• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
getTargetNodeName(unsigned Opcode) const42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
isPositionIndependent() const46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function *F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore noalias because it doesn't affect the call sequence.
58   AttributeSet CallerAttrs = F->getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
60       .removeAttribute(Attribute::NoAlias).hasAttributes())
61     return false;
62 
63   // It's not safe to eliminate the sign / zero extension of the return value.
64   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
65       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
66     return false;
67 
68   // Check if the only use is a function return node.
69   return isUsedByReturnOnly(Node, Chain);
70 }
71 
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<SDValue> & OutVals) const72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
73     const uint32_t *CallerPreservedMask,
74     const SmallVectorImpl<CCValAssign> &ArgLocs,
75     const SmallVectorImpl<SDValue> &OutVals) const {
76   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
77     const CCValAssign &ArgLoc = ArgLocs[I];
78     if (!ArgLoc.isRegLoc())
79       continue;
80     unsigned Reg = ArgLoc.getLocReg();
81     // Only look at callee saved registers.
82     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
83       continue;
84     // Check that we pass the value used for the caller.
85     // (We look for a CopyFromReg reading a virtual register that is used
86     //  for the function live-in value of register Reg)
87     SDValue Value = OutVals[I];
88     if (Value->getOpcode() != ISD::CopyFromReg)
89       return false;
90     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
91     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
92       return false;
93   }
94   return true;
95 }
96 
97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
98 /// and called function attributes.
setAttributes(ImmutableCallSite * CS,unsigned AttrIdx)99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
100                                                  unsigned AttrIdx) {
101   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
102   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
103   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
104   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
105   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
106   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
107   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
108   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
109   isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
110   isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
111   Alignment  = CS->getParamAlignment(AttrIdx);
112 }
113 
114 /// Generate a libcall taking the given operands as arguments and returning a
115 /// result of type RetVT.
116 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,ArrayRef<SDValue> Ops,bool isSigned,const SDLoc & dl,bool doesNotReturn,bool isReturnValueUsed) const117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
118                             ArrayRef<SDValue> Ops, bool isSigned,
119                             const SDLoc &dl, bool doesNotReturn,
120                             bool isReturnValueUsed) const {
121   TargetLowering::ArgListTy Args;
122   Args.reserve(Ops.size());
123 
124   TargetLowering::ArgListEntry Entry;
125   for (SDValue Op : Ops) {
126     Entry.Node = Op;
127     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
128     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
130     Args.push_back(Entry);
131   }
132 
133   if (LC == RTLIB::UNKNOWN_LIBCALL)
134     report_fatal_error("Unsupported library call operation!");
135   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
136                                          getPointerTy(DAG.getDataLayout()));
137 
138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
139   TargetLowering::CallLoweringInfo CLI(DAG);
140   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
141   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
142     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
143     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
144     .setSExtResult(signExtend).setZExtResult(!signExtend);
145   return LowerCallTo(CLI);
146 }
147 
148 /// Soften the operands of a comparison. This code is shared among BR_CC,
149 /// SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl) const150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
151                                          SDValue &NewLHS, SDValue &NewRHS,
152                                          ISD::CondCode &CCCode,
153                                          const SDLoc &dl) const {
154   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
155          && "Unsupported setcc type!");
156 
157   // Expand into one or more soft-fp libcall(s).
158   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
159   bool ShouldInvertCC = false;
160   switch (CCCode) {
161   case ISD::SETEQ:
162   case ISD::SETOEQ:
163     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
164           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
165           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
166     break;
167   case ISD::SETNE:
168   case ISD::SETUNE:
169     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
170           (VT == MVT::f64) ? RTLIB::UNE_F64 :
171           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
172     break;
173   case ISD::SETGE:
174   case ISD::SETOGE:
175     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
176           (VT == MVT::f64) ? RTLIB::OGE_F64 :
177           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
178     break;
179   case ISD::SETLT:
180   case ISD::SETOLT:
181     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
182           (VT == MVT::f64) ? RTLIB::OLT_F64 :
183           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
184     break;
185   case ISD::SETLE:
186   case ISD::SETOLE:
187     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
188           (VT == MVT::f64) ? RTLIB::OLE_F64 :
189           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
190     break;
191   case ISD::SETGT:
192   case ISD::SETOGT:
193     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
194           (VT == MVT::f64) ? RTLIB::OGT_F64 :
195           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
196     break;
197   case ISD::SETUO:
198     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
199           (VT == MVT::f64) ? RTLIB::UO_F64 :
200           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
201     break;
202   case ISD::SETO:
203     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
204           (VT == MVT::f64) ? RTLIB::O_F64 :
205           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
206     break;
207   case ISD::SETONE:
208     // SETONE = SETOLT | SETOGT
209     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
210           (VT == MVT::f64) ? RTLIB::OLT_F64 :
211           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
212     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
213           (VT == MVT::f64) ? RTLIB::OGT_F64 :
214           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
215     break;
216   case ISD::SETUEQ:
217     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
218           (VT == MVT::f64) ? RTLIB::UO_F64 :
219           (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128;
220     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
221           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
222           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
223     break;
224   default:
225     // Invert CC for unordered comparisons
226     ShouldInvertCC = true;
227     switch (CCCode) {
228     case ISD::SETULT:
229       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
230             (VT == MVT::f64) ? RTLIB::OGE_F64 :
231             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
232       break;
233     case ISD::SETULE:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
235             (VT == MVT::f64) ? RTLIB::OGT_F64 :
236             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
237       break;
238     case ISD::SETUGT:
239       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
240             (VT == MVT::f64) ? RTLIB::OLE_F64 :
241             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
242       break;
243     case ISD::SETUGE:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
245             (VT == MVT::f64) ? RTLIB::OLT_F64 :
246             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
247       break;
248     default: llvm_unreachable("Do not know how to soften this setcc!");
249     }
250   }
251 
252   // Use the target specific return value for comparions lib calls.
253   EVT RetVT = getCmpLibcallReturnType();
254   SDValue Ops[2] = {NewLHS, NewRHS};
255   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
256                        dl).first;
257   NewRHS = DAG.getConstant(0, dl, RetVT);
258 
259   CCCode = getCmpLibcallCC(LC1);
260   if (ShouldInvertCC)
261     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
262 
263   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
264     SDValue Tmp = DAG.getNode(
265         ISD::SETCC, dl,
266         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
267         NewLHS, NewRHS, DAG.getCondCode(CCCode));
268     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
269                          dl).first;
270     NewLHS = DAG.getNode(
271         ISD::SETCC, dl,
272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
274     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
275     NewRHS = SDValue();
276   }
277 }
278 
279 /// Return the entry encoding for a jump table in the current function. The
280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const281 unsigned TargetLowering::getJumpTableEncoding() const {
282   // In non-pic modes, just use the address of a block.
283   if (!isPositionIndependent())
284     return MachineJumpTableInfo::EK_BlockAddress;
285 
286   // In PIC mode, if the target supports a GPRel32 directive, use it.
287   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
288     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
289 
290   // Otherwise, use a label difference.
291   return MachineJumpTableInfo::EK_LabelDifference32;
292 }
293 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
295                                                  SelectionDAG &DAG) const {
296   // If our PIC model is GP relative, use the global offset table as the base.
297   unsigned JTEncoding = getJumpTableEncoding();
298 
299   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
300       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
301     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
302 
303   return Table;
304 }
305 
306 /// This returns the relocation base for the given PIC jumptable, the same as
307 /// getPICJumpTableRelocBase, but as an MCExpr.
308 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
310                                              unsigned JTI,MCContext &Ctx) const{
311   // The normal PIC reloc base is the label at the start of the jump table.
312   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
313 }
314 
315 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
317   const TargetMachine &TM = getTargetMachine();
318   const GlobalValue *GV = GA->getGlobal();
319 
320   // If the address is not even local to this DSO we will have to load it from
321   // a got and then add the offset.
322   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
323     return false;
324 
325   // If the code is position independent we will have to add a base register.
326   if (isPositionIndependent())
327     return false;
328 
329   // Otherwise we can do it.
330   return true;
331 }
332 
333 //===----------------------------------------------------------------------===//
334 //  Optimization Methods
335 //===----------------------------------------------------------------------===//
336 
337 /// Check to see if the specified operand of the specified instruction is a
338 /// constant integer. If so, check to see if there are any bits set in the
339 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
341                                                         const APInt &Demanded) {
342   SDLoc dl(Op);
343 
344   // FIXME: ISD::SELECT, ISD::SELECT_CC
345   switch (Op.getOpcode()) {
346   default: break;
347   case ISD::XOR:
348   case ISD::AND:
349   case ISD::OR: {
350     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
351     if (!C) return false;
352 
353     if (Op.getOpcode() == ISD::XOR &&
354         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
355       return false;
356 
357     // if we can expand it to have all bits set, do it
358     if (C->getAPIntValue().intersects(~Demanded)) {
359       EVT VT = Op.getValueType();
360       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
361                                 DAG.getConstant(Demanded &
362                                                 C->getAPIntValue(),
363                                                 dl, VT));
364       return CombineTo(Op, New);
365     }
366 
367     break;
368   }
369   }
370 
371   return false;
372 }
373 
374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
376 /// generalized for targets with other types of implicit widening casts.
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,const SDLoc & dl)377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
378                                                          unsigned BitWidth,
379                                                          const APInt &Demanded,
380                                                          const SDLoc &dl) {
381   assert(Op.getNumOperands() == 2 &&
382          "ShrinkDemandedOp only supports binary operators!");
383   assert(Op.getNode()->getNumValues() == 1 &&
384          "ShrinkDemandedOp only supports nodes with one result!");
385 
386   // Early return, as this function cannot handle vector types.
387   if (Op.getValueType().isVector())
388     return false;
389 
390   // Don't do this if the node has another user, which may require the
391   // full value.
392   if (!Op.getNode()->hasOneUse())
393     return false;
394 
395   // Search for the smallest integer type with free casts to and from
396   // Op's type. For expedience, just check power-of-2 integer types.
397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
398   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
399   unsigned SmallVTBits = DemandedSize;
400   if (!isPowerOf2_32(SmallVTBits))
401     SmallVTBits = NextPowerOf2(SmallVTBits);
402   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
403     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
404     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
405         TLI.isZExtFree(SmallVT, Op.getValueType())) {
406       // We found a type with free casts.
407       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
408                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
409                                           Op.getNode()->getOperand(0)),
410                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
411                                           Op.getNode()->getOperand(1)));
412       bool NeedZext = DemandedSize > SmallVTBits;
413       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
414                               dl, Op.getValueType(), X);
415       return CombineTo(Op, Z);
416     }
417   }
418   return false;
419 }
420 
421 /// Look at Op. At this point, we know that only the DemandedMask bits of the
422 /// result of Op are ever used downstream. If we can use this information to
423 /// simplify Op, create a new simplified DAG node and return true, returning the
424 /// original and new nodes in Old and New. Otherwise, analyze the expression and
425 /// return a mask of KnownOne and KnownZero bits for the expression (used to
426 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
427 /// bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const428 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
429                                           const APInt &DemandedMask,
430                                           APInt &KnownZero,
431                                           APInt &KnownOne,
432                                           TargetLoweringOpt &TLO,
433                                           unsigned Depth) const {
434   unsigned BitWidth = DemandedMask.getBitWidth();
435   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
436          "Mask size mismatches value type size!");
437   APInt NewMask = DemandedMask;
438   SDLoc dl(Op);
439   auto &DL = TLO.DAG.getDataLayout();
440 
441   // Don't know anything.
442   KnownZero = KnownOne = APInt(BitWidth, 0);
443 
444   // Other users may use these bits.
445   if (!Op.getNode()->hasOneUse()) {
446     if (Depth != 0) {
447       // If not at the root, Just compute the KnownZero/KnownOne bits to
448       // simplify things downstream.
449       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
450       return false;
451     }
452     // If this is the root being simplified, allow it to have multiple uses,
453     // just set the NewMask to all bits.
454     NewMask = APInt::getAllOnesValue(BitWidth);
455   } else if (DemandedMask == 0) {
456     // Not demanding any bits from Op.
457     if (!Op.isUndef())
458       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
459     return false;
460   } else if (Depth == 6) {        // Limit search depth.
461     return false;
462   }
463 
464   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
465   switch (Op.getOpcode()) {
466   case ISD::Constant:
467     // We know all of the bits for a constant!
468     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
469     KnownZero = ~KnownOne;
470     return false;   // Don't fall through, will infinitely loop.
471   case ISD::AND:
472     // If the RHS is a constant, check to see if the LHS would be zero without
473     // using the bits from the RHS.  Below, we use knowledge about the RHS to
474     // simplify the LHS, here we're using information from the LHS to simplify
475     // the RHS.
476     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
477       APInt LHSZero, LHSOne;
478       // Do not increment Depth here; that can cause an infinite loop.
479       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
480       // If the LHS already has zeros where RHSC does, this and is dead.
481       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
482         return TLO.CombineTo(Op, Op.getOperand(0));
483       // If any of the set bits in the RHS are known zero on the LHS, shrink
484       // the constant.
485       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
486         return true;
487     }
488 
489     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
490                              KnownOne, TLO, Depth+1))
491       return true;
492     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
493     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
494                              KnownZero2, KnownOne2, TLO, Depth+1))
495       return true;
496     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
497 
498     // If all of the demanded bits are known one on one side, return the other.
499     // These bits cannot contribute to the result of the 'and'.
500     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
501       return TLO.CombineTo(Op, Op.getOperand(0));
502     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
503       return TLO.CombineTo(Op, Op.getOperand(1));
504     // If all of the demanded bits in the inputs are known zeros, return zero.
505     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
506       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
507     // If the RHS is a constant, see if we can simplify it.
508     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
509       return true;
510     // If the operation can be done in a smaller type, do so.
511     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
512       return true;
513 
514     // Output known-1 bits are only known if set in both the LHS & RHS.
515     KnownOne &= KnownOne2;
516     // Output known-0 are known to be clear if zero in either the LHS | RHS.
