(index),
2156                                     inst->src[1],
2157                                     pull_index * 4);
2158          inst->remove(block);
2159 
2160          brw_mark_surface_used(prog_data, index);
2161       }
2162    }
2163    invalidate_live_intervals();
2164 }
2165 
2166 bool
opt_algebraic()2167 fs_visitor::opt_algebraic()
2168 {
2169    bool progress = false;
2170 
2171    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2172       switch (inst->opcode) {
2173       case BRW_OPCODE_MOV:
2174          if (inst->src[0].file != IMM)
2175             break;
2176 
2177          if (inst->saturate) {
2178             if (inst->dst.type != inst->src[0].type)
2179                assert(!"unimplemented: saturate mixed types");
2180 
2181             if (brw_saturate_immediate(inst->dst.type,
2182                                        &inst->src[0].as_brw_reg())) {
2183                inst->saturate = false;
2184                progress = true;
2185             }
2186          }
2187          break;
2188 
2189       case BRW_OPCODE_MUL:
2190 	 if (inst->src[1].file != IMM)
2191 	    continue;
2192 
2193 	 /* a * 1.0 = a */
2194 	 if (inst->src[1].is_one()) {
2195 	    inst->opcode = BRW_OPCODE_MOV;
2196 	    inst->src[1] = reg_undef;
2197 	    progress = true;
2198 	    break;
2199 	 }
2200 
2201          /* a * -1.0 = -a */
2202          if (inst->src[1].is_negative_one()) {
2203             inst->opcode = BRW_OPCODE_MOV;
2204             inst->src[0].negate = !inst->src[0].negate;
2205             inst->src[1] = reg_undef;
2206             progress = true;
2207             break;
2208          }
2209 
2210          /* a * 0.0 = 0.0 */
2211          if (inst->src[1].is_zero()) {
2212             inst->opcode = BRW_OPCODE_MOV;
2213             inst->src[0] = inst->src[1];
2214             inst->src[1] = reg_undef;
2215             progress = true;
2216             break;
2217          }
2218 
2219          if (inst->src[0].file == IMM) {
2220             assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2221             inst->opcode = BRW_OPCODE_MOV;
2222             inst->src[0].f *= inst->src[1].f;
2223             inst->src[1] = reg_undef;
2224             progress = true;
2225             break;
2226          }
2227 	 break;
2228       case BRW_OPCODE_ADD:
2229          if (inst->src[1].file != IMM)
2230             continue;
2231 
2232          /* a + 0.0 = a */
2233          if (inst->src[1].is_zero()) {
2234             inst->opcode = BRW_OPCODE_MOV;
2235             inst->src[1] = reg_undef;
2236             progress = true;
2237             break;
2238          }
2239 
2240          if (inst->src[0].file == IMM) {
2241             assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2242             inst->opcode = BRW_OPCODE_MOV;
2243             inst->src[0].f += inst->src[1].f;
2244             inst->src[1] = reg_undef;
2245             progress = true;
2246             break;
2247          }
2248          break;
2249       case BRW_OPCODE_OR:
2250          if (inst->src[0].equals(inst->src[1])) {
2251             inst->opcode = BRW_OPCODE_MOV;
2252             inst->src[1] = reg_undef;
2253             progress = true;
2254             break;
2255          }
2256          break;
2257       case BRW_OPCODE_LRP:
2258          if (inst->src[1].equals(inst->src[2])) {
2259             inst->opcode = BRW_OPCODE_MOV;
2260             inst->src[0] = inst->src[1];
2261             inst->src[1] = reg_undef;
2262             inst->src[2] = reg_undef;
2263             progress = true;
2264             break;
2265          }
2266          break;
2267       case BRW_OPCODE_CMP:
2268          if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2269              inst->src[0].abs &&
2270              inst->src[0].negate &&
2271              inst->src[1].is_zero()) {
2272             inst->src[0].abs = false;
2273             inst->src[0].negate = false;
2274             inst->conditional_mod = BRW_CONDITIONAL_Z;
2275             progress = true;
2276             break;
2277          }
2278          break;
2279       case BRW_OPCODE_SEL:
2280          if (inst->src[0].equals(inst->src[1])) {
2281             inst->opcode = BRW_OPCODE_MOV;
2282             inst->src[1] = reg_undef;
2283             inst->predicate = BRW_PREDICATE_NONE;
2284             inst->predicate_inverse = false;
2285             progress = true;
2286          } else if (inst->saturate && inst->src[1].file == IMM) {
2287             switch (inst->conditional_mod) {
2288             case BRW_CONDITIONAL_LE:
2289             case BRW_CONDITIONAL_L:
2290                switch (inst->src[1].type) {
2291                case BRW_REGISTER_TYPE_F:
2292                   if (inst->src[1].f >= 1.0f) {
2293                      inst->opcode = BRW_OPCODE_MOV;
2294                      inst->src[1] = reg_undef;
2295                      inst->conditional_mod = BRW_CONDITIONAL_NONE;
2296                      progress = true;
2297                   }
2298                   break;
2299                default:
2300                   break;
2301                }
2302                break;
2303             case BRW_CONDITIONAL_GE:
2304             case BRW_CONDITIONAL_G:
2305                switch (inst->src[1].type) {
2306                case BRW_REGISTER_TYPE_F:
2307                   if (inst->src[1].f <= 0.0f) {
2308                      inst->opcode = BRW_OPCODE_MOV;
2309                      inst->src[1] = reg_undef;
2310                      inst->conditional_mod = BRW_CONDITIONAL_NONE;
2311                      progress = true;
2312                   }
2313                   break;
2314                default:
2315                   break;
2316                }
2317             default:
2318                break;
2319             }
2320          }
2321          break;
2322       case BRW_OPCODE_MAD:
2323          if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2324             inst->opcode = BRW_OPCODE_MOV;
2325             inst->src[1] = reg_undef;
2326             inst->src[2] = reg_undef;
2327             progress = true;
2328          } else if (inst->src[0].is_zero()) {
2329             inst->opcode = BRW_OPCODE_MUL;
2330             inst->src[0] = inst->src[2];
2331             inst->src[2] = reg_undef;
2332             progress = true;
2333          } else if (inst->src[1].is_one()) {
2334             inst->opcode = BRW_OPCODE_ADD;
2335             inst->src[1] = inst->src[2];
2336             inst->src[2] = reg_undef;
2337             progress = true;
2338          } else if (inst->src[2].is_one()) {
2339             inst->opcode = BRW_OPCODE_ADD;
2340             inst->src[2] = reg_undef;
2341             progress = true;
2342          } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2343             inst->opcode = BRW_OPCODE_ADD;
2344             inst->src[1].f *= inst->src[2].f;
2345             inst->src[2] = reg_undef;
2346             progress = true;
2347          }
2348          break;
2349       case SHADER_OPCODE_BROADCAST:
2350          if (is_uniform(inst->src[0])) {
2351             inst->opcode = BRW_OPCODE_MOV;
2352             inst->sources = 1;
2353             inst->force_writemask_all = true;
2354             progress = true;
2355          } else if (inst->src[1].file == IMM) {
2356             inst->opcode = BRW_OPCODE_MOV;
2357             inst->src[0] = component(inst->src[0],
2358                                      inst->src[1].ud);
2359             inst->sources = 1;
2360             inst->force_writemask_all = true;
2361             progress = true;
2362          }
2363          break;
2364 
2365       default:
2366 	 break;
2367       }
2368 
2369       /* Swap if src[0] is immediate. */
2370       if (progress && inst->is_commutative()) {
2371          if (inst->src[0].file == IMM) {
2372             fs_reg tmp = inst->src[1];
2373             inst->src[1] = inst->src[0];
2374             inst->src[0] = tmp;
2375          }
2376       }
2377    }
2378    return progress;
2379 }
2380 
2381 /**
2382  * Optimize sample messages that have constant zero values for the trailing
2383  * texture coordinates. We can just reduce the message length for these
2384  * instructions instead of reserving a register for it. Trailing parameters
2385  * that aren't sent default to zero anyway. This will cause the dead code
2386  * eliminator to remove the MOV instruction that would otherwise be emitted to
2387  * set up the zero value.
2388  */
2389 bool
opt_zero_samples()2390 fs_visitor::opt_zero_samples()
2391 {
2392    /* Gen4 infers the texturing opcode based on the message length so we can't
2393     * change it.
2394     */
2395    if (devinfo->gen < 5)
2396       return false;
2397 
2398    bool progress = false;
2399 
2400    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2401       if (!inst->is_tex())
2402          continue;
2403 
2404       fs_inst *load_payload = (fs_inst *) inst->prev;
2405 
2406       if (load_payload->is_head_sentinel() ||
2407           load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2408          continue;
2409 
2410       /* We don't want to remove the message header or the first parameter.
2411        * Removing the first parameter is not allowed, see the Haswell PRM
2412        * volume 7, page 149:
2413        *
2414        *     "Parameter 0 is required except for the sampleinfo message, which
2415        *      has no parameter 0"
2416        */
2417       while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2418              load_payload->src[(inst->mlen - inst->header_size) /
2419                                (inst->exec_size / 8) +
2420                                inst->header_size - 1].is_zero()) {
2421          inst->mlen -= inst->exec_size / 8;
2422          progress = true;
2423       }
2424    }
2425 
2426    if (progress)
2427       invalidate_live_intervals();
2428 
2429    return progress;
2430 }
2431 
2432 /**
2433  * Optimize sample messages which are followed by the final RT write.
2434  *
2435  * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2436  * results sent directly to the framebuffer, bypassing the EU.  Recognize the
2437  * final texturing results copied to the framebuffer write payload and modify
2438  * them to write to the framebuffer directly.
2439  */
2440 bool
opt_sampler_eot()2441 fs_visitor::opt_sampler_eot()
2442 {
2443    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2444 
2445    if (stage != MESA_SHADER_FRAGMENT)
2446       return false;
2447 
2448    if (devinfo->gen < 9 && !devinfo->is_cherryview)
2449       return false;
2450 
2451    /* FINISHME: It should be possible to implement this optimization when there
2452     * are multiple drawbuffers.
2453     */
2454    if (key->nr_color_regions != 1)
2455       return false;
2456 
2457    /* Requires emitting a bunch of saturating MOV instructions during logical
2458     * send lowering to clamp the color payload, which the sampler unit isn't
2459     * going to do for us.
2460     */
2461    if (key->clamp_fragment_color)
2462       return false;
2463 
2464    /* Look for a texturing instruction immediately before the final FB_WRITE. */
2465    bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2466    fs_inst *fb_write = (fs_inst *)block->end();
2467    assert(fb_write->eot);
2468    assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2469 
2470    /* There wasn't one; nothing to do. */
2471    if (unlikely(fb_write->prev->is_head_sentinel()))
2472       return false;
2473 
2474    fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2475 
2476    /* 3D Sampler » Messages » Message Format
2477     *
2478     * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2479     *  messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2480     */
2481    if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2482        tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2483        tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2484        tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2485        tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2486        tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2487        tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2488        tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2489       return false;
2490 
2491    /* XXX - This shouldn't be necessary. */
2492    if (tex_inst->prev->is_head_sentinel())
2493       return false;
2494 
2495    /* Check that the FB write sources are fully initialized by the single
2496     * texturing instruction.
2497     */
2498    for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2499       if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2500          if (!fb_write->src[i].equals(tex_inst->dst) ||
2501              fb_write->size_read(i) != tex_inst->size_written)
2502          return false;
2503       } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2504          if (fb_write->src[i].file != BAD_FILE)
2505             return false;
2506       }
2507    }
2508 
2509    assert(!tex_inst->eot); /* We can't get here twice */
2510    assert((tex_inst->offset & (0xff << 24)) == 0);
2511 
2512    const fs_builder ibld(this, block, tex_inst);
2513 
2514    tex_inst->offset |= fb_write->target << 24;
2515    tex_inst->eot = true;
2516    tex_inst->dst = ibld.null_reg_ud();
2517    tex_inst->size_written = 0;
2518    fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2519 
2520    /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2521     * flag and submit a header together with the sampler message as required
2522     * by the hardware.
2523     */
2524    invalidate_live_intervals();
2525    return true;
2526 }
2527 
2528 bool
opt_register_renaming()2529 fs_visitor::opt_register_renaming()
2530 {
2531    bool progress = false;
2532    int depth = 0;
2533 
2534    int remap[alloc.count];
2535    memset(remap, -1, sizeof(int) * alloc.count);
2536 
2537    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2538       if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2539          depth++;
2540       } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2541                  inst->opcode == BRW_OPCODE_WHILE) {
2542          depth--;
2543       }
2544 
2545       /* Rewrite instruction sources. */
2546       for (int i = 0; i < inst->sources; i++) {
2547          if (inst->src[i].file == VGRF &&
2548              remap[inst->src[i].nr] != -1 &&
2549              remap[inst->src[i].nr] != inst->src[i].nr) {
2550             inst->src[i].nr = remap[inst->src[i].nr];
2551             progress = true;
2552          }
2553       }
2554 
2555       const int dst = inst->dst.nr;
2556 
2557       if (depth == 0 &&
2558           inst->dst.file == VGRF &&
2559           alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2560           !inst->is_partial_write()) {
2561          if (remap[dst] == -1) {
2562             remap[dst] = dst;
2563          } else {
2564             remap[dst] = alloc.allocate(regs_written(inst));
2565             inst->dst.nr = remap[dst];
2566             progress = true;
2567          }
2568       } else if (inst->dst.file == VGRF &&
2569                  remap[dst] != -1 &&
2570                  remap[dst] != dst) {
2571          inst->dst.nr = remap[dst];
2572          progress = true;
2573       }
2574    }
2575 
2576    if (progress) {
2577       invalidate_live_intervals();
2578 
2579       for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2580          if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2581             delta_xy[i].nr = remap[delta_xy[i].nr];
2582          }
2583       }
2584    }
2585 
2586    return progress;
2587 }
2588 
2589 /**
2590  * Remove redundant or useless discard jumps.
2591  *
2592  * For example, we can eliminate jumps in the following sequence:
2593  *
2594  * discard-jump       (redundant with the next jump)
2595  * discard-jump       (useless; jumps to the next instruction)
2596  * placeholder-halt
2597  */
2598 bool
opt_redundant_discard_jumps()2599 fs_visitor::opt_redundant_discard_jumps()
2600 {
2601    bool progress = false;
2602 
2603    bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2604 
2605    fs_inst *placeholder_halt = NULL;
2606    foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2607       if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2608          placeholder_halt = inst;
2609          break;
2610       }
2611    }
2612 
2613    if (!placeholder_halt)
2614       return false;
2615 
2616    /* Delete any HALTs immediately before the placeholder halt. */
2617    for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2618         !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2619         prev = (fs_inst *) placeholder_halt->prev) {
2620       prev->remove(last_bblock);
2621       progress = true;
2622    }
2623 
2624    if (progress)
2625       invalidate_live_intervals();
2626 
2627    return progress;
2628 }
2629 
2630 /**
2631  * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2632  * from \p r.offset which overlaps the region starting at \p s.offset and
2633  * spanning \p ds bytes.
2634  */
2635 static inline unsigned
mask_relative_to(const fs_reg & r,const fs_reg & s,unsigned ds)2636 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2637 {
2638    const int rel_offset = reg_offset(s) - reg_offset(r);
2639    const int shift = rel_offset / REG_SIZE;
2640    const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2641    assert(reg_space(r) == reg_space(s) &&
2642           shift >= 0 && shift < int(8 * sizeof(unsigned)));
2643    return ((1 << n) - 1) << shift;
2644 }
2645 
2646 bool
compute_to_mrf()2647 fs_visitor::compute_to_mrf()
2648 {
2649    bool progress = false;
2650    int next_ip = 0;
2651 
2652    /* No MRFs on Gen >= 7. */
2653    if (devinfo->gen >= 7)
2654       return false;
2655 
2656    calculate_live_intervals();
2657 
2658    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2659       int ip = next_ip;
2660       next_ip++;
2661 
2662       if (inst->opcode != BRW_OPCODE_MOV ||
2663 	  inst->is_partial_write() ||
2664 	  inst->dst.file != MRF || inst->src[0].file != VGRF ||
2665 	  inst->dst.type != inst->src[0].type ||
2666 	  inst->src[0].abs || inst->src[0].negate ||
2667           !inst->src[0].is_contiguous() ||
2668           inst->src[0].offset % REG_SIZE != 0)
2669 	 continue;
2670 
2671       /* Can't compute-to-MRF this GRF if someone else was going to
2672        * read it later.
2673        */
2674       if (this->virtual_grf_end[inst->src[0].nr] > ip)
2675 	 continue;
2676 
2677       /* Found a move of a GRF to a MRF.  Let's see if we can go rewrite the
2678        * things that computed the value of all GRFs of the source region.  The
2679        * regs_left bitset keeps track of the registers we haven't yet found a
2680        * generating instruction for.
2681        */
2682       unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2683 
2684       foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2685          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2686                              inst->src[0], inst->size_read(0))) {
2687 	    /* Found the last thing to write our reg we want to turn
2688 	     * into a compute-to-MRF.
2689 	     */
2690 
2691 	    /* If this one instruction didn't populate all the
2692 	     * channels, bail.  We might be able to rewrite everything
2693 	     * that writes that reg, but it would require smarter
2694 	     * tracking.
2695 	     */
2696 	    if (scan_inst->is_partial_write())
2697 	       break;
2698 
2699             /* Handling things not fully contained in the source of the copy
2700              * would need us to understand coalescing out more than one MOV at
2701              * a time.
2702              */
2703             if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2704                                      inst->src[0], inst->size_read(0)))
2705                break;
2706 
2707 	    /* SEND instructions can't have MRF as a destination. */
2708 	    if (scan_inst->mlen)
2709 	       break;
2710 
2711 	    if (devinfo->gen == 6) {
2712 	       /* gen6 math instructions must have the destination be
2713 		* GRF, so no compute-to-MRF for them.
2714 		*/
2715 	       if (scan_inst->is_math()) {
2716 		  break;
2717 	       }
2718 	    }
2719 
2720             /* Clear the bits for any registers this instruction overwrites. */
2721             regs_left &= ~mask_relative_to(
2722                inst->src[0], scan_inst->dst, scan_inst->size_written);
2723             if (!regs_left)
2724                break;
2725 	 }
2726 
2727 	 /* We don't handle control flow here.  Most computation of
2728 	  * values that end up in MRFs are shortly before the MRF
2729 	  * write anyway.
2730 	  */
2731 	 if (block->start() == scan_inst)
2732 	    break;
2733 
2734 	 /* You can't read from an MRF, so if someone else reads our
2735 	  * MRF's source GRF that we wanted to rewrite, that stops us.
2736 	  */
2737 	 bool interfered = false;
2738 	 for (int i = 0; i < scan_inst->sources; i++) {
2739             if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2740                                 inst->src[0], inst->size_read(0))) {
2741 	       interfered = true;
2742 	    }
2743 	 }
2744 	 if (interfered)
2745 	    break;
2746 
2747          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2748                              inst->dst, inst->size_written)) {
2749 	    /* If somebody else writes our MRF here, we can't
2750 	     * compute-to-MRF before that.
