1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace llvm;
32 using namespace PatternMatch;
33
34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
35 /// reusing an existing cast if a suitable one exists, moving an existing
36 /// cast if a suitable one exists but isn't in the right place, or
37 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
39 Instruction::CastOps Op,
40 BasicBlock::iterator IP) {
41 // This function must be called with the builder having a valid insertion
42 // point. It doesn't need to be the actual IP where the uses of the returned
43 // cast will be added, but it must dominate such IP.
44 // We use this precondition to produce a cast that will dominate all its
45 // uses. In particular, this is crucial for the case where the builder's
46 // insertion point *is* the point where we were asked to put the cast.
47 // Since we don't know the builder's insertion point is actually
48 // where the uses will be added (only that it dominates it), we are
49 // not allowed to move it.
50 BasicBlock::iterator BIP = Builder.GetInsertPoint();
51
52 Instruction *Ret = nullptr;
53
54 // Check to see if there is already a cast!
55 for (User *U : V->users())
56 if (U->getType() == Ty)
57 if (CastInst *CI = dyn_cast<CastInst>(U))
58 if (CI->getOpcode() == Op) {
59 // If the cast isn't where we want it, create a new cast at IP.
60 // Likewise, do not reuse a cast at BIP because it must dominate
61 // instructions that might be inserted before BIP.
62 if (BasicBlock::iterator(CI) != IP || BIP == IP) {
63 // Create a new cast, and leave the old cast in place in case
64 // it is being used as an insert point. Clear its operand
65 // so that it doesn't hold anything live.
66 Ret = CastInst::Create(Op, V, Ty, "", &*IP);
67 Ret->takeName(CI);
68 CI->replaceAllUsesWith(Ret);
69 CI->setOperand(0, UndefValue::get(V->getType()));
70 break;
71 }
72 Ret = CI;
73 break;
74 }
75
76 // Create a new cast.
77 if (!Ret)
78 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79
80 // We assert at the end of the function since IP might point to an
81 // instruction with different dominance properties than a cast
82 // (an invoke for example) and not dominate BIP (but the cast does).
83 assert(SE.DT.dominates(Ret, &*BIP));
84
85 rememberInstruction(Ret);
86 return Ret;
87 }
88
findInsertPointAfter(Instruction * I,BasicBlock * MustDominate)89 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
90 BasicBlock *MustDominate) {
91 BasicBlock::iterator IP = ++I->getIterator();
92 if (auto *II = dyn_cast<InvokeInst>(I))
93 IP = II->getNormalDest()->begin();
94
95 while (isa<PHINode>(IP))
96 ++IP;
97
98 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
99 ++IP;
100 } else if (isa<CatchSwitchInst>(IP)) {
101 IP = MustDominate->getFirstInsertionPt();
102 } else {
103 assert(!IP->isEHPad() && "unexpected eh pad!");
104 }
105
106 return IP;
107 }
108
109 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
110 /// which must be possible with a noop cast, doing what we can to share
111 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)112 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
113 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
114 assert((Op == Instruction::BitCast ||
115 Op == Instruction::PtrToInt ||
116 Op == Instruction::IntToPtr) &&
117 "InsertNoopCastOfTo cannot perform non-noop casts!");
118 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
119 "InsertNoopCastOfTo cannot change sizes!");
120
121 // Short-circuit unnecessary bitcasts.
122 if (Op == Instruction::BitCast) {
123 if (V->getType() == Ty)
124 return V;
125 if (CastInst *CI = dyn_cast<CastInst>(V)) {
126 if (CI->getOperand(0)->getType() == Ty)
127 return CI->getOperand(0);
128 }
129 }
130 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
131 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
132 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
133 if (CastInst *CI = dyn_cast<CastInst>(V))
134 if ((CI->getOpcode() == Instruction::PtrToInt ||
135 CI->getOpcode() == Instruction::IntToPtr) &&
136 SE.getTypeSizeInBits(CI->getType()) ==
137 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
138 return CI->getOperand(0);
139 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
140 if ((CE->getOpcode() == Instruction::PtrToInt ||
141 CE->getOpcode() == Instruction::IntToPtr) &&
142 SE.getTypeSizeInBits(CE->getType()) ==
143 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
144 return CE->getOperand(0);
145 }
146
147 // Fold a cast of a constant.
148 if (Constant *C = dyn_cast<Constant>(V))
149 return ConstantExpr::getCast(Op, C, Ty);
150
151 // Cast the argument at the beginning of the entry block, after
152 // any bitcasts of other arguments.
153 if (Argument *A = dyn_cast<Argument>(V)) {
154 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
155 while ((isa<BitCastInst>(IP) &&
156 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
157 cast<BitCastInst>(IP)->getOperand(0) != A) ||
158 isa<DbgInfoIntrinsic>(IP))
159 ++IP;
160 return ReuseOrCreateCast(A, Ty, Op, IP);
161 }
162
163 // Cast the instruction immediately after the instruction.
164 Instruction *I = cast<Instruction>(V);
165 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
166 return ReuseOrCreateCast(I, Ty, Op, IP);
167 }
168
169 /// InsertBinop - Insert the specified binary operator, doing a small amount
170 /// of work to avoid inserting an obviously redundant operation.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS)171 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
172 Value *LHS, Value *RHS) {
173 // Fold a binop with constant operands.
174 if (Constant *CLHS = dyn_cast<Constant>(LHS))
175 if (Constant *CRHS = dyn_cast<Constant>(RHS))
176 return ConstantExpr::get(Opcode, CLHS, CRHS);
177
178 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
179 unsigned ScanLimit = 6;
180 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
181 // Scanning starts from the last instruction before the insertion point.
182 BasicBlock::iterator IP = Builder.GetInsertPoint();
183 if (IP != BlockBegin) {
184 --IP;
185 for (; ScanLimit; --IP, --ScanLimit) {
186 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187 // generated code.
188 if (isa<DbgInfoIntrinsic>(IP))
189 ScanLimit++;
190 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
191 IP->getOperand(1) == RHS)
192 return &*IP;
193 if (IP == BlockBegin) break;
194 }
195 }
196
197 // Save the original insertion point so we can restore it when we're done.
198 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
199 SCEVInsertPointGuard Guard(Builder, this);
200
201 // Move the insertion point out of as many loops as we can.
202 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
203 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
204 BasicBlock *Preheader = L->getLoopPreheader();
205 if (!Preheader) break;
206
207 // Ok, move up a level.
208 Builder.SetInsertPoint(Preheader->getTerminator());
209 }
210
211 // If we haven't found this binop, insert it.
212 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
213 BO->setDebugLoc(Loc);
214 rememberInstruction(BO);
215
216 return BO;
217 }
218
219 /// FactorOutConstant - Test if S is divisible by Factor, using signed
220 /// division. If so, update S with Factor divided out and return true.
221 /// S need not be evenly divisible if a reasonable remainder can be
222 /// computed.
223 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
224 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
225 /// check to see if the divide was folded.
FactorOutConstant(const SCEV * & S,const SCEV * & Remainder,const SCEV * Factor,ScalarEvolution & SE,const DataLayout & DL)226 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
227 const SCEV *Factor, ScalarEvolution &SE,
228 const DataLayout &DL) {
229 // Everything is divisible by one.
230 if (Factor->isOne())
231 return true;
232
233 // x/x == 1.
234 if (S == Factor) {
235 S = SE.getConstant(S->getType(), 1);
236 return true;
237 }
238
239 // For a Constant, check for a multiple of the given factor.
240 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
241 // 0/x == 0.
242 if (C->isZero())
243 return true;
244 // Check for divisibility.
245 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
246 ConstantInt *CI =
247 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
248 // If the quotient is zero and the remainder is non-zero, reject
249 // the value at this scale. It will be considered for subsequent
250 // smaller scales.
251 if (!CI->isZero()) {
252 const SCEV *Div = SE.getConstant(CI);
253 S = Div;
254 Remainder = SE.getAddExpr(
255 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
256 return true;
257 }
258 }
259 }
260
261 // In a Mul, check if there is a constant operand which is a multiple
262 // of the given factor.
263 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
264 // Size is known, check if there is a constant operand which is a multiple
265 // of the given factor. If so, we can factor it.
266 const SCEVConstant *FC = cast<SCEVConstant>(Factor);
267 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
268 if (!C->getAPInt().srem(FC->getAPInt())) {
269 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
270 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
271 S = SE.getMulExpr(NewMulOps);
272 return true;
273 }
274 }
275
276 // In an AddRec, check if both start and step are divisible.
277 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
278 const SCEV *Step = A->getStepRecurrence(SE);
279 const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
280 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
281 return false;
282 if (!StepRem->isZero())
283 return false;
284 const SCEV *Start = A->getStart();
285 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
286 return false;
287 S = SE.getAddRecExpr(Start, Step, A->getLoop(),
288 A->getNoWrapFlags(SCEV::FlagNW));
289 return true;
290 }
291
292 return false;
293 }
294
295 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
296 /// is the number of SCEVAddRecExprs present, which are kept at the end of
297 /// the list.
298 ///
SimplifyAddOperands(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)299 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
300 Type *Ty,
301 ScalarEvolution &SE) {
302 unsigned NumAddRecs = 0;
303 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
304 ++NumAddRecs;
305 // Group Ops into non-addrecs and addrecs.
306 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
307 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
308 // Let ScalarEvolution sort and simplify the non-addrecs list.
309 const SCEV *Sum = NoAddRecs.empty() ?