517     KnownZero |= KnownZero2;
518     break;
519   case ISD::OR:
520     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
521                              KnownOne, TLO, Depth+1))
522       return true;
523     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
525                              KnownZero2, KnownOne2, TLO, Depth+1))
526       return true;
527     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
528 
529     // If all of the demanded bits are known zero on one side, return the other.
530     // These bits cannot contribute to the result of the 'or'.
531     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
532       return TLO.CombineTo(Op, Op.getOperand(0));
533     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
534       return TLO.CombineTo(Op, Op.getOperand(1));
535     // If all of the potentially set bits on one side are known to be set on
536     // the other side, just use the 'other' side.
537     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
538       return TLO.CombineTo(Op, Op.getOperand(0));
539     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
540       return TLO.CombineTo(Op, Op.getOperand(1));
541     // If the RHS is a constant, see if we can simplify it.
542     if (TLO.ShrinkDemandedConstant(Op, NewMask))
543       return true;
544     // If the operation can be done in a smaller type, do so.
545     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
546       return true;
547 
548     // Output known-0 bits are only known if clear in both the LHS & RHS.
549     KnownZero &= KnownZero2;
550     // Output known-1 are known to be set if set in either the LHS | RHS.
551     KnownOne |= KnownOne2;
552     break;
553   case ISD::XOR:
554     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
555                              KnownOne, TLO, Depth+1))
556       return true;
557     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
558     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
559                              KnownOne2, TLO, Depth+1))
560       return true;
561     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
562 
563     // If all of the demanded bits are known zero on one side, return the other.
564     // These bits cannot contribute to the result of the 'xor'.
565     if ((KnownZero & NewMask) == NewMask)
566       return TLO.CombineTo(Op, Op.getOperand(0));
567     if ((KnownZero2 & NewMask) == NewMask)
568       return TLO.CombineTo(Op, Op.getOperand(1));
569     // If the operation can be done in a smaller type, do so.
570     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
571       return true;
572 
573     // If all of the unknown bits are known to be zero on one side or the other
574     // (but not both) turn this into an *inclusive* or.
575     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
576     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
577       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
578                                                Op.getOperand(0),
579                                                Op.getOperand(1)));
580 
581     // Output known-0 bits are known if clear or set in both the LHS & RHS.
582     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
583     // Output known-1 are known to be set if set in only one of the LHS, RHS.
584     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
585 
586     // If all of the demanded bits on one side are known, and all of the set
587     // bits on that side are also known to be set on the other side, turn this
588     // into an AND, as we know the bits will be cleared.
589     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
590     // NB: it is okay if more bits are known than are requested
591     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
592       if (KnownOne == KnownOne2) { // set bits are the same on both sides
593         EVT VT = Op.getValueType();
594         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
595         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
596                                                  Op.getOperand(0), ANDC));
597       }
598     }
599 
600     // If the RHS is a constant, see if we can simplify it.
601     // for XOR, we prefer to force bits to 1 if they will make a -1.
602     // if we can't force bits, try to shrink constant
603     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
604       APInt Expanded = C->getAPIntValue() | (~NewMask);
605       // if we can expand it to have all bits set, do it
606       if (Expanded.isAllOnesValue()) {
607         if (Expanded != C->getAPIntValue()) {
608           EVT VT = Op.getValueType();
609           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
610                                         TLO.DAG.getConstant(Expanded, dl, VT));
611           return TLO.CombineTo(Op, New);
612         }
613         // if it already has all the bits set, nothing to change
614         // but don't shrink either!
615       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
616         return true;
617       }
618     }
619 
620     KnownZero = KnownZeroOut;
621     KnownOne  = KnownOneOut;
622     break;
623   case ISD::SELECT:
624     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
625                              KnownOne, TLO, Depth+1))
626       return true;
627     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
628                              KnownOne2, TLO, Depth+1))
629       return true;
630     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
631     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
632 
633     // If the operands are constants, see if we can simplify them.
634     if (TLO.ShrinkDemandedConstant(Op, NewMask))
635       return true;
636 
637     // Only known if known in both the LHS and RHS.
638     KnownOne &= KnownOne2;
639     KnownZero &= KnownZero2;
640     break;
641   case ISD::SELECT_CC:
642     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
643                              KnownOne, TLO, Depth+1))
644       return true;
645     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
646                              KnownOne2, TLO, Depth+1))
647       return true;
648     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
649     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
650 
651     // If the operands are constants, see if we can simplify them.
652     if (TLO.ShrinkDemandedConstant(Op, NewMask))
653       return true;
654 
655     // Only known if known in both the LHS and RHS.
656     KnownOne &= KnownOne2;
657     KnownZero &= KnownZero2;
658     break;
659   case ISD::SHL:
660     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
661       unsigned ShAmt = SA->getZExtValue();
662       SDValue InOp = Op.getOperand(0);
663 
664       // If the shift count is an invalid immediate, don't do anything.
665       if (ShAmt >= BitWidth)
666         break;
667 
668       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
669       // single shift.  We can do this if the bottom bits (which are shifted
670       // out) are never demanded.
671       if (InOp.getOpcode() == ISD::SRL &&
672           isa<ConstantSDNode>(InOp.getOperand(1))) {
673         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
674           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
675           unsigned Opc = ISD::SHL;
676           int Diff = ShAmt-C1;
677           if (Diff < 0) {
678             Diff = -Diff;
679             Opc = ISD::SRL;
680           }
681 
682           SDValue NewSA =
683             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
684           EVT VT = Op.getValueType();
685           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
686                                                    InOp.getOperand(0), NewSA));
687         }
688       }
689 
690       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
691                                KnownZero, KnownOne, TLO, Depth+1))
692         return true;
693 
694       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
695       // are not demanded. This will likely allow the anyext to be folded away.
696       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
697         SDValue InnerOp = InOp.getNode()->getOperand(0);
698         EVT InnerVT = InnerOp.getValueType();
699         unsigned InnerBits = InnerVT.getSizeInBits();
700         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
701             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
702           EVT ShTy = getShiftAmountTy(InnerVT, DL);
703           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
704             ShTy = InnerVT;
705           SDValue NarrowShl =
706             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
707                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
708           return
709             TLO.CombineTo(Op,
710                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
711                                           NarrowShl));
712         }
713         // Repeat the SHL optimization above in cases where an extension
714         // intervenes: (shl (anyext (shr x, c1)), c2) to
715         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
716         // aren't demanded (as above) and that the shifted upper c1 bits of
717         // x aren't demanded.
718         if (InOp.hasOneUse() &&
719             InnerOp.getOpcode() == ISD::SRL &&
720             InnerOp.hasOneUse() &&
721             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
722           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
723             ->getZExtValue();
724           if (InnerShAmt < ShAmt &&
725               InnerShAmt < InnerBits &&
726               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
727               NewMask.trunc(ShAmt) == 0) {
728             SDValue NewSA =
729               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
730                                   Op.getOperand(1).getValueType());
731             EVT VT = Op.getValueType();
732             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
733                                              InnerOp.getOperand(0));
734             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
735                                                      NewExt, NewSA));
736           }
737         }
738       }
739 
740       KnownZero <<= SA->getZExtValue();
741       KnownOne  <<= SA->getZExtValue();
742       // low bits known zero.
743       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
744     }
745     break;
746   case ISD::SRL:
747     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
748       EVT VT = Op.getValueType();
749       unsigned ShAmt = SA->getZExtValue();
750       unsigned VTSize = VT.getSizeInBits();
751       SDValue InOp = Op.getOperand(0);
752 
753       // If the shift count is an invalid immediate, don't do anything.
754       if (ShAmt >= BitWidth)
755         break;
756 
757       APInt InDemandedMask = (NewMask << ShAmt);
758 
759       // If the shift is exact, then it does demand the low bits (and knows that
760       // they are zero).
761       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
762         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
763 
764       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
765       // single shift.  We can do this if the top bits (which are shifted out)
766       // are never demanded.
767       if (InOp.getOpcode() == ISD::SHL &&
768           isa<ConstantSDNode>(InOp.getOperand(1))) {
769         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
770           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
771           unsigned Opc = ISD::SRL;
772           int Diff = ShAmt-C1;
773           if (Diff < 0) {
774             Diff = -Diff;
775             Opc = ISD::SHL;
776           }
777 
778           SDValue NewSA =
779             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
780           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
781                                                    InOp.getOperand(0), NewSA));
782         }
783       }
784 
785       // Compute the new bits that are at the top now.
786       if (SimplifyDemandedBits(InOp, InDemandedMask,
787                                KnownZero, KnownOne, TLO, Depth+1))
788         return true;
789       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
790       KnownZero = KnownZero.lshr(ShAmt);
791       KnownOne  = KnownOne.lshr(ShAmt);
792 
793       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
794       KnownZero |= HighBits;  // High bits known zero.
795     }
796     break;
797   case ISD::SRA:
798     // If this is an arithmetic shift right and only the low-bit is set, we can
799     // always convert this into a logical shr, even if the shift amount is
800     // variable.  The low bit of the shift cannot be an input sign bit unless
801     // the shift amount is >= the size of the datatype, which is undefined.
802     if (NewMask == 1)
803       return TLO.CombineTo(Op,
804                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
805                                            Op.getOperand(0), Op.getOperand(1)));
806 
807     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
808       EVT VT = Op.getValueType();
809       unsigned ShAmt = SA->getZExtValue();
810 
811       // If the shift count is an invalid immediate, don't do anything.
812       if (ShAmt >= BitWidth)
813         break;
814 
815       APInt InDemandedMask = (NewMask << ShAmt);
816 
817       // If the shift is exact, then it does demand the low bits (and knows that
818       // they are zero).
819       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
820         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
821 
822       // If any of the demanded bits are produced by the sign extension, we also
823       // demand the input sign bit.
824       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
825       if (HighBits.intersects(NewMask))
826         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
827 
828       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
829                                KnownZero, KnownOne, TLO, Depth+1))
830         return true;
831       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
832       KnownZero = KnownZero.lshr(ShAmt);
833       KnownOne  = KnownOne.lshr(ShAmt);
834 
835       // Handle the sign bit, adjusted to where it is now in the mask.
836       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
837 
838       // If the input sign bit is known to be zero, or if none of the top bits
839       // are demanded, turn this into an unsigned shift right.
840       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
841         SDNodeFlags Flags;
842         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
843         return TLO.CombineTo(Op,
844                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
845                                              Op.getOperand(1), &Flags));
846       }
847 
848       int Log2 = NewMask.exactLogBase2();
849       if (Log2 >= 0) {
850         // The bit must come from the sign.
851         SDValue NewSA =
852           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
853                               Op.getOperand(1).getValueType());
854         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
855                                                  Op.getOperand(0), NewSA));
856       }
857 
858       if (KnownOne.intersects(SignBit))
859         // New bits are known one.
860         KnownOne |= HighBits;
861     }
862     break;
863   case ISD::SIGN_EXTEND_INREG: {
864     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
865 
866     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
867     // If we only care about the highest bit, don't bother shifting right.
868     if (MsbMask == NewMask) {
869       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
870       SDValue InOp = Op.getOperand(0);
871       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
872       bool AlreadySignExtended =
873         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
874       // However if the input is already sign extended we expect the sign
875       // extension to be dropped altogether later and do not simplify.
876       if (!AlreadySignExtended) {
877         // Compute the correct shift amount type, which must be getShiftAmountTy
878         // for scalar types after legalization.
879         EVT ShiftAmtTy = Op.getValueType();
880         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
881           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
882 
883         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
884                                                ShiftAmtTy);
885         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
886                                                  Op.getValueType(), InOp,
887                                                  ShiftAmt));
888       }
889     }
890 
891     // Sign extension.  Compute the demanded bits in the result that are not
892     // present in the input.
893     APInt NewBits =
894       APInt::getHighBitsSet(BitWidth,
895                             BitWidth - ExVT.getScalarType().getSizeInBits());
896 
897     // If none of the extended bits are demanded, eliminate the sextinreg.
898     if ((NewBits & NewMask) == 0)
899       return TLO.CombineTo(Op, Op.getOperand(0));
900 
901     APInt InSignBit =
902       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
903     APInt InputDemandedBits =
904       APInt::getLowBitsSet(BitWidth,
905                            ExVT.getScalarType().getSizeInBits()) &
906       NewMask;
907 
908     // Since the sign extended bits are demanded, we know that the sign
909     // bit is demanded.
910     InputDemandedBits |= InSignBit;
911 
912     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
913                              KnownZero, KnownOne, TLO, Depth+1))
914       return true;
915     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916 
917     // If the sign bit of the input is known set or clear, then we know the
918     // top bits of the result.
919 
920     // If the input sign bit is known zero, convert this into a zero extension.
921     if (KnownZero.intersects(InSignBit))
922       return TLO.CombineTo(Op,
923                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
924 
925     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
926       KnownOne |= NewBits;
927       KnownZero &= ~NewBits;
928     } else {                       // Input sign bit unknown
929       KnownZero &= ~NewBits;
930       KnownOne &= ~NewBits;
931     }
932     break;
933   }
934   case ISD::BUILD_PAIR: {
935     EVT HalfVT = Op.getOperand(0).getValueType();
936     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
937 
938     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
939     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
940 
941     APInt KnownZeroLo, KnownOneLo;
942     APInt KnownZeroHi, KnownOneHi;
943 
944     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
945                              KnownOneLo, TLO, Depth + 1))
946       return true;
947 
948     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
949                              KnownOneHi, TLO, Depth + 1))
950       return true;
951 
952     KnownZero = KnownZeroLo.zext(BitWidth) |
953                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
954 
955     KnownOne = KnownOneLo.zext(BitWidth) |
956                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
957     break;
958   }
959   case ISD::ZERO_EXTEND: {
960     unsigned OperandBitWidth =
961       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
962     APInt InMask = NewMask.trunc(OperandBitWidth);
963 
964     // If none of the top bits are demanded, convert this into an any_extend.