2751 	     */
2752             break;
2753          }
2754 
2755          if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2756              regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2757                              inst->dst, inst->size_written)) {
2758 	    /* Found a SEND instruction, which means that there are
2759 	     * live values in MRFs from base_mrf to base_mrf +
2760 	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
2761 	     * above it.
2762 	     */
2763             break;
2764          }
2765       }
2766 
2767       if (regs_left)
2768          continue;
2769 
2770       /* Found all generating instructions of our MRF's source value, so it
2771        * should be safe to rewrite them to point to the MRF directly.
2772        */
2773       regs_left = (1 << regs_read(inst, 0)) - 1;
2774 
2775       foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2776          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2777                              inst->src[0], inst->size_read(0))) {
2778             /* Clear the bits for any registers this instruction overwrites. */
2779             regs_left &= ~mask_relative_to(
2780                inst->src[0], scan_inst->dst, scan_inst->size_written);
2781 
2782             const unsigned rel_offset = reg_offset(scan_inst->dst) -
2783                                         reg_offset(inst->src[0]);
2784 
2785             if (inst->dst.nr & BRW_MRF_COMPR4) {
2786                /* Apply the same address transformation done by the hardware
2787                 * for COMPR4 MRF writes.
2788                 */
2789                assert(rel_offset < 2 * REG_SIZE);
2790                scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2791 
2792                /* Clear the COMPR4 bit if the generating instruction is not
2793                 * compressed.
2794                 */
2795                if (scan_inst->size_written < 2 * REG_SIZE)
2796                   scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2797 
2798             } else {
2799                /* Calculate the MRF number the result of this instruction is
2800                 * ultimately written to.
2801                 */
2802                scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2803             }
2804 
2805             scan_inst->dst.file = MRF;
2806             scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2807             scan_inst->saturate |= inst->saturate;
2808             if (!regs_left)
2809                break;
2810          }
2811       }
2812 
2813       assert(!regs_left);
2814       inst->remove(block);
2815       progress = true;
2816    }
2817 
2818    if (progress)
2819       invalidate_live_intervals();
2820 
2821    return progress;
2822 }
2823 
2824 /**
2825  * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2826  * flow.  We could probably do better here with some form of divergence
2827  * analysis.
2828  */
2829 bool
eliminate_find_live_channel()2830 fs_visitor::eliminate_find_live_channel()
2831 {
2832    bool progress = false;
2833    unsigned depth = 0;
2834 
2835    if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2836       /* The optimization below assumes that channel zero is live on thread
2837        * dispatch, which may not be the case if the fixed function dispatches
2838        * threads sparsely.
2839        */
2840       return false;
2841    }
2842 
2843    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2844       switch (inst->opcode) {
2845       case BRW_OPCODE_IF:
2846       case BRW_OPCODE_DO:
2847          depth++;
2848          break;
2849 
2850       case BRW_OPCODE_ENDIF:
2851       case BRW_OPCODE_WHILE:
2852          depth--;
2853          break;
2854 
2855       case FS_OPCODE_DISCARD_JUMP:
2856          /* This can potentially make control flow non-uniform until the end
2857           * of the program.
2858           */
2859          return progress;
2860 
2861       case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2862          if (depth == 0) {
2863             inst->opcode = BRW_OPCODE_MOV;
2864             inst->src[0] = brw_imm_ud(0u);
2865             inst->sources = 1;
2866             inst->force_writemask_all = true;
2867             progress = true;
2868          }
2869          break;
2870 
2871       default:
2872          break;
2873       }
2874    }
2875 
2876    return progress;
2877 }
2878 
2879 /**
2880  * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2881  * instructions to FS_OPCODE_REP_FB_WRITE.
2882  */
2883 void
emit_repclear_shader()2884 fs_visitor::emit_repclear_shader()
2885 {
2886    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2887    int base_mrf = 0;
2888    int color_mrf = base_mrf + 2;
2889    fs_inst *mov;
2890 
2891    if (uniforms > 0) {
2892       mov = bld.exec_all().group(4, 0)
2893                .MOV(brw_message_reg(color_mrf),
2894                     fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2895    } else {
2896       struct brw_reg reg =
2897          brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2898                  BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2899                  BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2900 
2901       mov = bld.exec_all().group(4, 0)
2902                .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2903    }
2904 
2905    fs_inst *write;
2906    if (key->nr_color_regions == 1) {
2907       write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2908       write->saturate = key->clamp_fragment_color;
2909       write->base_mrf = color_mrf;
2910       write->target = 0;
2911       write->header_size = 0;
2912       write->mlen = 1;
2913    } else {
2914       assume(key->nr_color_regions > 0);
2915       for (int i = 0; i < key->nr_color_regions; ++i) {
2916          write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2917          write->saturate = key->clamp_fragment_color;
2918          write->base_mrf = base_mrf;
2919          write->target = i;
2920          write->header_size = 2;
2921          write->mlen = 3;
2922       }
2923    }
2924    write->eot = true;
2925 
2926    calculate_cfg();
2927 
2928    assign_constant_locations();
2929    assign_curb_setup();
2930 
2931    /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2932    if (uniforms > 0) {
2933       assert(mov->src[0].file == FIXED_GRF);
2934       mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2935    }
2936 }
2937 
2938 /**
2939  * Walks through basic blocks, looking for repeated MRF writes and
2940  * removing the later ones.
2941  */
2942 bool
remove_duplicate_mrf_writes()2943 fs_visitor::remove_duplicate_mrf_writes()
2944 {
2945    fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2946    bool progress = false;
2947 
2948    /* Need to update the MRF tracking for compressed instructions. */
2949    if (dispatch_width >= 16)
2950       return false;
2951 
2952    memset(last_mrf_move, 0, sizeof(last_mrf_move));
2953 
2954    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2955       if (inst->is_control_flow()) {
2956 	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2957       }
2958 
2959       if (inst->opcode == BRW_OPCODE_MOV &&
2960 	  inst->dst.file == MRF) {
2961          fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2962 	 if (prev_inst && inst->equals(prev_inst)) {
2963 	    inst->remove(block);
2964 	    progress = true;
2965 	    continue;
2966 	 }
2967       }
2968 
2969       /* Clear out the last-write records for MRFs that were overwritten. */
2970       if (inst->dst.file == MRF) {
2971          last_mrf_move[inst->dst.nr] = NULL;
2972       }
2973 
2974       if (inst->mlen > 0 && inst->base_mrf != -1) {
2975 	 /* Found a SEND instruction, which will include two or fewer
2976 	  * implied MRF writes.  We could do better here.
2977 	  */
2978 	 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2979 	    last_mrf_move[inst->base_mrf + i] = NULL;
2980 	 }
2981       }
2982 
2983       /* Clear out any MRF move records whose sources got overwritten. */
2984       for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2985          if (last_mrf_move[i] &&
2986              regions_overlap(inst->dst, inst->size_written,
2987                              last_mrf_move[i]->src[0],
2988                              last_mrf_move[i]->size_read(0))) {
2989             last_mrf_move[i] = NULL;
2990          }
2991       }
2992 
2993       if (inst->opcode == BRW_OPCODE_MOV &&
2994 	  inst->dst.file == MRF &&
2995 	  inst->src[0].file != ARF &&
2996 	  !inst->is_partial_write()) {
2997          last_mrf_move[inst->dst.nr] = inst;
2998       }
2999    }
3000 
3001    if (progress)
3002       invalidate_live_intervals();
3003 
3004    return progress;
3005 }
3006 
3007 static void
clear_deps_for_inst_src(fs_inst * inst,bool * deps,int first_grf,int grf_len)3008 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3009 {
3010    /* Clear the flag for registers that actually got read (as expected). */
3011    for (int i = 0; i < inst->sources; i++) {
3012       int grf;
3013       if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3014          grf = inst->src[i].nr;
3015       } else {
3016          continue;
3017       }
3018 
3019       if (grf >= first_grf &&
3020           grf < first_grf + grf_len) {
3021          deps[grf - first_grf] = false;
3022          if (inst->exec_size == 16)
3023             deps[grf - first_grf + 1] = false;
3024       }
3025    }
3026 }
3027 
3028 /**
3029  * Implements this workaround for the original 965:
3030  *
3031  *     "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3032  *      check for post destination dependencies on this instruction, software
3033  *      must ensure that there is no destination hazard for the case of ‘write
3034  *      followed by a posted write’ shown in the following example.
3035  *
3036  *      1. mov r3 0
3037  *      2. send r3.xy <rest of send instruction>
3038  *      3. mov r2 r3
3039  *
3040  *      Due to no post-destination dependency check on the ‘send’, the above
3041  *      code sequence could have two instructions (1 and 2) in flight at the
3042  *      same time that both consider ‘r3’ as the target of their final writes.
3043  */
3044 void
insert_gen4_pre_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3045 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3046                                                         fs_inst *inst)
3047 {
3048    int write_len = regs_written(inst);
3049    int first_write_grf = inst->dst.nr;
3050    bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3051    assert(write_len < (int)sizeof(needs_dep) - 1);
3052 
3053    memset(needs_dep, false, sizeof(needs_dep));
3054    memset(needs_dep, true, write_len);
3055 
3056    clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3057 
3058    /* Walk backwards looking for writes to registers we're writing which
3059     * aren't read since being written.  If we hit the start of the program,
3060     * we assume that there are no outstanding dependencies on entry to the
3061     * program.
3062     */
3063    foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3064       /* If we hit control flow, assume that there *are* outstanding
3065        * dependencies, and force their cleanup before our instruction.
3066        */
3067       if (block->start() == scan_inst && block->num != 0) {
3068          for (int i = 0; i < write_len; i++) {
3069             if (needs_dep[i])
3070                DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3071                                first_write_grf + i);
3072          }
3073          return;
3074       }
3075 
3076       /* We insert our reads as late as possible on the assumption that any
3077        * instruction but a MOV that might have left us an outstanding
3078        * dependency has more latency than a MOV.
3079        */
3080       if (scan_inst->dst.file == VGRF) {
3081          for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3082             int reg = scan_inst->dst.nr + i;
3083 
3084             if (reg >= first_write_grf &&
3085                 reg < first_write_grf + write_len &&
3086                 needs_dep[reg - first_write_grf]) {
3087                DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3088                needs_dep[reg - first_write_grf] = false;
3089                if (scan_inst->exec_size == 16)
3090                   needs_dep[reg - first_write_grf + 1] = false;
3091             }
3092          }
3093       }
3094 
3095       /* Clear the flag for registers that actually got read (as expected). */
3096       clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3097 
3098       /* Continue the loop only if we haven't resolved all the dependencies */
3099       int i;
3100       for (i = 0; i < write_len; i++) {
3101          if (needs_dep[i])
3102             break;
3103       }
3104       if (i == write_len)
3105          return;
3106    }
3107 }
3108 
3109 /**
3110  * Implements this workaround for the original 965:
3111  *
3112  *     "[DevBW, DevCL] Errata: A destination register from a send can not be
3113  *      used as a destination register until after it has been sourced by an
3114  *      instruction with a different destination register.
3115  */
3116 void
insert_gen4_post_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3117 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3118 {
3119    int write_len = regs_written(inst);
3120    int first_write_grf = inst->dst.nr;
3121    bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3122    assert(write_len < (int)sizeof(needs_dep) - 1);
3123 
3124    memset(needs_dep, false, sizeof(needs_dep));
3125    memset(needs_dep, true, write_len);
3126    /* Walk forwards looking for writes to registers we're writing which aren't
3127     * read before being written.
3128     */
3129    foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3130       /* If we hit control flow, force resolve all remaining dependencies. */
3131       if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3132          for (int i = 0; i < write_len; i++) {
3133             if (needs_dep[i])
3134                DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3135                                first_write_grf + i);
3136          }
3137          return;
3138       }
3139 
3140       /* Clear the flag for registers that actually got read (as expected). */
3141       clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3142 
3143       /* We insert our reads as late as possible since they're reading the
3144        * result of a SEND, which has massive latency.
3145        */
3146       if (scan_inst->dst.file == VGRF &&
3147           scan_inst->dst.nr >= first_write_grf &&
3148           scan_inst->dst.nr < first_write_grf + write_len &&
3149           needs_dep[scan_inst->dst.nr - first_write_grf]) {
3150          DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3151                          scan_inst->dst.nr);
3152          needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3153       }
3154 
3155       /* Continue the loop only if we haven't resolved all the dependencies */
3156       int i;
3157       for (i = 0; i < write_len; i++) {
3158          if (needs_dep[i])
3159             break;
3160       }
3161       if (i == write_len)
3162          return;
3163    }
3164 }
3165 
3166 void
insert_gen4_send_dependency_workarounds()3167 fs_visitor::insert_gen4_send_dependency_workarounds()
3168 {
3169    if (devinfo->gen != 4 || devinfo->is_g4x)
3170       return;
3171 
3172    bool progress = false;
3173 
3174    foreach_block_and_inst(block, fs_inst, inst, cfg) {
3175       if (inst->mlen != 0 && inst->dst.file == VGRF) {
3176          insert_gen4_pre_send_dependency_workarounds(block, inst);
3177          insert_gen4_post_send_dependency_workarounds(block, inst);
3178          progress = true;
3179       }
3180    }
3181 
3182    if (progress)
3183       invalidate_live_intervals();
3184 }
3185 
3186 /**
3187  * Turns the generic expression-style uniform pull constant load instruction
3188  * into a hardware-specific series of instructions for loading a pull
3189  * constant.
3190  *
3191  * The expression style allows the CSE pass before this to optimize out
3192  * repeated loads from the same offset, and gives the pre-register-allocation
3193  * scheduling full flexibility, while the conversion to native instructions
3194  * allows the post-register-allocation scheduler the best information
3195  * possible.
3196  *
3197  * Note that execution masking for setting up pull constant loads is special:
3198  * the channels that need to be written are unrelated to the current execution
3199  * mask, since a later instruction will use one of the result channels as a
3200  * source operand for all 8 or 16 of its channels.
3201  */
3202 void
lower_uniform_pull_constant_loads()3203 fs_visitor::lower_uniform_pull_constant_loads()
3204 {
3205    foreach_block_and_inst (block, fs_inst, inst, cfg) {
3206       if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3207          continue;
3208 
3209       if (devinfo->gen >= 7) {
3210          const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3211          const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3212 
3213          ubld.group(8, 0).MOV(payload,
3214                               retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3215          ubld.group(1, 0).MOV(component(payload, 2),
3216                               brw_imm_ud(inst->src[1].ud / 16));
3217 
3218          inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3219          inst->src[1] = payload;
3220          inst->header_size = 1;
3221          inst->mlen = 1;
3222 
3223          invalidate_live_intervals();
3224       } else {
3225          /* Before register allocation, we didn't tell the scheduler about the
3226           * MRF we use.  We know it's safe to use this MRF because nothing
3227           * else does except for register spill/unspill, which generates and
3228           * uses its MRF within a single IR instruction.
3229           */
3230          inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3231          inst->mlen = 1;
3232       }
3233    }
3234 }
3235 
3236 bool
lower_load_payload()3237 fs_visitor::lower_load_payload()
3238 {
3239    bool progress = false;
3240 
3241    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3242       if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3243          continue;
3244 
3245       assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3246       assert(inst->saturate == false);
3247       fs_reg dst = inst->dst;
3248 
3249       /* Get rid of COMPR4.  We'll add it back in if we need it */
3250       if (dst.file == MRF)
3251          dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3252 
3253       const fs_builder ibld(this, block, inst);
3254       const fs_builder hbld = ibld.exec_all().group(8, 0);
3255 
3256       for (uint8_t i = 0; i < inst->header_size; i++) {
3257          if (inst->src[i].file != BAD_FILE) {
3258             fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3259             fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3260             hbld.MOV(mov_dst, mov_src);
3261          }
3262          dst = offset(dst, hbld, 1);
3263       }
3264 
3265       if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3266           inst->exec_size > 8) {
3267          /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3268           * a straightforward copy.  Instead, the result of the
3269           * LOAD_PAYLOAD is treated as interleaved and the first four
3270           * non-header sources are unpacked as:
3271           *
3272           * m + 0: r0
3273           * m + 1: g0
3274           * m + 2: b0
3275           * m + 3: a0
3276           * m + 4: r1
3277           * m + 5: g1
3278           * m + 6: b1
3279           * m + 7: a1
3280           *
3281           * This is used for gen <= 5 fb writes.
3282           */
3283          assert(inst->exec_size == 16);
3284          assert(inst->header_size + 4 <= inst->sources);
3285          for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3286             if (inst->src[i].file != BAD_FILE) {
3287                if (devinfo->has_compr4) {
3288                   fs_reg compr4_dst = retype(dst, inst->src[i].type);
3289                   compr4_dst.nr |= BRW_MRF_COMPR4;
3290                   ibld.MOV(compr4_dst, inst->src[i]);
3291                } else {
3292                   /* Platform doesn't have COMPR4.  We have to fake it */
3293                   fs_reg mov_dst = retype(dst, inst->src[i].type);
3294                   ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3295                   mov_dst.nr += 4;
3296                   ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3297                }
3298             }
3299 
3300             dst.nr++;
3301          }
3302 
3303          /* The loop above only ever incremented us through the first set
3304           * of 4 registers.  However, thanks to the magic of COMPR4, we
3305           * actually wrote to the first 8 registers, so we need to take
3306           * that into account now.
3307           */
3308          dst.nr += 4;
3309 
3310          /* The COMPR4 code took care of the first 4 sources.  We'll let
3311           * the regular path handle any remaining sources.  Yes, we are
3312           * modifying the instruction but we're about to delete it so
3313           * this really doesn't hurt anything.
3314           */
3315          inst->header_size += 4;
3316       }
3317 
3318       for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3319          if (inst->src[i].file != BAD_FILE)
3320             ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3321          dst = offset(dst, ibld, 1);
3322       }
3323 
3324       inst->remove(block);
3325       progress = true;
3326    }
3327 
3328    if (progress)
3329       invalidate_live_intervals();
3330 
3331    return progress;
3332 }
3333 
3334 bool
lower_integer_multiplication()3335 fs_visitor::lower_integer_multiplication()
3336 {
3337    bool progress = false;
3338 
3339    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3340       const fs_builder ibld(this, block, inst);
3341 
3342       if (inst->opcode == BRW_OPCODE_MUL) {
3343          if (inst->dst.is_accumulator() ||
3344              (inst->dst.type != BRW_REGISTER_TYPE_D &&
3345               inst->dst.type != BRW_REGISTER_TYPE_UD))
3346             continue;
3347 
3348          /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3349           * operation directly, but CHV/BXT cannot.