310 SE.getConstant(Ty, 0) :
311 SE.getAddExpr(NoAddRecs);
312 // If it returned an add, use the operands. Otherwise it simplified
313 // the sum into a single value, so just use that.
314 Ops.clear();
315 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
316 Ops.append(Add->op_begin(), Add->op_end());
317 else if (!Sum->isZero())
318 Ops.push_back(Sum);
319 // Then append the addrecs.
320 Ops.append(AddRecs.begin(), AddRecs.end());
321 }
322
323 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
324 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
325 /// This helps expose more opportunities for folding parts of the expressions
326 /// into GEP indices.
327 ///
SplitAddRecs(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)328 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
329 Type *Ty,
330 ScalarEvolution &SE) {
331 // Find the addrecs.
332 SmallVector<const SCEV *, 8> AddRecs;
333 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
334 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
335 const SCEV *Start = A->getStart();
336 if (Start->isZero()) break;
337 const SCEV *Zero = SE.getConstant(Ty, 0);
338 AddRecs.push_back(SE.getAddRecExpr(Zero,
339 A->getStepRecurrence(SE),
340 A->getLoop(),
341 A->getNoWrapFlags(SCEV::FlagNW)));
342 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
343 Ops[i] = Zero;
344 Ops.append(Add->op_begin(), Add->op_end());
345 e += Add->getNumOperands();
346 } else {
347 Ops[i] = Start;
348 }
349 }
350 if (!AddRecs.empty()) {
351 // Add the addrecs onto the end of the list.
352 Ops.append(AddRecs.begin(), AddRecs.end());
353 // Resort the operand list, moving any constants to the front.
354 SimplifyAddOperands(Ops, Ty, SE);
355 }
356 }
357
358 /// expandAddToGEP - Expand an addition expression with a pointer type into
359 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
360 /// BasicAliasAnalysis and other passes analyze the result. See the rules
361 /// for getelementptr vs. inttoptr in
362 /// http://llvm.org/docs/LangRef.html#pointeraliasing
363 /// for details.
364 ///
365 /// Design note: The correctness of using getelementptr here depends on
366 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
367 /// they may introduce pointer arithmetic which may not be safely converted
368 /// into getelementptr.
369 ///
370 /// Design note: It might seem desirable for this function to be more
371 /// loop-aware. If some of the indices are loop-invariant while others
372 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
373 /// loop-invariant portions of the overall computation outside the loop.
374 /// However, there are a few reasons this is not done here. Hoisting simple
375 /// arithmetic is a low-level optimization that often isn't very
376 /// important until late in the optimization process. In fact, passes
377 /// like InstructionCombining will combine GEPs, even if it means
378 /// pushing loop-invariant computation down into loops, so even if the
379 /// GEPs were split here, the work would quickly be undone. The
380 /// LoopStrengthReduction pass, which is usually run quite late (and
381 /// after the last InstructionCombining pass), takes care of hoisting
382 /// loop-invariant portions of expressions, after considering what
383 /// can be folded using target addressing modes.
384 ///
expandAddToGEP(const SCEV * const * op_begin,const SCEV * const * op_end,PointerType * PTy,Type * Ty,Value * V)385 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
386 const SCEV *const *op_end,
387 PointerType *PTy,
388 Type *Ty,
389 Value *V) {
390 Type *OriginalElTy = PTy->getElementType();
391 Type *ElTy = OriginalElTy;
392 SmallVector<Value *, 4> GepIndices;
393 SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
394 bool AnyNonZeroIndices = false;
395
396 // Split AddRecs up into parts as either of the parts may be usable
397 // without the other.
398 SplitAddRecs(Ops, Ty, SE);
399
400 Type *IntPtrTy = DL.getIntPtrType(PTy);
401
402 // Descend down the pointer's type and attempt to convert the other
403 // operands into GEP indices, at each level. The first index in a GEP
404 // indexes into the array implied by the pointer operand; the rest of
405 // the indices index into the element or field type selected by the
406 // preceding index.
407 for (;;) {
408 // If the scale size is not 0, attempt to factor out a scale for
409 // array indexing.
410 SmallVector<const SCEV *, 8> ScaledOps;
411 if (ElTy->isSized()) {
412 const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
413 if (!ElSize->isZero()) {
414 SmallVector<const SCEV *, 8> NewOps;
415 for (const SCEV *Op : Ops) {
416 const SCEV *Remainder = SE.getConstant(Ty, 0);
417 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
418 // Op now has ElSize factored out.
419 ScaledOps.push_back(Op);
420 if (!Remainder->isZero())
421 NewOps.push_back(Remainder);
422 AnyNonZeroIndices = true;
423 } else {
424 // The operand was not divisible, so add it to the list of operands
425 // we'll scan next iteration.
426 NewOps.push_back(Op);
427 }
428 }
429 // If we made any changes, update Ops.
430 if (!ScaledOps.empty()) {
431 Ops = NewOps;
432 SimplifyAddOperands(Ops, Ty, SE);
433 }
434 }
435 }
436
437 // Record the scaled array index for this level of the type. If
438 // we didn't find any operands that could be factored, tentatively
439 // assume that element zero was selected (since the zero offset
440 // would obviously be folded away).
441 Value *Scaled = ScaledOps.empty() ?
442 Constant::getNullValue(Ty) :
443 expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
444 GepIndices.push_back(Scaled);
445
446 // Collect struct field index operands.
447 while (StructType *STy = dyn_cast<StructType>(ElTy)) {
448 bool FoundFieldNo = false;
449 // An empty struct has no fields.
450 if (STy->getNumElements() == 0) break;
451 // Field offsets are known. See if a constant offset falls within any of
452 // the struct fields.
453 if (Ops.empty())
454 break;
455 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
456 if (SE.getTypeSizeInBits(C->getType()) <= 64) {
457 const StructLayout &SL = *DL.getStructLayout(STy);
458 uint64_t FullOffset = C->getValue()->getZExtValue();
459 if (FullOffset < SL.getSizeInBytes()) {
460 unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
461 GepIndices.push_back(
462 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
463 ElTy = STy->getTypeAtIndex(ElIdx);
464 Ops[0] =
465 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
466 AnyNonZeroIndices = true;
467 FoundFieldNo = true;
468 }
469 }
470 // If no struct field offsets were found, tentatively assume that
471 // field zero was selected (since the zero offset would obviously
472 // be folded away).
473 if (!FoundFieldNo) {
474 ElTy = STy->getTypeAtIndex(0u);
475 GepIndices.push_back(
476 Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
477 }
478 }
479
480 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
481 ElTy = ATy->getElementType();
482 else
483 break;
484 }
485
486 // If none of the operands were convertible to proper GEP indices, cast
487 // the base to i8* and do an ugly getelementptr with that. It's still
488 // better than ptrtoint+arithmetic+inttoptr at least.
489 if (!AnyNonZeroIndices) {
490 // Cast the base to i8*.
491 V = InsertNoopCastOfTo(V,
492 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
493
494 assert(!isa<Instruction>(V) ||
495 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
496
497 // Expand the operands for a plain byte offset.
498 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
499
500 // Fold a GEP with constant operands.
501 if (Constant *CLHS = dyn_cast<Constant>(V))
502 if (Constant *CRHS = dyn_cast<Constant>(Idx))
503 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
504 CLHS, CRHS);
505
506 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
507 unsigned ScanLimit = 6;
508 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
509 // Scanning starts from the last instruction before the insertion point.
510 BasicBlock::iterator IP = Builder.GetInsertPoint();
511 if (IP != BlockBegin) {
512 --IP;
513 for (; ScanLimit; --IP, --ScanLimit) {
514 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
515 // generated code.
516 if (isa<DbgInfoIntrinsic>(IP))
517 ScanLimit++;
518 if (IP->getOpcode() == Instruction::GetElementPtr &&
519 IP->getOperand(0) == V && IP->getOperand(1) == Idx)
520 return &*IP;
521 if (IP == BlockBegin) break;
522 }
523 }
524
525 // Save the original insertion point so we can restore it when we're done.
526 SCEVInsertPointGuard Guard(Builder, this);
527
528 // Move the insertion point out of as many loops as we can.
529 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
530 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
531 BasicBlock *Preheader = L->getLoopPreheader();
532 if (!Preheader) break;
533
534 // Ok, move up a level.
535 Builder.SetInsertPoint(Preheader->getTerminator());
536 }
537
538 // Emit a GEP.
539 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
540 rememberInstruction(GEP);
541
542 return GEP;
543 }
544
545 {
546 SCEVInsertPointGuard Guard(Builder, this);
547
548 // Move the insertion point out of as many loops as we can.
549 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
550 if (!L->isLoopInvariant(V)) break;
551
552 bool AnyIndexNotLoopInvariant =
553 std::any_of(GepIndices.begin(), GepIndices.end(),
554 [L](Value *Op) { return !L->isLoopInvariant(Op); });
555
556 if (AnyIndexNotLoopInvariant)
557 break;
558
559 BasicBlock *Preheader = L->getLoopPreheader();
560 if (!Preheader) break;
561
562 // Ok, move up a level.
563 Builder.SetInsertPoint(Preheader->getTerminator());
564 }
565
566 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
567 // because ScalarEvolution may have changed the address arithmetic to
568 // compute a value which is beyond the end of the allocated object.
