1 //
2 // Copyright 2012 Francisco Jerez
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a
5 // copy of this software and associated documentation files (the "Software"),
6 // to deal in the Software without restriction, including without limitation
7 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 // and/or sell copies of the Software, and to permit persons to whom the
9 // Software is furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 // OTHER DEALINGS IN THE SOFTWARE.
21 //
22
23 #include "core/kernel.hpp"
24 #include "core/resource.hpp"
25 #include "util/factor.hpp"
26 #include "util/u_math.h"
27 #include "pipe/p_context.h"
28
29 using namespace clover;
30
kernel(clover::program & prog,const std::string & name,const std::vector<module::argument> & margs)31 kernel::kernel(clover::program &prog, const std::string &name,
32 const std::vector<module::argument> &margs) :
33 program(prog), _name(name), exec(*this),
34 program_ref(prog._kernel_ref_counter) {
35 for (auto &marg : margs) {
36 if (marg.semantic == module::argument::general)
37 _args.emplace_back(argument::create(marg));
38 }
39 }
40
41 template<typename V>
42 static inline std::vector<uint>
pad_vector(command_queue & q,const V & v,uint x)43 pad_vector(command_queue &q, const V &v, uint x) {
44 std::vector<uint> w { v.begin(), v.end() };
45 w.resize(q.device().max_block_size().size(), x);
46 return w;
47 }
48
49 void
launch(command_queue & q,const std::vector<size_t> & grid_offset,const std::vector<size_t> & grid_size,const std::vector<size_t> & block_size)50 kernel::launch(command_queue &q,
51 const std::vector<size_t> &grid_offset,
52 const std::vector<size_t> &grid_size,
53 const std::vector<size_t> &block_size) {
54 const auto m = program().build(q.device()).binary;
55 const auto reduced_grid_size =
56 map(divides(), grid_size, block_size);
57 void *st = exec.bind(&q, grid_offset);
58 struct pipe_grid_info info = {};
59
60 // The handles are created during exec_context::bind(), so we need make
61 // sure to call exec_context::bind() before retrieving them.
62 std::vector<uint32_t *> g_handles = map([&](size_t h) {
63 return (uint32_t *)&exec.input[h];
64 }, exec.g_handles);
65
66 q.pipe->bind_compute_state(q.pipe, st);
67 q.pipe->bind_sampler_states(q.pipe, PIPE_SHADER_COMPUTE,
68 0, exec.samplers.size(),
69 exec.samplers.data());
70
71 q.pipe->set_sampler_views(q.pipe, PIPE_SHADER_COMPUTE, 0,
72 exec.sviews.size(), exec.sviews.data());
73 q.pipe->set_compute_resources(q.pipe, 0, exec.resources.size(),
74 exec.resources.data());
75 q.pipe->set_global_binding(q.pipe, 0, exec.g_buffers.size(),
76 exec.g_buffers.data(), g_handles.data());
77
78 // Fill information for the launch_grid() call.