3350           */
3351          if (devinfo->gen >= 8 &&
3352              !devinfo->is_cherryview && !devinfo->is_broxton)
3353             continue;
3354 
3355          if (inst->src[1].file == IMM &&
3356              inst->src[1].ud < (1 << 16)) {
3357             /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3358              * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3359              * src1 are used.
3360              *
3361              * If multiplying by an immediate value that fits in 16-bits, do a
3362              * single MUL instruction with that value in the proper location.
3363              */
3364             if (devinfo->gen < 7) {
3365                fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3366                           inst->dst.type);
3367                ibld.MOV(imm, inst->src[1]);
3368                ibld.MUL(inst->dst, imm, inst->src[0]);
3369             } else {
3370                const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3371                ibld.MUL(inst->dst, inst->src[0],
3372                         ud ? brw_imm_uw(inst->src[1].ud)
3373                            : brw_imm_w(inst->src[1].d));
3374             }
3375          } else {
3376             /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3377              * do 32-bit integer multiplication in one instruction, but instead
3378              * must do a sequence (which actually calculates a 64-bit result):
3379              *
3380              *    mul(8)  acc0<1>D   g3<8,8,1>D      g4<8,8,1>D
3381              *    mach(8) null       g3<8,8,1>D      g4<8,8,1>D
3382              *    mov(8)  g2<1>D     acc0<8,8,1>D
3383              *
3384              * But on Gen > 6, the ability to use second accumulator register
3385              * (acc1) for non-float data types was removed, preventing a simple
3386              * implementation in SIMD16. A 16-channel result can be calculated by
3387              * executing the three instructions twice in SIMD8, once with quarter
3388              * control of 1Q for the first eight channels and again with 2Q for
3389              * the second eight channels.
3390              *
3391              * Which accumulator register is implicitly accessed (by AccWrEnable
3392              * for instance) is determined by the quarter control. Unfortunately
3393              * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3394              * implicit accumulator access by an instruction with 2Q will access
3395              * acc1 regardless of whether the data type is usable in acc1.
3396              *
3397              * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3398              * integer data types.
3399              *
3400              * Since we only want the low 32-bits of the result, we can do two
3401              * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3402              * adjust the high result and add them (like the mach is doing):
3403              *
3404              *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<8,8,1>UW
3405              *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<8,8,1>UW
3406              *    shl(8)  g9<1>D     g8<8,8,1>D      16D
3407              *    add(8)  g2<1>D     g7<8,8,1>D      g8<8,8,1>D
3408              *
3409              * We avoid the shl instruction by realizing that we only want to add
3410              * the low 16-bits of the "high" result to the high 16-bits of the
3411              * "low" result and using proper regioning on the add:
3412              *
3413              *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<16,8,2>UW
3414              *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<16,8,2>UW
3415              *    add(8)  g7.1<2>UW  g7.1<16,8,2>UW  g8<16,8,2>UW
3416              *
3417              * Since it does not use the (single) accumulator register, we can
3418              * schedule multi-component multiplications much better.
3419              */
3420 
3421             fs_reg orig_dst = inst->dst;
3422             if (orig_dst.is_null() || orig_dst.file == MRF) {
3423                inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3424                                   inst->dst.type);
3425             }
3426             fs_reg low = inst->dst;
3427             fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3428                         inst->dst.type);
3429 
3430             if (devinfo->gen >= 7) {
3431                if (inst->src[1].file == IMM) {
3432                   ibld.MUL(low, inst->src[0],
3433                            brw_imm_uw(inst->src[1].ud & 0xffff));
3434                   ibld.MUL(high, inst->src[0],
3435                            brw_imm_uw(inst->src[1].ud >> 16));
3436                } else {
3437                   ibld.MUL(low, inst->src[0],
3438                            subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3439                   ibld.MUL(high, inst->src[0],
3440                            subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3441                }
3442             } else {
3443                ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3444                         inst->src[1]);
3445                ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3446                         inst->src[1]);
3447             }
3448 
3449             ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3450                      subscript(low, BRW_REGISTER_TYPE_UW, 1),
3451                      subscript(high, BRW_REGISTER_TYPE_UW, 0));
3452 
3453             if (inst->conditional_mod || orig_dst.file == MRF) {
3454                set_condmod(inst->conditional_mod,
3455                            ibld.MOV(orig_dst, inst->dst));
3456             }
3457          }
3458 
3459       } else if (inst->opcode == SHADER_OPCODE_MULH) {
3460          /* Should have been lowered to 8-wide. */
3461          assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3462          const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3463                                    inst->dst.type);
3464          fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3465          fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3466 
3467          if (devinfo->gen >= 8) {
3468             /* Until Gen8, integer multiplies read 32-bits from one source,
3469              * and 16-bits from the other, and relying on the MACH instruction
3470              * to generate the high bits of the result.
3471              *
3472              * On Gen8, the multiply instruction does a full 32x32-bit
3473              * multiply, but in order to do a 64-bit multiply we can simulate
3474              * the previous behavior and then use a MACH instruction.
3475              *
3476              * FINISHME: Don't use source modifiers on src1.
3477              */
3478             assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3479                    mul->src[1].type == BRW_REGISTER_TYPE_UD);
3480             mul->src[1].type = BRW_REGISTER_TYPE_UW;
3481             mul->src[1].stride *= 2;
3482 
3483          } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3484                     inst->group > 0) {
3485             /* Among other things the quarter control bits influence which
3486              * accumulator register is used by the hardware for instructions
3487              * that access the accumulator implicitly (e.g. MACH).  A
3488              * second-half instruction would normally map to acc1, which
3489              * doesn't exist on Gen7 and up (the hardware does emulate it for
3490              * floating-point instructions *only* by taking advantage of the
3491              * extra precision of acc0 not normally used for floating point
3492              * arithmetic).
3493              *
3494              * HSW and up are careful enough not to try to access an
3495              * accumulator register that doesn't exist, but on earlier Gen7
3496              * hardware we need to make sure that the quarter control bits are
3497              * zero to avoid non-deterministic behaviour and emit an extra MOV
3498              * to get the result masked correctly according to the current
3499              * channel enables.
3500              */
3501             mach->group = 0;
3502             mach->force_writemask_all = true;
3503             mach->dst = ibld.vgrf(inst->dst.type);
3504             ibld.MOV(inst->dst, mach->dst);
3505          }
3506       } else {
3507          continue;
3508       }
3509 
3510       inst->remove(block);
3511       progress = true;
3512    }
3513 
3514    if (progress)
3515       invalidate_live_intervals();
3516 
3517    return progress;
3518 }
3519 
3520 bool
lower_minmax()3521 fs_visitor::lower_minmax()
3522 {
3523    assert(devinfo->gen < 6);
3524 
3525    bool progress = false;
3526 
3527    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3528       const fs_builder ibld(this, block, inst);
3529 
3530       if (inst->opcode == BRW_OPCODE_SEL &&
3531           inst->predicate == BRW_PREDICATE_NONE) {
3532          /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3533           *        the original SEL.L/GE instruction
3534           */
3535          ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3536                   inst->conditional_mod);
3537          inst->predicate = BRW_PREDICATE_NORMAL;
3538          inst->conditional_mod = BRW_CONDITIONAL_NONE;
3539 
3540          progress = true;
3541       }
3542    }
3543 
3544    if (progress)
3545       invalidate_live_intervals();
3546 
3547    return progress;
3548 }
3549 
3550 static void
setup_color_payload(const fs_builder & bld,const brw_wm_prog_key * key,fs_reg * dst,fs_reg color,unsigned components)3551 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3552                     fs_reg *dst, fs_reg color, unsigned components)
3553 {
3554    if (key->clamp_fragment_color) {
3555       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3556       assert(color.type == BRW_REGISTER_TYPE_F);
3557 
3558       for (unsigned i = 0; i < components; i++)
3559          set_saturate(true,
3560                       bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3561 
3562       color = tmp;
3563    }
3564 
3565    for (unsigned i = 0; i < components; i++)
3566       dst[i] = offset(color, bld, i);
3567 }
3568 
3569 static void
lower_fb_write_logical_send(const fs_builder & bld,fs_inst * inst,const struct brw_wm_prog_data * prog_data,const brw_wm_prog_key * key,const fs_visitor::thread_payload & payload)3570 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3571                             const struct brw_wm_prog_data *prog_data,
3572                             const brw_wm_prog_key *key,
3573                             const fs_visitor::thread_payload &payload)
3574 {
3575    assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3576    const gen_device_info *devinfo = bld.shader->devinfo;
3577    const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3578    const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3579    const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3580    const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3581    const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3582    const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3583    fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3584    const unsigned components =
3585       inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3586 
3587    /* We can potentially have a message length of up to 15, so we have to set
3588     * base_mrf to either 0 or 1 in order to fit in m0..m15.
3589     */
3590    fs_reg sources[15];
3591    int header_size = 2, payload_header_size;
3592    unsigned length = 0;
3593 
3594    /* From the Sandy Bridge PRM, volume 4, page 198:
3595     *
3596     *     "Dispatched Pixel Enables. One bit per pixel indicating
3597     *      which pixels were originally enabled when the thread was
3598     *      dispatched. This field is only required for the end-of-
3599     *      thread message and on all dual-source messages."
3600     */
3601    if (devinfo->gen >= 6 &&
3602        (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3603        color1.file == BAD_FILE &&
3604        key->nr_color_regions == 1) {
3605       header_size = 0;
3606    }
3607 
3608    if (header_size != 0) {
3609       assert(header_size == 2);
3610       /* Allocate 2 registers for a header */
3611       length += 2;
3612    }
3613 
3614    if (payload.aa_dest_stencil_reg) {
3615       sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3616       bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3617          .MOV(sources[length],
3618               fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3619       length++;
3620    }
3621 
3622    if (sample_mask.file != BAD_FILE) {
3623       sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3624                                BRW_REGISTER_TYPE_UD);
3625 
3626       /* Hand over gl_SampleMask.  Only the lower 16 bits of each channel are
3627        * relevant.  Since it's unsigned single words one vgrf is always
3628        * 16-wide, but only the lower or higher 8 channels will be used by the
3629        * hardware when doing a SIMD8 write depending on whether we have
3630        * selected the subspans for the first or second half respectively.
3631        */
3632       assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3633       sample_mask.type = BRW_REGISTER_TYPE_UW;
3634       sample_mask.stride *= 2;
3635 
3636       bld.exec_all().annotate("FB write oMask")
3637          .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3638                            inst->group),
3639               sample_mask);
3640       length++;
3641    }
3642 
3643    payload_header_size = length;
3644 
3645    if (src0_alpha.file != BAD_FILE) {
3646       /* FIXME: This is being passed at the wrong location in the payload and
3647        * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3648        * It's supposed to be immediately before oMask but there seems to be no
3649        * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3650        * requires header sources to form a contiguous segment at the beginning
3651        * of the message and src0_alpha has per-channel semantics.
3652        */
3653       setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3654       length++;
3655    } else if (key->replicate_alpha && inst->target != 0) {
3656       /* Handle the case when fragment shader doesn't write to draw buffer
3657        * zero. No need to call setup_color_payload() for src0_alpha because
3658        * alpha value will be undefined.
3659        */
3660       length++;
3661    }
3662 
3663    setup_color_payload(bld, key, &sources[length], color0, components);
3664    length += 4;
3665 
3666    if (color1.file != BAD_FILE) {
3667       setup_color_payload(bld, key, &sources[length], color1, components);
3668       length += 4;
3669    }
3670 
3671    if (src_depth.file != BAD_FILE) {
3672       sources[length] = src_depth;
3673       length++;
3674    }
3675 
3676    if (dst_depth.file != BAD_FILE) {
3677       sources[length] = dst_depth;
3678       length++;
3679    }
3680 
3681    if (src_stencil.file != BAD_FILE) {
3682       assert(devinfo->gen >= 9);
3683       assert(bld.dispatch_width() != 16);
3684 
3685       /* XXX: src_stencil is only available on gen9+. dst_depth is never
3686        * available on gen9+. As such it's impossible to have both enabled at the
3687        * same time and therefore length cannot overrun the array.
3688        */
3689       assert(length < 15);
3690 
3691       sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3692       bld.exec_all().annotate("FB write OS")
3693          .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3694               subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3695       length++;
3696    }
3697 
3698    fs_inst *load;
3699    if (devinfo->gen >= 7) {
3700       /* Send from the GRF */
3701       fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3702       load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3703       payload.nr = bld.shader->alloc.allocate(regs_written(load));
3704       load->dst = payload;
3705 
3706       inst->src[0] = payload;
3707       inst->resize_sources(1);
3708    } else {
3709       /* Send from the MRF */
3710       load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3711                               sources, length, payload_header_size);
3712 
3713       /* On pre-SNB, we have to interlace the color values.  LOAD_PAYLOAD
3714        * will do this for us if we just give it a COMPR4 destination.
3715        */
3716       if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3717          load->dst.nr |= BRW_MRF_COMPR4;
3718 
3719       inst->resize_sources(0);
3720       inst->base_mrf = 1;
3721    }
3722 
3723    inst->opcode = FS_OPCODE_FB_WRITE;
3724    inst->mlen = regs_written(load);
3725    inst->header_size = header_size;
3726 }
3727 
3728 static void
lower_fb_read_logical_send(const fs_builder & bld,fs_inst * inst)3729 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3730 {
3731    const fs_builder &ubld = bld.exec_all();
3732    const unsigned length = 2;
3733    const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3734 
3735    ubld.group(16, 0)
3736        .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3737 
3738    inst->resize_sources(1);
3739    inst->src[0] = header;
3740    inst->opcode = FS_OPCODE_FB_READ;
3741    inst->mlen = length;
3742    inst->header_size = length;
3743 }
3744 
3745 static void
lower_sampler_logical_send_gen4(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)3746 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3747                                 const fs_reg &coordinate,
3748                                 const fs_reg &shadow_c,
3749                                 const fs_reg &lod, const fs_reg &lod2,
3750                                 const fs_reg &surface,
3751                                 const fs_reg &sampler,
3752                                 unsigned coord_components,
3753                                 unsigned grad_components)
3754 {
3755    const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3756                          op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3757    fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3758    fs_reg msg_end = msg_begin;
3759 
3760    /* g0 header. */
3761    msg_end = offset(msg_end, bld.group(8, 0), 1);
3762 
3763    for (unsigned i = 0; i < coord_components; i++)
3764       bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3765               offset(coordinate, bld, i));
3766 
3767    msg_end = offset(msg_end, bld, coord_components);
3768 
3769    /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3770     * require all three components to be present and zero if they are unused.
3771     */
3772    if (coord_components > 0 &&
3773        (has_lod || shadow_c.file != BAD_FILE ||
3774         (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3775       for (unsigned i = coord_components; i < 3; i++)
3776          bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3777 
3778       msg_end = offset(msg_end, bld, 3 - coord_components);
3779    }
3780 
3781    if (op == SHADER_OPCODE_TXD) {
3782       /* TXD unsupported in SIMD16 mode. */
3783       assert(bld.dispatch_width() == 8);
3784 
3785       /* the slots for u and v are always present, but r is optional */
3786       if (coord_components < 2)
3787          msg_end = offset(msg_end, bld, 2 - coord_components);
3788 
3789       /*  P   = u, v, r
3790        * dPdx = dudx, dvdx, drdx
3791        * dPdy = dudy, dvdy, drdy
3792        *
3793        * 1-arg: Does not exist.
3794        *
3795        * 2-arg: dudx   dvdx   dudy   dvdy
3796        *        dPdx.x dPdx.y dPdy.x dPdy.y
3797        *        m4     m5     m6     m7
3798        *
3799        * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
3800        *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3801        *        m5     m6     m7     m8     m9     m10
3802        */
3803       for (unsigned i = 0; i < grad_components; i++)
3804          bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3805 
3806       msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3807 
3808       for (unsigned i = 0; i < grad_components; i++)
3809          bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3810 
3811       msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3812    }
3813 
3814    if (has_lod) {
3815       /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3816        * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3817        */
3818       assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3819              bld.dispatch_width() == 16);
3820 
3821       const brw_reg_type type =
3822          (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3823           BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3824       bld.MOV(retype(msg_end, type), lod);
3825       msg_end = offset(msg_end, bld, 1);
3826    }
3827 
3828    if (shadow_c.file != BAD_FILE) {
3829       if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3830          /* There's no plain shadow compare message, so we use shadow
3831           * compare with a bias of 0.0.
3832           */
3833          bld.MOV(msg_end, brw_imm_f(0.0f));
3834          msg_end = offset(msg_end, bld, 1);
3835       }
3836 
3837       bld.MOV(msg_end, shadow_c);
3838       msg_end = offset(msg_end, bld, 1);
3839    }
3840 
3841    inst->opcode = op;
3842    inst->src[0] = reg_undef;
3843    inst->src[1] = surface;
3844    inst->src[2] = sampler;
3845    inst->resize_sources(3);
3846    inst->base_mrf = msg_begin.nr;
3847    inst->mlen = msg_end.nr - msg_begin.nr;
3848    inst->header_size = 1;
3849 }
3850 
3851 static void
lower_sampler_logical_send_gen5(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & sample_index,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)3852 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3853                                 const fs_reg &coordinate,
3854                                 const fs_reg &shadow_c,
3855                                 const fs_reg &lod, const fs_reg &lod2,
3856                                 const fs_reg &sample_index,
3857                                 const fs_reg &surface,
3858                                 const fs_reg &sampler,
3859                                 unsigned coord_components,
3860                                 unsigned grad_components)
3861 {
3862    fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3863    fs_reg msg_coords = message;
3864    unsigned header_size = 0;
3865 
3866    if (inst->offset != 0) {
3867       /* The offsets set up by the visitor are in the m1 header, so we can't
3868        * go headerless.