569 Value *Casted = V;
570 if (V->getType() != PTy)
571 Casted = InsertNoopCastOfTo(Casted, PTy);
572 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
573 Ops.push_back(SE.getUnknown(GEP));
574 rememberInstruction(GEP);
575 }
576
577 return expand(SE.getAddExpr(Ops));
578 }
579
580 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
581 /// SCEV expansion. If they are nested, this is the most nested. If they are
582 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)583 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
584 DominatorTree &DT) {
585 if (!A) return B;
586 if (!B) return A;
587 if (A->contains(B)) return B;
588 if (B->contains(A)) return A;
589 if (DT.dominates(A->getHeader(), B->getHeader())) return B;
590 if (DT.dominates(B->getHeader(), A->getHeader())) return A;
591 return A; // Arbitrarily break the tie.
592 }
593
594 /// getRelevantLoop - Get the most relevant loop associated with the given
595 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)596 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
597 // Test whether we've already computed the most relevant loop for this SCEV.
598 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
599 if (!Pair.second)
600 return Pair.first->second;
601
602 if (isa<SCEVConstant>(S))
603 // A constant has no relevant loops.
604 return nullptr;
605 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
606 if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
607 return Pair.first->second = SE.LI.getLoopFor(I->getParent());
608 // A non-instruction has no relevant loops.
609 return nullptr;
610 }
611 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
612 const Loop *L = nullptr;
613 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
614 L = AR->getLoop();
615 for (const SCEV *Op : N->operands())
616 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
617 return RelevantLoops[N] = L;
618 }
619 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
620 const Loop *Result = getRelevantLoop(C->getOperand());
621 return RelevantLoops[C] = Result;
622 }
623 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
624 const Loop *Result = PickMostRelevantLoop(
625 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
626 return RelevantLoops[D] = Result;
627 }
628 llvm_unreachable("Unexpected SCEV type!");
629 }
630
631 namespace {
632
633 /// LoopCompare - Compare loops by PickMostRelevantLoop.
634 class LoopCompare {
635 DominatorTree &DT;
636 public:
LoopCompare(DominatorTree & dt)637 explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
638
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const639 bool operator()(std::pair<const Loop *, const SCEV *> LHS,
640 std::pair<const Loop *, const SCEV *> RHS) const {
641 // Keep pointer operands sorted at the end.
642 if (LHS.second->getType()->isPointerTy() !=
643 RHS.second->getType()->isPointerTy())
644 return LHS.second->getType()->isPointerTy();
645
646 // Compare loops with PickMostRelevantLoop.
647 if (LHS.first != RHS.first)
648 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
649
650 // If one operand is a non-constant negative and the other is not,
651 // put the non-constant negative on the right so that a sub can
652 // be used instead of a negate and add.
653 if (LHS.second->isNonConstantNegative()) {
654 if (!RHS.second->isNonConstantNegative())
655 return false;
656 } else if (RHS.second->isNonConstantNegative())
657 return true;
658
659 // Otherwise they are equivalent according to this comparison.
660 return false;
661 }
662 };
663
664 }
665
visitAddExpr(const SCEVAddExpr * S)666 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
667 Type *Ty = SE.getEffectiveSCEVType(S->getType());
668
669 // Collect all the add operands in a loop, along with their associated loops.
670 // Iterate in reverse so that constants are emitted last, all else equal, and
671 // so that pointer operands are inserted first, which the code below relies on
672 // to form more involved GEPs.
673 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
674 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
675 E(S->op_begin()); I != E; ++I)
676 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
677
678 // Sort by loop. Use a stable sort so that constants follow non-constants and
679 // pointer operands precede non-pointer operands.
680 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
681
682 // Emit instructions to add all the operands. Hoist as much as possible
683 // out of loops, and form meaningful getelementptrs where possible.
684 Value *Sum = nullptr;
685 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
686 const Loop *CurLoop = I->first;
687 const SCEV *Op = I->second;
688 if (!Sum) {
689 // This is the first operand. Just expand it.
690 Sum = expand(Op);
691 ++I;
692 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
693 // The running sum expression is a pointer. Try to form a getelementptr
694 // at this level with that as the base.
695 SmallVector<const SCEV *, 4> NewOps;
696 for (; I != E && I->first == CurLoop; ++I) {
697 // If the operand is SCEVUnknown and not instructions, peek through
698 // it, to enable more of it to be folded into the GEP.
699 const SCEV *X = I->second;
700 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
701 if (!isa<Instruction>(U->getValue()))
702 X = SE.getSCEV(U->getValue());
703 NewOps.push_back(X);
704 }
705 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
706 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
707 // The running sum is an integer, and there's a pointer at this level.
708 // Try to form a getelementptr. If the running sum is instructions,
709 // use a SCEVUnknown to avoid re-analyzing them.
710 SmallVector<const SCEV *, 4> NewOps;
711 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
712 SE.getSCEV(Sum));
713 for (++I; I != E && I->first == CurLoop; ++I)
714 NewOps.push_back(I->second);
715 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
716 } else if (Op->isNonConstantNegative()) {
717 // Instead of doing a negate and add, just do a subtract.
718 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
719 Sum = InsertNoopCastOfTo(Sum, Ty);
720 Sum = InsertBinop(Instruction::Sub, Sum, W);
721 ++I;
722 } else {
723 // A simple add.
724 Value *W = expandCodeFor(Op, Ty);
725 Sum = InsertNoopCastOfTo(Sum, Ty);
726 // Canonicalize a constant to the RHS.
727 if (isa<Constant>(Sum)) std::swap(Sum, W);
728 Sum = InsertBinop(Instruction::Add, Sum, W);
729 ++I;
730 }
731 }
732
733 return Sum;
734 }
735
visitMulExpr(const SCEVMulExpr * S)736 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
737 Type *Ty = SE.getEffectiveSCEVType(S->getType());
738
739 // Collect all the mul operands in a loop, along with their associated loops.
740 // Iterate in reverse so that constants are emitted last, all else equal.
741 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
742 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
743 E(S->op_begin()); I != E; ++I)
744 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
745
746 // Sort by loop. Use a stable sort so that constants follow non-constants.
747 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
748
749 // Emit instructions to mul all the operands. Hoist as much as possible
750 // out of loops.
751 Value *Prod = nullptr;
752 for (const auto &I : OpsAndLoops) {
753 const SCEV *Op = I.second;
754 if (!Prod) {
755 // This is the first operand. Just expand it.
756 Prod = expand(Op);
757 } else if (Op->isAllOnesValue()) {
758 // Instead of doing a multiply by negative one, just do a negate.
759 Prod = InsertNoopCastOfTo(Prod, Ty);
760 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
761 } else {
762 // A simple mul.
763 Value *W = expandCodeFor(Op, Ty);
764 Prod = InsertNoopCastOfTo(Prod, Ty);
765 // Canonicalize a constant to the RHS.
766 if (isa<Constant>(Prod)) std::swap(Prod, W);
767 const APInt *RHS;
768 if (match(W, m_Power2(RHS))) {
769 // Canonicalize Prod*(1<<C) to Prod<<C.
770 assert(!Ty->isVectorTy() && "vector types are not SCEVable");
771 Prod = InsertBinop(Instruction::Shl, Prod,
772 ConstantInt::get(Ty, RHS->logBase2()));
773 } else {
774 Prod = InsertBinop(Instruction::Mul, Prod, W);
775 }
776 }
777 }
778
779 return Prod;
780 }
781
visitUDivExpr(const SCEVUDivExpr * S)782 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
783 Type *Ty = SE.getEffectiveSCEVType(S->getType());
784
785 Value *LHS = expandCodeFor(S->getLHS(), Ty);
786 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
787 const APInt &RHS = SC->getAPInt();
788 if (RHS.isPowerOf2())
789 return InsertBinop(Instruction::LShr, LHS,
790 ConstantInt::get(Ty, RHS.logBase2()));
791 }
792
793 Value *RHS = expandCodeFor(S->getRHS(), Ty);
794 return InsertBinop(Instruction::UDiv, LHS, RHS);
795 }
796
797 /// Move parts of Base into Rest to leave Base with the minimal
798 /// expression that provides a pointer operand suitable for a
799 /// GEP expansion.
ExposePointerBase(const SCEV * & Base,const SCEV * & Rest,ScalarEvolution & SE)800 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
801 ScalarEvolution &SE) {
802 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
803 Base = A->getStart();
804 Rest = SE.getAddExpr(Rest,
805 SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
806 A->getStepRecurrence(SE),
807 A->getLoop(),
808 A->getNoWrapFlags(SCEV::FlagNW)));
809 }
810 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
811 Base = A->getOperand(A->getNumOperands()-1);
812 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
813 NewAddOps.back() = Rest;
814 Rest = SE.getAddExpr(NewAddOps);
815 ExposePointerBase(Base, Rest, SE);
816 }
817 }
818
819 /// Determine if this is a well-behaved chain of instructions leading back to
820 /// the PHI. If so, it may be reused by expanded expressions.
isNormalAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)821 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
822 const Loop *L) {
823 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
824 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
825 return false;
826 // If any of the operands don't dominate the insert position, bail.
827 // Addrec operands are always loop-invariant, so this can only happen
828 // if there are instructions which haven't been hoisted.
829 if (L == IVIncInsertLoop) {
830 for (User::op_iterator OI = IncV->op_begin()+1,
831 OE = IncV->op_end(); OI != OE; ++OI)
832 if (Instruction *OInst = dyn_cast<Instruction>(OI))
833 if (!SE.DT.dominates(OInst, IVIncInsertPos))
834 return false;
835 }
836 // Advance to the next instruction.
