1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 * Copyright (C) 1997-2015, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 ******************************************************************************
8 * file name: nfrule.cpp
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * Modification history
14 * Date Name Comments
15 * 10/11/2001 Doug Ported from ICU4J
16 */
17
18 #include "nfrule.h"
19
20 #if U_HAVE_RBNF
21
22 #include "unicode/localpointer.h"
23 #include "unicode/rbnf.h"
24 #include "unicode/tblcoll.h"
25 #include "unicode/plurfmt.h"
26 #include "unicode/upluralrules.h"
27 #include "unicode/coleitr.h"
28 #include "unicode/uchar.h"
29 #include "nfrs.h"
30 #include "nfrlist.h"
31 #include "nfsubs.h"
32 #include "patternprops.h"
33
34 U_NAMESPACE_BEGIN
35
NFRule(const RuleBasedNumberFormat * _rbnf,const UnicodeString & _ruleText,UErrorCode & status)36 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
37 : baseValue((int32_t)0)
38 , radix(10)
39 , exponent(0)
40 , decimalPoint(0)
41 , ruleText(_ruleText)
42 , sub1(NULL)
43 , sub2(NULL)
44 , formatter(_rbnf)
45 , rulePatternFormat(NULL)
46 {
47 if (!ruleText.isEmpty()) {
48 parseRuleDescriptor(ruleText, status);
49 }
50 }
51
~NFRule()52 NFRule::~NFRule()
53 {
54 if (sub1 != sub2) {
55 delete sub2;
56 sub2 = NULL;
57 }
58 delete sub1;
59 sub1 = NULL;
60 delete rulePatternFormat;
61 rulePatternFormat = NULL;
62 }
63
64 static const UChar gLeftBracket = 0x005b;
65 static const UChar gRightBracket = 0x005d;
66 static const UChar gColon = 0x003a;
67 static const UChar gZero = 0x0030;
68 static const UChar gNine = 0x0039;
69 static const UChar gSpace = 0x0020;
70 static const UChar gSlash = 0x002f;
71 static const UChar gGreaterThan = 0x003e;
72 static const UChar gLessThan = 0x003c;
73 static const UChar gComma = 0x002c;
74 static const UChar gDot = 0x002e;
75 static const UChar gTick = 0x0027;
76 //static const UChar gMinus = 0x002d;
77 static const UChar gSemicolon = 0x003b;
78 static const UChar gX = 0x0078;
79
80 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
81 static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */
82 static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
83
84 static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */
85 static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
86
87 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
88 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
89 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
90 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
91 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
92 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
93 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
94 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
95 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
96 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
97 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
98 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
99
100 static const UChar * const RULE_PREFIXES[] = {
101 gLessLess, gLessPercent, gLessHash, gLessZero,
102 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
103 gEqualPercent, gEqualHash, gEqualZero, NULL
104 };
105
106 void
makeRules(UnicodeString & description,NFRuleSet * owner,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)107 NFRule::makeRules(UnicodeString& description,
108 NFRuleSet *owner,
109 const NFRule *predecessor,
110 const RuleBasedNumberFormat *rbnf,
111 NFRuleList& rules,
112 UErrorCode& status)
113 {
114 // we know we're making at least one rule, so go ahead and
115 // new it up and initialize its basevalue and divisor
116 // (this also strips the rule descriptor, if any, off the
117 // descripton string)
118 NFRule* rule1 = new NFRule(rbnf, description, status);
119 /* test for NULL */
120 if (rule1 == 0) {
121 status = U_MEMORY_ALLOCATION_ERROR;
122 return;
123 }
124 description = rule1->ruleText;
125
126 // check the description to see whether there's text enclosed
127 // in brackets
128 int32_t brack1 = description.indexOf(gLeftBracket);
129 int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
130
131 // if the description doesn't contain a matched pair of brackets,
132 // or if it's of a type that doesn't recognize bracketed text,
133 // then leave the description alone, initialize the rule's
134 // rule text and substitutions, and return that rule
135 if (brack2 < 0 || brack1 > brack2