3869        */
3870       header_size = 1;
3871       message.nr--;
3872    }
3873 
3874    for (unsigned i = 0; i < coord_components; i++)
3875       bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3876               offset(coordinate, bld, i));
3877 
3878    fs_reg msg_end = offset(msg_coords, bld, coord_components);
3879    fs_reg msg_lod = offset(msg_coords, bld, 4);
3880 
3881    if (shadow_c.file != BAD_FILE) {
3882       fs_reg msg_shadow = msg_lod;
3883       bld.MOV(msg_shadow, shadow_c);
3884       msg_lod = offset(msg_shadow, bld, 1);
3885       msg_end = msg_lod;
3886    }
3887 
3888    switch (op) {
3889    case SHADER_OPCODE_TXL:
3890    case FS_OPCODE_TXB:
3891       bld.MOV(msg_lod, lod);
3892       msg_end = offset(msg_lod, bld, 1);
3893       break;
3894    case SHADER_OPCODE_TXD:
3895       /**
3896        *  P   =  u,    v,    r
3897        * dPdx = dudx, dvdx, drdx
3898        * dPdy = dudy, dvdy, drdy
3899        *
3900        * Load up these values:
3901        * - dudx   dudy   dvdx   dvdy   drdx   drdy
3902        * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3903        */
3904       msg_end = msg_lod;
3905       for (unsigned i = 0; i < grad_components; i++) {
3906          bld.MOV(msg_end, offset(lod, bld, i));
3907          msg_end = offset(msg_end, bld, 1);
3908 
3909          bld.MOV(msg_end, offset(lod2, bld, i));
3910          msg_end = offset(msg_end, bld, 1);
3911       }
3912       break;
3913    case SHADER_OPCODE_TXS:
3914       msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3915       bld.MOV(msg_lod, lod);
3916       msg_end = offset(msg_lod, bld, 1);
3917       break;
3918    case SHADER_OPCODE_TXF:
3919       msg_lod = offset(msg_coords, bld, 3);
3920       bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3921       msg_end = offset(msg_lod, bld, 1);
3922       break;
3923    case SHADER_OPCODE_TXF_CMS:
3924       msg_lod = offset(msg_coords, bld, 3);
3925       /* lod */
3926       bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3927       /* sample index */
3928       bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3929       msg_end = offset(msg_lod, bld, 2);
3930       break;
3931    default:
3932       break;
3933    }
3934 
3935    inst->opcode = op;
3936    inst->src[0] = reg_undef;
3937    inst->src[1] = surface;
3938    inst->src[2] = sampler;
3939    inst->resize_sources(3);
3940    inst->base_mrf = message.nr;
3941    inst->mlen = msg_end.nr - message.nr;
3942    inst->header_size = header_size;
3943 
3944    /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3945    assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3946 }
3947 
3948 static bool
is_high_sampler(const struct gen_device_info * devinfo,const fs_reg & sampler)3949 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3950 {
3951    if (devinfo->gen < 8 && !devinfo->is_haswell)
3952       return false;
3953 
3954    return sampler.file != IMM || sampler.ud >= 16;
3955 }
3956 
3957 static void
lower_sampler_logical_send_gen7(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,fs_reg lod,const fs_reg & lod2,const fs_reg & sample_index,const fs_reg & mcs,const fs_reg & surface,const fs_reg & sampler,const fs_reg & tg4_offset,unsigned coord_components,unsigned grad_components)3958 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3959                                 const fs_reg &coordinate,
3960                                 const fs_reg &shadow_c,
3961                                 fs_reg lod, const fs_reg &lod2,
3962                                 const fs_reg &sample_index,
3963                                 const fs_reg &mcs,
3964                                 const fs_reg &surface,
3965                                 const fs_reg &sampler,
3966                                 const fs_reg &tg4_offset,
3967                                 unsigned coord_components,
3968                                 unsigned grad_components)
3969 {
3970    const gen_device_info *devinfo = bld.shader->devinfo;
3971    unsigned reg_width = bld.dispatch_width() / 8;
3972    unsigned header_size = 0, length = 0;
3973    fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3974    for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3975       sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3976 
3977    if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3978        inst->offset != 0 || inst->eot ||
3979        op == SHADER_OPCODE_SAMPLEINFO ||
3980        is_high_sampler(devinfo, sampler)) {
3981       /* For general texture offsets (no txf workaround), we need a header to
3982        * put them in.  Note that we're only reserving space for it in the
3983        * message payload as it will be initialized implicitly by the
3984        * generator.
3985        *
3986        * TG4 needs to place its channel select in the header, for interaction
3987        * with ARB_texture_swizzle.  The sampler index is only 4-bits, so for
3988        * larger sampler numbers we need to offset the Sampler State Pointer in
3989        * the header.
3990        */
3991       header_size = 1;
3992       sources[0] = fs_reg();
3993       length++;
3994 
3995       /* If we're requesting fewer than four channels worth of response,
3996        * and we have an explicit header, we need to set up the sampler
3997        * writemask.  It's reversed from normal: 1 means "don't write".
3998        */
3999       if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4000          assert(regs_written(inst) % reg_width == 0);
4001          unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4002          inst->offset |= mask << 12;
4003       }
4004    }
4005 
4006    if (shadow_c.file != BAD_FILE) {
4007       bld.MOV(sources[length], shadow_c);
4008       length++;
4009    }
4010 
4011    bool coordinate_done = false;
4012 
4013    /* Set up the LOD info */
4014    switch (op) {
4015    case FS_OPCODE_TXB:
4016    case SHADER_OPCODE_TXL:
4017       if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4018          op = SHADER_OPCODE_TXL_LZ;
4019          break;
4020       }
4021       bld.MOV(sources[length], lod);
4022       length++;
4023       break;
4024    case SHADER_OPCODE_TXD:
4025       /* TXD should have been lowered in SIMD16 mode. */
4026       assert(bld.dispatch_width() == 8);
4027 
4028       /* Load dPdx and the coordinate together:
4029        * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4030        */
4031       for (unsigned i = 0; i < coord_components; i++) {
4032          bld.MOV(sources[length++], offset(coordinate, bld, i));
4033 
4034          /* For cube map array, the coordinate is (u,v,r,ai) but there are
4035           * only derivatives for (u, v, r).
4036           */
4037          if (i < grad_components) {
4038             bld.MOV(sources[length++], offset(lod, bld, i));
4039             bld.MOV(sources[length++], offset(lod2, bld, i));
4040          }
4041       }
4042 
4043       coordinate_done = true;
4044       break;
4045    case SHADER_OPCODE_TXS:
4046       bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4047       length++;
4048       break;
4049    case SHADER_OPCODE_TXF:
4050       /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4051        * On Gen9 they are u, v, lod, r
4052        */
4053       bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4054 
4055       if (devinfo->gen >= 9) {
4056          if (coord_components >= 2) {
4057             bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4058                     offset(coordinate, bld, 1));
4059          } else {
4060             sources[length] = brw_imm_d(0);
4061          }
4062          length++;
4063       }
4064 
4065       if (devinfo->gen >= 9 && lod.is_zero()) {
4066          op = SHADER_OPCODE_TXF_LZ;
4067       } else {
4068          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4069          length++;
4070       }
4071 
4072       for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4073          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4074                  offset(coordinate, bld, i));
4075 
4076       coordinate_done = true;
4077       break;
4078 
4079    case SHADER_OPCODE_TXF_CMS:
4080    case SHADER_OPCODE_TXF_CMS_W:
4081    case SHADER_OPCODE_TXF_UMS:
4082    case SHADER_OPCODE_TXF_MCS:
4083       if (op == SHADER_OPCODE_TXF_UMS ||
4084           op == SHADER_OPCODE_TXF_CMS ||
4085           op == SHADER_OPCODE_TXF_CMS_W) {
4086          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4087          length++;
4088       }
4089 
4090       if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4091          /* Data from the multisample control surface. */
4092          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4093          length++;
4094 
4095          /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4096           * the MCS data.
4097           */
4098          if (op == SHADER_OPCODE_TXF_CMS_W) {
4099             bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4100                     mcs.file == IMM ?
4101                     mcs :
4102                     offset(mcs, bld, 1));
4103             length++;
4104          }
4105       }
4106 
4107       /* There is no offsetting for this message; just copy in the integer
4108        * texture coordinates.
4109        */
4110       for (unsigned i = 0; i < coord_components; i++)
4111          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4112                  offset(coordinate, bld, i));
4113 
4114       coordinate_done = true;
4115       break;
4116    case SHADER_OPCODE_TG4_OFFSET:
4117       /* More crazy intermixing */
4118       for (unsigned i = 0; i < 2; i++) /* u, v */
4119          bld.MOV(sources[length++], offset(coordinate, bld, i));
4120 
4121       for (unsigned i = 0; i < 2; i++) /* offu, offv */
4122          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4123                  offset(tg4_offset, bld, i));
4124 
4125       if (coord_components == 3) /* r if present */
4126          bld.MOV(sources[length++], offset(coordinate, bld, 2));
4127 
4128       coordinate_done = true;
4129       break;
4130    default:
4131       break;
4132    }
4133 
4134    /* Set up the coordinate (except for cases where it was done above) */
4135    if (!coordinate_done) {
4136       for (unsigned i = 0; i < coord_components; i++)
4137          bld.MOV(sources[length++], offset(coordinate, bld, i));
4138    }
4139 
4140    int mlen;
4141    if (reg_width == 2)
4142       mlen = length * reg_width - header_size;
4143    else
4144       mlen = length * reg_width;
4145 
4146    const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4147                                      BRW_REGISTER_TYPE_F);
4148    bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4149 
4150    /* Generate the SEND. */
4151    inst->opcode = op;
4152    inst->src[0] = src_payload;
4153    inst->src[1] = surface;
4154    inst->src[2] = sampler;
4155    inst->resize_sources(3);
4156    inst->mlen = mlen;
4157    inst->header_size = header_size;
4158 
4159    /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4160    assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4161 }
4162 
4163 static void
lower_sampler_logical_send(const fs_builder & bld,fs_inst * inst,opcode op)4164 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4165 {
4166    const gen_device_info *devinfo = bld.shader->devinfo;
4167    const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4168    const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4169    const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4170    const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4171    const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4172    const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4173    const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4174    const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4175    const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4176    assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4177    const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4178    assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4179    const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4180 
4181    if (devinfo->gen >= 7) {
4182       lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4183                                       shadow_c, lod, lod2, sample_index,
4184                                       mcs, surface, sampler, tg4_offset,
4185                                       coord_components, grad_components);
4186    } else if (devinfo->gen >= 5) {
4187       lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4188                                       shadow_c, lod, lod2, sample_index,
4189                                       surface, sampler,
4190                                       coord_components, grad_components);
4191    } else {
4192       lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4193                                       shadow_c, lod, lod2,
4194                                       surface, sampler,
4195                                       coord_components, grad_components);
4196    }
4197 }
4198 
4199 /**
4200  * Initialize the header present in some typed and untyped surface
4201  * messages.
4202  */
4203 static fs_reg
emit_surface_header(const fs_builder & bld,const fs_reg & sample_mask)4204 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4205 {
4206    fs_builder ubld = bld.exec_all().group(8, 0);
4207    const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4208    ubld.MOV(dst, brw_imm_d(0));
4209    ubld.MOV(component(dst, 7), sample_mask);
4210    return dst;
4211 }
4212 
4213 static void
lower_surface_logical_send(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & sample_mask)4214 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4215                            const fs_reg &sample_mask)
4216 {
4217    /* Get the logical send arguments. */
4218    const fs_reg &addr = inst->src[0];
4219    const fs_reg &src = inst->src[1];
4220    const fs_reg &surface = inst->src[2];
4221    const UNUSED fs_reg &dims = inst->src[3];
4222    const fs_reg &arg = inst->src[4];
4223 
4224    /* Calculate the total number of components of the payload. */
4225    const unsigned addr_sz = inst->components_read(0);
4226    const unsigned src_sz = inst->components_read(1);
4227    const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4228    const unsigned sz = header_sz + addr_sz + src_sz;
4229 
4230    /* Allocate space for the payload. */
4231    fs_reg *const components = new fs_reg[sz];
4232    const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4233    unsigned n = 0;
4234 
4235    /* Construct the payload. */
4236    if (header_sz)
4237       components[n++] = emit_surface_header(bld, sample_mask);
4238 
4239    for (unsigned i = 0; i < addr_sz; i++)
4240       components[n++] = offset(addr, bld, i);
4241 
4242    for (unsigned i = 0; i < src_sz; i++)
4243       components[n++] = offset(src, bld, i);
4244 
4245    bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4246 
4247    /* Update the original instruction. */
4248    inst->opcode = op;
4249    inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4250    inst->header_size = header_sz;
4251 
4252    inst->src[0] = payload;
4253    inst->src[1] = surface;
4254    inst->src[2] = arg;
4255    inst->resize_sources(3);
4256 
4257    delete[] components;
4258 }
4259 
4260 static void
lower_varying_pull_constant_logical_send(const fs_builder & bld,fs_inst * inst)4261 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4262 {
4263    const gen_device_info *devinfo = bld.shader->devinfo;
4264 
4265    if (devinfo->gen >= 7) {
4266       /* We are switching the instruction from an ALU-like instruction to a
4267        * send-from-grf instruction.  Since sends can't handle strides or
4268        * source modifiers, we have to make a copy of the offset source.
4269        */
4270       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4271       bld.MOV(tmp, inst->src[1]);
4272       inst->src[1] = tmp;
4273 
4274       inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4275 
4276    } else {
4277       const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4278                            BRW_REGISTER_TYPE_UD);
4279 
4280       bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4281 
4282       inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4283       inst->resize_sources(1);
4284       inst->base_mrf = payload.nr;
4285       inst->header_size = 1;
4286       inst->mlen = 1 + inst->exec_size / 8;
4287    }
4288 }
4289 
4290 static void
lower_math_logical_send(const fs_builder & bld,fs_inst * inst)4291 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4292 {
4293    assert(bld.shader->devinfo->gen < 6);
4294 
4295    inst->base_mrf = 2;
4296    inst->mlen = inst->sources * inst->exec_size / 8;
4297 
4298    if (inst->sources > 1) {
4299       /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4300        * "Message Payload":
4301        *
4302        * "Operand0[7].  For the INT DIV functions, this operand is the
4303        *  denominator."
4304        *  ...
4305        * "Operand1[7].  For the INT DIV functions, this operand is the
4306        *  numerator."
4307        */
4308       const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4309       const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4310       const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4311 
4312       inst->resize_sources(1);
4313       inst->src[0] = src0;
4314 
4315       assert(inst->exec_size == 8);
4316       bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4317    }
4318 }
4319 
4320 bool
lower_logical_sends()4321 fs_visitor::lower_logical_sends()
4322 {
4323    bool progress = false;
4324 
4325    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4326       const fs_builder ibld(this, block, inst);
4327 
4328       switch (inst->opcode) {
4329       case FS_OPCODE_FB_WRITE_LOGICAL:
4330          assert(stage == MESA_SHADER_FRAGMENT);
4331          lower_fb_write_logical_send(ibld, inst,
4332                                      brw_wm_prog_data(prog_data),
4333                                      (const brw_wm_prog_key *)key,
4334                                      payload);
4335          break;
4336 
4337       case FS_OPCODE_FB_READ_LOGICAL:
4338          lower_fb_read_logical_send(ibld, inst);
4339          break;
4340 
4341       case SHADER_OPCODE_TEX_LOGICAL:
4342          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4343          break;
4344 
4345       case SHADER_OPCODE_TXD_LOGICAL:
4346          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4347          break;
4348 
4349       case SHADER_OPCODE_TXF_LOGICAL:
4350          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4351          break;
4352 
4353       case SHADER_OPCODE_TXL_LOGICAL:
4354          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4355          break;
4356 
4357       case SHADER_OPCODE_TXS_LOGICAL:
4358          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4359          break;
4360 
4361       case FS_OPCODE_TXB_LOGICAL:
4362          lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4363          break;
4364 
4365       case SHADER_OPCODE_TXF_CMS_LOGICAL:
4366          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4367          break;
4368 
4369       case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4370          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4371          break;
4372 
4373       case SHADER_OPCODE_TXF_UMS_LOGICAL:
4374          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4375          break;
4376 
4377       case SHADER_OPCODE_TXF_MCS_LOGICAL:
4378          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4379          break;
4380 
4381       case SHADER_OPCODE_LOD_LOGICAL:
4382          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4383          break;
4384 
4385       case SHADER_OPCODE_TG4_LOGICAL:
4386          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4387          break;
4388 
4389       case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4390          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4391          break;
4392 
4393       case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4394          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4395          break;
4396 
4397       case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4398          lower_surface_logical_send(ibld, inst,
4399                                     SHADER_OPCODE_UNTYPED_SURFACE_READ,
4400                                     fs_reg());
4401          break;
4402 
4403       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4404          lower_surface_logical_send(ibld, inst,
4405                                     SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4406                                     ibld.sample_mask_reg());
4407          break;
4408 
4409       case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4410          lower_surface_logical_send(ibld, inst,
4411                                     SHADER_OPCODE_UNTYPED_ATOMIC,
4412                                     ibld.sample_mask_reg());
4413          break;
4414 
4415       case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4416          lower_surface_logical_send(ibld, inst,
4417                                     SHADER_OPCODE_TYPED_SURFACE_READ,
4418                                     brw_imm_d(0xffff));
4419          break;
4420 
4421       case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4422          lower_surface_logical_send(ibld, inst,
4423                                     SHADER_OPCODE_TYPED_SURFACE_WRITE,
4424                                     ibld.sample_mask_reg());
4425          break;
4426 
4427       case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4428          lower_surface_logical_send(ibld, inst,
4429                                     SHADER_OPCODE_TYPED_ATOMIC,
4430                                     ibld.sample_mask_reg());
4431          break;
4432 
4433       case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4434          lower_varying_pull_constant_logical_send(ibld, inst);
4435          break;
4436 
4437       case SHADER_OPCODE_RCP:
4438       case SHADER_OPCODE_RSQ:
4439       case SHADER_OPCODE_SQRT:
4440       case SHADER_OPCODE_EXP2:
4441       case SHADER_OPCODE_LOG2:
4442       case SHADER_OPCODE_SIN:
4443       case SHADER_OPCODE_COS:
4444       case SHADER_OPCODE_POW:
4445       case SHADER_OPCODE_INT_QUOTIENT:
4446       case SHADER_OPCODE_INT_REMAINDER:
4447          /* The math opcodes are overloaded for the send-like and
4448           * expression-like instructions which seems kind of icky.  Gen6+ has
4449           * a native (but rather quirky) MATH instruction so we don't need to
4450           * do anything here.  On Gen4-5 we'll have to lower the Gen6-like
4451           * logical instructions (which we can easily recognize because they
4452           * have mlen = 0) into send-like virtual instructions.
4453           */
4454          if (devinfo->gen < 6 && inst->mlen == 0) {
4455             lower_math_logical_send(ibld, inst);
4456             break;
4457 
4458          } else {
4459             continue;
4460          }
4461 
4462       default:
4463          continue;
4464       }
4465 
4466       progress = true;
4467    }
4468 
4469    if (progress)
4470       invalidate_live_intervals();
4471 
4472    return progress;
4473 }
4474 
4475 /**
4476  * Get the closest allowed SIMD width for instruction \p inst accounting for
4477  * some common regioning and execution control restrictions that apply to FPU
4478  * instructions.  These restrictions don't necessarily have any relevance to
4479  * instructions not executed by the FPU pipeline like extended math, control
4480  * flow or send message instructions.
4481  *
4482  * For virtual opcodes it's really up to the instruction -- In some cases
4483  * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4484  * instructions) it may simplify virtual instruction lowering if we can
4485  * enforce FPU-like regioning restrictions already on the virtual instruction,
4486  * in other cases (e.g. virtual send-like instructions) this may be
4487  * excessively restrictive.
4488  */
4489 static unsigned
get_fpu_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)4490 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4491                            const fs_inst *inst)
4492 {
4493    /* Maximum execution size representable in the instruction controls. */
4494    unsigned max_width = MIN2(32, inst->exec_size);
4495 
4496    /* According to the PRMs:
4497     *  "A. In Direct Addressing mode, a source cannot span more than 2
4498     *      adjacent GRF registers.