837 IncV = dyn_cast<Instruction>(IncV->getOperand(0));
838 if (!IncV)
839 return false;
840
841 if (IncV->mayHaveSideEffects())
842 return false;
843
844 if (IncV != PN)
845 return true;
846
847 return isNormalAddRecExprPHI(PN, IncV, L);
848 }
849
850 /// getIVIncOperand returns an induction variable increment's induction
851 /// variable operand.
852 ///
853 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
854 /// operands dominate InsertPos.
855 ///
856 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
857 /// simple patterns generated by getAddRecExprPHILiterally and
858 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
getIVIncOperand(Instruction * IncV,Instruction * InsertPos,bool allowScale)859 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
860 Instruction *InsertPos,
861 bool allowScale) {
862 if (IncV == InsertPos)
863 return nullptr;
864
865 switch (IncV->getOpcode()) {
866 default:
867 return nullptr;
868 // Check for a simple Add/Sub or GEP of a loop invariant step.
869 case Instruction::Add:
870 case Instruction::Sub: {
871 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
872 if (!OInst || SE.DT.dominates(OInst, InsertPos))
873 return dyn_cast<Instruction>(IncV->getOperand(0));
874 return nullptr;
875 }
876 case Instruction::BitCast:
877 return dyn_cast<Instruction>(IncV->getOperand(0));
878 case Instruction::GetElementPtr:
879 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
880 if (isa<Constant>(*I))
881 continue;
882 if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
883 if (!SE.DT.dominates(OInst, InsertPos))
884 return nullptr;
885 }
886 if (allowScale) {
887 // allow any kind of GEP as long as it can be hoisted.
888 continue;
889 }
890 // This must be a pointer addition of constants (pretty), which is already
891 // handled, or some number of address-size elements (ugly). Ugly geps
892 // have 2 operands. i1* is used by the expander to represent an
893 // address-size element.
894 if (IncV->getNumOperands() != 2)
895 return nullptr;
896 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
897 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
898 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
899 return nullptr;
900 break;
901 }
902 return dyn_cast<Instruction>(IncV->getOperand(0));
903 }
904 }
905
906 /// If the insert point of the current builder or any of the builders on the
907 /// stack of saved builders has 'I' as its insert point, update it to point to
908 /// the instruction after 'I'. This is intended to be used when the instruction
909 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
910 /// different block, the inconsistent insert point (with a mismatched
911 /// Instruction and Block) can lead to an instruction being inserted in a block
912 /// other than its parent.
fixupInsertPoints(Instruction * I)913 void SCEVExpander::fixupInsertPoints(Instruction *I) {
914 BasicBlock::iterator It(*I);
915 BasicBlock::iterator NewInsertPt = std::next(It);
916 if (Builder.GetInsertPoint() == It)
917 Builder.SetInsertPoint(&*NewInsertPt);
918 for (auto *InsertPtGuard : InsertPointGuards)
919 if (InsertPtGuard->GetInsertPoint() == It)
920 InsertPtGuard->SetInsertPoint(NewInsertPt);
921 }
922
923 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
924 /// it available to other uses in this loop. Recursively hoist any operands,
925 /// until we reach a value that dominates InsertPos.
hoistIVInc(Instruction * IncV,Instruction * InsertPos)926 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
927 if (SE.DT.dominates(IncV, InsertPos))
928 return true;
929
930 // InsertPos must itself dominate IncV so that IncV's new position satisfies
931 // its existing users.
932 if (isa<PHINode>(InsertPos) ||
933 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
934 return false;
935
936 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
937 return false;
938
939 // Check that the chain of IV operands leading back to Phi can be hoisted.
940 SmallVector<Instruction*, 4> IVIncs;
941 for(;;) {
942 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
943 if (!Oper)
944 return false;
945 // IncV is safe to hoist.
946 IVIncs.push_back(IncV);
947 IncV = Oper;
948 if (SE.DT.dominates(IncV, InsertPos))
949 break;
950 }
951 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
952 fixupInsertPoints(*I);
953 (*I)->moveBefore(InsertPos);
954 }
955 return true;
956 }
957
958 /// Determine if this cyclic phi is in a form that would have been generated by
959 /// LSR. We don't care if the phi was actually expanded in this pass, as long
960 /// as it is in a low-cost form, for example, no implied multiplication. This
961 /// should match any patterns generated by getAddRecExprPHILiterally and
962 /// expandAddtoGEP.
isExpandedAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)963 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
964 const Loop *L) {
965 for(Instruction *IVOper = IncV;
966 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
967 /*allowScale=*/false));) {
968 if (IVOper == PN)
969 return true;
970 }
971 return false;
972 }
973
974 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
975 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
976 /// need to materialize IV increments elsewhere to handle difficult situations.
expandIVInc(PHINode * PN,Value * StepV,const Loop * L,Type * ExpandTy,Type * IntTy,bool useSubtract)977 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
978 Type *ExpandTy, Type *IntTy,
979 bool useSubtract) {
980 Value *IncV;
981 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
982 if (ExpandTy->isPointerTy()) {
983 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
984 // If the step isn't constant, don't use an implicitly scaled GEP, because
985 // that would require a multiply inside the loop.
986 if (!isa<ConstantInt>(StepV))
987 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
988 GEPPtrTy->getAddressSpace());
989 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
990 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
991 if (IncV->getType() != PN->getType()) {
992 IncV = Builder.CreateBitCast(IncV, PN->getType());
993 rememberInstruction(IncV);
994 }
995 } else {
996 IncV = useSubtract ?
997 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
998 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
999 rememberInstruction(IncV);
1000 }
1001 return IncV;
1002 }
1003
1004 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
1005 /// position. This routine assumes that this is possible (has been checked).
hoistBeforePos(DominatorTree * DT,Instruction * InstToHoist,Instruction * Pos,PHINode * LoopPhi)1006 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1007 Instruction *Pos, PHINode *LoopPhi) {
1008 do {
1009 if (DT->dominates(InstToHoist, Pos))
1010 break;
1011 // Make sure the increment is where we want it. But don't move it
1012 // down past a potential existing post-inc user.
1013 fixupInsertPoints(InstToHoist);
1014 InstToHoist->moveBefore(Pos);
1015 Pos = InstToHoist;
1016 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1017 } while (InstToHoist != LoopPhi);
1018 }
1019
1020 /// \brief Check whether we can cheaply express the requested SCEV in terms of
1021 /// the available PHI SCEV by truncation and/or inversion of the step.
canBeCheaplyTransformed(ScalarEvolution & SE,const SCEVAddRecExpr * Phi,const SCEVAddRecExpr * Requested,bool & InvertStep)1022 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1023 const SCEVAddRecExpr *Phi,
1024 const SCEVAddRecExpr *Requested,
1025 bool &InvertStep) {
1026 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1027 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1028
1029 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1030 return false;
1031
1032 // Try truncate it if necessary.
1033 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1034 if (!Phi)
1035 return false;
1036
1037 // Check whether truncation will help.
1038 if (Phi == Requested) {
1039 InvertStep = false;
1040 return true;
1041 }
1042
1043 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1044 if (SE.getAddExpr(Requested->getStart(),
1045 SE.getNegativeSCEV(Requested)) == Phi) {
1046 InvertStep = true;
1047 return true;
1048 }
1049
1050 return false;
1051 }
1052
IsIncrementNSW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1053 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1054 if (!isa<IntegerType>(AR->getType()))
1055 return false;
1056
1057 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1058 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1059 const SCEV *Step = AR->getStepRecurrence(SE);
1060 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1061 SE.getSignExtendExpr(AR, WideTy));
1062 const SCEV *ExtendAfterOp =
1063 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1064 return ExtendAfterOp == OpAfterExtend;
1065 }
1066
IsIncrementNUW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1067 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1068 if (!isa<IntegerType>(AR->getType()))
1069 return false;
1070
1071 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1072 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1073 const SCEV *Step = AR->getStepRecurrence(SE);
1074 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1075 SE.getZeroExtendExpr(AR, WideTy));
1076 const SCEV *ExtendAfterOp =
1077 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1078 return ExtendAfterOp == OpAfterExtend;
1079 }
1080
1081 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1082 /// the base addrec, which is the addrec without any non-loop-dominating
1083 /// values, and return the PHI.
1084 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * ExpandTy,Type * IntTy,Type * & TruncTy,bool & InvertStep)1085 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1086 const Loop *L,
1087 Type *ExpandTy,
1088 Type *IntTy,
1089 Type *&TruncTy,
1090 bool &InvertStep) {
1091 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1092
1093 // Reuse a previously-inserted PHI, if present.
1094 BasicBlock *LatchBlock = L->getLoopLatch();
1095 if (LatchBlock) {
1096 PHINode *AddRecPhiMatch = nullptr;
1097 Instruction *IncV = nullptr;
1098 TruncTy = nullptr;
1099 InvertStep = false;
1100
1101 // Only try partially matching scevs that need truncation and/or
1102 // step-inversion if we know this loop is outside the current loop.
1103 bool TryNonMatchingSCEV =
1104 IVIncInsertLoop &&
1105 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1106
1107 for (auto &I : *L->getHeader()) {
1108 auto *PN = dyn_cast<PHINode>(&I);
1109 if (!PN || !SE.isSCEVable(PN->getType()))
1110 continue;
1111
1112 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
1113 if (!PhiSCEV)
1114 continue;
1115
1116 bool IsMatchingSCEV = PhiSCEV == Normalized;
1117 // We only handle truncation and inversion of phi recurrences for the
1118 // expanded expression if the expanded expression's loop dominates the
1119 // loop we insert to. Check now, so we can bail out early.