965     APInt NewBits =
966       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
967     if (!NewBits.intersects(NewMask))
968       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
969                                                Op.getValueType(),
970                                                Op.getOperand(0)));
971 
972     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
973                              KnownZero, KnownOne, TLO, Depth+1))
974       return true;
975     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
976     KnownZero = KnownZero.zext(BitWidth);
977     KnownOne = KnownOne.zext(BitWidth);
978     KnownZero |= NewBits;
979     break;
980   }
981   case ISD::SIGN_EXTEND: {
982     EVT InVT = Op.getOperand(0).getValueType();
983     unsigned InBits = InVT.getScalarType().getSizeInBits();
984     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
985     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
986     APInt NewBits   = ~InMask & NewMask;
987 
988     // If none of the top bits are demanded, convert this into an any_extend.
989     if (NewBits == 0)
990       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
991                                               Op.getValueType(),
992                                               Op.getOperand(0)));
993 
994     // Since some of the sign extended bits are demanded, we know that the sign
995     // bit is demanded.
996     APInt InDemandedBits = InMask & NewMask;
997     InDemandedBits |= InSignBit;
998     InDemandedBits = InDemandedBits.trunc(InBits);
999 
1000     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1001                              KnownOne, TLO, Depth+1))
1002       return true;
1003     KnownZero = KnownZero.zext(BitWidth);
1004     KnownOne = KnownOne.zext(BitWidth);
1005 
1006     // If the sign bit is known zero, convert this to a zero extend.
1007     if (KnownZero.intersects(InSignBit))
1008       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1009                                                Op.getValueType(),
1010                                                Op.getOperand(0)));
1011 
1012     // If the sign bit is known one, the top bits match.
1013     if (KnownOne.intersects(InSignBit)) {
1014       KnownOne |= NewBits;
1015       assert((KnownZero & NewBits) == 0);
1016     } else {   // Otherwise, top bits aren't known.
1017       assert((KnownOne & NewBits) == 0);
1018       assert((KnownZero & NewBits) == 0);
1019     }
1020     break;
1021   }
1022   case ISD::ANY_EXTEND: {
1023     unsigned OperandBitWidth =
1024       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1025     APInt InMask = NewMask.trunc(OperandBitWidth);
1026     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1027                              KnownZero, KnownOne, TLO, Depth+1))
1028       return true;
1029     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1030     KnownZero = KnownZero.zext(BitWidth);
1031     KnownOne = KnownOne.zext(BitWidth);
1032     break;
1033   }
1034   case ISD::TRUNCATE: {
1035     // Simplify the input, using demanded bit information, and compute the known
1036     // zero/one bits live out.
1037     unsigned OperandBitWidth =
1038       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1039     APInt TruncMask = NewMask.zext(OperandBitWidth);
1040     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1041                              KnownZero, KnownOne, TLO, Depth+1))
1042       return true;
1043     KnownZero = KnownZero.trunc(BitWidth);
1044     KnownOne = KnownOne.trunc(BitWidth);
1045 
1046     // If the input is only used by this truncate, see if we can shrink it based
1047     // on the known demanded bits.
1048     if (Op.getOperand(0).getNode()->hasOneUse()) {
1049       SDValue In = Op.getOperand(0);
1050       switch (In.getOpcode()) {
1051       default: break;
1052       case ISD::SRL:
1053         // Shrink SRL by a constant if none of the high bits shifted in are
1054         // demanded.
1055         if (TLO.LegalTypes() &&
1056             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1057           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1058           // undesirable.
1059           break;
1060         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1061         if (!ShAmt)
1062           break;
1063         SDValue Shift = In.getOperand(1);
1064         if (TLO.LegalTypes()) {
1065           uint64_t ShVal = ShAmt->getZExtValue();
1066           Shift = TLO.DAG.getConstant(ShVal, dl,
1067                                       getShiftAmountTy(Op.getValueType(), DL));
1068         }
1069 
1070         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1071                                                OperandBitWidth - BitWidth);
1072         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1073 
1074         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1075           // None of the shifted in bits are needed.  Add a truncate of the
1076           // shift input, then shift it.
1077           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1078                                              Op.getValueType(),
1079                                              In.getOperand(0));
1080           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1081                                                    Op.getValueType(),
1082                                                    NewTrunc,
1083                                                    Shift));
1084         }
1085         break;
1086       }
1087     }
1088 
1089     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1090     break;
1091   }
1092   case ISD::AssertZext: {
1093     // AssertZext demands all of the high bits, plus any of the low bits
1094     // demanded by its users.
1095     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1096     APInt InMask = APInt::getLowBitsSet(BitWidth,
1097                                         VT.getSizeInBits());
1098     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1099                              KnownZero, KnownOne, TLO, Depth+1))
1100       return true;
1101     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102 
1103     KnownZero |= ~InMask & NewMask;
1104     break;
1105   }
1106   case ISD::BITCAST:
1107     // If this is an FP->Int bitcast and if the sign bit is the only
1108     // thing demanded, turn this into a FGETSIGN.
1109     if (!TLO.LegalOperations() &&
1110         !Op.getValueType().isVector() &&
1111         !Op.getOperand(0).getValueType().isVector() &&
1112         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1113         Op.getOperand(0).getValueType().isFloatingPoint()) {
1114       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1115       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1116       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1117            Op.getOperand(0).getValueType() != MVT::f128) {
1118         // Cannot eliminate/lower SHL for f128 yet.
1119         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1120         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1121         // place.  We expect the SHL to be eliminated by other optimizations.
1122         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1123         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1124         if (!OpVTLegal && OpVTSizeInBits > 32)
1125           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1126         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1127         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1128         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1129                                                  Op.getValueType(),
1130                                                  Sign, ShAmt));
1131       }
1132     }
1133     break;
1134   case ISD::ADD:
1135   case ISD::MUL:
1136   case ISD::SUB: {
1137     // Add, Sub, and Mul don't demand any bits in positions beyond that
1138     // of the highest bit demanded of them.
1139     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1140                                         BitWidth - NewMask.countLeadingZeros());
1141     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1142                              KnownOne2, TLO, Depth+1))
1143       return true;
1144     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1145                              KnownOne2, TLO, Depth+1))
1146       return true;
1147     // See if the operation should be performed at a smaller bit width.
1148     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1149       return true;
1150   }
1151   // FALL THROUGH
1152   default:
1153     // Just use computeKnownBits to compute output bits.
1154     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1155     break;
1156   }
1157 
1158   // If we know the value of all of the demanded bits, return this as a
1159   // constant.
1160   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1161     // Avoid folding to a constant if any OpaqueConstant is involved.
1162     const SDNode *N = Op.getNode();
1163     for (SDNodeIterator I = SDNodeIterator::begin(N),
1164          E = SDNodeIterator::end(N); I != E; ++I) {
1165       SDNode *Op = *I;
1166       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1167         if (C->isOpaque())
1168           return false;
1169     }
1170     return TLO.CombineTo(Op,
1171                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1172   }
1173 
1174   return false;
1175 }
1176 
1177 /// Determine which of the bits specified in Mask are known to be either zero or
1178 /// one and return them in the KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1179 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1180                                                    APInt &KnownZero,
1181                                                    APInt &KnownOne,
1182                                                    const SelectionDAG &DAG,
1183                                                    unsigned Depth) const {
1184   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1185           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1186           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1187           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1188          "Should use MaskedValueIsZero if you don't know whether Op"
1189          " is a target node!");
1190   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1191 }
1192 
1193 /// This method can be implemented by targets that want to expose additional
1194 /// information about sign bits to the DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG &,unsigned Depth) const1195 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1196                                                          const SelectionDAG &,
1197                                                          unsigned Depth) const {
1198   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1199           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1200           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1201           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1202          "Should use ComputeNumSignBits if you don't know whether Op"
1203          " is a target node!");
1204   return 1;
1205 }
1206 
isConstTrueVal(const SDNode * N) const1207 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1208   if (!N)
1209     return false;
1210 
1211   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1212   if (!CN) {
1213     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1214     if (!BV)
1215       return false;
1216 
1217     BitVector UndefElements;
1218     CN = BV->getConstantSplatNode(&UndefElements);
1219     // Only interested in constant splats, and we don't try to handle undef
1220     // elements in identifying boolean constants.
1221     if (!CN || UndefElements.none())
1222       return false;
1223   }
1224 
1225   switch (getBooleanContents(N->getValueType(0))) {
1226   case UndefinedBooleanContent:
1227     return CN->getAPIntValue()[0];
1228   case ZeroOrOneBooleanContent:
1229     return CN->isOne();
1230   case ZeroOrNegativeOneBooleanContent:
1231     return CN->isAllOnesValue();
1232   }
1233 
1234   llvm_unreachable("Invalid boolean contents");
1235 }
1236 
isConstFalseVal(const SDNode * N) const1237 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1238   if (!N)
1239     return false;
1240 
1241   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1242   if (!CN) {
1243     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1244     if (!BV)
1245       return false;
1246 
1247     BitVector UndefElements;
1248     CN = BV->getConstantSplatNode(&UndefElements);
1249     // Only interested in constant splats, and we don't try to handle undef
1250     // elements in identifying boolean constants.
1251     if (!CN || UndefElements.none())
1252       return false;
1253   }
1254 
1255   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1256     return !CN->getAPIntValue()[0];
1257 
1258   return CN->isNullValue();
1259 }
1260 
isExtendedTrueVal(const ConstantSDNode * N,EVT VT,bool SExt) const1261 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1262                                        bool SExt) const {
1263   if (VT == MVT::i1)
1264     return N->isOne();
1265 
1266   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1267   switch (Cnt) {
1268   case TargetLowering::ZeroOrOneBooleanContent:
1269     // An extended value of 1 is always true, unless its original type is i1,
1270     // in which case it will be sign extended to -1.
1271     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1272   case TargetLowering::UndefinedBooleanContent:
1273   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1274     return N->isAllOnesValue() && SExt;
1275   }
1276   llvm_unreachable("Unexpected enumeration.");
1277 }
1278 
1279 /// This helper function of SimplifySetCC tries to optimize the comparison when
1280 /// either operand of the SetCC node is a bitwise-and instruction.
simplifySetCCWithAnd(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const1281 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1282                                              ISD::CondCode Cond,
1283                                              DAGCombinerInfo &DCI,
1284                                              const SDLoc &DL) const {
1285   // Match these patterns in any of their permutations:
1286   // (X & Y) == Y
1287   // (X & Y) != Y
1288   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1289     std::swap(N0, N1);
1290 
1291   EVT OpVT = N0.getValueType();
1292   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1293       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1294     return SDValue();
1295 
1296   SDValue X, Y;
1297   if (N0.getOperand(0) == N1) {
1298     X = N0.getOperand(1);
1299     Y = N0.getOperand(0);
1300   } else if (N0.getOperand(1) == N1) {
1301     X = N0.getOperand(0);
1302     Y = N0.getOperand(1);
1303   } else {
1304     return SDValue();
1305   }
1306 
1307   SelectionDAG &DAG = DCI.DAG;
1308   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1309   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1310     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1311     // Note that where Y is variable and is known to have at most one bit set
1312     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1313     // equivalent when Y == 0.
1314     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1315     if (DCI.isBeforeLegalizeOps() ||
1316         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1317       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1318   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1319     // If the target supports an 'and-not' or 'and-complement' logic operation,
1320     // try to use that to make a comparison operation more efficient.
1321     // But don't do this transform if the mask is a single bit because there are
1322     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1323     // 'rlwinm' on PPC).
1324 
1325     // Bail out if the compare operand that we want to turn into a zero is
1326     // already a zero (otherwise, infinite loop).
1327     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1328     if (YConst && YConst->isNullValue())
1329       return SDValue();
1330 
1331     // Transform this into: ~X & Y == 0.
1332     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1333     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1334     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1335   }
1336 
1337   return SDValue();
1338 }
1339 
1340 /// Try to simplify a setcc built with the specified operands and cc. If it is
1341 /// unable to simplify it, return a null SDValue.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,const SDLoc & dl) const1342 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1343                                       ISD::CondCode Cond, bool foldBooleans,
1344                                       DAGCombinerInfo &DCI,
1345                                       const SDLoc &dl) const {
1346   SelectionDAG &DAG = DCI.DAG;
1347 
1348   // These setcc operations always fold.
1349   switch (Cond) {
1350   default: break;
1351   case ISD::SETFALSE:
1352   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1353   case ISD::SETTRUE:
1354   case ISD::SETTRUE2: {
1355     TargetLowering::BooleanContent Cnt =
1356         getBooleanContents(N0->getValueType(0));
1357     return DAG.getConstant(
1358         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1359         VT);
1360   }
1361   }
1362 
1363   // Ensure that the constant occurs on the RHS, and fold constant
1364   // comparisons.
1365   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1366   if (isa<ConstantSDNode>(N0.getNode()) &&
1367       (DCI.isBeforeLegalizeOps() ||
1368        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1369     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1370 
1371   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1372     const APInt &C1 = N1C->getAPIntValue();
1373 
1374     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1375     // equality comparison, then we're just comparing whether X itself is
1376     // zero.
1377     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1378         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1379         N0.getOperand(1).getOpcode() == ISD::Constant) {
1380       const APInt &ShAmt
1381         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1382       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1383           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1384         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1385           // (srl (ctlz x), 5) == 0  -> X != 0
1386           // (srl (ctlz x), 5) != 1  -> X != 0
1387           Cond = ISD::SETNE;
1388         } else {
1389           // (srl (ctlz x), 5) != 0  -> X == 0
1390           // (srl (ctlz x), 5) == 1  -> X == 0
1391           Cond = ISD::SETEQ;
1392         }
1393         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1394         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1395                             Zero, Cond);
1396       }
1397     }
1398 
1399     SDValue CTPOP = N0;
1400     // Look through truncs that don't change the value of a ctpop.