4499     *   B. A destination cannot span more than 2 adjacent GRF registers."
4500     *
4501     * Look for the source or destination with the largest register region
4502     * which is the one that is going to limit the overall execution size of
4503     * the instruction due to this rule.
4504     */
4505    unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4506 
4507    for (unsigned i = 0; i < inst->sources; i++)
4508       reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4509 
4510    /* Calculate the maximum execution size of the instruction based on the
4511     * factor by which it goes over the hardware limit of 2 GRFs.
4512     */
4513    if (reg_count > 2)
4514       max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4515 
4516    /* According to the IVB PRMs:
4517     *  "When destination spans two registers, the source MUST span two
4518     *   registers. The exception to the above rule:
4519     *
4520     *    - When source is scalar, the source registers are not incremented.
4521     *    - When source is packed integer Word and destination is packed
4522     *      integer DWord, the source register is not incremented but the
4523     *      source sub register is incremented."
4524     *
4525     * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4526     * restrictions.  The code below intentionally doesn't check whether the
4527     * destination type is integer because empirically the hardware doesn't
4528     * seem to care what the actual type is as long as it's dword-aligned.
4529     */
4530    if (devinfo->gen < 8) {
4531       for (unsigned i = 0; i < inst->sources; i++) {
4532          if (inst->size_written > REG_SIZE &&
4533              inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4534              !is_uniform(inst->src[i]) &&
4535              !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4536                type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4537             const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4538             max_width = MIN2(max_width, inst->exec_size / reg_count);
4539          }
4540       }
4541    }
4542 
4543    /* From the IVB PRMs:
4544     *  "When an instruction is SIMD32, the low 16 bits of the execution mask
4545     *   are applied for both halves of the SIMD32 instruction. If different
4546     *   execution mask channels are required, split the instruction into two
4547     *   SIMD16 instructions."
4548     *
4549     * There is similar text in the HSW PRMs.  Gen4-6 don't even implement
4550     * 32-wide control flow support in hardware and will behave similarly.
4551     */
4552    if (devinfo->gen < 8 && !inst->force_writemask_all)
4553       max_width = MIN2(max_width, 16);
4554 
4555    /* From the IVB PRMs (applies to HSW too):
4556     *  "Instructions with condition modifiers must not use SIMD32."
4557     *
4558     * From the BDW PRMs (applies to later hardware too):
4559     *  "Ternary instruction with condition modifiers must not use SIMD32."
4560     */
4561    if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4562       max_width = MIN2(max_width, 16);
4563 
4564    /* From the IVB PRMs (applies to other devices that don't have the
4565     * gen_device_info::supports_simd16_3src flag set):
4566     *  "In Align16 access mode, SIMD16 is not allowed for DW operations and
4567     *   SIMD8 is not allowed for DF operations."
4568     */
4569    if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4570       max_width = MIN2(max_width, inst->exec_size / reg_count);
4571 
4572    /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4573     * the 8-bit quarter of the execution mask signals specified in the
4574     * instruction control fields) for the second compressed half of any
4575     * single-precision instruction (for double-precision instructions
4576     * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4577     * the EU will apply the wrong execution controls for the second
4578     * sequential GRF write if the number of channels per GRF is not exactly
4579     * eight in single-precision mode (or four in double-float mode).
4580     *
4581     * In this situation we calculate the maximum size of the split
4582     * instructions so they only ever write to a single register.
4583     */
4584    if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4585        !inst->force_writemask_all) {
4586       const unsigned channels_per_grf = inst->exec_size /
4587          DIV_ROUND_UP(inst->size_written, REG_SIZE);
4588       unsigned exec_type_size = 0;
4589       for (int i = 0; i < inst->sources; i++) {
4590          if (inst->src[i].file != BAD_FILE)
4591             exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4592       }
4593       assert(exec_type_size);
4594 
4595       /* The hardware shifts exactly 8 channels per compressed half of the
4596        * instruction in single-precision mode and exactly 4 in double-precision.
4597        */
4598       if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4599          max_width = MIN2(max_width, channels_per_grf);
4600    }
4601 
4602    /* Only power-of-two execution sizes are representable in the instruction
4603     * control fields.
4604     */
4605    return 1 << _mesa_logbase2(max_width);
4606 }
4607 
4608 /**
4609  * Get the maximum allowed SIMD width for instruction \p inst accounting for
4610  * various payload size restrictions that apply to sampler message
4611  * instructions.
4612  *
4613  * This is only intended to provide a maximum theoretical bound for the
4614  * execution size of the message based on the number of argument components
4615  * alone, which in most cases will determine whether the SIMD8 or SIMD16
4616  * variant of the message can be used, though some messages may have
4617  * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4618  * the message length to determine the exact SIMD width and argument count,
4619  * which makes a number of sampler message combinations impossible to
4620  * represent).
4621  */
4622 static unsigned
get_sampler_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)4623 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4624                                const fs_inst *inst)
4625 {
4626    /* Calculate the number of coordinate components that have to be present
4627     * assuming that additional arguments follow the texel coordinates in the
4628     * message payload.  On IVB+ there is no need for padding, on ILK-SNB we
4629     * need to pad to four or three components depending on the message,
4630     * pre-ILK we need to pad to at most three components.
4631     */
4632    const unsigned req_coord_components =
4633       (devinfo->gen >= 7 ||
4634        !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4635       (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4636                             inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4637       3;
4638 
4639    /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4640     * variant of the TXL or TXF message.
4641     */
4642    const bool implicit_lod = devinfo->gen >= 9 &&
4643                              (inst->opcode == SHADER_OPCODE_TXL ||
4644                               inst->opcode == SHADER_OPCODE_TXF) &&
4645                              inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4646 
4647    /* Calculate the total number of argument components that need to be passed
4648     * to the sampler unit.
4649     */
4650    const unsigned num_payload_components =
4651       MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4652            req_coord_components) +
4653       inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4654       (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4655       inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4656       inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4657       (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4658        inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4659       inst->components_read(TEX_LOGICAL_SRC_MCS);
4660 
4661    /* SIMD16 messages with more than five arguments exceed the maximum message
4662     * size supported by the sampler, regardless of whether a header is
4663     * provided or not.
4664     */
4665    return MIN2(inst->exec_size,
4666                num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4667 }
4668 
4669 /**
4670  * Get the closest native SIMD width supported by the hardware for instruction
4671  * \p inst.  The instruction will be left untouched by
4672  * fs_visitor::lower_simd_width() if the returned value is equal to the
4673  * original execution size.
4674  */
4675 static unsigned
get_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)4676 get_lowered_simd_width(const struct gen_device_info *devinfo,
4677                        const fs_inst *inst)
4678 {
4679    switch (inst->opcode) {
4680    case BRW_OPCODE_MOV:
4681    case BRW_OPCODE_SEL:
4682    case BRW_OPCODE_NOT:
4683    case BRW_OPCODE_AND:
4684    case BRW_OPCODE_OR:
4685    case BRW_OPCODE_XOR:
4686    case BRW_OPCODE_SHR:
4687    case BRW_OPCODE_SHL:
4688    case BRW_OPCODE_ASR:
4689    case BRW_OPCODE_CMPN:
4690    case BRW_OPCODE_CSEL:
4691    case BRW_OPCODE_F32TO16:
4692    case BRW_OPCODE_F16TO32:
4693    case BRW_OPCODE_BFREV:
4694    case BRW_OPCODE_BFE:
4695    case BRW_OPCODE_ADD:
4696    case BRW_OPCODE_MUL:
4697    case BRW_OPCODE_AVG:
4698    case BRW_OPCODE_FRC:
4699    case BRW_OPCODE_RNDU:
4700    case BRW_OPCODE_RNDD:
4701    case BRW_OPCODE_RNDE:
4702    case BRW_OPCODE_RNDZ:
4703    case BRW_OPCODE_LZD:
4704    case BRW_OPCODE_FBH:
4705    case BRW_OPCODE_FBL:
4706    case BRW_OPCODE_CBIT:
4707    case BRW_OPCODE_SAD2:
4708    case BRW_OPCODE_MAD:
4709    case BRW_OPCODE_LRP:
4710    case FS_OPCODE_PACK:
4711       return get_fpu_lowered_simd_width(devinfo, inst);
4712 
4713    case BRW_OPCODE_CMP: {
4714       /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4715        * when the destination is a GRF the dependency-clear bit on the flag
4716        * register is cleared early.
4717        *
4718        * Suggested workarounds are to disable coissuing CMP instructions
4719        * or to split CMP(16) instructions into two CMP(8) instructions.
4720        *
4721        * We choose to split into CMP(8) instructions since disabling
4722        * coissuing would affect CMP instructions not otherwise affected by
4723        * the errata.
4724        */
4725       const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4726                                   !inst->dst.is_null() ? 8 : ~0);
4727       return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4728    }
4729    case BRW_OPCODE_BFI1:
4730    case BRW_OPCODE_BFI2:
4731       /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4732        * should
4733        *  "Force BFI instructions to be executed always in SIMD8."
4734        */
4735       return MIN2(devinfo->is_haswell ? 8 : ~0u,
4736                   get_fpu_lowered_simd_width(devinfo, inst));
4737 
4738    case BRW_OPCODE_IF:
4739       assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4740       return inst->exec_size;
4741 
4742    case SHADER_OPCODE_RCP:
4743    case SHADER_OPCODE_RSQ:
4744    case SHADER_OPCODE_SQRT:
4745    case SHADER_OPCODE_EXP2:
4746    case SHADER_OPCODE_LOG2:
4747    case SHADER_OPCODE_SIN:
4748    case SHADER_OPCODE_COS:
4749       /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4750        * Gen6.
4751        */
4752       return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4753               devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4754               MIN2(8, inst->exec_size));
4755 
4756    case SHADER_OPCODE_POW:
4757       /* SIMD16 is only allowed on Gen7+. */
4758       return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4759               MIN2(8, inst->exec_size));
4760 
4761    case SHADER_OPCODE_INT_QUOTIENT:
4762    case SHADER_OPCODE_INT_REMAINDER:
4763       /* Integer division is limited to SIMD8 on all generations. */
4764       return MIN2(8, inst->exec_size);
4765 
4766    case FS_OPCODE_LINTERP:
4767    case FS_OPCODE_GET_BUFFER_SIZE:
4768    case FS_OPCODE_DDX_COARSE:
4769    case FS_OPCODE_DDX_FINE:
4770    case FS_OPCODE_DDY_COARSE:
4771    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4772    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4773    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4774    case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4775    case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4776    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4777    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4778    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4779       return MIN2(16, inst->exec_size);
4780 
4781    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4782       /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4783        * message used to implement varying pull constant loads, so expand it
4784        * to SIMD16.  An alternative with longer message payload length but
4785        * shorter return payload would be to use the SIMD8 sampler message that
4786        * takes (header, u, v, r) as parameters instead of (header, u).
4787        */
4788       return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4789 
4790    case FS_OPCODE_DDY_FINE:
4791       /* The implementation of this virtual opcode may require emitting
4792        * compressed Align16 instructions, which are severely limited on some
4793        * generations.
4794        *
4795        * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4796        * Region Restrictions):
4797        *
4798        *  "In Align16 access mode, SIMD16 is not allowed for DW operations
4799        *   and SIMD8 is not allowed for DF operations."
4800        *
4801        * In this context, "DW operations" means "operations acting on 32-bit
4802        * values", so it includes operations on floats.
4803        *
4804        * Gen4 has a similar restriction.  From the i965 PRM, section 11.5.3
4805        * (Instruction Compression -> Rules and Restrictions):
4806        *
4807        *  "A compressed instruction must be in Align1 access mode. Align16
4808        *   mode instructions cannot be compressed."
4809        *
4810        * Similar text exists in the g45 PRM.
4811        *
4812        * Empirically, compressed align16 instructions using odd register
4813        * numbers don't appear to work on Sandybridge either.
4814        */
4815       return (devinfo->gen == 4 || devinfo->gen == 6 ||
4816               (devinfo->gen == 7 && !devinfo->is_haswell) ?
4817               MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4818 
4819    case SHADER_OPCODE_MULH:
4820       /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4821        * is 8-wide on Gen7+.
4822        */
4823       return (devinfo->gen >= 7 ? 8 :
4824               get_fpu_lowered_simd_width(devinfo, inst));
4825 
4826    case FS_OPCODE_FB_WRITE_LOGICAL:
4827       /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4828        * here.
4829        */
4830       assert(devinfo->gen != 6 ||
4831              inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4832              inst->exec_size == 8);
4833       /* Dual-source FB writes are unsupported in SIMD16 mode. */
4834       return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4835               8 : MIN2(16, inst->exec_size));
4836 
4837    case FS_OPCODE_FB_READ_LOGICAL:
4838       return MIN2(16, inst->exec_size);
4839 
4840    case SHADER_OPCODE_TEX_LOGICAL:
4841    case SHADER_OPCODE_TXF_CMS_LOGICAL:
4842    case SHADER_OPCODE_TXF_UMS_LOGICAL:
4843    case SHADER_OPCODE_TXF_MCS_LOGICAL:
4844    case SHADER_OPCODE_LOD_LOGICAL:
4845    case SHADER_OPCODE_TG4_LOGICAL:
4846    case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4847    case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4848    case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4849       return get_sampler_lowered_simd_width(devinfo, inst);
4850 
4851    case SHADER_OPCODE_TXD_LOGICAL:
4852       /* TXD is unsupported in SIMD16 mode. */
4853       return 8;
4854 
4855    case SHADER_OPCODE_TXL_LOGICAL:
4856    case FS_OPCODE_TXB_LOGICAL:
4857       /* Only one execution size is representable pre-ILK depending on whether
4858        * the shadow reference argument is present.
4859        */
4860       if (devinfo->gen == 4)
4861          return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4862       else
4863          return get_sampler_lowered_simd_width(devinfo, inst);
4864 
4865    case SHADER_OPCODE_TXF_LOGICAL:
4866    case SHADER_OPCODE_TXS_LOGICAL:
4867       /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4868        * messages.  Use SIMD16 instead.
4869        */
4870       if (devinfo->gen == 4)
4871          return 16;
4872       else
4873          return get_sampler_lowered_simd_width(devinfo, inst);
4874 
4875    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4876    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4877    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4878       return 8;
4879 
4880    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4881    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4882    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4883       return MIN2(16, inst->exec_size);
4884 
4885    case SHADER_OPCODE_URB_READ_SIMD8:
4886    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4887    case SHADER_OPCODE_URB_WRITE_SIMD8:
4888    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4889    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4890    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4891       return MIN2(8, inst->exec_size);
4892 
4893    case SHADER_OPCODE_MOV_INDIRECT:
4894       /* Prior to Broadwell, we only have 8 address subregisters */
4895       return MIN3(devinfo->gen >= 8 ? 16 : 8,
4896                   2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4897                   inst->exec_size);
4898 
4899    case SHADER_OPCODE_LOAD_PAYLOAD: {
4900       const unsigned reg_count =
4901          DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4902 
4903       if (reg_count > 2) {
4904          /* Only LOAD_PAYLOAD instructions with per-channel destination region
4905           * can be easily lowered (which excludes headers and heterogeneous
4906           * types).
4907           */
4908          assert(!inst->header_size);
4909          for (unsigned i = 0; i < inst->sources; i++)
4910             assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4911                    inst->src[i].file == BAD_FILE);
4912 
4913          return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4914       } else {
4915          return inst->exec_size;
4916       }
4917    }
4918    default:
4919       return inst->exec_size;
4920    }
4921 }
4922 
4923 /**
4924  * Return true if splitting out the group of channels of instruction \p inst
4925  * given by lbld.group() requires allocating a temporary for the i-th source
4926  * of the lowered instruction.
4927  */
4928 static inline bool
needs_src_copy(const fs_builder & lbld,const fs_inst * inst,unsigned i)4929 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4930 {
4931    return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4932             (inst->components_read(i) == 1 &&
4933              lbld.dispatch_width() <= inst->exec_size));
4934 }
4935 
4936 /**
4937  * Extract the data that would be consumed by the channel group given by
4938  * lbld.group() from the i-th source region of instruction \p inst and return
4939  * it as result in packed form.  If any copy instructions are required they
4940  * will be emitted before the given \p inst in \p block.
4941  */
4942 static fs_reg
emit_unzip(const fs_builder & lbld,bblock_t * block,fs_inst * inst,unsigned i)4943 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4944            unsigned i)
4945 {
4946    /* Specified channel group from the source region. */
4947    const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4948 
4949    if (needs_src_copy(lbld, inst, i)) {
4950       /* Builder of the right width to perform the copy avoiding uninitialized
4951        * data if the lowered execution size is greater than the original
4952        * execution size of the instruction.
4953        */
4954       const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4955                                               inst->exec_size), 0);
4956       const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4957 
4958       for (unsigned k = 0; k < inst->components_read(i); ++k)
4959          cbld.at(block, inst)
4960              .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4961 
4962       return tmp;
4963 
4964    } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4965       /* The source is invariant for all dispatch_width-wide groups of the
4966        * original region.
4967        */
4968       return inst->src[i];
4969 
4970    } else {
4971       /* We can just point the lowered instruction at the right channel group
4972        * from the original region.
4973        */
4974       return src;
4975    }
4976 }
4977 
4978 /**
4979  * Return true if splitting out the group of channels of instruction \p inst
4980  * given by lbld.group() requires allocating a temporary for the destination
4981  * of the lowered instruction and copying the data back to the original
4982  * destination region.
4983  */
4984 static inline bool
needs_dst_copy(const fs_builder & lbld,const fs_inst * inst)4985 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
4986 {
4987    /* If the instruction writes more than one component we'll have to shuffle
4988     * the results of multiple lowered instructions in order to make sure that
4989     * they end up arranged correctly in the original destination region.
4990     */
4991    if (inst->size_written > inst->dst.component_size(inst->exec_size))
4992       return true;
4993 
4994    /* If the lowered execution size is larger than the original the result of
4995     * the instruction won't fit in the original destination, so we'll have to
4996     * allocate a temporary in any case.
4997     */
4998    if (lbld.dispatch_width() > inst->exec_size)
4999       return true;
5000 
5001    for (unsigned i = 0; i < inst->sources; i++) {
5002       /* If we already made a copy of the source for other reasons there won't
5003        * be any overlap with the destination.
5004        */
5005       if (needs_src_copy(lbld, inst, i))
5006          continue;
5007 
5008       /* In order to keep the logic simple we emit a copy whenever the
5009        * destination region doesn't exactly match an overlapping source, which
5010        * may point at the source and destination not being aligned group by
5011        * group which could cause one of the lowered instructions to overwrite
5012        * the data read from the same source by other lowered instructions.