136 || rule1->getType() == kProperFractionRule
137 || rule1->getType() == kNegativeNumberRule
138 || rule1->getType() == kInfinityRule
139 || rule1->getType() == kNaNRule)
140 {
141 rule1->extractSubstitutions(owner, description, predecessor, status);
142 }
143 else {
144 // if the description does contain a matched pair of brackets,
145 // then it's really shorthand for two rules (with one exception)
146 NFRule* rule2 = NULL;
147 UnicodeString sbuf;
148
149 // we'll actually only split the rule into two rules if its
150 // base value is an even multiple of its divisor (or it's one
151 // of the special rules)
152 if ((rule1->baseValue > 0
153 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
154 || rule1->getType() == kImproperFractionRule
155 || rule1->getType() == kMasterRule) {
156
157 // if it passes that test, new up the second rule. If the
158 // rule set both rules will belong to is a fraction rule
159 // set, they both have the same base value; otherwise,
160 // increment the original rule's base value ("rule1" actually
161 // goes SECOND in the rule set's rule list)
162 rule2 = new NFRule(rbnf, UnicodeString(), status);
163 /* test for NULL */
164 if (rule2 == 0) {
165 status = U_MEMORY_ALLOCATION_ERROR;
166 return;
167 }
168 if (rule1->baseValue >= 0) {
169 rule2->baseValue = rule1->baseValue;
170 if (!owner->isFractionRuleSet()) {
171 ++rule1->baseValue;
172 }
173 }
174
175 // if the description began with "x.x" and contains bracketed
176 // text, it describes both the improper fraction rule and
177 // the proper fraction rule
178 else if (rule1->getType() == kImproperFractionRule) {
179 rule2->setType(kProperFractionRule);
180 }
181
182 // if the description began with "x.0" and contains bracketed
183 // text, it describes both the master rule and the
184 // improper fraction rule
185 else if (rule1->getType() == kMasterRule) {
186 rule2->baseValue = rule1->baseValue;
187 rule1->setType(kImproperFractionRule);
188 }
189
190 // both rules have the same radix and exponent (i.e., the
191 // same divisor)
192 rule2->radix = rule1->radix;
193 rule2->exponent = rule1->exponent;
194
195 // rule2's rule text omits the stuff in brackets: initalize
196 // its rule text and substitutions accordingly
197 sbuf.append(description, 0, brack1);
198 if (brack2 + 1 < description.length()) {
199 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
200 }
201 rule2->extractSubstitutions(owner, sbuf, predecessor, status);
202 }
203
204 // rule1's text includes the text in the brackets but omits
205 // the brackets themselves: initialize _its_ rule text and
206 // substitutions accordingly
207 sbuf.setTo(description, 0, brack1);
208 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
209 if (brack2 + 1 < description.length()) {
210 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
211 }
212 rule1->extractSubstitutions(owner, sbuf, predecessor, status);
213
214 // if we only have one rule, return it; if we have two, return
215 // a two-element array containing them (notice that rule2 goes
216 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
217 // material in the brackets and rule1 INCLUDES the material
218 // in the brackets)
219 if (rule2 != NULL) {
220 if (rule2->baseValue >= kNoBase) {
221 rules.add(rule2);
222 }
223 else {
224 owner->setNonNumericalRule(rule2);
225 }
226 }
227 }
228 if (rule1->baseValue >= kNoBase) {
229 rules.add(rule1);
230 }
231 else {
232 owner->setNonNumericalRule(rule1);
233 }
234 }
235
236 /**
237 * This function parses the rule's rule descriptor (i.e., the base
238 * value and/or other tokens that precede the rule's rule text
239 * in the description) and sets the rule's base value, radix, and
240 * exponent according to the descriptor. (If the description doesn't
241 * include a rule descriptor, then this function sets everything to
242 * default values and the rule set sets the rule's real base value).
243 * @param description The rule's description
244 * @return If "description" included a rule descriptor, this is
245 * "description" with the descriptor and any trailing whitespace
246 * stripped off. Otherwise; it's "descriptor" unchangd.
247 */
248 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)249 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
250 {
251 // the description consists of a rule descriptor and a rule body,
252 // separated by a colon. The rule descriptor is optional. If
253 // it's omitted, just set the base value to 0.