1401     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1402       CTPOP = N0.getOperand(0);
1403 
1404     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1405         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1406                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1407       EVT CTVT = CTPOP.getValueType();
1408       SDValue CTOp = CTPOP.getOperand(0);
1409 
1410       // (ctpop x) u< 2 -> (x & x-1) == 0
1411       // (ctpop x) u> 1 -> (x & x-1) != 0
1412       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1413         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1414                                   DAG.getConstant(1, dl, CTVT));
1415         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1416         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1417         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1418       }
1419 
1420       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1421     }
1422 
1423     // (zext x) == C --> x == (trunc C)
1424     // (sext x) == C --> x == (trunc C)
1425     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1426         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1427       unsigned MinBits = N0.getValueSizeInBits();
1428       SDValue PreExt;
1429       bool Signed = false;
1430       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1431         // ZExt
1432         MinBits = N0->getOperand(0).getValueSizeInBits();
1433         PreExt = N0->getOperand(0);
1434       } else if (N0->getOpcode() == ISD::AND) {
1435         // DAGCombine turns costly ZExts into ANDs
1436         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1437           if ((C->getAPIntValue()+1).isPowerOf2()) {
1438             MinBits = C->getAPIntValue().countTrailingOnes();
1439             PreExt = N0->getOperand(0);
1440           }
1441       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1442         // SExt
1443         MinBits = N0->getOperand(0).getValueSizeInBits();
1444         PreExt = N0->getOperand(0);
1445         Signed = true;
1446       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1447         // ZEXTLOAD / SEXTLOAD
1448         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1449           MinBits = LN0->getMemoryVT().getSizeInBits();
1450           PreExt = N0;
1451         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1452           Signed = true;
1453           MinBits = LN0->getMemoryVT().getSizeInBits();
1454           PreExt = N0;
1455         }
1456       }
1457 
1458       // Figure out how many bits we need to preserve this constant.
1459       unsigned ReqdBits = Signed ?
1460         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1461         C1.getActiveBits();
1462 
1463       // Make sure we're not losing bits from the constant.
1464       if (MinBits > 0 &&
1465           MinBits < C1.getBitWidth() &&
1466           MinBits >= ReqdBits) {
1467         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1468         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1469           // Will get folded away.
1470           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1471           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1472           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1473         }
1474 
1475         // If truncating the setcc operands is not desirable, we can still
1476         // simplify the expression in some cases:
1477         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1478         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1479         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1480         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1481         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1482         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1483         SDValue TopSetCC = N0->getOperand(0);
1484         unsigned N0Opc = N0->getOpcode();
1485         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1486         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1487             TopSetCC.getOpcode() == ISD::SETCC &&
1488             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1489             (isConstFalseVal(N1C) ||
1490              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1491 
1492           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1493                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1494 
1495           if (!Inverse)
1496             return TopSetCC;
1497 
1498           ISD::CondCode InvCond = ISD::getSetCCInverse(
1499               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1500               TopSetCC.getOperand(0).getValueType().isInteger());
1501           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1502                                       TopSetCC.getOperand(1),
1503                                       InvCond);
1504 
1505         }
1506       }
1507     }
1508 
1509     // If the LHS is '(and load, const)', the RHS is 0,
1510     // the test is for equality or unsigned, and all 1 bits of the const are
1511     // in the same partial word, see if we can shorten the load.
1512     if (DCI.isBeforeLegalize() &&
1513         !ISD::isSignedIntSetCC(Cond) &&
1514         N0.getOpcode() == ISD::AND && C1 == 0 &&
1515         N0.getNode()->hasOneUse() &&
1516         isa<LoadSDNode>(N0.getOperand(0)) &&
1517         N0.getOperand(0).getNode()->hasOneUse() &&
1518         isa<ConstantSDNode>(N0.getOperand(1))) {
1519       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1520       APInt bestMask;
1521       unsigned bestWidth = 0, bestOffset = 0;
1522       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1523         unsigned origWidth = N0.getValueType().getSizeInBits();
1524         unsigned maskWidth = origWidth;
1525         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1526         // 8 bits, but have to be careful...
1527         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1528           origWidth = Lod->getMemoryVT().getSizeInBits();
1529         const APInt &Mask =
1530           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1531         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1532           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1533           for (unsigned offset=0; offset<origWidth/width; offset++) {
1534             if ((newMask & Mask) == Mask) {
1535               if (!DAG.getDataLayout().isLittleEndian())
1536                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1537               else
1538                 bestOffset = (uint64_t)offset * (width/8);
1539               bestMask = Mask.lshr(offset * (width/8) * 8);
1540               bestWidth = width;
1541               break;
1542             }
1543             newMask = newMask << width;
1544           }
1545         }
1546       }
1547       if (bestWidth) {
1548         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1549         if (newVT.isRound()) {
1550           EVT PtrType = Lod->getOperand(1).getValueType();
1551           SDValue Ptr = Lod->getBasePtr();
1552           if (bestOffset != 0)
1553             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1554                               DAG.getConstant(bestOffset, dl, PtrType));
1555           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1556           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1557                                 Lod->getPointerInfo().getWithOffset(bestOffset),
1558                                         false, false, false, NewAlign);
1559           return DAG.getSetCC(dl, VT,
1560                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1561                                       DAG.getConstant(bestMask.trunc(bestWidth),
1562                                                       dl, newVT)),
1563                               DAG.getConstant(0LL, dl, newVT), Cond);
1564         }
1565       }
1566     }
1567 
1568     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1569     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1570       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1571 
1572       // If the comparison constant has bits in the upper part, the
1573       // zero-extended value could never match.
1574       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1575                                               C1.getBitWidth() - InSize))) {
1576         switch (Cond) {
1577         case ISD::SETUGT:
1578         case ISD::SETUGE:
1579         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1580         case ISD::SETULT:
1581         case ISD::SETULE:
1582         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1583         case ISD::SETGT:
1584         case ISD::SETGE:
1585           // True if the sign bit of C1 is set.
1586           return DAG.getConstant(C1.isNegative(), dl, VT);
1587         case ISD::SETLT:
1588         case ISD::SETLE:
1589           // True if the sign bit of C1 isn't set.
1590           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1591         default:
1592           break;
1593         }
1594       }
1595 
1596       // Otherwise, we can perform the comparison with the low bits.
1597       switch (Cond) {
1598       case ISD::SETEQ:
1599       case ISD::SETNE:
1600       case ISD::SETUGT:
1601       case ISD::SETUGE:
1602       case ISD::SETULT:
1603       case ISD::SETULE: {
1604         EVT newVT = N0.getOperand(0).getValueType();
1605         if (DCI.isBeforeLegalizeOps() ||
1606             (isOperationLegal(ISD::SETCC, newVT) &&
1607              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1608           EVT NewSetCCVT =
1609               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1610           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1611 
1612           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1613                                           NewConst, Cond);
1614           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1615         }
1616         break;
1617       }
1618       default:
1619         break;   // todo, be more careful with signed comparisons
1620       }
1621     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1622                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1623       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1624       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1625       EVT ExtDstTy = N0.getValueType();
1626       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1627 
1628       // If the constant doesn't fit into the number of bits for the source of
1629       // the sign extension, it is impossible for both sides to be equal.
1630       if (C1.getMinSignedBits() > ExtSrcTyBits)
1631         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1632 
1633       SDValue ZextOp;
1634       EVT Op0Ty = N0.getOperand(0).getValueType();
1635       if (Op0Ty == ExtSrcTy) {
1636         ZextOp = N0.getOperand(0);
1637       } else {
1638         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1639         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1640                               DAG.getConstant(Imm, dl, Op0Ty));
1641       }
1642       if (!DCI.isCalledByLegalizer())
1643         DCI.AddToWorklist(ZextOp.getNode());
1644       // Otherwise, make this a use of a zext.
1645       return DAG.getSetCC(dl, VT, ZextOp,
1646                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1647                                                               ExtDstTyBits,
1648                                                               ExtSrcTyBits),
1649                                           dl, ExtDstTy),
1650                           Cond);
1651     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1652                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1653       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1654       if (N0.getOpcode() == ISD::SETCC &&
1655           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1656         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1657         if (TrueWhenTrue)
1658           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1659         // Invert the condition.
1660         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1661         CC = ISD::getSetCCInverse(CC,
1662                                   N0.getOperand(0).getValueType().isInteger());
1663         if (DCI.isBeforeLegalizeOps() ||
1664             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1665           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1666       }
1667 
1668       if ((N0.getOpcode() == ISD::XOR ||
1669            (N0.getOpcode() == ISD::AND &&
1670             N0.getOperand(0).getOpcode() == ISD::XOR &&
1671             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1672           isa<ConstantSDNode>(N0.getOperand(1)) &&
1673           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1674         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1675         // can only do this if the top bits are known zero.
1676         unsigned BitWidth = N0.getValueSizeInBits();
1677         if (DAG.MaskedValueIsZero(N0,
1678                                   APInt::getHighBitsSet(BitWidth,
1679                                                         BitWidth-1))) {
1680           // Okay, get the un-inverted input value.
1681           SDValue Val;
1682           if (N0.getOpcode() == ISD::XOR)
1683             Val = N0.getOperand(0);
1684           else {
1685             assert(N0.getOpcode() == ISD::AND &&
1686                     N0.getOperand(0).getOpcode() == ISD::XOR);
1687             // ((X^1)&1)^1 -> X & 1
1688             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1689                               N0.getOperand(0).getOperand(0),
1690                               N0.getOperand(1));
1691           }
1692 
1693           return DAG.getSetCC(dl, VT, Val, N1,
1694                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1695         }
1696       } else if (N1C->getAPIntValue() == 1 &&
1697                  (VT == MVT::i1 ||
1698                   getBooleanContents(N0->getValueType(0)) ==
1699                       ZeroOrOneBooleanContent)) {
1700         SDValue Op0 = N0;
1701         if (Op0.getOpcode() == ISD::TRUNCATE)
1702           Op0 = Op0.getOperand(0);
1703 
1704         if ((Op0.getOpcode() == ISD::XOR) &&
1705             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1706             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1707           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1708           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1709           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1710                               Cond);
1711         }
1712         if (Op0.getOpcode() == ISD::AND &&
1713             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1714             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1715           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1716           if (Op0.getValueType().bitsGT(VT))
1717             Op0 = DAG.getNode(ISD::AND, dl, VT,
1718                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1719                           DAG.getConstant(1, dl, VT));
1720           else if (Op0.getValueType().bitsLT(VT))
1721             Op0 = DAG.getNode(ISD::AND, dl, VT,
1722                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1723                         DAG.getConstant(1, dl, VT));
1724 
1725           return DAG.getSetCC(dl, VT, Op0,
1726                               DAG.getConstant(0, dl, Op0.getValueType()),
1727                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1728         }
1729         if (Op0.getOpcode() == ISD::AssertZext &&
1730             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1731           return DAG.getSetCC(dl, VT, Op0,
1732                               DAG.getConstant(0, dl, Op0.getValueType()),
1733                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1734       }
1735     }
1736 
1737     APInt MinVal, MaxVal;
1738     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1739     if (ISD::isSignedIntSetCC(Cond)) {
1740       MinVal = APInt::getSignedMinValue(OperandBitSize);
1741       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1742     } else {
1743       MinVal = APInt::getMinValue(OperandBitSize);
1744       MaxVal = APInt::getMaxValue(OperandBitSize);
1745     }
1746 
1747     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1748     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1749       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1750       // X >= C0 --> X > (C0 - 1)
1751       APInt C = C1 - 1;
1752       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1753       if ((DCI.isBeforeLegalizeOps() ||
1754            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1755           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1756                                 isLegalICmpImmediate(C.getSExtValue())))) {
1757         return DAG.getSetCC(dl, VT, N0,
1758                             DAG.getConstant(C, dl, N1.getValueType()),
1759                             NewCC);
1760       }
1761     }
1762 
1763     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1764       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1765       // X <= C0 --> X < (C0 + 1)
1766       APInt C = C1 + 1;
1767       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1768       if ((DCI.isBeforeLegalizeOps() ||
1769            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1770           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1771                                 isLegalICmpImmediate(C.getSExtValue())))) {
1772         return DAG.getSetCC(dl, VT, N0,
1773                             DAG.getConstant(C, dl, N1.getValueType()),
1774                             NewCC);
1775       }
1776     }
1777 
1778     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1779       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1780     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1781       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1782     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1783       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1784     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1785       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1786 
1787     // Canonicalize setgt X, Min --> setne X, Min
1788     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1789       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1790     // Canonicalize setlt X, Max --> setne X, Max
1791     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1792       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1793 
1794     // If we have setult X, 1, turn it into seteq X, 0
1795     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1796       return DAG.getSetCC(dl, VT, N0,
1797                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1798                           ISD::SETEQ);
1799     // If we have setugt X, Max-1, turn it into seteq X, Max
1800     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1801       return DAG.getSetCC(dl, VT, N0,
1802                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1803                           ISD::SETEQ);
1804 
1805     // If we have "setcc X, C0", check to see if we can shrink the immediate
1806     // by changing cc.
1807 
1808     // SETUGT X, SINTMAX  -> SETLT X, 0
1809     if (Cond == ISD::SETUGT &&
1810         C1 == APInt::getSignedMaxValue(OperandBitSize))
1811       return DAG.getSetCC(dl, VT, N0,
1812                           DAG.getConstant(0, dl, N1.getValueType()),
1813                           ISD::SETLT);
1814 
1815     // SETULT X, SINTMIN  -> SETGT X, -1
1816     if (Cond == ISD::SETULT &&
1817         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1818       SDValue ConstMinusOne =
1819           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1820                           N1.getValueType());
1821       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1822     }
1823 
1824     // Fold bit comparisons when we can.
1825     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1826         (VT == N0.getValueType() ||
1827          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1828         N0.getOpcode() == ISD::AND) {
1829       auto &DL = DAG.getDataLayout();
1830       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1831         EVT ShiftTy = DCI.isBeforeLegalize()
1832                           ? getPointerTy(DL)
1833                           : getShiftAmountTy(N0.getValueType(), DL);
1834         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1835           // Perform the xform if the AND RHS is a single bit.