79 info.work_dim = grid_size.size();
80 copy(pad_vector(q, block_size, 1), info.block);
81 copy(pad_vector(q, reduced_grid_size, 1), info.grid);
82 info.pc = find(name_equals(_name), m.syms).offset;
83 info.input = exec.input.data();
84
85 q.pipe->launch_grid(q.pipe, &info);
86
87 q.pipe->set_global_binding(q.pipe, 0, exec.g_buffers.size(), NULL, NULL);
88 q.pipe->set_compute_resources(q.pipe, 0, exec.resources.size(), NULL);
89 q.pipe->set_sampler_views(q.pipe, PIPE_SHADER_COMPUTE, 0,
90 exec.sviews.size(), NULL);
91 q.pipe->bind_sampler_states(q.pipe, PIPE_SHADER_COMPUTE, 0,
92 exec.samplers.size(), NULL);
93
94 q.pipe->memory_barrier(q.pipe, PIPE_BARRIER_GLOBAL_BUFFER);
95 exec.unbind();
96 }
97
98 size_t
mem_local() const99 kernel::mem_local() const {
100 size_t sz = 0;
101
102 for (auto &arg : args()) {
103 if (dynamic_cast<local_argument *>(&arg))
104 sz += arg.storage();
105 }
106
107 return sz;
108 }
109
110 size_t
mem_private() const111 kernel::mem_private() const {
112 return 0;
113 }
114
115 const std::string &
name() const116 kernel::name() const {
117 return _name;
118 }
119
120 std::vector<size_t>
optimal_block_size(const command_queue & q,const std::vector<size_t> & grid_size) const121 kernel::optimal_block_size(const command_queue &q,
122 const std::vector<size_t> &grid_size) const {
123 return factor::find_grid_optimal_factor<size_t>(
124 q.device().max_threads_per_block(), q.device().max_block_size(),
125 grid_size);
126 }
127
128 std::vector<size_t>
required_block_size() const129 kernel::required_block_size() const {
130 return { 0, 0, 0 };
131 }
132
133 kernel::argument_range
args()134 kernel::args() {
135 return map(derefs(), _args);
136 }
137
138 kernel::const_argument_range
args() const139 kernel::args() const {
140 return map(derefs(), _args);
141 }
142
143 const module &
module(const command_queue & q) const144 kernel::module(const command_queue &q) const {
145 return program().build(q.device()).binary;
146 }
147
exec_context(kernel & kern)148 kernel::exec_context::exec_context(kernel &kern) :
149 kern(kern), q(NULL), mem_local(0), st(NULL), cs() {
150 }
151
~exec_context()152 kernel::exec_context::~exec_context() {
153 if (st)
154 q->pipe->delete_compute_state(q->pipe, st);
155 }
156
157 void *
bind(intrusive_ptr<command_queue> _q,const std::vector<size_t> & grid_offset)158 kernel::exec_context::bind(intrusive_ptr<command_queue> _q,
159 const std::vector<size_t> &grid_offset) {
160 std::swap(q, _q);
161
162 // Bind kernel arguments.
163 auto &m = kern.program().build(q->device()).binary;
164 auto margs = find(name_equals(kern.name()), m.syms).args;
165 auto msec = find(type_equals(module::section::text_executable), m.secs);
166 auto explicit_arg = kern._args.begin();
167
168 for (auto &marg : margs) {
169 switch (marg.semantic) {
170 case module::argument::general:
171 (*(explicit_arg++))->bind(*this, marg);
172 break;
173
174 case module::argument::grid_dimension: {
175 const cl_uint dimension = grid_offset.size();
176 auto arg = argument::create(marg);
177
178 arg->set(sizeof(dimension), &dimension);
179 arg->bind(*this, marg);
180 break;
181 }
182 case module::argument::grid_offset: {
183 for (cl_uint x : pad_vector(*q, grid_offset, 0)) {
184 auto arg = argument::create(marg);
185
186 arg->set(sizeof(x), &x);
187 arg->bind(*this, marg);
188 }
189 break;
190 }
191 case module::argument::image_size: {
192 auto img = dynamic_cast<image_argument &>(**(explicit_arg - 1)).get();
193 std::vector<cl_uint> image_size{
194 static_cast<cl_uint>(img->width()),
195 static_cast<cl_uint>(img->height()),
196 static_cast<cl_uint>(img->depth())};
197 for (auto x : image_size) {
198 auto arg = argument::create(marg);
199
200 arg->set(sizeof(x), &x);
201 arg->bind(*this, marg);
202 }
203 break;
204 }
205 case module::argument::image_format: {
206 auto img = dynamic_cast<image_argument &>(**(explicit_arg - 1)).get();
207 cl_image_format fmt = img->format();
208 std::vector<cl_uint> image_format{
209 static_cast<cl_uint>(fmt.image_channel_data_type),
210 static_cast<cl_uint>(fmt.image_channel_order)};
211 for (auto x : image_format) {
212 auto arg = argument::create(marg);
213
214 arg->set(sizeof(x), &x);
215 arg->bind(*this, marg);
216 }
217 break;
218 }
219 }
220 }
221
222 // Create a new compute state if anything changed.