254 int32_t p = description.indexOf(gColon);
255 if (p != -1) {
256 // copy the descriptor out into its own string and strip it,
257 // along with any trailing whitespace, out of the original
258 // description
259 UnicodeString descriptor;
260 descriptor.setTo(description, 0, p);
261
262 ++p;
263 while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
264 ++p;
265 }
266 description.removeBetween(0, p);
267
268 // check first to see if the rule descriptor matches the token
269 // for one of the special rules. If it does, set the base
270 // value to the correct identifier value
271 int descriptorLength = descriptor.length();
272 UChar firstChar = descriptor.charAt(0);
273 UChar lastChar = descriptor.charAt(descriptorLength - 1);
274 if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
275 // if the rule descriptor begins with a digit, it's a descriptor
276 // for a normal rule
277 // since we don't have Long.parseLong, and this isn't much work anyway,
278 // just build up the value as we encounter the digits.
279 int64_t val = 0;
280 p = 0;
281 UChar c = gSpace;
282
283 // begin parsing the descriptor: copy digits
284 // into "tempValue", skip periods, commas, and spaces,
285 // stop on a slash or > sign (or at the end of the string),
286 // and throw an exception on any other character
287 int64_t ll_10 = 10;
288 while (p < descriptorLength) {
289 c = descriptor.charAt(p);
290 if (c >= gZero && c <= gNine) {
291 val = val * ll_10 + (int32_t)(c - gZero);
292 }
293 else if (c == gSlash || c == gGreaterThan) {
294 break;
295 }
296 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
297 }
298 else {
299 // throw new IllegalArgumentException("Illegal character in rule descriptor");
300 status = U_PARSE_ERROR;
301 return;
302 }
303 ++p;
304 }
305
306 // we have the base value, so set it
307 setBaseValue(val, status);
308
309 // if we stopped the previous loop on a slash, we're
310 // now parsing the rule's radix. Again, accumulate digits
311 // in tempValue, skip punctuation, stop on a > mark, and
312 // throw an exception on anything else
313 if (c == gSlash) {
314 val = 0;
315 ++p;
316 int64_t ll_10 = 10;
317 while (p < descriptorLength) {
318 c = descriptor.charAt(p);
319 if (c >= gZero && c <= gNine) {
320 val = val * ll_10 + (int32_t)(c - gZero);
321 }
322 else if (c == gGreaterThan) {
323 break;
324 }
325 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
326 }
327 else {
328 // throw new IllegalArgumentException("Illegal character is rule descriptor");
329 status = U_PARSE_ERROR;
330 return;
331 }
332 ++p;
333 }
334
335 // tempValue now contain's the rule's radix. Set it
336 // accordingly, and recalculate the rule's exponent
337 radix = (int32_t)val;
338 if (radix == 0) {
339 // throw new IllegalArgumentException("Rule can't have radix of 0");
340 status = U_PARSE_ERROR;
341 }
342
343 exponent = expectedExponent();
344 }
345
346 // if we stopped the previous loop on a > sign, then continue
347 // for as long as we still see > signs. For each one,
348 // decrement the exponent (unless the exponent is already 0).
349 // If we see another character before reaching the end of
350 // the descriptor, that's also a syntax error.
351 if (c == gGreaterThan) {
352 while (p < descriptor.length()) {
353 c = descriptor.charAt(p);
354 if (c == gGreaterThan && exponent > 0) {
355 --exponent;
356 } else {
357 // throw new IllegalArgumentException("Illegal character in rule descriptor");
358 status = U_PARSE_ERROR;
359 return;
360 }
361 ++p;
362 }
363 }
364 }
365 else if (0 == descriptor.compare(gMinusX, 2)) {
366 setType(kNegativeNumberRule);
367 }
368 else if (descriptorLength == 3) {
369 if (firstChar == gZero && lastChar == gX) {
370 setBaseValue(kProperFractionRule, status);
371 decimalPoint = descriptor.charAt(1);
372 }
373 else if (firstChar == gX && lastChar == gX) {
374 setBaseValue(kImproperFractionRule, status);
375 decimalPoint = descriptor.charAt(1);
376 }
377 else if (firstChar == gX && lastChar == gZero) {
378 setBaseValue(kMasterRule, status);
379 decimalPoint = descriptor.charAt(1);
380 }
381 else if (descriptor.compare(gNaN, 3) == 0) {
382 setBaseValue(kNaNRule, status);
383 }
384 else if (descriptor.compare(gInf, 3) == 0) {
385 setBaseValue(kInfinityRule, status);
386 }
387 }
388 }
389 // else use the default base value for now.