1120 if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1121 continue;
1122
1123 Instruction *TempIncV =
1124 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1125
1126 // Check whether we can reuse this PHI node.
1127 if (LSRMode) {
1128 if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
1129 continue;
1130 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1131 continue;
1132 } else {
1133 if (!isNormalAddRecExprPHI(PN, TempIncV, L))
1134 continue;
1135 }
1136
1137 // Stop if we have found an exact match SCEV.
1138 if (IsMatchingSCEV) {
1139 IncV = TempIncV;
1140 TruncTy = nullptr;
1141 InvertStep = false;
1142 AddRecPhiMatch = PN;
1143 break;
1144 }
1145
1146 // Try whether the phi can be translated into the requested form
1147 // (truncated and/or offset by a constant).
1148 if ((!TruncTy || InvertStep) &&
1149 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1150 // Record the phi node. But don't stop we might find an exact match
1151 // later.
1152 AddRecPhiMatch = PN;
1153 IncV = TempIncV;
1154 TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1155 }
1156 }
1157
1158 if (AddRecPhiMatch) {
1159 // Potentially, move the increment. We have made sure in
1160 // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1161 if (L == IVIncInsertLoop)
1162 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1163
1164 // Ok, the add recurrence looks usable.
1165 // Remember this PHI, even in post-inc mode.
1166 InsertedValues.insert(AddRecPhiMatch);
1167 // Remember the increment.
1168 rememberInstruction(IncV);
1169 return AddRecPhiMatch;
1170 }
1171 }
1172
1173 // Save the original insertion point so we can restore it when we're done.
1174 SCEVInsertPointGuard Guard(Builder, this);
1175
1176 // Another AddRec may need to be recursively expanded below. For example, if
1177 // this AddRec is quadratic, the StepV may itself be an AddRec in this
1178 // loop. Remove this loop from the PostIncLoops set before expanding such
1179 // AddRecs. Otherwise, we cannot find a valid position for the step
1180 // (i.e. StepV can never dominate its loop header). Ideally, we could do
1181 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1182 // so it's not worth implementing SmallPtrSet::swap.
1183 PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1184 PostIncLoops.clear();
1185
1186 // Expand code for the start value.
1187 Value *StartV =
1188 expandCodeFor(Normalized->getStart(), ExpandTy, &L->getHeader()->front());
1189
1190 // StartV must be hoisted into L's preheader to dominate the new phi.
1191 assert(!isa<Instruction>(StartV) ||
1192 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1193 L->getHeader()));
1194
1195 // Expand code for the step value. Do this before creating the PHI so that PHI
1196 // reuse code doesn't see an incomplete PHI.
1197 const SCEV *Step = Normalized->getStepRecurrence(SE);
1198 // If the stride is negative, insert a sub instead of an add for the increment
1199 // (unless it's a constant, because subtracts of constants are canonicalized
1200 // to adds).
1201 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1202 if (useSubtract)
1203 Step = SE.getNegativeSCEV(Step);
1204 // Expand the step somewhere that dominates the loop header.
1205 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1206
1207 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1208 // we actually do emit an addition. It does not apply if we emit a
1209 // subtraction.
1210 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1211 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1212
1213 // Create the PHI.
1214 BasicBlock *Header = L->getHeader();
1215 Builder.SetInsertPoint(Header, Header->begin());
1216 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1217 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1218 Twine(IVName) + ".iv");
1219 rememberInstruction(PN);
1220
1221 // Create the step instructions and populate the PHI.
1222 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1223 BasicBlock *Pred = *HPI;
1224
1225 // Add a start value.
1226 if (!L->contains(Pred)) {
1227 PN->addIncoming(StartV, Pred);
1228 continue;
1229 }
1230
1231 // Create a step value and add it to the PHI.
1232 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1233 // instructions at IVIncInsertPos.
1234 Instruction *InsertPos = L == IVIncInsertLoop ?
1235 IVIncInsertPos : Pred->getTerminator();
1236 Builder.SetInsertPoint(InsertPos);
1237 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1238
1239 if (isa<OverflowingBinaryOperator>(IncV)) {
1240 if (IncrementIsNUW)
1241 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1242 if (IncrementIsNSW)
1243 cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1244 }
1245 PN->addIncoming(IncV, Pred);
1246 }
1247
1248 // After expanding subexpressions, restore the PostIncLoops set so the caller
1249 // can ensure that IVIncrement dominates the current uses.
1250 PostIncLoops = SavedPostIncLoops;
1251
1252 // Remember this PHI, even in post-inc mode.
1253 InsertedValues.insert(PN);
1254
1255 return PN;
1256 }
1257
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1258 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1259 Type *STy = S->getType();
1260 Type *IntTy = SE.getEffectiveSCEVType(STy);
1261 const Loop *L = S->getLoop();
1262
1263 // Determine a normalized form of this expression, which is the expression
1264 // before any post-inc adjustment is made.
1265 const SCEVAddRecExpr *Normalized = S;
1266 if (PostIncLoops.count(L)) {
1267 PostIncLoopSet Loops;
1268 Loops.insert(L);
1269 Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse(
1270 Normalize, S, nullptr, nullptr, Loops, SE, SE.DT));
1271 }
1272
1273 // Strip off any non-loop-dominating component from the addrec start.
1274 const SCEV *Start = Normalized->getStart();
1275 const SCEV *PostLoopOffset = nullptr;
1276 if (!SE.properlyDominates(Start, L->getHeader())) {
1277 PostLoopOffset = Start;
1278 Start = SE.getConstant(Normalized->getType(), 0);
1279 Normalized = cast<SCEVAddRecExpr>(
1280 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1281 Normalized->getLoop(),
1282 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1283 }
1284
1285 // Strip off any non-loop-dominating component from the addrec step.
1286 const SCEV *Step = Normalized->getStepRecurrence(SE);
1287 const SCEV *PostLoopScale = nullptr;
1288 if (!SE.dominates(Step, L->getHeader())) {
1289 PostLoopScale = Step;
1290 Step = SE.getConstant(Normalized->getType(), 1);
1291 if (!Start->isZero()) {
1292 // The normalization below assumes that Start is constant zero, so if
1293 // it isn't re-associate Start to PostLoopOffset.
1294 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1295 PostLoopOffset = Start;
1296 Start = SE.getConstant(Normalized->getType(), 0);
1297 }
1298 Normalized =
1299 cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1300 Start, Step, Normalized->getLoop(),
1301 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1302 }
1303
1304 // Expand the core addrec. If we need post-loop scaling, force it to
1305 // expand to an integer type to avoid the need for additional casting.
1306 Type *ExpandTy = PostLoopScale ? IntTy : STy;
1307 // In some cases, we decide to reuse an existing phi node but need to truncate
1308 // it and/or invert the step.
1309 Type *TruncTy = nullptr;
1310 bool InvertStep = false;
1311 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
1312 TruncTy, InvertStep);
1313
1314 // Accommodate post-inc mode, if necessary.
1315 Value *Result;
1316 if (!PostIncLoops.count(L))
1317 Result = PN;
1318 else {
1319 // In PostInc mode, use the post-incremented value.
1320 BasicBlock *LatchBlock = L->getLoopLatch();
1321 assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1322 Result = PN->getIncomingValueForBlock(LatchBlock);
1323
1324 // For an expansion to use the postinc form, the client must call
1325 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1326 // or dominated by IVIncInsertPos.
1327 if (isa<Instruction>(Result) &&
1328 !SE.DT.dominates(cast<Instruction>(Result),
1329 &*Builder.GetInsertPoint())) {
1330 // The induction variable's postinc expansion does not dominate this use.
1331 // IVUsers tries to prevent this case, so it is rare. However, it can
1332 // happen when an IVUser outside the loop is not dominated by the latch
1333 // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1334 // all cases. Consider a phi outide whose operand is replaced during
1335 // expansion with the value of the postinc user. Without fundamentally
1336 // changing the way postinc users are tracked, the only remedy is
1337 // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1338 // but hopefully expandCodeFor handles that.
1339 bool useSubtract =
1340 !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1341 if (useSubtract)
1342 Step = SE.getNegativeSCEV(Step);
1343 Value *StepV;
1344 {
1345 // Expand the step somewhere that dominates the loop header.
1346 SCEVInsertPointGuard Guard(Builder, this);
1347 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1348 }
1349 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1350 }
1351 }
1352
1353 // We have decided to reuse an induction variable of a dominating loop. Apply
1354 // truncation and/or invertion of the step.
1355 if (TruncTy) {
1356 Type *ResTy = Result->getType();
1357 // Normalize the result type.
1358 if (ResTy != SE.getEffectiveSCEVType(ResTy))
1359 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1360 // Truncate the result.
1361 if (TruncTy != Result->getType()) {
1362 Result = Builder.CreateTrunc(Result, TruncTy);
1363 rememberInstruction(Result);
1364 }
1365 // Invert the result.
1366 if (InvertStep) {
1367 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1368 Result);
1369 rememberInstruction(Result);
1370 }
1371 }
1372
1373 // Re-apply any non-loop-dominating scale.
1374 if (PostLoopScale) {
1375 assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1376 Result = InsertNoopCastOfTo(Result, IntTy);
1377 Result = Builder.CreateMul(Result,
1378 expandCodeFor(PostLoopScale, IntTy));
1379 rememberInstruction(Result);
1380 }
1381
1382 // Re-apply any non-loop-dominating offset.