223 if (!st || q != _q ||
224 cs.req_local_mem != mem_local ||
225 cs.req_input_mem != input.size()) {
226 if (st)
227 _q->pipe->delete_compute_state(_q->pipe, st);
228
229 cs.ir_type = q->device().ir_format();
230 cs.prog = &(msec.data[0]);
231 cs.req_local_mem = mem_local;
232 cs.req_input_mem = input.size();
233 st = q->pipe->create_compute_state(q->pipe, &cs);
234 }
235
236 return st;
237 }
238
239 void
unbind()240 kernel::exec_context::unbind() {
241 for (auto &arg : kern.args())
242 arg.unbind(*this);
243
244 input.clear();
245 samplers.clear();
246 sviews.clear();
247 resources.clear();
248 g_buffers.clear();
249 g_handles.clear();
250 mem_local = 0;
251 }
252
253 namespace {
254 template<typename T>
255 std::vector<uint8_t>
bytes(const T & x)256 bytes(const T& x) {
257 return { (uint8_t *)&x, (uint8_t *)&x + sizeof(x) };
258 }
259
260 ///
261 /// Transform buffer \a v from the native byte order into the byte
262 /// order specified by \a e.
263 ///
264 template<typename T>
265 void
byteswap(T & v,pipe_endian e)266 byteswap(T &v, pipe_endian e) {
267 if (PIPE_ENDIAN_NATIVE != e)
268 std::reverse(v.begin(), v.end());
269 }
270
271 ///
272 /// Pad buffer \a v to the next multiple of \a n.
273 ///
274 template<typename T>
275 void
align(T & v,size_t n)276 align(T &v, size_t n) {
277 v.resize(util_align_npot(v.size(), n));
278 }
279
280 bool
msb(const std::vector<uint8_t> & s)281 msb(const std::vector<uint8_t> &s) {
282 if (PIPE_ENDIAN_NATIVE == PIPE_ENDIAN_LITTLE)
283 return s.back() & 0x80;
284 else
285 return s.front() & 0x80;
286 }
287
288 ///
289 /// Resize buffer \a v to size \a n using sign or zero extension
290 /// according to \a ext.
291 ///
292 template<typename T>
293 void
extend(T & v,enum module::argument::ext_type ext,size_t n)294 extend(T &v, enum module::argument::ext_type ext, size_t n) {
295 const size_t m = std::min(v.size(), n);
296 const bool sign_ext = (ext == module::argument::sign_ext);
297 const uint8_t fill = (sign_ext && msb(v) ? ~0 : 0);
298 T w(n, fill);
299
300 if (PIPE_ENDIAN_NATIVE == PIPE_ENDIAN_LITTLE)
301 std::copy_n(v.begin(), m, w.begin());
302 else
303 std::copy_n(v.end() - m, m, w.end() - m);
304
305 std::swap(v, w);
306 }
307
308 ///
309 /// Append buffer \a w to \a v.
310 ///
311 template<typename T>
312 void
insert(T & v,const T & w)313 insert(T &v, const T &w) {
314 v.insert(v.end(), w.begin(), w.end());
315 }
316
317 ///
318 /// Append \a n elements to the end of buffer \a v.