390
391 // finally, if the rule body begins with an apostrophe, strip it off
392 // (this is generally used to put whitespace at the beginning of
393 // a rule's rule text)
394 if (description.length() > 0 && description.charAt(0) == gTick) {
395 description.removeBetween(0, 1);
396 }
397
398 // return the description with all the stuff we've just waded through
399 // stripped off the front. It now contains just the rule body.
400 // return description;
401 }
402
403 /**
404 * Searches the rule's rule text for the substitution tokens,
405 * creates the substitutions, and removes the substitution tokens
406 * from the rule's rule text.
407 * @param owner The rule set containing this rule
408 * @param predecessor The rule preseding this one in "owners" rule list
409 * @param ownersOwner The RuleBasedFormat that owns this rule
410 */
411 void
extractSubstitutions(const NFRuleSet * ruleSet,const UnicodeString & ruleText,const NFRule * predecessor,UErrorCode & status)412 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
413 const UnicodeString &ruleText,
414 const NFRule* predecessor,
415 UErrorCode& status)
416 {
417 if (U_FAILURE(status)) {
418 return;
419 }
420 this->ruleText = ruleText;
421 sub1 = extractSubstitution(ruleSet, predecessor, status);
422 if (sub1 == NULL) {
423 // Small optimization. There is no need to create a redundant NullSubstitution.
424 sub2 = NULL;
425 }
426 else {
427 sub2 = extractSubstitution(ruleSet, predecessor, status);
428 }
429 int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
430 int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
431 if (pluralRuleEnd >= 0) {
432 int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart);
433 if (endType < 0) {
434 status = U_PARSE_ERROR;
435 return;
436 }
437 UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
438 UPluralType pluralType;
439 if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
440 pluralType = UPLURAL_TYPE_CARDINAL;
441 }
442 else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
443 pluralType = UPLURAL_TYPE_ORDINAL;
444 }
445 else {
446 status = U_ILLEGAL_ARGUMENT_ERROR;
447 return;
448 }
449 rulePatternFormat = formatter->createPluralFormat(pluralType,
450 this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
451 }
452 }
453
454 /**
455 * Searches the rule's rule text for the first substitution token,
456 * creates a substitution based on it, and removes the token from
457 * the rule's rule text.
458 * @param owner The rule set containing this rule
459 * @param predecessor The rule preceding this one in the rule set's
460 * rule list
461 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
462 * @return The newly-created substitution. This is never null; if
463 * the rule text doesn't contain any substitution tokens, this will
464 * be a NullSubstitution.
465 */
466 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,UErrorCode & status)467 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
468 const NFRule* predecessor,
469 UErrorCode& status)
470 {
471 NFSubstitution* result = NULL;
472
473 // search the rule's rule text for the first two characters of
474 // a substitution token
475 int32_t subStart = indexOfAnyRulePrefix();
476 int32_t subEnd = subStart;
477
478 // if we didn't find one, create a null substitution positioned
479 // at the end of the rule text
480 if (subStart == -1) {
481 return NULL;
482 }
483
484 // special-case the ">>>" token, since searching for the > at the
485 // end will actually find the > in the middle
486 if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
487 subEnd = subStart + 2;
488
489 // otherwise the substitution token ends with the same character
490 // it began with
491 } else {
492 UChar c = ruleText.charAt(subStart);
493 subEnd = ruleText.indexOf(c, subStart + 1);
494 // special case for '<%foo<<'
495 if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
496 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
497 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
498 // to get around this. Having the duplicate at the front would cause problems with
499 // rules like "<<%" to format, say, percents...