1836           if (AndRHS->getAPIntValue().isPowerOf2()) {
1837             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1838                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1839                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1840                                    ShiftTy)));
1841           }
1842         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1843           // (X & 8) == 8  -->  (X & 8) >> 3
1844           // Perform the xform if C1 is a single bit.
1845           if (C1.isPowerOf2()) {
1846             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1847                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1848                                       DAG.getConstant(C1.logBase2(), dl,
1849                                                       ShiftTy)));
1850           }
1851         }
1852       }
1853     }
1854 
1855     if (C1.getMinSignedBits() <= 64 &&
1856         !isLegalICmpImmediate(C1.getSExtValue())) {
1857       // (X & -256) == 256 -> (X >> 8) == 1
1858       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1859           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1860         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1861           const APInt &AndRHSC = AndRHS->getAPIntValue();
1862           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1863             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1864             auto &DL = DAG.getDataLayout();
1865             EVT ShiftTy = DCI.isBeforeLegalize()
1866                               ? getPointerTy(DL)
1867                               : getShiftAmountTy(N0.getValueType(), DL);
1868             EVT CmpTy = N0.getValueType();
1869             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1870                                         DAG.getConstant(ShiftBits, dl,
1871                                                         ShiftTy));
1872             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1873             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1874           }
1875         }
1876       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1877                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1878         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1879         // X <  0x100000000 -> (X >> 32) <  1
1880         // X >= 0x100000000 -> (X >> 32) >= 1
1881         // X <= 0x0ffffffff -> (X >> 32) <  1
1882         // X >  0x0ffffffff -> (X >> 32) >= 1
1883         unsigned ShiftBits;
1884         APInt NewC = C1;
1885         ISD::CondCode NewCond = Cond;
1886         if (AdjOne) {
1887           ShiftBits = C1.countTrailingOnes();
1888           NewC = NewC + 1;
1889           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1890         } else {
1891           ShiftBits = C1.countTrailingZeros();
1892         }
1893         NewC = NewC.lshr(ShiftBits);
1894         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
1895           isLegalICmpImmediate(NewC.getSExtValue())) {
1896           auto &DL = DAG.getDataLayout();
1897           EVT ShiftTy = DCI.isBeforeLegalize()
1898                             ? getPointerTy(DL)
1899                             : getShiftAmountTy(N0.getValueType(), DL);
1900           EVT CmpTy = N0.getValueType();
1901           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1902                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
1903           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
1904           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1905         }
1906       }
1907     }
1908   }
1909 
1910   if (isa<ConstantFPSDNode>(N0.getNode())) {
1911     // Constant fold or commute setcc.
1912     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1913     if (O.getNode()) return O;
1914   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1915     // If the RHS of an FP comparison is a constant, simplify it away in
1916     // some cases.
1917     if (CFP->getValueAPF().isNaN()) {
1918       // If an operand is known to be a nan, we can fold it.
1919       switch (ISD::getUnorderedFlavor(Cond)) {
1920       default: llvm_unreachable("Unknown flavor!");
1921       case 0:  // Known false.
1922         return DAG.getConstant(0, dl, VT);
1923       case 1:  // Known true.
1924         return DAG.getConstant(1, dl, VT);
1925       case 2:  // Undefined.
1926         return DAG.getUNDEF(VT);
1927       }
1928     }
1929 
1930     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1931     // constant if knowing that the operand is non-nan is enough.  We prefer to
1932     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1933     // materialize 0.0.
1934     if (Cond == ISD::SETO || Cond == ISD::SETUO)
1935       return DAG.getSetCC(dl, VT, N0, N0, Cond);
1936 
1937     // If the condition is not legal, see if we can find an equivalent one
1938     // which is legal.
1939     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1940       // If the comparison was an awkward floating-point == or != and one of
1941       // the comparison operands is infinity or negative infinity, convert the
1942       // condition to a less-awkward <= or >=.
1943       if (CFP->getValueAPF().isInfinity()) {
1944         if (CFP->getValueAPF().isNegative()) {
1945           if (Cond == ISD::SETOEQ &&
1946               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1947             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1948           if (Cond == ISD::SETUEQ &&
1949               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1950             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1951           if (Cond == ISD::SETUNE &&
1952               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1953             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1954           if (Cond == ISD::SETONE &&
1955               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1956             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1957         } else {
1958           if (Cond == ISD::SETOEQ &&
1959               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1960             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1961           if (Cond == ISD::SETUEQ &&
1962               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1963             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1964           if (Cond == ISD::SETUNE &&
1965               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1966             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1967           if (Cond == ISD::SETONE &&
1968               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1969             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1970         }
1971       }
1972     }
1973   }
1974 
1975   if (N0 == N1) {
1976     // The sext(setcc()) => setcc() optimization relies on the appropriate
1977     // constant being emitted.
1978     uint64_t EqVal = 0;
1979     switch (getBooleanContents(N0.getValueType())) {
1980     case UndefinedBooleanContent:
1981     case ZeroOrOneBooleanContent:
1982       EqVal = ISD::isTrueWhenEqual(Cond);
1983       break;
1984     case ZeroOrNegativeOneBooleanContent:
1985       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1986       break;
1987     }
1988 
1989     // We can always fold X == X for integer setcc's.
1990     if (N0.getValueType().isInteger()) {
1991       return DAG.getConstant(EqVal, dl, VT);
1992     }
1993     unsigned UOF = ISD::getUnorderedFlavor(Cond);
1994     if (UOF == 2)   // FP operators that are undefined on NaNs.
1995       return DAG.getConstant(EqVal, dl, VT);
1996     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1997       return DAG.getConstant(EqVal, dl, VT);
1998     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1999     // if it is not already.
2000     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2001     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2002           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2003       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2004   }
2005 
2006   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2007       N0.getValueType().isInteger()) {
2008     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2009         N0.getOpcode() == ISD::XOR) {
2010       // Simplify (X+Y) == (X+Z) -->  Y == Z
2011       if (N0.getOpcode() == N1.getOpcode()) {
2012         if (N0.getOperand(0) == N1.getOperand(0))
2013           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2014         if (N0.getOperand(1) == N1.getOperand(1))
2015           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2016         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2017           // If X op Y == Y op X, try other combinations.
2018           if (N0.getOperand(0) == N1.getOperand(1))
2019             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2020                                 Cond);
2021           if (N0.getOperand(1) == N1.getOperand(0))
2022             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2023                                 Cond);
2024         }
2025       }
2026 
2027       // If RHS is a legal immediate value for a compare instruction, we need
2028       // to be careful about increasing register pressure needlessly.
2029       bool LegalRHSImm = false;
2030 
2031       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2032         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2033           // Turn (X+C1) == C2 --> X == C2-C1
2034           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2035             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2036                                 DAG.getConstant(RHSC->getAPIntValue()-
2037                                                 LHSR->getAPIntValue(),
2038                                 dl, N0.getValueType()), Cond);
2039           }
2040 
2041           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2042           if (N0.getOpcode() == ISD::XOR)
2043             // If we know that all of the inverted bits are zero, don't bother
2044             // performing the inversion.
2045             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2046               return
2047                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2048                              DAG.getConstant(LHSR->getAPIntValue() ^
2049                                                RHSC->getAPIntValue(),
2050                                              dl, N0.getValueType()),
2051                              Cond);
2052         }
2053 
2054         // Turn (C1-X) == C2 --> X == C1-C2
2055         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2056           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2057             return
2058               DAG.getSetCC(dl, VT, N0.getOperand(1),
2059                            DAG.getConstant(SUBC->getAPIntValue() -
2060                                              RHSC->getAPIntValue(),
2061                                            dl, N0.getValueType()),
2062                            Cond);
2063           }
2064         }
2065 
2066         // Could RHSC fold directly into a compare?
2067         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2068           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2069       }
2070 
2071       // Simplify (X+Z) == X -->  Z == 0
2072       // Don't do this if X is an immediate that can fold into a cmp
2073       // instruction and X+Z has other uses. It could be an induction variable
2074       // chain, and the transform would increase register pressure.
2075       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2076         if (N0.getOperand(0) == N1)
2077           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2078                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2079         if (N0.getOperand(1) == N1) {
2080           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2081             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2082                                 DAG.getConstant(0, dl, N0.getValueType()),
2083                                 Cond);
2084           if (N0.getNode()->hasOneUse()) {
2085             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2086             auto &DL = DAG.getDataLayout();
2087             // (Z-X) == X  --> Z == X<<1
2088             SDValue SH = DAG.getNode(
2089                 ISD::SHL, dl, N1.getValueType(), N1,
2090                 DAG.getConstant(1, dl,
2091                                 getShiftAmountTy(N1.getValueType(), DL)));
2092             if (!DCI.isCalledByLegalizer())
2093               DCI.AddToWorklist(SH.getNode());
2094             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2095           }
2096         }
2097       }
2098     }
2099 
2100     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2101         N1.getOpcode() == ISD::XOR) {
2102       // Simplify  X == (X+Z) -->  Z == 0
2103       if (N1.getOperand(0) == N0)
2104         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2105                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2106       if (N1.getOperand(1) == N0) {
2107         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2108           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2109                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2110         if (N1.getNode()->hasOneUse()) {
2111           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2112           auto &DL = DAG.getDataLayout();
2113           // X == (Z-X)  --> X<<1 == Z
2114           SDValue SH = DAG.getNode(
2115               ISD::SHL, dl, N1.getValueType(), N0,
2116               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2117           if (!DCI.isCalledByLegalizer())
2118             DCI.AddToWorklist(SH.getNode());
2119           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2120         }
2121       }
2122     }
2123 
2124     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2125       return V;
2126   }
2127 
2128   // Fold away ALL boolean setcc's.
2129   SDValue Temp;
2130   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2131     switch (Cond) {
2132     default: llvm_unreachable("Unknown integer setcc!");
2133     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2134       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2135       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2136       if (!DCI.isCalledByLegalizer())
2137         DCI.AddToWorklist(Temp.getNode());
2138       break;
2139     case ISD::SETNE:  // X != Y   -->  (X^Y)
2140       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2141       break;
2142     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2143     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2144       Temp = DAG.getNOT(dl, N0, MVT::i1);
2145       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2146       if (!DCI.isCalledByLegalizer())
2147         DCI.AddToWorklist(Temp.getNode());
2148       break;
2149     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2150     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2151       Temp = DAG.getNOT(dl, N1, MVT::i1);
2152       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2153       if (!DCI.isCalledByLegalizer())
2154         DCI.AddToWorklist(Temp.getNode());
2155       break;
2156     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2157     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2158       Temp = DAG.getNOT(dl, N0, MVT::i1);
2159       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2160       if (!DCI.isCalledByLegalizer())
2161         DCI.AddToWorklist(Temp.getNode());
2162       break;
2163     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2164     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2165       Temp = DAG.getNOT(dl, N1, MVT::i1);
2166       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2167       break;
2168     }
2169     if (VT != MVT::i1) {
2170       if (!DCI.isCalledByLegalizer())
2171         DCI.AddToWorklist(N0.getNode());
2172       // FIXME: If running after legalize, we probably can't do this.
2173       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2174     }
2175     return N0;
2176   }
2177 
2178   // Could not fold it.
2179   return SDValue();
2180 }
2181 
2182 /// Returns true (and the GlobalValue and the offset) if the node is a
2183 /// GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2184 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2185                                     int64_t &Offset) const {
2186   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2187     GA = GASD->getGlobal();
2188     Offset += GASD->getOffset();
2189     return true;
2190   }
2191 
2192   if (N->getOpcode() == ISD::ADD) {
2193     SDValue N1 = N->getOperand(0);
2194     SDValue N2 = N->getOperand(1);
2195     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2196       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2197         Offset += V->getSExtValue();
2198         return true;
2199       }
2200     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2201       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2202         Offset += V->getSExtValue();
2203         return true;
2204       }
2205     }
2206   }
2207 
2208   return false;
2209 }
2210 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2211 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2212                                           DAGCombinerInfo &DCI) const {
2213   // Default implementation: no optimization.
2214   return SDValue();
2215 }
2216 
2217 //===----------------------------------------------------------------------===//
2218 //  Inline Assembler Implementation Methods
2219 //===----------------------------------------------------------------------===//
2220 
2221 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const2222 TargetLowering::getConstraintType(StringRef Constraint) const {
2223   unsigned S = Constraint.size();
2224 
2225   if (S == 1) {
2226     switch (Constraint[0]) {
2227     default: break;
2228     case 'r': return C_RegisterClass;
2229     case 'm':    // memory
2230     case 'o':    // offsetable
2231     case 'V':    // not offsetable
2232       return C_Memory;
2233     case 'i':    // Simple Integer or Relocatable Constant
2234     case 'n':    // Simple Integer
2235     case 'E':    // Floating Point Constant
2236     case 'F':    // Floating Point Constant
2237     case 's':    // Relocatable Constant
2238     case 'p':    // Address.
2239     case 'X':    // Allow ANY value.
2240     case 'I':    // Target registers.
2241     case 'J':
2242     case 'K':
2243     case 'L':
2244     case 'M':
2245     case 'N':
2246     case 'O':
2247     case 'P':
2248     case '<':
2249     case '>':
2250       return C_Other;
2251     }
2252   }
2253 
2254   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2255     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2256       return C_Memory;
2257     return C_Register;
2258   }
2259   return C_Unknown;
2260 }
2261 
2262 /// Try to replace an X constraint, which matches anything, with another that
2263 /// has more specific requirements based on the type of the corresponding
2264 /// operand.
LowerXConstraint(EVT ConstraintVT) const2265 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2266   if (ConstraintVT.isInteger())
2267     return "r";
2268   if (ConstraintVT.isFloatingPoint())
2269     return "f";      // works for many targets
2270   return nullptr;
2271 }
2272 
2273 /// Lower the specified operand into the Ops vector.