1383 if (PostLoopOffset) {
1384 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1385 const SCEV *const OffsetArray[1] = { PostLoopOffset };
1386 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1387 } else {
1388 Result = InsertNoopCastOfTo(Result, IntTy);
1389 Result = Builder.CreateAdd(Result,
1390 expandCodeFor(PostLoopOffset, IntTy));
1391 rememberInstruction(Result);
1392 }
1393 }
1394
1395 return Result;
1396 }
1397
visitAddRecExpr(const SCEVAddRecExpr * S)1398 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1399 if (!CanonicalMode) return expandAddRecExprLiterally(S);
1400
1401 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1402 const Loop *L = S->getLoop();
1403
1404 // First check for an existing canonical IV in a suitable type.
1405 PHINode *CanonicalIV = nullptr;
1406 if (PHINode *PN = L->getCanonicalInductionVariable())
1407 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1408 CanonicalIV = PN;
1409
1410 // Rewrite an AddRec in terms of the canonical induction variable, if
1411 // its type is more narrow.
1412 if (CanonicalIV &&
1413 SE.getTypeSizeInBits(CanonicalIV->getType()) >
1414 SE.getTypeSizeInBits(Ty)) {
1415 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1416 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1417 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1418 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1419 S->getNoWrapFlags(SCEV::FlagNW)));
1420 BasicBlock::iterator NewInsertPt =
1421 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1422 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1423 &*NewInsertPt);
1424 return V;
1425 }
1426
1427 // {X,+,F} --> X + {0,+,F}
1428 if (!S->getStart()->isZero()) {
1429 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1430 NewOps[0] = SE.getConstant(Ty, 0);
1431 const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1432 S->getNoWrapFlags(SCEV::FlagNW));
1433
1434 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1435 // comments on expandAddToGEP for details.
1436 const SCEV *Base = S->getStart();
1437 const SCEV *RestArray[1] = { Rest };
1438 // Dig into the expression to find the pointer base for a GEP.
1439 ExposePointerBase(Base, RestArray[0], SE);
1440 // If we found a pointer, expand the AddRec with a GEP.
1441 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1442 // Make sure the Base isn't something exotic, such as a multiplied
1443 // or divided pointer value. In those cases, the result type isn't
1444 // actually a pointer type.
1445 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1446 Value *StartV = expand(Base);
1447 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1448 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1449 }
1450 }
1451
1452 // Just do a normal add. Pre-expand the operands to suppress folding.
1453 //
1454 // The LHS and RHS values are factored out of the expand call to make the
1455 // output independent of the argument evaluation order.
1456 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1457 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1458 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1459 }
1460
1461 // If we don't yet have a canonical IV, create one.
1462 if (!CanonicalIV) {
1463 // Create and insert the PHI node for the induction variable in the
1464 // specified loop.
1465 BasicBlock *Header = L->getHeader();
1466 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1467 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1468 &Header->front());
1469 rememberInstruction(CanonicalIV);
1470
1471 SmallSet<BasicBlock *, 4> PredSeen;
1472 Constant *One = ConstantInt::get(Ty, 1);
1473 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1474 BasicBlock *HP = *HPI;
1475 if (!PredSeen.insert(HP).second) {
1476 // There must be an incoming value for each predecessor, even the
1477 // duplicates!
1478 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1479 continue;
1480 }
1481
1482 if (L->contains(HP)) {
1483 // Insert a unit add instruction right before the terminator
1484 // corresponding to the back-edge.
1485 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1486 "indvar.next",
1487 HP->getTerminator());
1488 Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1489 rememberInstruction(Add);
1490 CanonicalIV->addIncoming(Add, HP);
1491 } else {
1492 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1493 }
1494 }
1495 }
1496
1497 // {0,+,1} --> Insert a canonical induction variable into the loop!
1498 if (S->isAffine() && S->getOperand(1)->isOne()) {
1499 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1500 "IVs with types different from the canonical IV should "
1501 "already have been handled!");
1502 return CanonicalIV;
1503 }
1504
1505 // {0,+,F} --> {0,+,1} * F
1506
1507 // If this is a simple linear addrec, emit it now as a special case.
1508 if (S->isAffine()) // {0,+,F} --> i*F
1509 return
1510 expand(SE.getTruncateOrNoop(
1511 SE.getMulExpr(SE.getUnknown(CanonicalIV),
1512 SE.getNoopOrAnyExtend(S->getOperand(1),
1513 CanonicalIV->getType())),
1514 Ty));
1515
1516 // If this is a chain of recurrences, turn it into a closed form, using the
1517 // folders, then expandCodeFor the closed form. This allows the folders to
1518 // simplify the expression without having to build a bunch of special code
1519 // into this folder.
1520 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
1521
1522 // Promote S up to the canonical IV type, if the cast is foldable.
1523 const SCEV *NewS = S;
1524 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1525 if (isa<SCEVAddRecExpr>(Ext))
1526 NewS = Ext;
1527
1528 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1529 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1530
1531 // Truncate the result down to the original type, if needed.
1532 const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1533 return expand(T);
1534 }
1535
visitTruncateExpr(const SCEVTruncateExpr * S)1536 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1537 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1538 Value *V = expandCodeFor(S->getOperand(),
1539 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1540 Value *I = Builder.CreateTrunc(V, Ty);
1541 rememberInstruction(I);
1542 return I;
1543 }
1544
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1545 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1546 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1547 Value *V = expandCodeFor(S->getOperand(),
1548 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1549 Value *I = Builder.CreateZExt(V, Ty);
1550 rememberInstruction(I);
1551 return I;
1552 }
1553
visitSignExtendExpr(const SCEVSignExtendExpr * S)1554 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1555 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1556 Value *V = expandCodeFor(S->getOperand(),
1557 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1558 Value *I = Builder.CreateSExt(V, Ty);
1559 rememberInstruction(I);
1560 return I;
1561 }
1562
visitSMaxExpr(const SCEVSMaxExpr * S)1563 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1564 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1565 Type *Ty = LHS->getType();
1566 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1567 // In the case of mixed integer and pointer types, do the
1568 // rest of the comparisons as integer.
1569 if (S->getOperand(i)->getType() != Ty) {
1570 Ty = SE.getEffectiveSCEVType(Ty);
1571 LHS = InsertNoopCastOfTo(LHS, Ty);
1572 }
1573 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1574 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1575 rememberInstruction(ICmp);
1576 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1577 rememberInstruction(Sel);
1578 LHS = Sel;
1579 }
1580 // In the case of mixed integer and pointer types, cast the
1581 // final result back to the pointer type.
1582 if (LHS->getType() != S->getType())
1583 LHS = InsertNoopCastOfTo(LHS, S->getType());
1584 return LHS;
1585 }
1586
visitUMaxExpr(const SCEVUMaxExpr * S)1587 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1588 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1589 Type *Ty = LHS->getType();
1590 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1591 // In the case of mixed integer and pointer types, do the
1592 // rest of the comparisons as integer.
1593 if (S->getOperand(i)->getType() != Ty) {
1594 Ty = SE.getEffectiveSCEVType(Ty);
1595 LHS = InsertNoopCastOfTo(LHS, Ty);
1596 }
1597 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1598 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1599 rememberInstruction(ICmp);
1600 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1601 rememberInstruction(Sel);
1602 LHS = Sel;
1603 }
1604 // In the case of mixed integer and pointer types, cast the
1605 // final result back to the pointer type.
1606 if (LHS->getType() != S->getType())
1607 LHS = InsertNoopCastOfTo(LHS, S->getType());
1608 return LHS;
1609 }
1610
expandCodeFor(const SCEV * SH,Type * Ty,Instruction * IP)1611 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1612 Instruction *IP) {
1613 assert(IP);
1614 Builder.SetInsertPoint(IP);
1615 return expandCodeFor(SH, Ty);
1616 }
1617
expandCodeFor(const SCEV * SH,Type * Ty)1618 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1619 // Expand the code for this SCEV.
1620 Value *V = expand(SH);
1621 if (Ty) {
1622 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1623 "non-trivial casts should be done with the SCEVs directly!");
1624 V = InsertNoopCastOfTo(V, Ty);
1625 }
1626 return V;
1627 }
1628
FindValueInExprValueMap(const SCEV * S,const Instruction * InsertPt)1629 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1630 const Instruction *InsertPt) {
1631 SetVector<Value *> *Set = SE.getSCEVValues(S);
1632 // If the expansion is not in CanonicalMode, and the SCEV contains any
1633 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1634 if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1635 // If S is scConstant, it may be worse to reuse an existing Value.
1636 if (S->getSCEVType() != scConstant && Set) {
1637 // Choose a Value from the set which dominates the insertPt.
1638 // insertPt should be inside the Value's parent loop so as not to break
1639 // the LCSSA form.
1640 for (auto const &Ent : *Set) {
1641 Instruction *EntInst = nullptr;
1642 if (Ent && isa<Instruction>(Ent) &&
1643 (EntInst = cast<Instruction>(Ent)) &&
1644 S->getType() == Ent->getType() &&
1645 EntInst->getFunction() == InsertPt->getFunction() &&
1646 SE.DT.dominates(EntInst, InsertPt) &&
1647 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1648 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) {
1649 return Ent;
1650 }
1651 }
1652 }
1653 }
1654 return nullptr;
1655 }
1656
1657 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1658 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1659 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1660 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1661 // the expansion will try to reuse Value from ExprValueMap, and only when it
1662 // fails, expand the SCEV literally.
expand(const SCEV * S)1663 Value *SCEVExpander::expand(const SCEV *S) {
1664 // Compute an insertion point for this SCEV object. Hoist the instructions
1665 // as far out in the loop nest as possible.