5013        */
5014       if (regions_overlap(inst->dst, inst->size_written,
5015                           inst->src[i], inst->size_read(i)) &&
5016           !inst->dst.equals(inst->src[i]))
5017         return true;
5018    }
5019 
5020    return false;
5021 }
5022 
5023 /**
5024  * Insert data from a packed temporary into the channel group given by
5025  * lbld.group() of the destination region of instruction \p inst and return
5026  * the temporary as result.  If any copy instructions are required they will
5027  * be emitted around the given \p inst in \p block.
5028  */
5029 static fs_reg
emit_zip(const fs_builder & lbld,bblock_t * block,fs_inst * inst)5030 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5031 {
5032    /* Builder of the right width to perform the copy avoiding uninitialized
5033     * data if the lowered execution size is greater than the original
5034     * execution size of the instruction.
5035     */
5036    const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5037                                            inst->exec_size), 0);
5038 
5039    /* Specified channel group from the destination region. */
5040    const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5041    const unsigned dst_size = inst->size_written /
5042       inst->dst.component_size(inst->exec_size);
5043 
5044    if (needs_dst_copy(lbld, inst)) {
5045       const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5046 
5047       if (inst->predicate) {
5048          /* Handle predication by copying the original contents of
5049           * the destination into the temporary before emitting the
5050           * lowered instruction.
5051           */
5052          for (unsigned k = 0; k < dst_size; ++k)
5053             cbld.at(block, inst)
5054                 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5055       }
5056 
5057       for (unsigned k = 0; k < dst_size; ++k)
5058          cbld.at(block, inst->next)
5059              .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5060 
5061       return tmp;
5062 
5063    } else {
5064       /* No need to allocate a temporary for the lowered instruction, just
5065        * take the right group of channels from the original region.
5066        */
5067       return dst;
5068    }
5069 }
5070 
5071 bool
lower_simd_width()5072 fs_visitor::lower_simd_width()
5073 {
5074    bool progress = false;
5075 
5076    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5077       const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5078 
5079       if (lower_width != inst->exec_size) {
5080          /* Builder matching the original instruction.  We may also need to
5081           * emit an instruction of width larger than the original, set the
5082           * execution size of the builder to the highest of both for now so
5083           * we're sure that both cases can be handled.
5084           */
5085          const unsigned max_width = MAX2(inst->exec_size, lower_width);
5086          const fs_builder ibld = bld.at(block, inst)
5087                                     .exec_all(inst->force_writemask_all)
5088                                     .group(max_width, inst->group / max_width);
5089 
5090          /* Split the copies in chunks of the execution width of either the
5091           * original or the lowered instruction, whichever is lower.
5092           */
5093          const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5094          const unsigned dst_size = inst->size_written /
5095             inst->dst.component_size(inst->exec_size);
5096 
5097          assert(!inst->writes_accumulator && !inst->mlen);
5098 
5099          for (unsigned i = 0; i < n; i++) {
5100             /* Emit a copy of the original instruction with the lowered width.
5101              * If the EOT flag was set throw it away except for the last
5102              * instruction to avoid killing the thread prematurely.
5103              */
5104             fs_inst split_inst = *inst;
5105             split_inst.exec_size = lower_width;
5106             split_inst.eot = inst->eot && i == n - 1;
5107 
5108             /* Select the correct channel enables for the i-th group, then
5109              * transform the sources and destination and emit the lowered
5110              * instruction.
5111              */
5112             const fs_builder lbld = ibld.group(lower_width, i);
5113 
5114             for (unsigned j = 0; j < inst->sources; j++)
5115                split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5116 
5117             split_inst.dst = emit_zip(lbld, block, inst);
5118             split_inst.size_written =
5119                split_inst.dst.component_size(lower_width) * dst_size;
5120 
5121             lbld.emit(split_inst);
5122          }
5123 
5124          inst->remove(block);
5125          progress = true;
5126       }
5127    }
5128 
5129    if (progress)
5130       invalidate_live_intervals();
5131 
5132    return progress;
5133 }
5134 
5135 void
dump_instructions()5136 fs_visitor::dump_instructions()
5137 {
5138    dump_instructions(NULL);
5139 }
5140 
5141 void
dump_instructions(const char * name)5142 fs_visitor::dump_instructions(const char *name)
5143 {
5144    FILE *file = stderr;
5145    if (name && geteuid() != 0) {
5146       file = fopen(name, "w");
5147       if (!file)
5148          file = stderr;
5149    }
5150 
5151    if (cfg) {
5152       calculate_register_pressure();
5153       int ip = 0, max_pressure = 0;
5154       foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5155          max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5156          fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5157          dump_instruction(inst, file);
5158          ip++;
5159       }
5160       fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5161    } else {
5162       int ip = 0;
5163       foreach_in_list(backend_instruction, inst, &instructions) {
5164          fprintf(file, "%4d: ", ip++);
5165          dump_instruction(inst, file);
5166       }
5167    }
5168 
5169    if (file != stderr) {
5170       fclose(file);
5171    }
5172 }
5173 
5174 void
dump_instruction(backend_instruction * be_inst)5175 fs_visitor::dump_instruction(backend_instruction *be_inst)
5176 {
5177    dump_instruction(be_inst, stderr);
5178 }
5179 
5180 void
dump_instruction(backend_instruction * be_inst,FILE * file)5181 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5182 {
5183    fs_inst *inst = (fs_inst *)be_inst;
5184 
5185    if (inst->predicate) {
5186       fprintf(file, "(%cf0.%d) ",
5187              inst->predicate_inverse ? '-' : '+',
5188              inst->flag_subreg);
5189    }
5190 
5191    fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5192    if (inst->saturate)
5193       fprintf(file, ".sat");
5194    if (inst->conditional_mod) {
5195       fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5196       if (!inst->predicate &&
5197           (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5198                               inst->opcode != BRW_OPCODE_IF &&
5199                               inst->opcode != BRW_OPCODE_WHILE))) {
5200          fprintf(file, ".f0.%d", inst->flag_subreg);
5201       }
5202    }
5203    fprintf(file, "(%d) ", inst->exec_size);
5204 
5205    if (inst->mlen) {
5206       fprintf(file, "(mlen: %d) ", inst->mlen);
5207    }
5208 
5209    if (inst->eot) {
5210       fprintf(file, "(EOT) ");
5211    }
5212 
5213    switch (inst->dst.file) {
5214    case VGRF:
5215       fprintf(file, "vgrf%d", inst->dst.nr);
5216       break;
5217    case FIXED_GRF:
5218       fprintf(file, "g%d", inst->dst.nr);
5219       break;
5220    case MRF:
5221       fprintf(file, "m%d", inst->dst.nr);
5222       break;
5223    case BAD_FILE:
5224       fprintf(file, "(null)");
5225       break;
5226    case UNIFORM:
5227       fprintf(file, "***u%d***", inst->dst.nr);
5228       break;
5229    case ATTR:
5230       fprintf(file, "***attr%d***", inst->dst.nr);
5231       break;
5232    case ARF:
5233       switch (inst->dst.nr) {
5234       case BRW_ARF_NULL:
5235          fprintf(file, "null");
5236          break;
5237       case BRW_ARF_ADDRESS:
5238          fprintf(file, "a0.%d", inst->dst.subnr);
5239          break;
5240       case BRW_ARF_ACCUMULATOR:
5241          fprintf(file, "acc%d", inst->dst.subnr);
5242          break;
5243       case BRW_ARF_FLAG:
5244          fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5245          break;
5246       default:
5247          fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5248          break;
5249       }
5250       break;
5251    case IMM:
5252       unreachable("not reached");
5253    }
5254 
5255    if (inst->dst.offset ||
5256        (inst->dst.file == VGRF &&
5257         alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5258       const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5259       fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5260               inst->dst.offset % reg_size);
5261    }
5262 
5263    if (inst->dst.stride != 1)
5264       fprintf(file, "<%u>", inst->dst.stride);
5265    fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5266 
5267    for (int i = 0; i < inst->sources; i++) {
5268       if (inst->src[i].negate)
5269          fprintf(file, "-");
5270       if (inst->src[i].abs)
5271          fprintf(file, "|");
5272       switch (inst->src[i].file) {
5273       case VGRF:
5274          fprintf(file, "vgrf%d", inst->src[i].nr);
5275          break;
5276       case FIXED_GRF:
5277          fprintf(file, "g%d", inst->src[i].nr);
5278          break;
5279       case MRF:
5280          fprintf(file, "***m%d***", inst->src[i].nr);
5281          break;
5282       case ATTR:
5283          fprintf(file, "attr%d", inst->src[i].nr);
5284          break;
5285       case UNIFORM:
5286          fprintf(file, "u%d", inst->src[i].nr);
5287          break;
5288       case BAD_FILE:
5289          fprintf(file, "(null)");
5290          break;
5291       case IMM:
5292          switch (inst->src[i].type) {
5293          case BRW_REGISTER_TYPE_F:
5294             fprintf(file, "%-gf", inst->src[i].f);
5295             break;
5296          case BRW_REGISTER_TYPE_DF:
5297             fprintf(file, "%fdf", inst->src[i].df);
5298             break;
5299          case BRW_REGISTER_TYPE_W:
5300          case BRW_REGISTER_TYPE_D:
5301             fprintf(file, "%dd", inst->src[i].d);
5302             break;
5303          case BRW_REGISTER_TYPE_UW:
5304          case BRW_REGISTER_TYPE_UD:
5305             fprintf(file, "%uu", inst->src[i].ud);
5306             break;
5307          case BRW_REGISTER_TYPE_VF:
5308             fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5309                     brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
5310                     brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
5311                     brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5312                     brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5313             break;
5314          default:
5315             fprintf(file, "???");
5316             break;
5317          }
5318          break;
5319       case ARF:
5320          switch (inst->src[i].nr) {
5321          case BRW_ARF_NULL:
5322             fprintf(file, "null");
5323             break;
5324          case BRW_ARF_ADDRESS:
5325             fprintf(file, "a0.%d", inst->src[i].subnr);
5326             break;
5327          case BRW_ARF_ACCUMULATOR:
5328             fprintf(file, "acc%d", inst->src[i].subnr);
5329             break;
5330          case BRW_ARF_FLAG:
5331             fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5332             break;
5333          default:
5334             fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5335             break;
5336          }
5337          break;
5338       }
5339 
5340       if (inst->src[i].offset ||
5341           (inst->src[i].file == VGRF &&
5342            alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5343          const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5344          fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5345                  inst->src[i].offset % reg_size);
5346       }
5347 
5348       if (inst->src[i].abs)
5349          fprintf(file, "|");
5350 
5351       if (inst->src[i].file != IMM) {
5352          unsigned stride;
5353          if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5354             unsigned hstride = inst->src[i].hstride;
5355             stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5356          } else {
5357             stride = inst->src[i].stride;
5358          }
5359          if (stride != 1)
5360             fprintf(file, "<%u>", stride);
5361 
5362          fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5363       }
5364 
5365       if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5366          fprintf(file, ", ");
5367    }
5368 
5369    fprintf(file, " ");
5370 
5371    if (inst->force_writemask_all)
5372       fprintf(file, "NoMask ");
5373 
5374    if (inst->exec_size != dispatch_width)
5375       fprintf(file, "group%d ", inst->group);
5376 
5377    fprintf(file, "\n");
5378 }
5379 
5380 /**
5381  * Possibly returns an instruction that set up @param reg.
5382  *
5383  * Sometimes we want to take the result of some expression/variable
5384  * dereference tree and rewrite the instruction generating the result
5385  * of the tree.  When processing the tree, we know that the
5386  * instructions generated are all writing temporaries that are dead
5387  * outside of this tree.  So, if we have some instructions that write
5388  * a temporary, we're free to point that temp write somewhere else.
5389  *
5390  * Note that this doesn't guarantee that the instruction generated
5391  * only reg -- it might be the size=4 destination of a texture instruction.
5392  */
5393 fs_inst *
get_instruction_generating_reg(fs_inst * start,fs_inst * end,const fs_reg & reg)5394 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5395 					   fs_inst *end,
5396 					   const fs_reg &reg)
5397 {
5398    if (end == start ||
5399        end->is_partial_write() ||
5400        !reg.equals(end->dst)) {
5401       return NULL;
5402    } else {
5403       return end;
5404    }
5405 }
5406 
5407 void
setup_fs_payload_gen6()5408 fs_visitor::setup_fs_payload_gen6()
5409 {
5410    assert(stage == MESA_SHADER_FRAGMENT);
5411    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5412 
5413    assert(devinfo->gen >= 6);
5414 
5415    /* R0-1: masks, pixel X/Y coordinates. */
5416    payload.num_regs = 2;
5417    /* R2: only for 32-pixel dispatch.*/
5418 
5419    /* R3-26: barycentric interpolation coordinates.  These appear in the
5420     * same order that they appear in the brw_barycentric_mode
5421     * enum.  Each set of coordinates occupies 2 registers if dispatch width
5422     * == 8 and 4 registers if dispatch width == 16.  Coordinates only
5423     * appear if they were enabled using the "Barycentric Interpolation
5424     * Mode" bits in WM_STATE.
5425     */
5426    for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5427       if (prog_data->barycentric_interp_modes & (1 << i)) {
5428          payload.barycentric_coord_reg[i] = payload.num_regs;
5429          payload.num_regs += 2;
5430          if (dispatch_width == 16) {
5431             payload.num_regs += 2;
5432          }
5433       }
5434    }
5435 
5436    /* R27: interpolated depth if uses source depth */
5437    prog_data->uses_src_depth =
5438       (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5439    if (prog_data->uses_src_depth) {
5440       payload.source_depth_reg = payload.num_regs;
5441       payload.num_regs++;
5442       if (dispatch_width == 16) {
5443          /* R28: interpolated depth if not SIMD8. */
5444          payload.num_regs++;
5445       }
5446    }
5447 
5448    /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5449    prog_data->uses_src_w =
5450       (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5451    if (prog_data->uses_src_w) {
5452       payload.source_w_reg = payload.num_regs;
5453       payload.num_regs++;
5454       if (dispatch_width == 16) {
5455          /* R30: interpolated W if not SIMD8. */
5456          payload.num_regs++;
5457       }
5458    }
5459 
5460    /* R31: MSAA position offsets. */
5461    if (prog_data->persample_dispatch &&
5462        (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5463       /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5464        *
5465        *    "MSDISPMODE_PERSAMPLE is required in order to select
5466        *    POSOFFSET_SAMPLE"
5467        *
5468        * So we can only really get sample positions if we are doing real
5469        * per-sample dispatch.  If we need gl_SamplePosition and we don't have
5470        * persample dispatch, we hard-code it to 0.5.
5471        */
5472       prog_data->uses_pos_offset = true;
5473       payload.sample_pos_reg = payload.num_regs;
5474       payload.num_regs++;
5475    }
5476 
5477    /* R32: MSAA input coverage mask */
5478    prog_data->uses_sample_mask =
5479       (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5480    if (prog_data->uses_sample_mask) {
5481       assert(devinfo->gen >= 7);
5482       payload.sample_mask_in_reg = payload.num_regs;
5483       payload.num_regs++;
5484       if (dispatch_width == 16) {
5485          /* R33: input coverage mask if not SIMD8. */
5486          payload.num_regs++;
5487       }
5488    }
5489 
5490    /* R34-: bary for 32-pixel. */
5491    /* R58-59: interp W for 32-pixel. */
5492 
5493    if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5494       source_depth_to_render_target = true;
5495    }
5496 }
5497 
5498 void
setup_vs_payload()5499 fs_visitor::setup_vs_payload()
5500 {
5501    /* R0: thread header, R1: urb handles */
5502    payload.num_regs = 2;
5503 }
5504 
5505 void
setup_gs_payload()5506 fs_visitor::setup_gs_payload()
5507 {
5508    assert(stage == MESA_SHADER_GEOMETRY);
5509 
5510    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5511    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5512 
5513    /* R0: thread header, R1: output URB handles */
5514    payload.num_regs = 2;
5515 
5516    if (gs_prog_data->include_primitive_id) {
5517       /* R2: Primitive ID 0..7 */
5518       payload.num_regs++;
5519    }
5520 
5521    /* Use a maximum of 24 registers for push-model inputs. */
5522    const unsigned max_push_components = 24;
5523 
5524    /* If pushing our inputs would take too many registers, reduce the URB read
5525     * length (which is in HWords, or 8 registers), and resort to pulling.
5526     *
5527     * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5528     * have to multiply by VerticesIn to obtain the total storage requirement.
5529     */
5530    if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
5531        max_push_components || gs_prog_data->invocations > 1) {
5532       gs_prog_data->base.include_vue_handles = true;
5533 
5534       /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5535       payload.num_regs += nir->info->gs.vertices_in;
5536 
5537       vue_prog_data->urb_read_length =
5538          ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
5539    }
5540 }
5541 
5542 void
setup_cs_payload()5543 fs_visitor::setup_cs_payload()
5544 {
5545    assert(devinfo->gen >= 7);
5546    payload.num_regs = 1;
5547 }
5548 
5549 void
calculate_register_pressure()5550 fs_visitor::calculate_register_pressure()
5551 {
5552    invalidate_live_intervals();
5553    calculate_live_intervals();
5554 
5555    unsigned num_instructions = 0;
5556    foreach_block(block, cfg)
5557       num_instructions += block->instructions.length();
5558 
5559    regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5560 
5561    for (unsigned reg = 0; reg < alloc.count; reg++) {
5562       for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5563          regs_live_at_ip[ip] += alloc.sizes[reg];
5564    }
5565 }
5566 
5567 /**
5568  * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5569  *
5570  * The needs_unlit_centroid_workaround ends up producing one of these per
5571  * channel of centroid input, so it's good to clean them up.
5572  *
5573  * An assumption here is that nothing ever modifies the dispatched pixels
5574  * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5575  * dictates that anyway.
5576  */
5577 bool
opt_drop_redundant_mov_to_flags()5578 fs_visitor::opt_drop_redundant_mov_to_flags()
5579 {
5580    bool flag_mov_found[2] = {false};
5581    bool progress = false;
5582 
5583    /* Instructions removed by this pass can only be added if this were true */
5584    if (!devinfo->needs_unlit_centroid_workaround)
5585       return false;
5586 
5587    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5588       if (inst->is_control_flow()) {
5589          memset(flag_mov_found, 0, sizeof(flag_mov_found));
5590       } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5591          if (!flag_mov_found[inst->flag_subreg]) {
5592             flag_mov_found[inst->flag_subreg] = true;
5593          } else {
5594             inst->remove(block);
5595             progress = true;
5596          }
5597       } else if (inst->flags_written()) {
5598          flag_mov_found[inst->flag_subreg] = false;
5599       }
5600    }
5601 
5602    return progress;
5603 }
5604 
5605 void
optimize()5606 fs_visitor::optimize()
5607 {
5608    /* Start by validating the shader we currently have. */
5609    validate();
5610 
5611    /* bld is the common builder object pointing at the end of the program we
5612     * used to translate it into i965 IR.  For the optimization and lowering
5613     * passes coming next, any code added after the end of the program without
5614     * having explicitly called fs_builder::at() clearly points at a mistake.