2274 /// If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2275 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2276                                                   std::string &Constraint,
2277                                                   std::vector<SDValue> &Ops,
2278                                                   SelectionDAG &DAG) const {
2279 
2280   if (Constraint.length() > 1) return;
2281 
2282   char ConstraintLetter = Constraint[0];
2283   switch (ConstraintLetter) {
2284   default: break;
2285   case 'X':     // Allows any operand; labels (basic block) use this.
2286     if (Op.getOpcode() == ISD::BasicBlock) {
2287       Ops.push_back(Op);
2288       return;
2289     }
2290     // fall through
2291   case 'i':    // Simple Integer or Relocatable Constant
2292   case 'n':    // Simple Integer
2293   case 's': {  // Relocatable Constant
2294     // These operands are interested in values of the form (GV+C), where C may
2295     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2296     // is possible and fine if either GV or C are missing.
2297     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2298     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2299 
2300     // If we have "(add GV, C)", pull out GV/C
2301     if (Op.getOpcode() == ISD::ADD) {
2302       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2303       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2304       if (!C || !GA) {
2305         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2306         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2307       }
2308       if (!C || !GA) {
2309         C = nullptr;
2310         GA = nullptr;
2311       }
2312     }
2313 
2314     // If we find a valid operand, map to the TargetXXX version so that the
2315     // value itself doesn't get selected.
2316     if (GA) {   // Either &GV   or   &GV+C
2317       if (ConstraintLetter != 'n') {
2318         int64_t Offs = GA->getOffset();
2319         if (C) Offs += C->getZExtValue();
2320         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2321                                                  C ? SDLoc(C) : SDLoc(),
2322                                                  Op.getValueType(), Offs));
2323       }
2324       return;
2325     }
2326     if (C) {   // just C, no GV.
2327       // Simple constants are not allowed for 's'.
2328       if (ConstraintLetter != 's') {
2329         // gcc prints these as sign extended.  Sign extend value to 64 bits
2330         // now; without this it would get ZExt'd later in
2331         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2332         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2333                                             SDLoc(C), MVT::i64));
2334       }
2335       return;
2336     }
2337     break;
2338   }
2339   }
2340 }
2341 
2342 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,StringRef Constraint,MVT VT) const2343 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2344                                              StringRef Constraint,
2345                                              MVT VT) const {
2346   if (Constraint.empty() || Constraint[0] != '{')
2347     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2348   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2349 
2350   // Remove the braces from around the name.
2351   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2352 
2353   std::pair<unsigned, const TargetRegisterClass*> R =
2354     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2355 
2356   // Figure out which register class contains this reg.
2357   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2358        E = RI->regclass_end(); RCI != E; ++RCI) {
2359     const TargetRegisterClass *RC = *RCI;
2360 
2361     // If none of the value types for this register class are valid, we
2362     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2363     if (!isLegalRC(RC))
2364       continue;
2365 
2366     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2367          I != E; ++I) {
2368       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2369         std::pair<unsigned, const TargetRegisterClass*> S =
2370           std::make_pair(*I, RC);
2371 
2372         // If this register class has the requested value type, return it,
2373         // otherwise keep searching and return the first class found
2374         // if no other is found which explicitly has the requested type.
2375         if (RC->hasType(VT))
2376           return S;
2377         else if (!R.second)
2378           R = S;
2379       }
2380     }
2381   }
2382 
2383   return R;
2384 }
2385 
2386 //===----------------------------------------------------------------------===//
2387 // Constraint Selection.
2388 
2389 /// Return true of this is an input operand that is a matching constraint like
2390 /// "4".
isMatchingInputConstraint() const2391 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2392   assert(!ConstraintCode.empty() && "No known constraint!");
2393   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2394 }
2395 
2396 /// If this is an input matching constraint, this method returns the output
2397 /// operand it matches.
getMatchedOperand() const2398 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2399   assert(!ConstraintCode.empty() && "No known constraint!");
2400   return atoi(ConstraintCode.c_str());
2401 }
2402 
2403 /// Split up the constraint string from the inline assembly value into the
2404 /// specific constraints and their prefixes, and also tie in the associated
2405 /// operand values.
2406 /// If this returns an empty vector, and if the constraint string itself
2407 /// isn't empty, there was an error parsing.
2408 TargetLowering::AsmOperandInfoVector
ParseConstraints(const DataLayout & DL,const TargetRegisterInfo * TRI,ImmutableCallSite CS) const2409 TargetLowering::ParseConstraints(const DataLayout &DL,
2410                                  const TargetRegisterInfo *TRI,
2411                                  ImmutableCallSite CS) const {
2412   /// Information about all of the constraints.
2413   AsmOperandInfoVector ConstraintOperands;
2414   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2415   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2416 
2417   // Do a prepass over the constraints, canonicalizing them, and building up the
2418   // ConstraintOperands list.
2419   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2420   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2421 
2422   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2423     ConstraintOperands.emplace_back(std::move(CI));
2424     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2425 
2426     // Update multiple alternative constraint count.
2427     if (OpInfo.multipleAlternatives.size() > maCount)
2428       maCount = OpInfo.multipleAlternatives.size();
2429 
2430     OpInfo.ConstraintVT = MVT::Other;
2431 
2432     // Compute the value type for each operand.
2433     switch (OpInfo.Type) {
2434     case InlineAsm::isOutput:
2435       // Indirect outputs just consume an argument.
2436       if (OpInfo.isIndirect) {
2437         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2438         break;
2439       }
2440 
2441       // The return value of the call is this value.  As such, there is no
2442       // corresponding argument.
2443       assert(!CS.getType()->isVoidTy() &&
2444              "Bad inline asm!");
2445       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2446         OpInfo.ConstraintVT =
2447             getSimpleValueType(DL, STy->getElementType(ResNo));
2448       } else {
2449         assert(ResNo == 0 && "Asm only has one result!");
2450         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2451       }
2452       ++ResNo;
2453       break;
2454     case InlineAsm::isInput:
2455       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2456       break;
2457     case InlineAsm::isClobber:
2458       // Nothing to do.
2459       break;
2460     }
2461 
2462     if (OpInfo.CallOperandVal) {
2463       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2464       if (OpInfo.isIndirect) {
2465         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2466         if (!PtrTy)
2467           report_fatal_error("Indirect operand for inline asm not a pointer!");
2468         OpTy = PtrTy->getElementType();
2469       }
2470 
2471       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2472       if (StructType *STy = dyn_cast<StructType>(OpTy))
2473         if (STy->getNumElements() == 1)
2474           OpTy = STy->getElementType(0);
2475 
2476       // If OpTy is not a single value, it may be a struct/union that we
2477       // can tile with integers.
2478       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2479         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2480         switch (BitSize) {
2481         default: break;
2482         case 1:
2483         case 8:
2484         case 16:
2485         case 32:
2486         case 64:
2487         case 128:
2488           OpInfo.ConstraintVT =
2489             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2490           break;
2491         }
2492       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2493         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2494         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2495       } else {
2496         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2497       }
2498     }
2499   }
2500 
2501   // If we have multiple alternative constraints, select the best alternative.
2502   if (!ConstraintOperands.empty()) {
2503     if (maCount) {
2504       unsigned bestMAIndex = 0;
2505       int bestWeight = -1;
2506       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2507       int weight = -1;
2508       unsigned maIndex;
2509       // Compute the sums of the weights for each alternative, keeping track
2510       // of the best (highest weight) one so far.
2511       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2512         int weightSum = 0;
2513         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2514             cIndex != eIndex; ++cIndex) {
2515           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2516           if (OpInfo.Type == InlineAsm::isClobber)
2517             continue;
2518 
2519           // If this is an output operand with a matching input operand,
2520           // look up the matching input. If their types mismatch, e.g. one
2521           // is an integer, the other is floating point, or their sizes are
2522           // different, flag it as an maCantMatch.
2523           if (OpInfo.hasMatchingInput()) {
2524             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2525             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2526               if ((OpInfo.ConstraintVT.isInteger() !=
2527                    Input.ConstraintVT.isInteger()) ||
2528                   (OpInfo.ConstraintVT.getSizeInBits() !=
2529                    Input.ConstraintVT.getSizeInBits())) {
2530                 weightSum = -1;  // Can't match.
2531                 break;
2532               }
2533             }
2534           }
2535           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2536           if (weight == -1) {
2537             weightSum = -1;
2538             break;
2539           }
2540           weightSum += weight;
2541         }
2542         // Update best.
2543         if (weightSum > bestWeight) {
2544           bestWeight = weightSum;
2545           bestMAIndex = maIndex;
2546         }
2547       }
2548 
2549       // Now select chosen alternative in each constraint.
2550       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2551           cIndex != eIndex; ++cIndex) {
2552         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2553         if (cInfo.Type == InlineAsm::isClobber)
2554           continue;
2555         cInfo.selectAlternative(bestMAIndex);
2556       }
2557     }
2558   }
2559 
2560   // Check and hook up tied operands, choose constraint code to use.
2561   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2562       cIndex != eIndex; ++cIndex) {
2563     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2564 
2565     // If this is an output operand with a matching input operand, look up the
2566     // matching input. If their types mismatch, e.g. one is an integer, the
2567     // other is floating point, or their sizes are different, flag it as an
2568     // error.
2569     if (OpInfo.hasMatchingInput()) {
2570       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2571 
2572       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2573         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2574             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2575                                          OpInfo.ConstraintVT);
2576         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2577             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2578                                          Input.ConstraintVT);
2579         if ((OpInfo.ConstraintVT.isInteger() !=
2580              Input.ConstraintVT.isInteger()) ||
2581             (MatchRC.second != InputRC.second)) {
2582           report_fatal_error("Unsupported asm: input constraint"
2583                              " with a matching output constraint of"
2584                              " incompatible type!");
2585         }
2586       }
2587     }
2588   }
2589 
2590   return ConstraintOperands;
2591 }
2592 
2593 /// Return an integer indicating how general CT is.
getConstraintGenerality(TargetLowering::ConstraintType CT)2594 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2595   switch (CT) {
2596   case TargetLowering::C_Other:
2597   case TargetLowering::C_Unknown:
2598     return 0;
2599   case TargetLowering::C_Register:
2600     return 1;
2601   case TargetLowering::C_RegisterClass:
2602     return 2;
2603   case TargetLowering::C_Memory:
2604     return 3;
2605   }
2606   llvm_unreachable("Invalid constraint type");
2607 }
2608 
2609 /// Examine constraint type and operand type and determine a weight value.
2610 /// This object must already have been set up with the operand type
2611 /// and the current alternative constraint selected.
2612 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const2613   TargetLowering::getMultipleConstraintMatchWeight(
2614     AsmOperandInfo &info, int maIndex) const {
2615   InlineAsm::ConstraintCodeVector *rCodes;
2616   if (maIndex >= (int)info.multipleAlternatives.size())
2617     rCodes = &info.Codes;
2618   else
2619     rCodes = &info.multipleAlternatives[maIndex].Codes;
2620   ConstraintWeight BestWeight = CW_Invalid;
2621 
2622   // Loop over the options, keeping track of the most general one.
2623   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2624     ConstraintWeight weight =
2625       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2626     if (weight > BestWeight)
2627       BestWeight = weight;
2628   }
2629 
2630   return BestWeight;
2631 }
2632 
2633 /// Examine constraint type and operand type and determine a weight value.
2634 /// This object must already have been set up with the operand type
2635 /// and the current alternative constraint selected.
2636 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const2637   TargetLowering::getSingleConstraintMatchWeight(
2638     AsmOperandInfo &info, const char *constraint) const {
2639   ConstraintWeight weight = CW_Invalid;
2640   Value *CallOperandVal = info.CallOperandVal;
2641     // If we don't have a value, we can't do a match,
2642     // but allow it at the lowest weight.
2643   if (!CallOperandVal)
2644     return CW_Default;
2645   // Look at the constraint type.
2646   switch (*constraint) {
2647     case 'i': // immediate integer.
2648     case 'n': // immediate integer with a known value.
2649       if (isa<ConstantInt>(CallOperandVal))
2650         weight = CW_Constant;
2651       break;
2652     case 's': // non-explicit intregal immediate.
2653       if (isa<GlobalValue>(CallOperandVal))
2654         weight = CW_Constant;
2655       break;
2656     case 'E': // immediate float if host format.
2657     case 'F': // immediate float.
2658       if (isa<ConstantFP>(CallOperandVal))
2659         weight = CW_Constant;
2660       break;
2661     case '<': // memory operand with autodecrement.
2662     case '>': // memory operand with autoincrement.
2663     case 'm': // memory operand.
2664     case 'o': // offsettable memory operand
2665     case 'V': // non-offsettable memory operand
2666       weight = CW_Memory;
2667       break;
2668     case 'r': // general register.
2669     case 'g': // general register, memory operand or immediate integer.
2670               // note: Clang converts "g" to "imr".
2671       if (CallOperandVal->getType()->isIntegerTy())
2672         weight = CW_Register;
2673       break;
2674     case 'X': // any operand.
2675     default:
2676       weight = CW_Default;
2677       break;
2678   }
2679   return weight;
2680 }
2681 
2682 /// If there are multiple different constraints that we could pick for this
2683 /// operand (e.g. "imr") try to pick the 'best' one.
2684 /// This is somewhat tricky: constraints fall into four classes:
2685 ///    Other         -> immediates and magic values
2686 ///    Register      -> one specific register
2687 ///    RegisterClass -> a group of regs
2688 ///    Memory        -> memory
2689 /// Ideally, we would pick the most specific constraint possible: if we have
2690 /// something that fits into a register, we would pick it.  The problem here
2691 /// is that if we have something that could either be in a register or in
2692 /// memory that use of the register could cause selection of *other*
2693 /// operands to fail: they might only succeed if we pick memory.  Because of
2694 /// this the heuristic we use is:
2695 ///
2696 ///  1) If there is an 'other' constraint, and if the operand is valid for
2697 ///     that constraint, use it.  This makes us take advantage of 'i'
2698 ///     constraints when available.
2699 ///  2) Otherwise, pick the most general constraint present.  This prefers
2700 ///     'm' over 'r', for example.