1666 Instruction *InsertPt = &*Builder.GetInsertPoint();
1667 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1668 L = L->getParentLoop())
1669 if (SE.isLoopInvariant(S, L)) {
1670 if (!L) break;
1671 if (BasicBlock *Preheader = L->getLoopPreheader())
1672 InsertPt = Preheader->getTerminator();
1673 else {
1674 // LSR sets the insertion point for AddRec start/step values to the
1675 // block start to simplify value reuse, even though it's an invalid
1676 // position. SCEVExpander must correct for this in all cases.
1677 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1678 }
1679 } else {
1680 // If the SCEV is computable at this level, insert it into the header
1681 // after the PHIs (and after any other instructions that we've inserted
1682 // there) so that it is guaranteed to dominate any user inside the loop.
1683 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1684 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1685 while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1686 (isInsertedInstruction(InsertPt) ||
1687 isa<DbgInfoIntrinsic>(InsertPt))) {
1688 InsertPt = &*std::next(InsertPt->getIterator());
1689 }
1690 break;
1691 }
1692
1693 // Check to see if we already expanded this here.
1694 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1695 if (I != InsertedExpressions.end())
1696 return I->second;
1697
1698 SCEVInsertPointGuard Guard(Builder, this);
1699 Builder.SetInsertPoint(InsertPt);
1700
1701 // Expand the expression into instructions.
1702 Value *V = FindValueInExprValueMap(S, InsertPt);
1703
1704 if (!V)
1705 V = visit(S);
1706
1707 // Remember the expanded value for this SCEV at this location.
1708 //
1709 // This is independent of PostIncLoops. The mapped value simply materializes
1710 // the expression at this insertion point. If the mapped value happened to be
1711 // a postinc expansion, it could be reused by a non-postinc user, but only if
1712 // its insertion point was already at the head of the loop.
1713 InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1714 return V;
1715 }
1716
rememberInstruction(Value * I)1717 void SCEVExpander::rememberInstruction(Value *I) {
1718 if (!PostIncLoops.empty())
1719 InsertedPostIncValues.insert(I);
1720 else
1721 InsertedValues.insert(I);
1722 }
1723
1724 /// getOrInsertCanonicalInductionVariable - This method returns the
1725 /// canonical induction variable of the specified type for the specified
1726 /// loop (inserting one if there is none). A canonical induction variable
1727 /// starts at zero and steps by one on each iteration.
1728 PHINode *
getOrInsertCanonicalInductionVariable(const Loop * L,Type * Ty)1729 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1730 Type *Ty) {
1731 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1732
1733 // Build a SCEV for {0,+,1}<L>.
1734 // Conservatively use FlagAnyWrap for now.
1735 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1736 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1737
1738 // Emit code for it.
1739 SCEVInsertPointGuard Guard(Builder, this);
1740 PHINode *V =
1741 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1742
1743 return V;
1744 }
1745
1746 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1747 /// replace them with their most canonical representative. Return the number of
1748 /// phis eliminated.
1749 ///
1750 /// This does not depend on any SCEVExpander state but should be used in
1751 /// the same context that SCEVExpander is used.
replaceCongruentIVs(Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakVH> & DeadInsts,const TargetTransformInfo * TTI)1752 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1753 SmallVectorImpl<WeakVH> &DeadInsts,
1754 const TargetTransformInfo *TTI) {
1755 // Find integer phis in order of increasing width.
1756 SmallVector<PHINode*, 8> Phis;
1757 for (auto &I : *L->getHeader()) {
1758 if (auto *PN = dyn_cast<PHINode>(&I))
1759 Phis.push_back(PN);
1760 else
1761 break;
1762 }
1763
1764 if (TTI)
1765 std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
1766 // Put pointers at the back and make sure pointer < pointer = false.
1767 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1768 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1769 return RHS->getType()->getPrimitiveSizeInBits() <
1770 LHS->getType()->getPrimitiveSizeInBits();
1771 });
1772
1773 unsigned NumElim = 0;
1774 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1775 // Process phis from wide to narrow. Map wide phis to their truncation
1776 // so narrow phis can reuse them.
1777 for (PHINode *Phi : Phis) {
1778 auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1779 if (Value *V = SimplifyInstruction(PN, DL, &SE.TLI, &SE.DT, &SE.AC))
1780 return V;
1781 if (!SE.isSCEVable(PN->getType()))
1782 return nullptr;
1783 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1784 if (!Const)
1785 return nullptr;
1786 return Const->getValue();
1787 };
1788
1789 // Fold constant phis. They may be congruent to other constant phis and
1790 // would confuse the logic below that expects proper IVs.
1791 if (Value *V = SimplifyPHINode(Phi)) {
1792 if (V->getType() != Phi->getType())
1793 continue;
1794 Phi->replaceAllUsesWith(V);
1795 DeadInsts.emplace_back(Phi);
1796 ++NumElim;
1797 DEBUG_WITH_TYPE(DebugType, dbgs()
1798 << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1799 continue;
1800 }
1801
1802 if (!SE.isSCEVable(Phi->getType()))
1803 continue;
1804
1805 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1806 if (!OrigPhiRef) {
1807 OrigPhiRef = Phi;
1808 if (Phi->getType()->isIntegerTy() && TTI &&
1809 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1810 // This phi can be freely truncated to the narrowest phi type. Map the
1811 // truncated expression to it so it will be reused for narrow types.
1812 const SCEV *TruncExpr =
1813 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1814 ExprToIVMap[TruncExpr] = Phi;
1815 }
1816 continue;
1817 }
1818
1819 // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1820 // sense.
1821 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1822 continue;
1823
1824 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1825 Instruction *OrigInc = dyn_cast<Instruction>(
1826 OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1827 Instruction *IsomorphicInc =
1828 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1829
1830 if (OrigInc && IsomorphicInc) {
1831 // If this phi has the same width but is more canonical, replace the
1832 // original with it. As part of the "more canonical" determination,
1833 // respect a prior decision to use an IV chain.
1834 if (OrigPhiRef->getType() == Phi->getType() &&
1835 !(ChainedPhis.count(Phi) ||
1836 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1837 (ChainedPhis.count(Phi) ||
1838 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1839 std::swap(OrigPhiRef, Phi);
1840 std::swap(OrigInc, IsomorphicInc);
1841 }
1842 // Replacing the congruent phi is sufficient because acyclic
1843 // redundancy elimination, CSE/GVN, should handle the
1844 // rest. However, once SCEV proves that a phi is congruent,
1845 // it's often the head of an IV user cycle that is isomorphic
1846 // with the original phi. It's worth eagerly cleaning up the
1847 // common case of a single IV increment so that DeleteDeadPHIs
1848 // can remove cycles that had postinc uses.
1849 const SCEV *TruncExpr =
1850 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1851 if (OrigInc != IsomorphicInc &&
1852 TruncExpr == SE.getSCEV(IsomorphicInc) &&
1853 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1854 hoistIVInc(OrigInc, IsomorphicInc)) {
1855 DEBUG_WITH_TYPE(DebugType,
1856 dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1857 << *IsomorphicInc << '\n');
1858 Value *NewInc = OrigInc;
1859 if (OrigInc->getType() != IsomorphicInc->getType()) {
1860 Instruction *IP = nullptr;
1861 if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1862 IP = &*PN->getParent()->getFirstInsertionPt();
1863 else
1864 IP = OrigInc->getNextNode();
1865
1866 IRBuilder<> Builder(IP);
1867 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1868 NewInc = Builder.CreateTruncOrBitCast(
1869 OrigInc, IsomorphicInc->getType(), IVName);
1870 }
1871 IsomorphicInc->replaceAllUsesWith(NewInc);
1872 DeadInsts.emplace_back(IsomorphicInc);
1873 }
1874 }
1875 }
1876 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
1877 << *Phi << '\n');
1878 ++NumElim;
1879 Value *NewIV = OrigPhiRef;
1880 if (OrigPhiRef->getType() != Phi->getType()) {
1881 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1882 Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1883 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1884 }
1885 Phi->replaceAllUsesWith(NewIV);
1886 DeadInsts.emplace_back(Phi);
1887 }
1888 return NumElim;
1889 }
1890
findExistingExpansion(const SCEV * S,const Instruction * At,Loop * L)1891 Value *SCEVExpander::findExistingExpansion(const SCEV *S,
1892 const Instruction *At, Loop *L) {
1893 using namespace llvm::PatternMatch;
1894
1895 SmallVector<BasicBlock *, 4> ExitingBlocks;
1896 L->getExitingBlocks(ExitingBlocks);
1897
1898 // Look for suitable value in simple conditions at the loop exits.
1899 for (BasicBlock *BB : ExitingBlocks) {
1900 ICmpInst::Predicate Pred;
1901 Instruction *LHS, *RHS;
1902 BasicBlock *TrueBB, *FalseBB;
1903
1904 if (!match(BB->getTerminator(),
1905 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1906 TrueBB, FalseBB)))
1907 continue;
1908
1909 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1910 return LHS;
1911
1912 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1913 return RHS;
1914 }
1915
1916 // Use expand's logic which is used for reusing a previous Value in
1917 // ExprValueMap.
1918 if (Value *Val = FindValueInExprValueMap(S, At))
1919 return Val;
1920
1921 // There is potential to make this significantly smarter, but this simple
1922 // heuristic already gets some interesting cases.
1923
1924 // Can not find suitable value.