500 ++subEnd;
501 }
502 }
503
504 // if we don't find the end of the token (i.e., if we're on a single,
505 // unmatched token character), create a null substitution positioned
506 // at the end of the rule
507 if (subEnd == -1) {
508 return NULL;
509 }
510
511 // if we get here, we have a real substitution token (or at least
512 // some text bounded by substitution token characters). Use
513 // makeSubstitution() to create the right kind of substitution
514 UnicodeString subToken;
515 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
516 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
517 this->formatter, subToken, status);
518
519 // remove the substitution from the rule text
520 ruleText.removeBetween(subStart, subEnd+1);
521
522 return result;
523 }
524
525 /**
526 * Sets the rule's base value, and causes the radix and exponent
527 * to be recalculated. This is used during construction when we
528 * don't know the rule's base value until after it's been
529 * constructed. It should be used at any other time.
530 * @param The new base value for the rule.
531 */
532 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)533 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
534 {
535 // set the base value
536 baseValue = newBaseValue;
537 radix = 10;
538
539 // if this isn't a special rule, recalculate the radix and exponent
540 // (the radix always defaults to 10; if it's supposed to be something
541 // else, it's cleaned up by the caller and the exponent is
542 // recalculated again-- the only function that does this is
543 // NFRule.parseRuleDescriptor() )
544 if (baseValue >= 1) {
545 exponent = expectedExponent();
546
547 // this function gets called on a fully-constructed rule whose
548 // description didn't specify a base value. This means it
549 // has substitutions, and some substitutions hold on to copies
550 // of the rule's divisor. Fix their copies of the divisor.
551 if (sub1 != NULL) {
552 sub1->setDivisor(radix, exponent, status);
553 }
554 if (sub2 != NULL) {
555 sub2->setDivisor(radix, exponent, status);
556 }
557
558 // if this is a special rule, its radix and exponent are basically
559 // ignored. Set them to "safe" default values
560 } else {
561 exponent = 0;
562 }
563 }
564
565 /**
566 * This calculates the rule's exponent based on its radix and base
567 * value. This will be the highest power the radix can be raised to
568 * and still produce a result less than or equal to the base value.
569 */
570 int16_t
expectedExponent() const571 NFRule::expectedExponent() const
572 {
573 // since the log of 0, or the log base 0 of something, causes an
574 // error, declare the exponent in these cases to be 0 (we also
575 // deal with the special-rule identifiers here)
576 if (radix == 0 || baseValue < 1) {
577 return 0;
578 }
579
580 // we get rounding error in some cases-- for example, log 1000 / log 10
581 // gives us 1.9999999996 instead of 2. The extra logic here is to take
582 // that into account
583 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
584 int64_t temp = util64_pow(radix, tempResult + 1);
585 if (temp <= baseValue) {
586 tempResult += 1;
587 }
588 return tempResult;
589 }
590
591 /**
592 * Searches the rule's rule text for any of the specified strings.
593 * @return The index of the first match in the rule's rule text
594 * (i.e., the first substring in the rule's rule text that matches
595 * _any_ of the strings in "strings"). If none of the strings in
596 * "strings" is found in the rule's rule text, returns -1.
597 */
598 int32_t
indexOfAnyRulePrefix() const599 NFRule::indexOfAnyRulePrefix() const
600 {
601 int result = -1;
602 for (int i = 0; RULE_PREFIXES[i]; i++) {
603 int32_t pos = ruleText.indexOf(*RULE_PREFIXES[i]);
604 if (pos != -1 && (result == -1 || pos < result)) {
605 result = pos;
606 }
607 }
608 return result;
609 }
610
611 //-----------------------------------------------------------------------
612 // boilerplate
613 //-----------------------------------------------------------------------
614
615 static UBool
util_equalSubstitutions(const NFSubstitution * sub1,const NFSubstitution * sub2)616 util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
617 {
618 if (sub1) {
619 if (sub2) {
620 return *sub1 == *sub2;
621 }
622 } else if (!sub2) {
623 return TRUE;
624 }
625 return FALSE;
626 }
627
628 /**
629 * Tests two rules for equality.
630 * @param that The rule to compare this one against
631 * @return True is the two rules are functionally equivalent
632 */
633 UBool
operator ==(const NFRule & rhs) const634 NFRule::operator==(const NFRule& rhs) const
635 {
636 return baseValue == rhs.baseValue
637 && radix == rhs.radix
638 && exponent == rhs.exponent
639 && ruleText == rhs.ruleText
640 && util_equalSubstitutions(sub1, rhs.sub1)
641 && util_equalSubstitutions(sub2, rhs.sub2);
642 }
643
644 /**
645 * Returns a textual representation of the rule. This won't
646 * necessarily be the same as the description that this rule
647 * was created with, but it will produce the same result.
