• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "GrBlend.h"
12 #include "GrColor.h"
13 #include "GrNonAtomicRef.h"
14 #include "GrProcessor.h"
15 #include "GrProcessorAnalysis.h"
16 #include "GrTypes.h"
17 
18 class GrGLSLXferProcessor;
19 class GrProcessorSet;
20 class GrShaderCaps;
21 
22 /**
23  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
24  * required after a pixel has been written, before it can be safely read again.
25  */
26 enum GrXferBarrierType {
27     kNone_GrXferBarrierType = 0, //<! No barrier is required
28     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
29     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
30 };
31 /** Should be able to treat kNone as false in boolean expressions */
32 GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
33 
34 /**
35  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
36  * color, and for applying any coverage. It does this by emitting fragment shader code and
37  * controlling the fixed-function blend state. When dual-source blending is available, it may also
38  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
39  *
40  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
41  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
42  * provides shader code that blends the src and dst colors, and the base class applies coverage.
43  *
44  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
45  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
46  *
47  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
48  * GrXPFactory once we have finalized the state of our draw.
49  */
50 class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
51 public:
52     /**
53      * A texture that contains the dst pixel values and an integer coord offset from device space
54      * to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
55      * GrXferProcessor for blending in the fragment shader.
56      */
57     class DstProxy {
58     public:
DstProxy()59         DstProxy() { fOffset.set(0, 0); }
60 
DstProxy(const DstProxy & other)61         DstProxy(const DstProxy& other) {
62             *this = other;
63         }
64 
DstProxy(sk_sp<GrTextureProxy> proxy,const SkIPoint & offset)65         DstProxy(sk_sp<GrTextureProxy> proxy, const SkIPoint& offset)
66             : fProxy(std::move(proxy)) {
67             if (fProxy) {
68                 fOffset = offset;
69             } else {
70                 fOffset.set(0, 0);
71             }
72         }
73 
74         DstProxy& operator=(const DstProxy& other) {
75             fProxy = other.fProxy;
76             fOffset = other.fOffset;
77             return *this;
78         }
79 
80         bool operator==(const DstProxy& that) const {
81             return fProxy == that.fProxy && fOffset == that.fOffset;
82         }
83         bool operator!=(const DstProxy& that) const { return !(*this == that); }
84 
offset()85         const SkIPoint& offset() const { return fOffset; }
86 
setOffset(const SkIPoint & offset)87         void setOffset(const SkIPoint& offset) { fOffset = offset; }
setOffset(int ox,int oy)88         void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
89 
proxy()90         GrTextureProxy* proxy() const { return fProxy.get(); }
91 
setProxy(sk_sp<GrTextureProxy> proxy)92         void setProxy(sk_sp<GrTextureProxy> proxy) {
93             fProxy = std::move(proxy);
94             if (!fProxy) {
95                 fOffset = {0, 0};
96             }
97         }
98 
instantiate(GrResourceProvider * resourceProvider)99         bool instantiate(GrResourceProvider* resourceProvider) {
100             return SkToBool(fProxy->instantiate(resourceProvider));
101         }
102 
103     private:
104         sk_sp<GrTextureProxy> fProxy;
105         SkIPoint              fOffset;
106     };
107 
108     /**
109      * Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
110      * specific subclass's key.
111      */
112     void getGLSLProcessorKey(const GrShaderCaps&,
113                              GrProcessorKeyBuilder*,
114                              const GrSurfaceOrigin* originIfDstTexture) const;
115 
116     /** Returns a new instance of the appropriate *GL* implementation class
117         for the given GrXferProcessor; caller is responsible for deleting
118         the object. */
119     virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
120 
121     /**
122      * Returns the barrier type, if any, that this XP will require. Note that the possibility
123      * that a kTexture type barrier is required is handled by the GrPipeline and need not be
124      * considered by subclass overrides of this function.
125      */
xferBarrierType(const GrCaps & caps)126     virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
127         return kNone_GrXferBarrierType;
128     }
129 
130     struct BlendInfo {
resetBlendInfo131         void reset() {
132             fEquation = kAdd_GrBlendEquation;
133             fSrcBlend = kOne_GrBlendCoeff;
134             fDstBlend = kZero_GrBlendCoeff;
135             fBlendConstant = 0;
136             fWriteColor = true;
137         }
138 
139         SkDEBUGCODE(SkString dump() const;)
140 
141         GrBlendEquation fEquation;
142         GrBlendCoeff    fSrcBlend;
143         GrBlendCoeff    fDstBlend;
144         GrColor         fBlendConstant;
145         bool            fWriteColor;
146     };
147 
148     void getBlendInfo(BlendInfo* blendInfo) const;
149 
willReadDstColor()150     bool willReadDstColor() const { return fWillReadDstColor; }
151 
152     /**
153      * If we are performing a dst read, returns whether the base class will use mixed samples to
154      * antialias the shader's final output. If not doing a dst read, the subclass is responsible
155      * for antialiasing and this returns false.