319 ///
320 template<typename T>
321 size_t
allocate(T & v,size_t n)322 allocate(T &v, size_t n) {
323 size_t pos = v.size();
324 v.resize(pos + n);
325 return pos;
326 }
327 }
328
329 std::unique_ptr<kernel::argument>
create(const module::argument & marg)330 kernel::argument::create(const module::argument &marg) {
331 switch (marg.type) {
332 case module::argument::scalar:
333 return std::unique_ptr<kernel::argument>(new scalar_argument(marg.size));
334
335 case module::argument::global:
336 return std::unique_ptr<kernel::argument>(new global_argument);
337
338 case module::argument::local:
339 return std::unique_ptr<kernel::argument>(new local_argument);
340
341 case module::argument::constant:
342 return std::unique_ptr<kernel::argument>(new constant_argument);
343
344 case module::argument::image2d_rd:
345 case module::argument::image3d_rd:
346 return std::unique_ptr<kernel::argument>(new image_rd_argument);
347
348 case module::argument::image2d_wr:
349 case module::argument::image3d_wr:
350 return std::unique_ptr<kernel::argument>(new image_wr_argument);
351
352 case module::argument::sampler:
353 return std::unique_ptr<kernel::argument>(new sampler_argument);
354
355 }
356 throw error(CL_INVALID_KERNEL_DEFINITION);
357 }
358
argument()359 kernel::argument::argument() : _set(false) {
360 }
361
362 bool
set() const363 kernel::argument::set() const {
364 return _set;
365 }
366
367 size_t
storage() const368 kernel::argument::storage() const {
369 return 0;
370 }
371
scalar_argument(size_t size)372 kernel::scalar_argument::scalar_argument(size_t size) : size(size) {
373 }
374
375 void
set(size_t size,const void * value)376 kernel::scalar_argument::set(size_t size, const void *value) {
377 if (!value)
378 throw error(CL_INVALID_ARG_VALUE);
379
380 if (size != this->size)
381 throw error(CL_INVALID_ARG_SIZE);
382
383 v = { (uint8_t *)value, (uint8_t *)value + size };
384 _set = true;
385 }
386
387 void
bind(exec_context & ctx,const module::argument & marg)388 kernel::scalar_argument::bind(exec_context &ctx,
389 const module::argument &marg) {
390 auto w = v;
391
392 extend(w, marg.ext_type, marg.target_size);
393 byteswap(w, ctx.q->device().endianness());
394 align(ctx.input, marg.target_align);
395 insert(ctx.input, w);
396 }
397
398 void
unbind(exec_context & ctx)399 kernel::scalar_argument::unbind(exec_context &ctx) {
400 }
401
402 void
set(size_t size,const void * value)403 kernel::global_argument::set(size_t size, const void *value) {
404 if (size != sizeof(cl_mem))
405 throw error(CL_INVALID_ARG_SIZE);
406
407 buf = pobj<buffer>(value ? *(cl_mem *)value : NULL);
408 _set = true;
409 }
410
411 void
bind(exec_context & ctx,const module::argument & marg)412 kernel::global_argument::bind(exec_context &ctx,
413 const module::argument &marg) {
414 align(ctx.input, marg.target_align);
415
416 if (buf) {
417 const resource &r = buf->resource(*ctx.q);
418 ctx.g_handles.push_back(ctx.input.size());
419 ctx.g_buffers.push_back(r.pipe);
420
421 // How to handle multi-demensional offsets?
422 // We don't need to. Buffer offsets are always
423 // one-dimensional.
424 auto v = bytes(r.offset[0]);
425 extend(v, marg.ext_type, marg.target_size);
426 byteswap(v, ctx.q->device().endianness());
427 insert(ctx.input, v);
428 } else {
429 // Null pointer.
430 allocate(ctx.input, marg.target_size);
431 }
432 }
433
434 void
unbind(exec_context & ctx)435 kernel::global_argument::unbind(exec_context &ctx) {
436 }
437
438 size_t
storage() const439 kernel::local_argument::storage() const {
440 return _storage;
441 }
442
443 void
set(size_t size,const void * value)444 kernel::local_argument::set(size_t size, const void *value) {
445 if (value)
446 throw error(CL_INVALID_ARG_VALUE);
447
448 if (!size)
449 throw error(CL_INVALID_ARG_SIZE);
450
451 _storage = size;
452 _set = true;
453 }
454
455 void
bind(exec_context & ctx,const module::argument & marg)456 kernel::local_argument::bind(exec_context &ctx,
457 const module::argument &marg) {
458 auto v = bytes(ctx.mem_local);
459
460 extend(v, module::argument::zero_ext, marg.target_size);
461 byteswap(v, ctx.q->device().endianness());
462 align(ctx.input, marg.target_align);
463 insert(ctx.input, v);
464
465 ctx.mem_local += _storage;
466 }
467
468 void
unbind(exec_context & ctx)469 kernel::local_argument::unbind(exec_context &ctx) {
470 }
471
472 void
set(size_t size,const void * value)473 kernel::constant_argument::set(size_t size, const void *value) {
474 if (size != sizeof(cl_mem))
475 throw error(CL_INVALID_ARG_SIZE);
476
477 buf = pobj<buffer>(value ? *(cl_mem *)value : NULL);
478 _set = true;
479 }
480
481 void
bind(exec_context & ctx,const module::argument & marg)482 kernel::constant_argument::bind(exec_context &ctx,
483 const module::argument &marg) {
484 align(ctx.input, marg.target_align);
485
486 if (buf) {
487 resource &r = buf->resource(*ctx.q);
488 auto v = bytes(ctx.resources.size() << 24 | r.offset[0]);
489
490 extend(v, module::argument::zero_ext, marg.target_size);
491 byteswap(v, ctx.q->device().endianness());
492 insert(ctx.input, v);
493
494 st = r.bind_surface(*ctx.q, false);
495 ctx.resources.push_back(st);
496 } else {
497 // Null pointer.