648 * @return A textual description of the rule
649 */
util_append64(UnicodeString & result,int64_t n)650 static void util_append64(UnicodeString& result, int64_t n)
651 {
652 UChar buffer[256];
653 int32_t len = util64_tou(n, buffer, sizeof(buffer));
654 UnicodeString temp(buffer, len);
655 result.append(temp);
656 }
657
658 void
_appendRuleText(UnicodeString & result) const659 NFRule::_appendRuleText(UnicodeString& result) const
660 {
661 switch (getType()) {
662 case kNegativeNumberRule: result.append(gMinusX, 2); break;
663 case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
664 case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
665 case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
666 case kInfinityRule: result.append(gInf, 3); break;
667 case kNaNRule: result.append(gNaN, 3); break;
668 default:
669 // for a normal rule, write out its base value, and if the radix is
670 // something other than 10, write out the radix (with the preceding
671 // slash, of course). Then calculate the expected exponent and if
672 // if isn't the same as the actual exponent, write an appropriate
673 // number of > signs. Finally, terminate the whole thing with
674 // a colon.
675 util_append64(result, baseValue);
676 if (radix != 10) {
677 result.append(gSlash);
678 util_append64(result, radix);
679 }
680 int numCarets = expectedExponent() - exponent;
681 for (int i = 0; i < numCarets; i++) {
682 result.append(gGreaterThan);
683 }
684 break;
685 }
686 result.append(gColon);
687 result.append(gSpace);
688
689 // if the rule text begins with a space, write an apostrophe
690 // (whitespace after the rule descriptor is ignored; the
691 // apostrophe is used to make the whitespace significant)
692 if (ruleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
693 result.append(gTick);
694 }
695
696 // now, write the rule's rule text, inserting appropriate
697 // substitution tokens in the appropriate places
698 UnicodeString ruleTextCopy;
699 ruleTextCopy.setTo(ruleText);
700
701 UnicodeString temp;
702 if (sub2 != NULL) {
703 sub2->toString(temp);
704 ruleTextCopy.insert(sub2->getPos(), temp);
705 }
706 if (sub1 != NULL) {
707 sub1->toString(temp);
708 ruleTextCopy.insert(sub1->getPos(), temp);
709 }
710
711 result.append(ruleTextCopy);
712
713 // and finally, top the whole thing off with a semicolon and
714 // return the result
715 result.append(gSemicolon);
716 }
717
718 //-----------------------------------------------------------------------
719 // formatting
720 //-----------------------------------------------------------------------
721
722 /**
723 * Formats the number, and inserts the resulting text into
724 * toInsertInto.
725 * @param number The number being formatted
726 * @param toInsertInto The string where the resultant text should
727 * be inserted
728 * @param pos The position in toInsertInto where the resultant text
729 * should be inserted
730 */
731 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const732 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
733 {
734 // first, insert the rule's rule text into toInsertInto at the
735 // specified position, then insert the results of the substitutions
736 // into the right places in toInsertInto (notice we do the
737 // substitutions in reverse order so that the offsets don't get
738 // messed up)
739 int32_t pluralRuleStart = ruleText.length();
740 int32_t lengthOffset = 0;
741 if (!rulePatternFormat) {
742 toInsertInto.insert(pos, ruleText);
743 }
744 else {
745 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
746 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
747 int initialLength = toInsertInto.length();
748 if (pluralRuleEnd < ruleText.length() - 1) {
749 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
750 }
751 toInsertInto.insert(pos,
752 rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
753 if (pluralRuleStart > 0) {
754 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
755 }
756 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
757 }
758
759 if (sub2 != NULL) {
760 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
761 }
762 if (sub1 != NULL) {
763 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
764 }
765 }
766
767 /**
768 * Formats the number, and inserts the resulting text into
769 * toInsertInto.