156      */
dstReadUsesMixedSamples()157     bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
158 
159     /**
160      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
161      * source blending.
162      */
163     bool hasSecondaryOutput() const;
164 
isLCD()165     bool isLCD() const { return fIsLCD; }
166 
167     /** Returns true if this and other processor conservatively draw identically. It can only return
168         true when the two processor are of the same subclass (i.e. they return the same object from
169         from getFactory()).
170 
171         A return value of true from isEqual() should not be used to test whether the processor would
172         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
173       */
174 
isEqual(const GrXferProcessor & that)175     bool isEqual(const GrXferProcessor& that) const {
176         if (this->classID() != that.classID()) {
177             return false;
178         }
179         if (this->fWillReadDstColor != that.fWillReadDstColor) {
180             return false;
181         }
182         if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
183             return false;
184         }
185         if (fIsLCD != that.fIsLCD) {
186             return false;
187         }
188         return this->onIsEqual(that);
189     }
190 
191 protected:
192     GrXferProcessor();
193     GrXferProcessor(bool willReadDstColor, bool hasMixedSamples, GrProcessorAnalysisCoverage);
194 
195 private:
196     /**
197      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
198      * processor's GL backend implementation.
199      */
200     virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
201 
202     /**
203      * If we are not performing a dst read, returns whether the subclass will set a secondary
204      * output. When using dst reads, the base class controls the secondary output and this method
205      * will not be called.
206      */
onHasSecondaryOutput()207     virtual bool onHasSecondaryOutput() const { return false; }
208 
209     /**
210      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
211      * subclass. When using dst reads, the base class controls the fixed-function blend state and
212      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
213      */
onGetBlendInfo(BlendInfo *)214     virtual void onGetBlendInfo(BlendInfo*) const {}
215 
216     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
217 
218     bool fWillReadDstColor;
219     bool fDstReadUsesMixedSamples;
220     bool fIsLCD;
221 
222     typedef GrFragmentProcessor INHERITED;
223 };
224 
225 /**
226  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
227  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
228  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
229  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
230  * the draw.
231  *
232  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
233  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
234  * blend with the destination color.
235  *
236  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
237  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
238  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
239  */
240 
241 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
242 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
243 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
244 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
245 // for the subclasses.
246 #if defined(__GNUC__) || defined(__clang)
247 #pragma GCC diagnostic push
248 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
249 #endif
250 class GrXPFactory {
251 public:
252     typedef GrXferProcessor::DstProxy DstProxy;
253 
254     enum class AnalysisProperties : unsigned {
255         kNone = 0x0,
256         /**
257          * The fragment shader will require the destination color.
258          */
259         kReadsDstInShader = 0x1,
260         /**
261          * The op may apply coverage as alpha and still blend correctly.
262          */
263         kCompatibleWithAlphaAsCoverage = 0x2,
264         /**
265          * The color input to the GrXferProcessor will be ignored.
266          */
267         kIgnoresInputColor = 0x4,
268         /**
269          * If set overlapping stencil and cover operations can be replaced by a combined stencil
270          * followed by a combined cover.
271          */
272         kCanCombineOverlappedStencilAndCover = 0x8,
273         /**
274          * The destination color will be provided to the fragment processor using a texture. This is
275          * additional information about the implementation of kReadsDstInShader.
276          */
277         kRequiresDstTexture = 0x10,
278         /**
279          * If set overlapping draws may not be combined because a barrier must be inserted between
280          * them.
281          */
282         kRequiresBarrierBetweenOverlappingDraws = 0x20,
283     };
284     GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
285 
286     static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
287                                                           const GrProcessorAnalysisColor&,
288                                                           GrProcessorAnalysisCoverage,
289                                                           bool hasMixedSamples,
290                                                           const GrCaps& caps);
291 
292     static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
293                                                     const GrProcessorAnalysisColor&,
294                                                     const GrProcessorAnalysisCoverage&,
295                                                     const GrCaps&);
296 
297 protected:
GrXPFactory()298     constexpr GrXPFactory() {}
299 
300 private:
301     virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
302                                                            GrProcessorAnalysisCoverage,
303                                                            bool hasMixedSamples,
304                                                            const GrCaps&) const = 0;
305 
306     /**
307      * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
308      * inferred by the base class based on kReadsDstInShader and the caps.
309      */
310     virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
311                                                   const GrProcessorAnalysisCoverage&,
312                                                   const GrCaps&) const = 0;
313 };
314 #if defined(__GNUC__) || defined(__clang)
315 #pragma GCC diagnostic pop
316 #endif
317 
318 GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties);
319 
320 #endif
321