2701 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)2702 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2703                              const TargetLowering &TLI,
2704                              SDValue Op, SelectionDAG *DAG) {
2705   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2706   unsigned BestIdx = 0;
2707   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2708   int BestGenerality = -1;
2709 
2710   // Loop over the options, keeping track of the most general one.
2711   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2712     TargetLowering::ConstraintType CType =
2713       TLI.getConstraintType(OpInfo.Codes[i]);
2714 
2715     // If this is an 'other' constraint, see if the operand is valid for it.
2716     // For example, on X86 we might have an 'rI' constraint.  If the operand
2717     // is an integer in the range [0..31] we want to use I (saving a load
2718     // of a register), otherwise we must use 'r'.
2719     if (CType == TargetLowering::C_Other && Op.getNode()) {
2720       assert(OpInfo.Codes[i].size() == 1 &&
2721              "Unhandled multi-letter 'other' constraint");
2722       std::vector<SDValue> ResultOps;
2723       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2724                                        ResultOps, *DAG);
2725       if (!ResultOps.empty()) {
2726         BestType = CType;
2727         BestIdx = i;
2728         break;
2729       }
2730     }
2731 
2732     // Things with matching constraints can only be registers, per gcc
2733     // documentation.  This mainly affects "g" constraints.
2734     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2735       continue;
2736 
2737     // This constraint letter is more general than the previous one, use it.
2738     int Generality = getConstraintGenerality(CType);
2739     if (Generality > BestGenerality) {
2740       BestType = CType;
2741       BestIdx = i;
2742       BestGenerality = Generality;
2743     }
2744   }
2745 
2746   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2747   OpInfo.ConstraintType = BestType;
2748 }
2749 
2750 /// Determines the constraint code and constraint type to use for the specific
2751 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const2752 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2753                                             SDValue Op,
2754                                             SelectionDAG *DAG) const {
2755   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2756 
2757   // Single-letter constraints ('r') are very common.
2758   if (OpInfo.Codes.size() == 1) {
2759     OpInfo.ConstraintCode = OpInfo.Codes[0];
2760     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2761   } else {
2762     ChooseConstraint(OpInfo, *this, Op, DAG);
2763   }
2764 
2765   // 'X' matches anything.
2766   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2767     // Labels and constants are handled elsewhere ('X' is the only thing
2768     // that matches labels).  For Functions, the type here is the type of
2769     // the result, which is not what we want to look at; leave them alone.
2770     Value *v = OpInfo.CallOperandVal;
2771     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2772       OpInfo.CallOperandVal = v;
2773       return;
2774     }
2775 
2776     // Otherwise, try to resolve it to something we know about by looking at
2777     // the actual operand type.
2778     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2779       OpInfo.ConstraintCode = Repl;
2780       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2781     }
2782   }
2783 }
2784 
2785 /// \brief Given an exact SDIV by a constant, create a multiplication
2786 /// with the multiplicative inverse of the constant.
BuildExactSDIV(const TargetLowering & TLI,SDValue Op1,APInt d,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDNode * > & Created)2787 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2788                               const SDLoc &dl, SelectionDAG &DAG,
2789                               std::vector<SDNode *> &Created) {
2790   assert(d != 0 && "Division by zero!");
2791 
2792   // Shift the value upfront if it is even, so the LSB is one.
2793   unsigned ShAmt = d.countTrailingZeros();
2794   if (ShAmt) {
2795     // TODO: For UDIV use SRL instead of SRA.
2796     SDValue Amt =
2797         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2798                                                         DAG.getDataLayout()));
2799     SDNodeFlags Flags;
2800     Flags.setExact(true);
2801     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2802     Created.push_back(Op1.getNode());
2803     d = d.ashr(ShAmt);
2804   }
2805 
2806   // Calculate the multiplicative inverse, using Newton's method.
2807   APInt t, xn = d;
2808   while ((t = d*xn) != 1)
2809     xn *= APInt(d.getBitWidth(), 2) - t;
2810 
2811   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2812   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2813   Created.push_back(Mul.getNode());
2814   return Mul;
2815 }
2816 
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created) const2817 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2818                                       SelectionDAG &DAG,
2819                                       std::vector<SDNode *> *Created) const {
2820   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2822   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2823     return SDValue(N,0); // Lower SDIV as SDIV
2824   return SDValue();
2825 }
2826 
2827 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2828 /// return a DAG expression to select that will generate the same value by
2829 /// multiplying by a magic number.
2830 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2831 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2832                                   SelectionDAG &DAG, bool IsAfterLegalization,
2833                                   std::vector<SDNode *> *Created) const {
2834   assert(Created && "No vector to hold sdiv ops.");
2835 
2836   EVT VT = N->getValueType(0);
2837   SDLoc dl(N);
2838 
2839   // Check to see if we can do this.
2840   // FIXME: We should be more aggressive here.
2841   if (!isTypeLegal(VT))
2842     return SDValue();
2843 
2844   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2845   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2846     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2847 
2848   APInt::ms magics = Divisor.magic();
2849 
2850   // Multiply the numerator (operand 0) by the magic value
2851   // FIXME: We should support doing a MUL in a wider type
2852   SDValue Q;
2853   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2854                             isOperationLegalOrCustom(ISD::MULHS, VT))
2855     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2856                     DAG.getConstant(magics.m, dl, VT));
2857   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2858                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2859     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2860                               N->getOperand(0),
2861                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2862   else
2863     return SDValue();       // No mulhs or equvialent
2864   // If d > 0 and m < 0, add the numerator
2865   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2866     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2867     Created->push_back(Q.getNode());
2868   }
2869   // If d < 0 and m > 0, subtract the numerator.
2870   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2871     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2872     Created->push_back(Q.getNode());
2873   }
2874   auto &DL = DAG.getDataLayout();
2875   // Shift right algebraic if shift value is nonzero
2876   if (magics.s > 0) {
2877     Q = DAG.getNode(
2878         ISD::SRA, dl, VT, Q,
2879         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2880     Created->push_back(Q.getNode());
2881   }
2882   // Extract the sign bit and add it to the quotient
2883   SDValue T =
2884       DAG.getNode(ISD::SRL, dl, VT, Q,
2885                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
2886                                   getShiftAmountTy(Q.getValueType(), DL)));
2887   Created->push_back(T.getNode());
2888   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2889 }
2890 
2891 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2892 /// return a DAG expression to select that will generate the same value by
2893 /// multiplying by a magic number.
2894 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2895 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2896                                   SelectionDAG &DAG, bool IsAfterLegalization,
2897                                   std::vector<SDNode *> *Created) const {
2898   assert(Created && "No vector to hold udiv ops.");
2899 
2900   EVT VT = N->getValueType(0);
2901   SDLoc dl(N);
2902   auto &DL = DAG.getDataLayout();
2903 
2904   // Check to see if we can do this.
2905   // FIXME: We should be more aggressive here.
2906   if (!isTypeLegal(VT))
2907     return SDValue();
2908 
2909   // FIXME: We should use a narrower constant when the upper
2910   // bits are known to be zero.
2911   APInt::mu magics = Divisor.magicu();
2912 
2913   SDValue Q = N->getOperand(0);
2914 
2915   // If the divisor is even, we can avoid using the expensive fixup by shifting
2916   // the divided value upfront.
2917   if (magics.a != 0 && !Divisor[0]) {
2918     unsigned Shift = Divisor.countTrailingZeros();
2919     Q = DAG.getNode(
2920         ISD::SRL, dl, VT, Q,
2921         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
2922     Created->push_back(Q.getNode());
2923 
2924     // Get magic number for the shifted divisor.
2925     magics = Divisor.lshr(Shift).magicu(Shift);
2926     assert(magics.a == 0 && "Should use cheap fixup now");
2927   }
2928 
2929   // Multiply the numerator (operand 0) by the magic value
2930   // FIXME: We should support doing a MUL in a wider type
2931   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2932                             isOperationLegalOrCustom(ISD::MULHU, VT))
2933     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
2934   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2935                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2936     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2937                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2938   else
2939     return SDValue();       // No mulhu or equvialent
2940 
2941   Created->push_back(Q.getNode());
2942 
2943   if (magics.a == 0) {
2944     assert(magics.s < Divisor.getBitWidth() &&
2945            "We shouldn't generate an undefined shift!");
2946     return DAG.getNode(
2947         ISD::SRL, dl, VT, Q,
2948         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2949   } else {
2950     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2951     Created->push_back(NPQ.getNode());
2952     NPQ = DAG.getNode(
2953         ISD::SRL, dl, VT, NPQ,
2954         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
2955     Created->push_back(NPQ.getNode());
2956     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2957     Created->push_back(NPQ.getNode());
2958     return DAG.getNode(
2959         ISD::SRL, dl, VT, NPQ,
2960         DAG.getConstant(magics.s - 1, dl,
2961                         getShiftAmountTy(NPQ.getValueType(), DL)));
2962   }
2963 }
2964 
2965 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const2966 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2967   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2968     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2969                                 "be a constant integer");
2970     return true;
2971   }
2972 
2973   return false;
2974 }
2975 
2976 //===----------------------------------------------------------------------===//
2977 // Legalization Utilities
2978 //===----------------------------------------------------------------------===//
2979 
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const2980 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2981                                SelectionDAG &DAG, SDValue LL, SDValue LH,
2982                                SDValue RL, SDValue RH) const {
2983   EVT VT = N->getValueType(0);
2984   SDLoc dl(N);
2985 
2986   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2987   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2988   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2989   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2990   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2991     unsigned OuterBitSize = VT.getSizeInBits();
2992     unsigned InnerBitSize = HiLoVT.getSizeInBits();
2993     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2994     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2995 
2996     // LL, LH, RL, and RH must be either all NULL or all set to a value.
2997     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2998            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2999 
3000     if (!LL.getNode() && !RL.getNode() &&
3001         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3002       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
3003       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
3004     }
3005 
3006     if (!LL.getNode())
3007       return false;
3008 
3009     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3010     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
3011         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
3012       // The inputs are both zero-extended.
3013       if (HasUMUL_LOHI) {
3014         // We can emit a umul_lohi.
3015         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3016                          RL);
3017         Hi = SDValue(Lo.getNode(), 1);
3018         return true;
3019       }
3020       if (HasMULHU) {
3021         // We can emit a mulhu+mul.
3022         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3023         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3024         return true;
3025       }
3026     }
3027     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
3028       // The input values are both sign-extended.
3029       if (HasSMUL_LOHI) {
3030         // We can emit a smul_lohi.
3031         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3032                          RL);
3033         Hi = SDValue(Lo.getNode(), 1);
3034         return true;
3035       }
3036       if (HasMULHS) {
3037         // We can emit a mulhs+mul.
3038         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3039         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
3040         return true;
3041       }
3042     }
3043 
3044     if (!LH.getNode() && !RH.getNode() &&
3045         isOperationLegalOrCustom(ISD::SRL, VT) &&
3046         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3047       auto &DL = DAG.getDataLayout();
3048       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
3049       SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
3050       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
3051       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3052       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
3053       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3054     }
3055 
3056     if (!LH.getNode())
3057       return false;
3058 
3059     if (HasUMUL_LOHI) {
3060       // Lo,Hi = umul LHS, RHS.
3061       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
3062                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
3063       Lo = UMulLOHI;
3064       Hi = UMulLOHI.getValue(1);
3065       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3066       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3067       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3068       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3069       return true;
3070     }
3071     if (HasMULHU) {
3072       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3073       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3074       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3075       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3076       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3077       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3078       return true;
3079     }
3080   }
3081   return false;
3082 }
3083 
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const3084 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3085                                SelectionDAG &DAG) const {
3086   EVT VT = Node->getOperand(0).getValueType();
3087   EVT NVT = Node->getValueType(0);
3088   SDLoc dl(SDValue(Node, 0));
3089 
3090   // FIXME: Only f32 to i64 conversions are supported.
3091   if (VT != MVT::f32 || NVT != MVT::i64)
3092     return false;
3093 
3094   // Expand f32 -> i64 conversion
3095   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3096   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3097   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3098                                 VT.getSizeInBits());
3099   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3100   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3101   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3102   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3103                                      IntVT);
3104   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3105   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3106 
3107   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3108 
3109   auto &DL = DAG.getDataLayout();
3110   SDValue ExponentBits = DAG.getNode(
3111       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3112       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3113   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3114 
3115   SDValue Sign = DAG.getNode(
3116       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3117       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3118   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3119 
3120   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3121       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3122       DAG.getConstant(0x00800000, dl, IntVT));
3123 
3124   R = DAG.getZExtOrTrunc(R, dl, NVT);
3125 
3126   R = DAG.getSelectCC(
3127       dl, Exponent, ExponentLoBit,
3128       DAG.getNode(ISD::SHL, dl, NVT, R,
3129                   DAG.getZExtOrTrunc(
3130                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3131                       dl, getShiftAmountTy(IntVT, DL))),
3132       DAG.getNode(ISD::SRL, dl, NVT, R,
3133                   DAG.getZExtOrTrunc(
3134                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3135                       dl, getShiftAmountTy(IntVT, DL))),
3136       ISD::SETGT);
3137 
3138   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3139       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3140       Sign);
3141 
3142   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3143       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3144   return true;
3145 }
3146 
scalarizeVectorLoad(LoadSDNode * LD,SelectionDAG & DAG) const3147 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3148                                             SelectionDAG &DAG) const {
3149   SDLoc SL(LD);
3150   SDValue Chain = LD->getChain();
3151   SDValue BasePTR = LD->getBasePtr();
3152   EVT SrcVT = LD->getMemoryVT();
3153   ISD::LoadExtType ExtType = LD->getExtensionType();
3154 
3155   unsigned NumElem = SrcVT.getVectorNumElements();
3156 
3157   EVT SrcEltVT = SrcVT.getScalarType();
3158   EVT DstEltVT = LD->getValueType(0).getScalarType();
3159 
3160   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3161   assert(SrcEltVT.isByteSized());
3162 
3163   EVT PtrVT = BasePTR.getValueType();
3164 
3165   SmallVector<SDValue, 8> Vals;
3166   SmallVector<SDValue, 8> LoadChains;
3167 
3168   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3169     SDValue ScalarLoad = DAG.getExtLoad(
3170       ExtType, SL, DstEltVT,
3171       Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
3172       SrcEltVT,
3173       LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
3174       MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
3175 
3176     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3177                           DAG.getConstant(Stride, SL, PtrVT));
3178 
3179     Vals.push_back(ScalarLoad.getValue(0));
3180     LoadChains.push_back(ScalarLoad.getValue(1));
3181   }
3182 
3183   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3184   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals);
3185 
3186   return DAG.getMergeValues({ Value, NewChain }, SL);
3187 }
3188 
3189 // FIXME: This relies on each element having a byte size, otherwise the stride
3190 // is 0 and just overwrites the same location. ExpandStore currently expects
3191 // this broken behavior.
scalarizeVectorStore(StoreSDNode * ST,SelectionDAG & DAG) const3192 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3193                                              SelectionDAG &DAG) const {
3194   SDLoc SL(ST);
3195 
3196   SDValue Chain = ST->getChain();
3197   SDValue BasePtr = ST->getBasePtr();
3198   SDValue Value = ST->getValue();
3199   EVT StVT = ST->getMemoryVT();
3200 
3201   unsigned Alignment = ST->getAlignment();
3202   bool isVolatile = ST->isVolatile();
3203   bool isNonTemporal = ST->isNonTemporal();
3204   AAMDNodes AAInfo = ST->getAAInfo();
3205 
3206   // The type of the data we want to save
3207   EVT RegVT = Value.getValueType();
3208   EVT RegSclVT = RegVT.getScalarType();
3209 
3210   // The type of data as saved in memory.