770 * @param number The number being formatted
771 * @param toInsertInto The string where the resultant text should
772 * be inserted
773 * @param pos The position in toInsertInto where the resultant text
774 * should be inserted
775 */
776 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const777 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
778 {
779 // first, insert the rule's rule text into toInsertInto at the
780 // specified position, then insert the results of the substitutions
781 // into the right places in toInsertInto
782 // [again, we have two copies of this routine that do the same thing
783 // so that we don't sacrifice precision in a long by casting it
784 // to a double]
785 int32_t pluralRuleStart = ruleText.length();
786 int32_t lengthOffset = 0;
787 if (!rulePatternFormat) {
788 toInsertInto.insert(pos, ruleText);
789 }
790 else {
791 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
792 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
793 int initialLength = toInsertInto.length();
794 if (pluralRuleEnd < ruleText.length() - 1) {
795 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
796 }
797 double pluralVal = number;
798 if (0 <= pluralVal && pluralVal < 1) {
799 // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
800 // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
801 pluralVal = uprv_round(pluralVal * uprv_pow(radix, exponent));
802 }
803 else {
804 pluralVal = pluralVal / uprv_pow(radix, exponent);
805 }
806 toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
807 if (pluralRuleStart > 0) {
808 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
809 }
810 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
811 }
812
813 if (sub2 != NULL) {
814 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
815 }
816 if (sub1 != NULL) {
817 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
818 }
819 }
820
821 /**
822 * Used by the owning rule set to determine whether to invoke the
823 * rollback rule (i.e., whether this rule or the one that precedes
824 * it in the rule set's list should be used to format the number)
825 * @param The number being formatted
826 * @return True if the rule set should use the rule that precedes
827 * this one in its list; false if it should use this rule
828 */
829 UBool
shouldRollBack(double number) const830 NFRule::shouldRollBack(double number) const
831 {
832 // we roll back if the rule contains a modulus substitution,
833 // the number being formatted is an even multiple of the rule's
834 // divisor, and the rule's base value is NOT an even multiple
835 // of its divisor
836 // In other words, if the original description had
837 // 100: << hundred[ >>];
838 // that expands into
839 // 100: << hundred;
840 // 101: << hundred >>;
841 // internally. But when we're formatting 200, if we use the rule
842 // at 101, which would normally apply, we get "two hundred zero".
843 // To prevent this, we roll back and use the rule at 100 instead.
844 // This is the logic that makes this happen: the rule at 101 has
845 // a modulus substitution, its base value isn't an even multiple
846 // of 100, and the value we're trying to format _is_ an even
847 // multiple of 100. This is called the "rollback rule."
848 if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
849 int64_t re = util64_pow(radix, exponent);
850 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
851 }
852 return FALSE;
853 }
854
855 //-----------------------------------------------------------------------
856 // parsing
857 //-----------------------------------------------------------------------
858
859 /**
860 * Attempts to parse the string with this rule.
861 * @param text The string being parsed
862 * @param parsePosition On entry, the value is ignored and assumed to
863 * be 0. On exit, this has been updated with the position of the first
864 * character not consumed by matching the text against this rule
865 * (if this rule doesn't match the text at all, the parse position
866 * if left unchanged (presumably at 0) and the function returns
867 * new Long(0)).
868 * @param isFractionRule True if this rule is contained within a
869 * fraction rule set. This is only used if the rule has no
870 * substitutions.
871 * @return If this rule matched the text, this is the rule's base value
872 * combined appropriately with the results of parsing the substitutions.
873 * If nothing matched, this is new Long(0) and the parse position is
874 * left unchanged. The result will be an instance of Long if the
875 * result is an integer and Double otherwise. The result is never null.