1925 return nullptr;
1926 }
1927
isHighCostExpansionHelper(const SCEV * S,Loop * L,const Instruction * At,SmallPtrSetImpl<const SCEV * > & Processed)1928 bool SCEVExpander::isHighCostExpansionHelper(
1929 const SCEV *S, Loop *L, const Instruction *At,
1930 SmallPtrSetImpl<const SCEV *> &Processed) {
1931
1932 // If we can find an existing value for this scev avaliable at the point "At"
1933 // then consider the expression cheap.
1934 if (At && findExistingExpansion(S, At, L) != nullptr)
1935 return false;
1936
1937 // Zero/One operand expressions
1938 switch (S->getSCEVType()) {
1939 case scUnknown:
1940 case scConstant:
1941 return false;
1942 case scTruncate:
1943 return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
1944 L, At, Processed);
1945 case scZeroExtend:
1946 return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
1947 L, At, Processed);
1948 case scSignExtend:
1949 return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
1950 L, At, Processed);
1951 }
1952
1953 if (!Processed.insert(S).second)
1954 return false;
1955
1956 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
1957 // If the divisor is a power of two and the SCEV type fits in a native
1958 // integer, consider the division cheap irrespective of whether it occurs in
1959 // the user code since it can be lowered into a right shift.
1960 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
1961 if (SC->getAPInt().isPowerOf2()) {
1962 const DataLayout &DL =
1963 L->getHeader()->getParent()->getParent()->getDataLayout();
1964 unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
1965 return DL.isIllegalInteger(Width);
1966 }
1967
1968 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
1969 // HowManyLessThans produced to compute a precise expression, rather than a
1970 // UDiv from the user's code. If we can't find a UDiv in the code with some
1971 // simple searching, assume the former consider UDivExpr expensive to
1972 // compute.
1973 BasicBlock *ExitingBB = L->getExitingBlock();
1974 if (!ExitingBB)
1975 return true;
1976
1977 // At the beginning of this function we already tried to find existing value
1978 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
1979 // involving division. This is just a simple search heuristic.
1980 if (!At)
1981 At = &ExitingBB->back();
1982 if (!findExistingExpansion(
1983 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
1984 return true;
1985 }
1986
1987 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1988 // the exit condition.
1989 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1990 return true;
1991
1992 // Recurse past nary expressions, which commonly occur in the
1993 // BackedgeTakenCount. They may already exist in program code, and if not,
1994 // they are not too expensive rematerialize.
1995 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
1996 for (auto *Op : NAry->operands())
1997 if (isHighCostExpansionHelper(Op, L, At, Processed))
1998 return true;
1999 }
2000
2001 // If we haven't recognized an expensive SCEV pattern, assume it's an
2002 // expression produced by program code.
2003 return false;
2004 }
2005
expandCodeForPredicate(const SCEVPredicate * Pred,Instruction * IP)2006 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2007 Instruction *IP) {
2008 assert(IP);
2009 switch (Pred->getKind()) {
2010 case SCEVPredicate::P_Union:
2011 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2012 case SCEVPredicate::P_Equal:
2013 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2014 case SCEVPredicate::P_Wrap: {
2015 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2016 return expandWrapPredicate(AddRecPred, IP);
2017 }
2018 }
2019 llvm_unreachable("Unknown SCEV predicate type");
2020 }
2021
expandEqualPredicate(const SCEVEqualPredicate * Pred,Instruction * IP)2022 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2023 Instruction *IP) {
2024 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2025 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2026
2027 Builder.SetInsertPoint(IP);
2028 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2029 return I;
2030 }
2031
generateOverflowCheck(const SCEVAddRecExpr * AR,Instruction * Loc,bool Signed)2032 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2033 Instruction *Loc, bool Signed) {
2034 assert(AR->isAffine() && "Cannot generate RT check for "
2035 "non-affine expression");
2036
2037 SCEVUnionPredicate Pred;
2038 const SCEV *ExitCount =
2039 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2040
2041 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2042
2043 const SCEV *Step = AR->getStepRecurrence(SE);
2044 const SCEV *Start = AR->getStart();
2045
2046 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2047 unsigned DstBits = SE.getTypeSizeInBits(AR->getType());
2048
2049 // The expression {Start,+,Step} has nusw/nssw if
2050 // Step < 0, Start - |Step| * Backedge <= Start
2051 // Step >= 0, Start + |Step| * Backedge > Start
2052 // and |Step| * Backedge doesn't unsigned overflow.
2053
2054 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2055 Builder.SetInsertPoint(Loc);
2056 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2057
2058 IntegerType *Ty =
2059 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(AR->getType()));
2060
2061 Value *StepValue = expandCodeFor(Step, Ty, Loc);
2062 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2063 Value *StartValue = expandCodeFor(Start, Ty, Loc);
2064
2065 ConstantInt *Zero =
2066 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2067
2068 Builder.SetInsertPoint(Loc);
2069 // Compute |Step|
2070 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2071 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2072
2073 // Get the backedge taken count and truncate or extended to the AR type.
2074 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2075 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2076 Intrinsic::umul_with_overflow, Ty);
2077
2078 // Compute |Step| * Backedge
2079 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2080 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2081 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2082
2083 // Compute:
2084 // Start + |Step| * Backedge < Start
2085 // Start - |Step| * Backedge > Start
2086 Value *Add = Builder.CreateAdd(StartValue, MulV);
2087 Value *Sub = Builder.CreateSub(StartValue, MulV);
2088
2089 Value *EndCompareGT = Builder.CreateICmp(
2090 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2091
2092 Value *EndCompareLT = Builder.CreateICmp(
2093 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2094
2095 // Select the answer based on the sign of Step.
2096 Value *EndCheck =
2097 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2098
2099 // If the backedge taken count type is larger than the AR type,
2100 // check that we don't drop any bits by truncating it. If we are
2101 // droping bits, then we have overflow (unless the step is zero).
2102 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2103 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2104 auto *BackedgeCheck =
2105 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2106 ConstantInt::get(Loc->getContext(), MaxVal));
2107 BackedgeCheck = Builder.CreateAnd(
2108 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2109
2110 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2111 }
2112
2113 EndCheck = Builder.CreateOr(EndCheck, OfMul);
2114 return EndCheck;
2115 }
2116
expandWrapPredicate(const SCEVWrapPredicate * Pred,Instruction * IP)2117 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2118 Instruction *IP) {
2119 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2120 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2121
2122 // Add a check for NUSW
2123 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2124 NUSWCheck = generateOverflowCheck(A, IP, false);
2125
2126 // Add a check for NSSW
2127 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2128 NSSWCheck = generateOverflowCheck(A, IP, true);
2129
2130 if (NUSWCheck && NSSWCheck)
2131 return Builder.CreateOr(NUSWCheck, NSSWCheck);
2132
2133 if (NUSWCheck)
2134 return NUSWCheck;
2135
2136 if (NSSWCheck)
2137 return NSSWCheck;
2138
2139 return ConstantInt::getFalse(IP->getContext());
2140 }
2141
expandUnionPredicate(const SCEVUnionPredicate * Union,Instruction * IP)2142 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2143 Instruction *IP) {
2144 auto *BoolType = IntegerType::get(IP->getContext(), 1);
2145 Value *Check = ConstantInt::getNullValue(BoolType);
2146
2147 // Loop over all checks in this set.
2148 for (auto Pred : Union->getPredicates()) {
2149 auto *NextCheck = expandCodeForPredicate(Pred, IP);
2150 Builder.SetInsertPoint(IP);
2151 Check = Builder.CreateOr(Check, NextCheck);
2152 }
2153
2154 return Check;
2155 }
2156
2157 namespace {
2158 // Search for a SCEV subexpression that is not safe to expand. Any expression
2159 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2160 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2161 // instruction, but the important thing is that we prove the denominator is
2162 // nonzero before expansion.
2163 //
2164 // IVUsers already checks that IV-derived expressions are safe. So this check is
2165 // only needed when the expression includes some subexpression that is not IV
2166 // derived.
2167 //
2168 // Currently, we only allow division by a nonzero constant here. If this is
2169 // inadequate, we could easily allow division by SCEVUnknown by using
2170 // ValueTracking to check isKnownNonZero().
2171 //
2172 // We cannot generally expand recurrences unless the step dominates the loop
2173 // header. The expander handles the special case of affine recurrences by
2174 // scaling the recurrence outside the loop, but this technique isn't generally
2175 // applicable. Expanding a nested recurrence outside a loop requires computing
2176 // binomial coefficients. This could be done, but the recurrence has to be in a
2177 // perfectly reduced form, which can't be guaranteed.
2178 struct SCEVFindUnsafe {
2179 ScalarEvolution &SE;
2180 bool IsUnsafe;
2181
SCEVFindUnsafe__anonf3afad360511::SCEVFindUnsafe2182 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2183
follow__anonf3afad360511::SCEVFindUnsafe2184 bool follow(const SCEV *S) {
2185 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2186 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2187 if (!SC || SC->getValue()->isZero()) {
2188 IsUnsafe = true;
2189 return false;
2190 }
2191 }
2192 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2193 const SCEV *Step = AR->getStepRecurrence(SE);
2194 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2195 IsUnsafe = true;
2196 return false;
2197 }
2198 }
2199 return true;
2200 }
isDone__anonf3afad360511::SCEVFindUnsafe2201 bool isDone() const { return IsUnsafe; }
2202 };
2203 }
2204
2205 namespace llvm {
isSafeToExpand(const SCEV * S,ScalarEvolution & SE)2206 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2207 SCEVFindUnsafe Search(SE);
2208 visitAll(S, Search);
2209 return !Search.IsUnsafe;
2210 }
2211 }
2212