5615     * Ideally optimization passes wouldn't be part of the visitor so they
5616     * wouldn't have access to bld at all, but they do, so just in case some
5617     * pass forgets to ask for a location explicitly set it to NULL here to
5618     * make it trip.  The dispatch width is initialized to a bogus value to
5619     * make sure that optimizations set the execution controls explicitly to
5620     * match the code they are manipulating instead of relying on the defaults.
5621     */
5622    bld = fs_builder(this, 64);
5623 
5624    assign_constant_locations();
5625    lower_constant_loads();
5626 
5627    validate();
5628 
5629    split_virtual_grfs();
5630    validate();
5631 
5632 #define OPT(pass, args...) ({                                           \
5633       pass_num++;                                                       \
5634       bool this_progress = pass(args);                                  \
5635                                                                         \
5636       if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) {   \
5637          char filename[64];                                             \
5638          snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass,              \
5639                   stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
5640                                                                         \
5641          backend_shader::dump_instructions(filename);                   \
5642       }                                                                 \
5643                                                                         \
5644       validate();                                                       \
5645                                                                         \
5646       progress = progress || this_progress;                             \
5647       this_progress;                                                    \
5648    })
5649 
5650    if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5651       char filename[64];
5652       snprintf(filename, 64, "%s%d-%s-00-00-start",
5653                stage_abbrev, dispatch_width, nir->info->name);
5654 
5655       backend_shader::dump_instructions(filename);
5656    }
5657 
5658    bool progress = false;
5659    int iteration = 0;
5660    int pass_num = 0;
5661 
5662    OPT(opt_drop_redundant_mov_to_flags);
5663 
5664    do {
5665       progress = false;
5666       pass_num = 0;
5667       iteration++;
5668 
5669       OPT(remove_duplicate_mrf_writes);
5670 
5671       OPT(opt_algebraic);
5672       OPT(opt_cse);
5673       OPT(opt_copy_propagation);
5674       OPT(opt_predicated_break, this);
5675       OPT(opt_cmod_propagation);
5676       OPT(dead_code_eliminate);
5677       OPT(opt_peephole_sel);
5678       OPT(dead_control_flow_eliminate, this);
5679       OPT(opt_register_renaming);
5680       OPT(opt_saturate_propagation);
5681       OPT(register_coalesce);
5682       OPT(compute_to_mrf);
5683       OPT(eliminate_find_live_channel);
5684 
5685       OPT(compact_virtual_grfs);
5686    } while (progress);
5687 
5688    progress = false;
5689    pass_num = 0;
5690 
5691    if (OPT(lower_pack)) {
5692       OPT(register_coalesce);
5693       OPT(dead_code_eliminate);
5694    }
5695 
5696    if (OPT(lower_d2x)) {
5697       OPT(opt_copy_propagation);
5698       OPT(dead_code_eliminate);
5699    }
5700 
5701    OPT(lower_simd_width);
5702 
5703    /* After SIMD lowering just in case we had to unroll the EOT send. */
5704    OPT(opt_sampler_eot);
5705 
5706    OPT(lower_logical_sends);
5707 
5708    if (progress) {
5709       OPT(opt_copy_propagation);
5710       /* Only run after logical send lowering because it's easier to implement
5711        * in terms of physical sends.
5712        */
5713       if (OPT(opt_zero_samples))
5714          OPT(opt_copy_propagation);
5715       /* Run after logical send lowering to give it a chance to CSE the
5716        * LOAD_PAYLOAD instructions created to construct the payloads of
5717        * e.g. texturing messages in cases where it wasn't possible to CSE the
5718        * whole logical instruction.
5719        */
5720       OPT(opt_cse);
5721       OPT(register_coalesce);
5722       OPT(compute_to_mrf);
5723       OPT(dead_code_eliminate);
5724       OPT(remove_duplicate_mrf_writes);
5725       OPT(opt_peephole_sel);
5726    }
5727 
5728    OPT(opt_redundant_discard_jumps);
5729 
5730    if (OPT(lower_load_payload)) {
5731       split_virtual_grfs();
5732       OPT(register_coalesce);
5733       OPT(compute_to_mrf);
5734       OPT(dead_code_eliminate);
5735    }
5736 
5737    OPT(opt_combine_constants);
5738    OPT(lower_integer_multiplication);
5739 
5740    if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5741       OPT(opt_cmod_propagation);
5742       OPT(opt_cse);
5743       OPT(opt_copy_propagation);
5744       OPT(dead_code_eliminate);
5745    }
5746 
5747    lower_uniform_pull_constant_loads();
5748 
5749    validate();
5750 }
5751 
5752 /**
5753  * Three source instruction must have a GRF/MRF destination register.
5754  * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
5755  */
5756 void
fixup_3src_null_dest()5757 fs_visitor::fixup_3src_null_dest()
5758 {
5759    bool progress = false;
5760 
5761    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5762       if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5763          inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5764                             inst->dst.type);
5765          progress = true;
5766       }
5767    }
5768 
5769    if (progress)
5770       invalidate_live_intervals();
5771 }
5772 
5773 void
allocate_registers(bool allow_spilling)5774 fs_visitor::allocate_registers(bool allow_spilling)
5775 {
5776    bool allocated_without_spills;
5777 
5778    static const enum instruction_scheduler_mode pre_modes[] = {
5779       SCHEDULE_PRE,
5780       SCHEDULE_PRE_NON_LIFO,
5781       SCHEDULE_PRE_LIFO,
5782    };
5783 
5784    bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5785 
5786    /* Try each scheduling heuristic to see if it can successfully register
5787     * allocate without spilling.  They should be ordered by decreasing
5788     * performance but increasing likelihood of allocating.
5789     */
5790    for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5791       schedule_instructions(pre_modes[i]);
5792 
5793       if (0) {
5794          assign_regs_trivial();
5795          allocated_without_spills = true;
5796       } else {
5797          allocated_without_spills = assign_regs(false, spill_all);
5798       }
5799       if (allocated_without_spills)
5800          break;
5801    }
5802 
5803    if (!allocated_without_spills) {
5804       if (!allow_spilling)
5805          fail("Failure to register allocate and spilling is not allowed.");
5806 
5807       /* We assume that any spilling is worse than just dropping back to
5808        * SIMD8.  There's probably actually some intermediate point where
5809        * SIMD16 with a couple of spills is still better.
5810        */
5811       if (dispatch_width > min_dispatch_width) {
5812          fail("Failure to register allocate.  Reduce number of "
5813               "live scalar values to avoid this.");
5814       } else {
5815          compiler->shader_perf_log(log_data,
5816                                    "%s shader triggered register spilling.  "
5817                                    "Try reducing the number of live scalar "
5818                                    "values to improve performance.\n",
5819                                    stage_name);
5820       }
5821 
5822       /* Since we're out of heuristics, just go spill registers until we
5823        * get an allocation.
5824        */
5825       while (!assign_regs(true, spill_all)) {
5826          if (failed)
5827             break;
5828       }
5829    }
5830 
5831    /* This must come after all optimization and register allocation, since
5832     * it inserts dead code that happens to have side effects, and it does
5833     * so based on the actual physical registers in use.
5834     */
5835    insert_gen4_send_dependency_workarounds();
5836 
5837    if (failed)
5838       return;
5839 
5840    schedule_instructions(SCHEDULE_POST);
5841 
5842    if (last_scratch > 0) {
5843       MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5844 
5845       prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5846 
5847       if (stage == MESA_SHADER_COMPUTE) {
5848          if (devinfo->is_haswell) {
5849             /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5850              * field documentation, Haswell supports a minimum of 2kB of
5851              * scratch space for compute shaders, unlike every other stage
5852              * and platform.
5853              */
5854             prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5855          } else if (devinfo->gen <= 7) {
5856             /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5857              * field documentation, platforms prior to Haswell measure scratch
5858              * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5859              */
5860             prog_data->total_scratch = ALIGN(last_scratch, 1024);
5861             max_scratch_size = 12 * 1024;
5862          }
5863       }
5864 
5865       /* We currently only support up to 2MB of scratch space.  If we
5866        * need to support more eventually, the documentation suggests
5867        * that we could allocate a larger buffer, and partition it out
5868        * ourselves.  We'd just have to undo the hardware's address
5869        * calculation by subtracting (FFTID * Per Thread Scratch Space)
5870        * and then add FFTID * (Larger Per Thread Scratch Space).
5871        *
5872        * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5873        * Thread Group Tracking > Local Memory/Scratch Space.
5874        */
5875       assert(prog_data->total_scratch < max_scratch_size);
5876    }
5877 }
5878 
5879 bool
run_vs(gl_clip_plane * clip_planes)5880 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5881 {
5882    assert(stage == MESA_SHADER_VERTEX);
5883 
5884    setup_vs_payload();
5885 
5886    if (shader_time_index >= 0)
5887       emit_shader_time_begin();
5888 
5889    emit_nir_code();
5890 
5891    if (failed)
5892       return false;
5893 
5894    compute_clip_distance(clip_planes);
5895 
5896    emit_urb_writes();
5897 
5898    if (shader_time_index >= 0)
5899       emit_shader_time_end();
5900 
5901    calculate_cfg();
5902 
5903    optimize();
5904 
5905    assign_curb_setup();
5906    assign_vs_urb_setup();
5907 
5908    fixup_3src_null_dest();
5909    allocate_registers(true);
5910 
5911    return !failed;
5912 }
5913 
5914 bool
run_tcs_single_patch()5915 fs_visitor::run_tcs_single_patch()
5916 {
5917    assert(stage == MESA_SHADER_TESS_CTRL);
5918 
5919    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5920 
5921    /* r1-r4 contain the ICP handles. */
5922    payload.num_regs = 5;
5923 
5924    if (shader_time_index >= 0)
5925       emit_shader_time_begin();
5926 
5927    /* Initialize gl_InvocationID */
5928    fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5929    fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5930    bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5931    bld.MOV(channels_ud, channels_uw);
5932 
5933    if (tcs_prog_data->instances == 1) {
5934       invocation_id = channels_ud;
5935    } else {
5936       invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5937 
5938       /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5939       fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5940       fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5941       bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5942               brw_imm_ud(INTEL_MASK(23, 17)));
5943       bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5944 
5945       bld.ADD(invocation_id, instance_times_8, channels_ud);
5946    }
5947 
5948    /* Fix the disptach mask */
5949    if (nir->info->tess.tcs_vertices_out % 8) {
5950       bld.CMP(bld.null_reg_ud(), invocation_id,
5951               brw_imm_ud(nir->info->tess.tcs_vertices_out), BRW_CONDITIONAL_L);
5952       bld.IF(BRW_PREDICATE_NORMAL);
5953    }
5954 
5955    emit_nir_code();
5956 
5957    if (nir->info->tess.tcs_vertices_out % 8) {
5958       bld.emit(BRW_OPCODE_ENDIF);
5959    }
5960 
5961    /* Emit EOT write; set TR DS Cache bit */
5962    fs_reg srcs[3] = {
5963       fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5964       fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5965       fs_reg(brw_imm_ud(0)),
5966    };
5967    fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5968    bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5969 
5970    fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5971                             bld.null_reg_ud(), payload);
5972    inst->mlen = 3;
5973    inst->eot = true;
5974 
5975    if (shader_time_index >= 0)
5976       emit_shader_time_end();
5977 
5978    if (failed)
5979       return false;
5980 
5981    calculate_cfg();
5982 
5983    optimize();
5984 
5985    assign_curb_setup();
5986    assign_tcs_single_patch_urb_setup();
5987 
5988    fixup_3src_null_dest();
5989    allocate_registers(true);
5990 
5991    return !failed;
5992 }
5993 
5994 bool
run_tes()5995 fs_visitor::run_tes()
5996 {
5997    assert(stage == MESA_SHADER_TESS_EVAL);
5998 
5999    /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6000    payload.num_regs = 5;
6001 
6002    if (shader_time_index >= 0)
6003       emit_shader_time_begin();
6004 
6005    emit_nir_code();
6006 
6007    if (failed)
6008       return false;
6009 
6010    emit_urb_writes();
6011 
6012    if (shader_time_index >= 0)
6013       emit_shader_time_end();
6014 
6015    calculate_cfg();
6016 
6017    optimize();
6018 
6019    assign_curb_setup();
6020    assign_tes_urb_setup();
6021 
6022    fixup_3src_null_dest();
6023    allocate_registers(true);
6024 
6025    return !failed;
6026 }
6027 
6028 bool
run_gs()6029 fs_visitor::run_gs()
6030 {
6031    assert(stage == MESA_SHADER_GEOMETRY);
6032 
6033    setup_gs_payload();
6034 
6035    this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6036 
6037    if (gs_compile->control_data_header_size_bits > 0) {
6038       /* Create a VGRF to store accumulated control data bits. */
6039       this->control_data_bits = vgrf(glsl_type::uint_type);
6040 
6041       /* If we're outputting more than 32 control data bits, then EmitVertex()
6042        * will set control_data_bits to 0 after emitting the first vertex.
6043        * Otherwise, we need to initialize it to 0 here.
6044        */
6045       if (gs_compile->control_data_header_size_bits <= 32) {
6046          const fs_builder abld = bld.annotate("initialize control data bits");
6047          abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6048       }
6049    }
6050 
6051    if (shader_time_index >= 0)
6052       emit_shader_time_begin();
6053 
6054    emit_nir_code();
6055 
6056    emit_gs_thread_end();
6057 
6058    if (shader_time_index >= 0)
6059       emit_shader_time_end();
6060 
6061    if (failed)
6062       return false;
6063 
6064    calculate_cfg();
6065 
6066    optimize();
6067 
6068    assign_curb_setup();
6069    assign_gs_urb_setup();
6070 
6071    fixup_3src_null_dest();
6072    allocate_registers(true);
6073 
6074    return !failed;
6075 }
6076 
6077 bool
run_fs(bool allow_spilling,bool do_rep_send)6078 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6079 {
6080    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6081    brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6082 
6083    assert(stage == MESA_SHADER_FRAGMENT);
6084 
6085    if (devinfo->gen >= 6)
6086       setup_fs_payload_gen6();
6087    else
6088       setup_fs_payload_gen4();
6089 
6090    if (0) {
6091       emit_dummy_fs();
6092    } else if (do_rep_send) {
6093       assert(dispatch_width == 16);
6094       emit_repclear_shader();
6095    } else {
6096       if (shader_time_index >= 0)
6097          emit_shader_time_begin();
6098 
6099       calculate_urb_setup();
6100       if (nir->info->inputs_read > 0 ||
6101           (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6102          if (devinfo->gen < 6)
6103             emit_interpolation_setup_gen4();
6104          else
6105             emit_interpolation_setup_gen6();
6106       }
6107 
6108       /* We handle discards by keeping track of the still-live pixels in f0.1.
6109        * Initialize it with the dispatched pixels.
6110        */
6111       if (wm_prog_data->uses_kill) {
6112          fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6113          discard_init->flag_subreg = 1;
6114       }
6115 
6116       /* Generate FS IR for main().  (the visitor only descends into
6117        * functions called "main").
6118        */
6119       emit_nir_code();
6120 
6121       if (failed)
6122 	 return false;
6123 
6124       if (wm_prog_data->uses_kill)
6125          bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6126 
6127       if (wm_key->alpha_test_func)
6128          emit_alpha_test();
6129 
6130       emit_fb_writes();
6131 
6132       if (shader_time_index >= 0)
6133          emit_shader_time_end();
6134 
6135       calculate_cfg();
6136 
6137       optimize();
6138 
6139       assign_curb_setup();
6140       assign_urb_setup();
6141 
6142       fixup_3src_null_dest();
6143       allocate_registers(allow_spilling);
6144 
6145       if (failed)
6146          return false;
6147    }
6148 
6149    return !failed;
6150 }
6151 
6152 bool
run_cs()6153 fs_visitor::run_cs()
6154 {
6155    assert(stage == MESA_SHADER_COMPUTE);
6156 
6157    setup_cs_payload();
6158 
6159    if (shader_time_index >= 0)
6160       emit_shader_time_begin();
6161 
6162    if (devinfo->is_haswell && prog_data->total_shared > 0) {
6163       /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6164       const fs_builder abld = bld.exec_all().group(1, 0);
6165       abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6166                suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6167    }
6168 
6169    emit_nir_code();
6170 
6171    if (failed)
6172       return false;
6173 
6174    emit_cs_terminate();
6175 
6176    if (shader_time_index >= 0)
6177       emit_shader_time_end();
6178 
6179    calculate_cfg();
6180 
6181    optimize();
6182 
6183    assign_curb_setup();
6184 
6185    fixup_3src_null_dest();
6186    allocate_registers(true);
6187 
6188    if (failed)
6189       return false;
6190 
6191    return !failed;
6192 }
6193 
6194 /**
6195  * Return a bitfield where bit n is set if barycentric interpolation mode n
6196  * (see enum brw_barycentric_mode) is needed by the fragment shader.
6197  *
6198  * We examine the load_barycentric intrinsics rather than looking at input
6199  * variables so that we catch interpolateAtCentroid() messages too, which
6200  * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6201  */
6202 static unsigned
brw_compute_barycentric_interp_modes(const struct gen_device_info * devinfo,const nir_shader * shader)6203 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6204                                      const nir_shader *shader)
6205 {
6206    unsigned barycentric_interp_modes = 0;
6207 
6208    nir_foreach_function(f, shader) {
6209       if (!f->impl)
6210          continue;
6211 
6212       nir_foreach_block(block, f->impl) {
6213          nir_foreach_instr(instr, block) {
6214             if (instr->type != nir_instr_type_intrinsic)
6215                continue;
6216 
6217             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6218             if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6219                continue;
6220 
6221             /* Ignore WPOS; it doesn't require interpolation. */
6222             if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6223                continue;
6224 
6225             intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6226             enum glsl_interp_mode interp = (enum glsl_interp_mode)
6227                nir_intrinsic_interp_mode(intrin);
6228             nir_intrinsic_op bary_op = intrin->intrinsic;
6229             enum brw_barycentric_mode bary =
6230                brw_barycentric_mode(interp, bary_op);
6231 
6232             barycentric_interp_modes |= 1 << bary;
6233 
6234             if (devinfo->needs_unlit_centroid_workaround &&
6235                 bary_op == nir_intrinsic_load_barycentric_centroid)
6236                barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6237          }
6238       }
6239    }
6240 
6241    return barycentric_interp_modes;
6242 }
6243 
6244 static void
brw_compute_flat_inputs(struct brw_wm_prog_data * prog_data,const nir_shader * shader)6245 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6246                         const nir_shader *shader)
6247 {
6248    prog_data->flat_inputs = 0;
6249 
6250    nir_foreach_variable(var, &shader->inputs) {
6251       int input_index = prog_data->urb_setup[var->data.location];
6252 
6253       if (input_index < 0)
6254 	 continue;
6255 
6256       /* flat shading */
6257       if (var->data.interpolation == INTERP_MODE_FLAT)
6258          prog_data->flat_inputs |= (1 << input_index);
6259    }
6260 }
6261 
6262 static uint8_t
computed_depth_mode(const nir_shader * shader)6263 computed_depth_mode(const nir_shader *shader)
6264 {
6265    if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6266       switch (shader->info->fs.depth_layout) {
6267       case FRAG_DEPTH_LAYOUT_NONE:
6268       case FRAG_DEPTH_LAYOUT_ANY:
6269          return BRW_PSCDEPTH_ON;
6270       case FRAG_DEPTH_LAYOUT_GREATER:
6271          return BRW_PSCDEPTH_ON_GE;
6272       case FRAG_DEPTH_LAYOUT_LESS:
6273          return BRW_PSCDEPTH_ON_LE;
6274       case FRAG_DEPTH_LAYOUT_UNCHANGED:
6275          return BRW_PSCDEPTH_OFF;
6276       }
6277    }
6278    return BRW_PSCDEPTH_OFF;
6279 }
6280 
6281 /**
6282  * Move load_interpolated_input with simple (payload-based) barycentric modes
6283  * to the top of the program so we don't emit multiple PLNs for the same input.