498 allocate(ctx.input, marg.target_size);
499 }
500 }
501
502 void
unbind(exec_context & ctx)503 kernel::constant_argument::unbind(exec_context &ctx) {
504 if (buf)
505 buf->resource(*ctx.q).unbind_surface(*ctx.q, st);
506 }
507
508 void
set(size_t size,const void * value)509 kernel::image_rd_argument::set(size_t size, const void *value) {
510 if (!value)
511 throw error(CL_INVALID_ARG_VALUE);
512
513 if (size != sizeof(cl_mem))
514 throw error(CL_INVALID_ARG_SIZE);
515
516 img = &obj<image>(*(cl_mem *)value);
517 _set = true;
518 }
519
520 void
bind(exec_context & ctx,const module::argument & marg)521 kernel::image_rd_argument::bind(exec_context &ctx,
522 const module::argument &marg) {
523 auto v = bytes(ctx.sviews.size());
524
525 extend(v, module::argument::zero_ext, marg.target_size);
526 byteswap(v, ctx.q->device().endianness());
527 align(ctx.input, marg.target_align);
528 insert(ctx.input, v);
529
530 st = img->resource(*ctx.q).bind_sampler_view(*ctx.q);
531 ctx.sviews.push_back(st);
532 }
533
534 void
unbind(exec_context & ctx)535 kernel::image_rd_argument::unbind(exec_context &ctx) {
536 img->resource(*ctx.q).unbind_sampler_view(*ctx.q, st);
537 }
538
539 void
set(size_t size,const void * value)540 kernel::image_wr_argument::set(size_t size, const void *value) {
541 if (!value)
542 throw error(CL_INVALID_ARG_VALUE);
543
544 if (size != sizeof(cl_mem))
545 throw error(CL_INVALID_ARG_SIZE);
546
547 img = &obj<image>(*(cl_mem *)value);
548 _set = true;
549 }
550
551 void
bind(exec_context & ctx,const module::argument & marg)552 kernel::image_wr_argument::bind(exec_context &ctx,
553 const module::argument &marg) {
554 auto v = bytes(ctx.resources.size());
555
556 extend(v, module::argument::zero_ext, marg.target_size);
557 byteswap(v, ctx.q->device().endianness());
558 align(ctx.input, marg.target_align);
559 insert(ctx.input, v);
560
561 st = img->resource(*ctx.q).bind_surface(*ctx.q, true);
562 ctx.resources.push_back(st);
563 }
564
565 void
unbind(exec_context & ctx)566 kernel::image_wr_argument::unbind(exec_context &ctx) {
567 img->resource(*ctx.q).unbind_surface(*ctx.q, st);
568 }
569
570 void
set(size_t size,const void * value)571 kernel::sampler_argument::set(size_t size, const void *value) {
572 if (!value)
573 throw error(CL_INVALID_SAMPLER);
574
575 if (size != sizeof(cl_sampler))
576 throw error(CL_INVALID_ARG_SIZE);
577
578 s = &obj(*(cl_sampler *)value);
579 _set = true;
580 }
581
582 void
bind(exec_context & ctx,const module::argument & marg)583 kernel::sampler_argument::bind(exec_context &ctx,
584 const module::argument &marg) {
585 st = s->bind(*ctx.q);
586 ctx.samplers.push_back(st);
587 }
588
589 void
unbind(exec_context & ctx)590 kernel::sampler_argument::unbind(exec_context &ctx) {
591 s->unbind(*ctx.q, st);
592 }
593