3211   EVT MemSclVT = StVT.getScalarType();
3212 
3213   EVT PtrVT = BasePtr.getValueType();
3214 
3215   // Store Stride in bytes
3216   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3217   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3218   unsigned NumElem = StVT.getVectorNumElements();
3219 
3220   // Extract each of the elements from the original vector and save them into
3221   // memory individually.
3222   SmallVector<SDValue, 8> Stores;
3223   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3224     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3225                               DAG.getConstant(Idx, SL, IdxVT));
3226 
3227     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3228                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3229 
3230     // This scalar TruncStore may be illegal, but we legalize it later.
3231     SDValue Store = DAG.getTruncStore(
3232       Chain, SL, Elt, Ptr,
3233       ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT,
3234       isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride),
3235       AAInfo);
3236 
3237     Stores.push_back(Store);
3238   }
3239 
3240   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3241 }
3242 
3243 std::pair<SDValue, SDValue>
expandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG) const3244 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3245   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3246          "unaligned indexed loads not implemented!");
3247   SDValue Chain = LD->getChain();
3248   SDValue Ptr = LD->getBasePtr();
3249   EVT VT = LD->getValueType(0);
3250   EVT LoadedVT = LD->getMemoryVT();
3251   SDLoc dl(LD);
3252   if (VT.isFloatingPoint() || VT.isVector()) {
3253     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3254     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3255       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3256         // Scalarize the load and let the individual components be handled.
3257         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3258         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3259       }
3260 
3261       // Expand to a (misaligned) integer load of the same size,
3262       // then bitconvert to floating point or vector.
3263       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3264                                     LD->getMemOperand());
3265       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3266       if (LoadedVT != VT)
3267         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3268                              ISD::ANY_EXTEND, dl, VT, Result);
3269 
3270       return std::make_pair(Result, newLoad.getValue(1));
3271     }
3272 
3273     // Copy the value to a (aligned) stack slot using (unaligned) integer
3274     // loads and stores, then do a (aligned) load from the stack slot.
3275     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3276     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3277     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3278     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3279 
3280     // Make sure the stack slot is also aligned for the register type.
3281     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3282 
3283     SmallVector<SDValue, 8> Stores;
3284     SDValue StackPtr = StackBase;
3285     unsigned Offset = 0;
3286 
3287     EVT PtrVT = Ptr.getValueType();
3288     EVT StackPtrVT = StackPtr.getValueType();
3289 
3290     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3291     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3292 
3293     // Do all but one copies using the full register width.
3294     for (unsigned i = 1; i < NumRegs; i++) {
3295       // Load one integer register's worth from the original location.
3296       SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
3297                                  LD->getPointerInfo().getWithOffset(Offset),
3298                                  LD->isVolatile(), LD->isNonTemporal(),
3299                                  LD->isInvariant(),
3300                                  MinAlign(LD->getAlignment(), Offset),
3301                                  LD->getAAInfo());
3302       // Follow the load with a store to the stack slot.  Remember the store.
3303       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3304                                     MachinePointerInfo(), false, false, 0));
3305       // Increment the pointers.
3306       Offset += RegBytes;
3307       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3308       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3309                              StackPtrIncrement);
3310     }
3311 
3312     // The last copy may be partial.  Do an extending load.
3313     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3314                                   8 * (LoadedBytes - Offset));
3315     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3316                                   LD->getPointerInfo().getWithOffset(Offset),
3317                                   MemVT, LD->isVolatile(),
3318                                   LD->isNonTemporal(),
3319                                   LD->isInvariant(),
3320                                   MinAlign(LD->getAlignment(), Offset),
3321                                   LD->getAAInfo());
3322     // Follow the load with a store to the stack slot.  Remember the store.
3323     // On big-endian machines this requires a truncating store to ensure
3324     // that the bits end up in the right place.
3325     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3326                                        MachinePointerInfo(), MemVT,
3327                                        false, false, 0));
3328 
3329     // The order of the stores doesn't matter - say it with a TokenFactor.
3330     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3331 
3332     // Finally, perform the original load only redirected to the stack slot.
3333     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3334                           MachinePointerInfo(), LoadedVT, false,false, false,
3335                           0);
3336 
3337     // Callers expect a MERGE_VALUES node.
3338     return std::make_pair(Load, TF);
3339   }
3340 
3341   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3342          "Unaligned load of unsupported type.");
3343 
3344   // Compute the new VT that is half the size of the old one.  This is an
3345   // integer MVT.
3346   unsigned NumBits = LoadedVT.getSizeInBits();
3347   EVT NewLoadedVT;
3348   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3349   NumBits >>= 1;
3350 
3351   unsigned Alignment = LD->getAlignment();
3352   unsigned IncrementSize = NumBits / 8;
3353   ISD::LoadExtType HiExtType = LD->getExtensionType();
3354 
3355   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3356   if (HiExtType == ISD::NON_EXTLOAD)
3357     HiExtType = ISD::ZEXTLOAD;
3358 
3359   // Load the value in two parts
3360   SDValue Lo, Hi;
3361   if (DAG.getDataLayout().isLittleEndian()) {
3362     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3363                         NewLoadedVT, LD->isVolatile(),
3364                         LD->isNonTemporal(), LD->isInvariant(), Alignment,
3365                         LD->getAAInfo());
3366     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3367                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3368     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3369                         LD->getPointerInfo().getWithOffset(IncrementSize),
3370                         NewLoadedVT, LD->isVolatile(),
3371                         LD->isNonTemporal(),LD->isInvariant(),
3372                         MinAlign(Alignment, IncrementSize), LD->getAAInfo());
3373   } else {
3374     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3375                         NewLoadedVT, LD->isVolatile(),
3376                         LD->isNonTemporal(), LD->isInvariant(), Alignment,
3377                         LD->getAAInfo());
3378     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3379                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3380     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3381                         LD->getPointerInfo().getWithOffset(IncrementSize),
3382                         NewLoadedVT, LD->isVolatile(),
3383                         LD->isNonTemporal(), LD->isInvariant(),
3384                         MinAlign(Alignment, IncrementSize), LD->getAAInfo());
3385   }
3386 
3387   // aggregate the two parts
3388   SDValue ShiftAmount =
3389       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3390                                                     DAG.getDataLayout()));
3391   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3392   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3393 
3394   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3395                              Hi.getValue(1));
3396 
3397   return std::make_pair(Result, TF);
3398 }
3399 
expandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG) const3400 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3401                                              SelectionDAG &DAG) const {
3402   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3403          "unaligned indexed stores not implemented!");
3404   SDValue Chain = ST->getChain();
3405   SDValue Ptr = ST->getBasePtr();
3406   SDValue Val = ST->getValue();
3407   EVT VT = Val.getValueType();
3408   int Alignment = ST->getAlignment();
3409 
3410   SDLoc dl(ST);
3411   if (ST->getMemoryVT().isFloatingPoint() ||
3412       ST->getMemoryVT().isVector()) {
3413     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3414     if (isTypeLegal(intVT)) {
3415       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3416         // Scalarize the store and let the individual components be handled.
3417         SDValue Result = scalarizeVectorStore(ST, DAG);
3418 
3419         return Result;
3420       }
3421       // Expand to a bitconvert of the value to the integer type of the
3422       // same size, then a (misaligned) int store.
3423       // FIXME: Does not handle truncating floating point stores!
3424       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3425       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3426                            ST->isVolatile(), ST->isNonTemporal(), Alignment);
3427       return Result;
3428     }
3429     // Do a (aligned) store to a stack slot, then copy from the stack slot
3430     // to the final destination using (unaligned) integer loads and stores.
3431     EVT StoredVT = ST->getMemoryVT();
3432     MVT RegVT =
3433       getRegisterType(*DAG.getContext(),
3434                       EVT::getIntegerVT(*DAG.getContext(),
3435                                         StoredVT.getSizeInBits()));
3436     EVT PtrVT = Ptr.getValueType();
3437     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3438     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3439     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3440 
3441     // Make sure the stack slot is also aligned for the register type.
3442     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3443 
3444     // Perform the original store, only redirected to the stack slot.
3445     SDValue Store = DAG.getTruncStore(Chain, dl,
3446                                       Val, StackPtr, MachinePointerInfo(),
3447                                       StoredVT, false, false, 0);
3448 
3449     EVT StackPtrVT = StackPtr.getValueType();
3450 
3451     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3452     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3453     SmallVector<SDValue, 8> Stores;
3454     unsigned Offset = 0;
3455 
3456     // Do all but one copies using the full register width.
3457     for (unsigned i = 1; i < NumRegs; i++) {
3458       // Load one integer register's worth from the stack slot.
3459       SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
3460                                  MachinePointerInfo(),
3461                                  false, false, false, 0);
3462       // Store it to the final location.  Remember the store.
3463       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3464                                   ST->getPointerInfo().getWithOffset(Offset),
3465                                     ST->isVolatile(), ST->isNonTemporal(),
3466                                     MinAlign(ST->getAlignment(), Offset)));
3467       // Increment the pointers.
3468       Offset += RegBytes;
3469       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3470                              StackPtr, StackPtrIncrement);
3471       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3472     }
3473 
3474     // The last store may be partial.  Do a truncating store.  On big-endian
3475     // machines this requires an extending load from the stack slot to ensure
3476     // that the bits are in the right place.
3477     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3478                                   8 * (StoredBytes - Offset));
3479 
3480     // Load from the stack slot.
3481     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3482                                   MachinePointerInfo(),
3483                                   MemVT, false, false, false, 0);
3484 
3485     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3486                                        ST->getPointerInfo()
3487                                          .getWithOffset(Offset),
3488                                        MemVT, ST->isVolatile(),
3489                                        ST->isNonTemporal(),
3490                                        MinAlign(ST->getAlignment(), Offset),
3491                                        ST->getAAInfo()));
3492     // The order of the stores doesn't matter - say it with a TokenFactor.
3493     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3494     return Result;
3495   }
3496 
3497   assert(ST->getMemoryVT().isInteger() &&
3498          !ST->getMemoryVT().isVector() &&
3499          "Unaligned store of unknown type.");
3500   // Get the half-size VT
3501   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3502   int NumBits = NewStoredVT.getSizeInBits();
3503   int IncrementSize = NumBits / 8;
3504 
3505   // Divide the stored value in two parts.
3506   SDValue ShiftAmount =
3507       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3508                                                     DAG.getDataLayout()));
3509   SDValue Lo = Val;
3510   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3511 
3512   // Store the two parts
3513   SDValue Store1, Store2;
3514   Store1 = DAG.getTruncStore(Chain, dl,
3515                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3516                              Ptr, ST->getPointerInfo(), NewStoredVT,
3517                              ST->isVolatile(), ST->isNonTemporal(), Alignment);
3518 
3519   EVT PtrVT = Ptr.getValueType();
3520   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3521                     DAG.getConstant(IncrementSize, dl, PtrVT));
3522   Alignment = MinAlign(Alignment, IncrementSize);
3523   Store2 = DAG.getTruncStore(
3524       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3525       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
3526       ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
3527 
3528   SDValue Result =
3529     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3530   return Result;
3531 }
3532 
3533 //===----------------------------------------------------------------------===//
3534 // Implementation of Emulated TLS Model
3535 //===----------------------------------------------------------------------===//
3536 
LowerToTLSEmulatedModel(const GlobalAddressSDNode * GA,SelectionDAG & DAG) const3537 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3538                                                 SelectionDAG &DAG) const {
3539   // Access to address of TLS varialbe xyz is lowered to a function call:
3540   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3541   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3542   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3543   SDLoc dl(GA);
3544 
3545   ArgListTy Args;
3546   ArgListEntry Entry;
3547   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3548   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3549   StringRef EmuTlsVarName(NameString);
3550   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3551   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3552   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3553   Entry.Ty = VoidPtrType;
3554   Args.push_back(Entry);
3555 
3556   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3557 
3558   TargetLowering::CallLoweringInfo CLI(DAG);
3559   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3560   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3561   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3562 
3563   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3564   // At last for X86 targets, maybe good for other targets too?
3565   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3566   MFI->setAdjustsStack(true);  // Is this only for X86 target?
3567   MFI->setHasCalls(true);
3568 
3569   assert((GA->getOffset() == 0) &&
3570          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3571   return CallResult.first;
3572 }
3573