6284  *
6285  * This works around CSE not being able to handle non-dominating cases
6286  * such as:
6287  *
6288  *    if (...) {
6289  *       interpolate input
6290  *    } else {
6291  *       interpolate the same exact input
6292  *    }
6293  *
6294  * This should be replaced by global value numbering someday.
6295  */
6296 void
move_interpolation_to_top(nir_shader * nir)6297 move_interpolation_to_top(nir_shader *nir)
6298 {
6299    nir_foreach_function(f, nir) {
6300       if (!f->impl)
6301          continue;
6302 
6303       nir_block *top = nir_start_block(f->impl);
6304       exec_node *cursor_node = NULL;
6305 
6306       nir_foreach_block(block, f->impl) {
6307          if (block == top)
6308             continue;
6309 
6310          nir_foreach_instr_safe(instr, block) {
6311             if (instr->type != nir_instr_type_intrinsic)
6312                continue;
6313 
6314             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6315             if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6316                continue;
6317             nir_intrinsic_instr *bary_intrinsic =
6318                nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6319             nir_intrinsic_op op = bary_intrinsic->intrinsic;
6320 
6321             /* Leave interpolateAtSample/Offset() where they are. */
6322             if (op == nir_intrinsic_load_barycentric_at_sample ||
6323                 op == nir_intrinsic_load_barycentric_at_offset)
6324                continue;
6325 
6326             nir_instr *move[3] = {
6327                &bary_intrinsic->instr,
6328                intrin->src[1].ssa->parent_instr,
6329                instr
6330             };
6331 
6332             for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6333                if (move[i]->block != top) {
6334                   move[i]->block = top;
6335                   exec_node_remove(&move[i]->node);
6336                   if (cursor_node) {
6337                      exec_node_insert_after(cursor_node, &move[i]->node);
6338                   } else {
6339                      exec_list_push_head(&top->instr_list, &move[i]->node);
6340                   }
6341                   cursor_node = &move[i]->node;
6342                }
6343             }
6344          }
6345       }
6346       nir_metadata_preserve(f->impl, (nir_metadata)
6347                             ((unsigned) nir_metadata_block_index |
6348                              (unsigned) nir_metadata_dominance));
6349    }
6350 }
6351 
6352 /**
6353  * Demote per-sample barycentric intrinsics to centroid.
6354  *
6355  * Useful when rendering to a non-multisampled buffer.
6356  */
6357 static void
demote_sample_qualifiers(nir_shader * nir)6358 demote_sample_qualifiers(nir_shader *nir)
6359 {
6360    nir_foreach_function(f, nir) {
6361       if (!f->impl)
6362          continue;
6363 
6364       nir_builder b;
6365       nir_builder_init(&b, f->impl);
6366 
6367       nir_foreach_block(block, f->impl) {
6368          nir_foreach_instr_safe(instr, block) {
6369             if (instr->type != nir_instr_type_intrinsic)
6370                continue;
6371 
6372             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6373             if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6374                 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6375                continue;
6376 
6377             b.cursor = nir_before_instr(instr);
6378             nir_ssa_def *centroid =
6379                nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6380                                     nir_intrinsic_interp_mode(intrin));
6381             nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6382                                      nir_src_for_ssa(centroid));
6383             nir_instr_remove(instr);
6384          }
6385       }
6386 
6387       nir_metadata_preserve(f->impl, (nir_metadata)
6388                             ((unsigned) nir_metadata_block_index |
6389                              (unsigned) nir_metadata_dominance));
6390    }
6391 }
6392 
6393 const unsigned *
brw_compile_fs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,const nir_shader * src_shader,struct gl_program * prog,int shader_time_index8,int shader_time_index16,bool allow_spilling,bool use_rep_send,struct brw_vue_map * vue_map,unsigned * final_assembly_size,char ** error_str)6394 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6395                void *mem_ctx,
6396                const struct brw_wm_prog_key *key,
6397                struct brw_wm_prog_data *prog_data,
6398                const nir_shader *src_shader,
6399                struct gl_program *prog,
6400                int shader_time_index8, int shader_time_index16,
6401                bool allow_spilling,
6402                bool use_rep_send, struct brw_vue_map *vue_map,
6403                unsigned *final_assembly_size,
6404                char **error_str)
6405 {
6406    const struct gen_device_info *devinfo = compiler->devinfo;
6407 
6408    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6409    shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6410    brw_nir_lower_fs_inputs(shader, devinfo, key);
6411    brw_nir_lower_fs_outputs(shader);
6412 
6413    if (devinfo->gen < 6) {
6414       brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6415    }
6416 
6417    if (!key->multisample_fbo)
6418       NIR_PASS_V(shader, demote_sample_qualifiers);
6419    NIR_PASS_V(shader, move_interpolation_to_top);
6420    shader = brw_postprocess_nir(shader, compiler, true);
6421 
6422    /* key->alpha_test_func means simulating alpha testing via discards,
6423     * so the shader definitely kills pixels.
6424     */
6425    prog_data->uses_kill = shader->info->fs.uses_discard ||
6426       key->alpha_test_func;
6427    prog_data->uses_omask = key->multisample_fbo &&
6428       shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6429    prog_data->computed_depth_mode = computed_depth_mode(shader);
6430    prog_data->computed_stencil =
6431       shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6432 
6433    prog_data->persample_dispatch =
6434       key->multisample_fbo &&
6435       (key->persample_interp ||
6436        (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6437                                             SYSTEM_BIT_SAMPLE_POS)) ||
6438        shader->info->fs.uses_sample_qualifier ||
6439        shader->info->outputs_read);
6440 
6441    prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
6442    prog_data->post_depth_coverage = shader->info->fs.post_depth_coverage;
6443    prog_data->inner_coverage = shader->info->fs.inner_coverage;
6444 
6445    prog_data->barycentric_interp_modes =
6446       brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6447 
6448    cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6449    uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6450    unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6451 
6452    fs_visitor v8(compiler, log_data, mem_ctx, key,
6453                  &prog_data->base, prog, shader, 8,
6454                  shader_time_index8);
6455    if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6456       if (error_str)
6457          *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6458 
6459       return NULL;
6460    } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6461       simd8_cfg = v8.cfg;
6462       simd8_grf_start = v8.payload.num_regs;
6463       simd8_grf_used = v8.grf_used;
6464    }
6465 
6466    if (v8.max_dispatch_width >= 16 &&
6467        likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6468       /* Try a SIMD16 compile */
6469       fs_visitor v16(compiler, log_data, mem_ctx, key,
6470                      &prog_data->base, prog, shader, 16,
6471                      shader_time_index16);
6472       v16.import_uniforms(&v8);
6473       if (!v16.run_fs(allow_spilling, use_rep_send)) {
6474          compiler->shader_perf_log(log_data,
6475                                    "SIMD16 shader failed to compile: %s",
6476                                    v16.fail_msg);
6477       } else {
6478          simd16_cfg = v16.cfg;
6479          simd16_grf_start = v16.payload.num_regs;
6480          simd16_grf_used = v16.grf_used;
6481       }
6482    }
6483 
6484    /* When the caller requests a repclear shader, they want SIMD16-only */
6485    if (use_rep_send)
6486       simd8_cfg = NULL;
6487 
6488    /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6489     * at the top to select the shader.  We've never implemented that.
6490     * Instead, we just give them exactly one shader and we pick the widest one
6491     * available.
6492     */
6493    if (compiler->devinfo->gen < 5 && simd16_cfg)
6494       simd8_cfg = NULL;
6495 
6496    if (prog_data->persample_dispatch) {
6497       /* Starting with SandyBridge (where we first get MSAA), the different
6498        * pixel dispatch combinations are grouped into classifications A
6499        * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1).  On all hardware
6500        * generations, the only configurations supporting persample dispatch
6501        * are are this in which only one dispatch width is enabled.
6502        *
6503        * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6504        * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6505        */
6506       if (compiler->devinfo->gen == 6 &&
6507           prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6508          simd16_cfg = NULL;
6509       } else if (simd16_cfg) {
6510          simd8_cfg = NULL;
6511       }
6512    }
6513 
6514    /* We have to compute the flat inputs after the visitor is finished running
6515     * because it relies on prog_data->urb_setup which is computed in
6516     * fs_visitor::calculate_urb_setup().
6517     */
6518    brw_compute_flat_inputs(prog_data, shader);
6519 
6520    fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6521                   v8.promoted_constants, v8.runtime_check_aads_emit,
6522                   MESA_SHADER_FRAGMENT);
6523 
6524    if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6525       g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6526                                      shader->info->label ?
6527                                         shader->info->label : "unnamed",
6528                                      shader->info->name));
6529    }
6530 
6531    if (simd8_cfg) {
6532       prog_data->dispatch_8 = true;
6533       g.generate_code(simd8_cfg, 8);
6534       prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6535       prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6536 
6537       if (simd16_cfg) {
6538          prog_data->dispatch_16 = true;
6539          prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6540          prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6541          prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6542       }
6543    } else if (simd16_cfg) {
6544       prog_data->dispatch_16 = true;
6545       g.generate_code(simd16_cfg, 16);
6546       prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6547       prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6548    }
6549 
6550    return g.get_assembly(final_assembly_size);
6551 }
6552 
6553 fs_reg *
emit_cs_work_group_id_setup()6554 fs_visitor::emit_cs_work_group_id_setup()
6555 {
6556    assert(stage == MESA_SHADER_COMPUTE);
6557 
6558    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6559 
6560    struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6561    struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6562    struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6563 
6564    bld.MOV(*reg, r0_1);
6565    bld.MOV(offset(*reg, bld, 1), r0_6);
6566    bld.MOV(offset(*reg, bld, 2), r0_7);
6567 
6568    return reg;
6569 }
6570 
6571 static void
fill_push_const_block_info(struct brw_push_const_block * block,unsigned dwords)6572 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6573 {
6574    block->dwords = dwords;
6575    block->regs = DIV_ROUND_UP(dwords, 8);
6576    block->size = block->regs * 32;
6577 }
6578 
6579 static void
cs_fill_push_const_info(const struct gen_device_info * devinfo,struct brw_cs_prog_data * cs_prog_data)6580 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6581                         struct brw_cs_prog_data *cs_prog_data)
6582 {
6583    const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6584    bool fill_thread_id =
6585       cs_prog_data->thread_local_id_index >= 0 &&
6586       cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6587    bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6588 
6589    /* The thread ID should be stored in the last param dword */
6590    assert(prog_data->nr_params > 0 || !fill_thread_id);
6591    assert(!fill_thread_id ||
6592           cs_prog_data->thread_local_id_index ==
6593              (int)prog_data->nr_params - 1);
6594 
6595    unsigned cross_thread_dwords, per_thread_dwords;
6596    if (!cross_thread_supported) {
6597       cross_thread_dwords = 0u;
6598       per_thread_dwords = prog_data->nr_params;
6599    } else if (fill_thread_id) {
6600       /* Fill all but the last register with cross-thread payload */
6601       cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6602       per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6603       assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6604    } else {
6605       /* Fill all data using cross-thread payload */
6606       cross_thread_dwords = prog_data->nr_params;
6607       per_thread_dwords = 0u;
6608    }
6609 
6610    fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6611    fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6612 
6613    unsigned total_dwords =
6614       (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6615        cs_prog_data->push.cross_thread.size) / 4;
6616    fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6617 
6618    assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6619           cs_prog_data->push.per_thread.size == 0);
6620    assert(cs_prog_data->push.cross_thread.dwords +
6621           cs_prog_data->push.per_thread.dwords ==
6622              prog_data->nr_params);
6623 }
6624 
6625 static void
cs_set_simd_size(struct brw_cs_prog_data * cs_prog_data,unsigned size)6626 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6627 {
6628    cs_prog_data->simd_size = size;
6629    unsigned group_size = cs_prog_data->local_size[0] *
6630       cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6631    cs_prog_data->threads = (group_size + size - 1) / size;
6632 }
6633 
6634 const unsigned *
brw_compile_cs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_cs_prog_key * key,struct brw_cs_prog_data * prog_data,const nir_shader * src_shader,int shader_time_index,unsigned * final_assembly_size,char ** error_str)6635 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6636                void *mem_ctx,
6637                const struct brw_cs_prog_key *key,
6638                struct brw_cs_prog_data *prog_data,
6639                const nir_shader *src_shader,
6640                int shader_time_index,
6641                unsigned *final_assembly_size,
6642                char **error_str)
6643 {
6644    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6645    shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6646    brw_nir_lower_cs_shared(shader);
6647    prog_data->base.total_shared += shader->num_shared;
6648 
6649    /* Now that we cloned the nir_shader, we can update num_uniforms based on
6650     * the thread_local_id_index.
6651     */
6652    assert(prog_data->thread_local_id_index >= 0);
6653    shader->num_uniforms =
6654       MAX2(shader->num_uniforms,
6655            (unsigned)4 * (prog_data->thread_local_id_index + 1));
6656 
6657    brw_nir_lower_intrinsics(shader, &prog_data->base);
6658    shader = brw_postprocess_nir(shader, compiler, true);
6659 
6660    prog_data->local_size[0] = shader->info->cs.local_size[0];
6661    prog_data->local_size[1] = shader->info->cs.local_size[1];
6662    prog_data->local_size[2] = shader->info->cs.local_size[2];
6663    unsigned local_workgroup_size =
6664       shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
6665       shader->info->cs.local_size[2];
6666 
6667    unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6668    unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6669 
6670    cfg_t *cfg = NULL;
6671    const char *fail_msg = NULL;
6672 
6673    /* Now the main event: Visit the shader IR and generate our CS IR for it.
6674     */
6675    fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6676                  NULL, /* Never used in core profile */
6677                  shader, 8, shader_time_index);
6678    if (simd_required <= 8) {
6679       if (!v8.run_cs()) {
6680          fail_msg = v8.fail_msg;
6681       } else {
6682          cfg = v8.cfg;
6683          cs_set_simd_size(prog_data, 8);
6684          cs_fill_push_const_info(compiler->devinfo, prog_data);
6685          prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6686       }
6687    }
6688 
6689    fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6690                  NULL, /* Never used in core profile */
6691                  shader, 16, shader_time_index);
6692    if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6693        !fail_msg && v8.max_dispatch_width >= 16 &&
6694        simd_required <= 16) {
6695       /* Try a SIMD16 compile */
6696       if (simd_required <= 8)
6697          v16.import_uniforms(&v8);
6698       if (!v16.run_cs()) {
6699          compiler->shader_perf_log(log_data,
6700                                    "SIMD16 shader failed to compile: %s",
6701                                    v16.fail_msg);
6702          if (!cfg) {
6703             fail_msg =
6704                "Couldn't generate SIMD16 program and not "
6705                "enough threads for SIMD8";
6706          }
6707       } else {
6708          cfg = v16.cfg;
6709          cs_set_simd_size(prog_data, 16);
6710          cs_fill_push_const_info(compiler->devinfo, prog_data);
6711          prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6712       }
6713    }
6714 
6715    fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6716                  NULL, /* Never used in core profile */
6717                  shader, 32, shader_time_index);
6718    if (!fail_msg && v8.max_dispatch_width >= 32 &&
6719        (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6720       /* Try a SIMD32 compile */
6721       if (simd_required <= 8)
6722          v32.import_uniforms(&v8);
6723       else if (simd_required <= 16)
6724          v32.import_uniforms(&v16);
6725 
6726       if (!v32.run_cs()) {
6727          compiler->shader_perf_log(log_data,
6728                                    "SIMD32 shader failed to compile: %s",
6729                                    v16.fail_msg);
6730          if (!cfg) {
6731             fail_msg =
6732                "Couldn't generate SIMD32 program and not "
6733                "enough threads for SIMD16";
6734          }
6735       } else {
6736          cfg = v32.cfg;
6737          cs_set_simd_size(prog_data, 32);
6738          cs_fill_push_const_info(compiler->devinfo, prog_data);
6739       }
6740    }
6741 
6742    if (unlikely(cfg == NULL)) {
6743       assert(fail_msg);
6744       if (error_str)
6745          *error_str = ralloc_strdup(mem_ctx, fail_msg);
6746 
6747       return NULL;
6748    }
6749 
6750    fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6751                   v8.promoted_constants, v8.runtime_check_aads_emit,
6752                   MESA_SHADER_COMPUTE);
6753    if (INTEL_DEBUG & DEBUG_CS) {
6754       char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6755                                    shader->info->label ? shader->info->label :
6756                                                         "unnamed",
6757                                    shader->info->name);
6758       g.enable_debug(name);
6759    }
6760 
6761    g.generate_code(cfg, prog_data->simd_size);
6762 
6763    return g.get_assembly(final_assembly_size);
6764 }
6765 
6766 /**
6767  * Test the dispatch mask packing assumptions of
6768  * brw_stage_has_packed_dispatch().  Call this from e.g. the top of
6769  * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6770  * executed with an unexpected dispatch mask.
6771  */
6772 static UNUSED void
brw_fs_test_dispatch_packing(const fs_builder & bld)6773 brw_fs_test_dispatch_packing(const fs_builder &bld)
6774 {
6775    const gl_shader_stage stage = bld.shader->stage;
6776 
6777    if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6778                                      bld.shader->stage_prog_data)) {
6779       const fs_builder ubld = bld.exec_all().group(1, 0);
6780       const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6781       const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6782                            brw_dmask_reg());
6783 
6784       ubld.ADD(tmp, mask, brw_imm_ud(1));
6785       ubld.AND(tmp, mask, tmp);
6786 
6787       /* This will loop forever if the dispatch mask doesn't have the expected
6788        * form '2^n-1', in which case tmp will be non-zero.
6789        */
6790       bld.emit(BRW_OPCODE_DO);
6791       bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6792       set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6793    }
6794 }
6795