876 */
877 #ifdef RBNF_DEBUG
878 #include <stdio.h>
879
dumpUS(FILE * f,const UnicodeString & us)880 static void dumpUS(FILE* f, const UnicodeString& us) {
881 int len = us.length();
882 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
883 if (buf != NULL) {
884 us.extract(0, len, buf);
885 buf[len] = 0;
886 fprintf(f, "%s", buf);
887 uprv_free(buf); //delete[] buf;
888 }
889 }
890 #endif
891 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,Formattable & resVal) const892 NFRule::doParse(const UnicodeString& text,
893 ParsePosition& parsePosition,
894 UBool isFractionRule,
895 double upperBound,
896 Formattable& resVal) const
897 {
898 // internally we operate on a copy of the string being parsed
899 // (because we're going to change it) and use our own ParsePosition
900 ParsePosition pp;
901 UnicodeString workText(text);
902
903 int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : ruleText.length();
904 int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : ruleText.length();
905
906 // check to see whether the text before the first substitution
907 // matches the text at the beginning of the string being
908 // parsed. If it does, strip that off the front of workText;
909 // otherwise, dump out with a mismatch
910 UnicodeString prefix;
911 prefix.setTo(ruleText, 0, sub1Pos);
912
913 #ifdef RBNF_DEBUG
914 fprintf(stderr, "doParse %p ", this);
915 {
916 UnicodeString rt;
917 _appendRuleText(rt);
918 dumpUS(stderr, rt);
919 }
920
921 fprintf(stderr, " text: '");
922 dumpUS(stderr, text);
923 fprintf(stderr, "' prefix: '");
924 dumpUS(stderr, prefix);
925 #endif
926 stripPrefix(workText, prefix, pp);
927 int32_t prefixLength = text.length() - workText.length();
928
929 #ifdef RBNF_DEBUG
930 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
931 #endif
932
933 if (pp.getIndex() == 0 && sub1Pos != 0) {
934 // commented out because ParsePosition doesn't have error index in 1.1.x
935 // restored for ICU4C port
936 parsePosition.setErrorIndex(pp.getErrorIndex());
937 resVal.setLong(0);
938 return TRUE;
939 }
940 if (baseValue == kInfinityRule) {
941 // If you match this, don't try to perform any calculations on it.
942 parsePosition.setIndex(pp.getIndex());
943 resVal.setDouble(uprv_getInfinity());
944 return TRUE;
945 }
946 if (baseValue == kNaNRule) {
947 // If you match this, don't try to perform any calculations on it.
948 parsePosition.setIndex(pp.getIndex());
949 resVal.setDouble(uprv_getNaN());
950 return TRUE;
951 }
952
953 // this is the fun part. The basic guts of the rule-matching
954 // logic is matchToDelimiter(), which is called twice. The first
955 // time it searches the input string for the rule text BETWEEN
956 // the substitutions and tries to match the intervening text
957 // in the input string with the first substitution. If that
958 // succeeds, it then calls it again, this time to look for the
959 // rule text after the second substitution and to match the
960 // intervening input text against the second substitution.
961 //
962 // For example, say we have a rule that looks like this:
963 // first << middle >> last;
964 // and input text that looks like this:
965 // first one middle two last
966 // First we use stripPrefix() to match "first " in both places and
967 // strip it off the front, leaving
968 // one middle two last
969 // Then we use matchToDelimiter() to match " middle " and try to
970 // match "one" against a substitution. If it's successful, we now
971 // have
972 // two last
973 // We use matchToDelimiter() a second time to match " last" and
974 // try to match "two" against a substitution. If "two" matches
975 // the substitution, we have a successful parse.
976 //
977 // Since it's possible in many cases to find multiple instances
978 // of each of these pieces of rule text in the input string,
979 // we need to try all the possible combinations of these
980 // locations. This prevents us from prematurely declaring a mismatch,
981 // and makes sure we match as much input text as we can.
982 int highWaterMark = 0;
983 double result = 0;
984 int start = 0;
985 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
986
987 UnicodeString temp;
988 do {
989 // our partial parse result starts out as this rule's base
990 // value. If it finds a successful match, matchToDelimiter()
991 // will compose this in some way with what it gets back from
992 // the substitution, giving us a new partial parse result
993 pp.setIndex(0);
994
995 temp.setTo(ruleText, sub1Pos, sub2Pos - sub1Pos);
996 double partialResult = matchToDelimiter(workText, start, tempBaseValue,
997 temp, pp, sub1,
998 upperBound);
999
1000 // if we got a successful match (or were trying to match a
1001 // null substitution), pp is now pointing at the first unmatched
1002 // character. Take note of that, and try matchToDelimiter()
1003 // on the input text again
1004 if (pp.getIndex() != 0 || sub1 == NULL) {
1005 start = pp.getIndex();
1006
1007 UnicodeString workText2;
1008 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1009 ParsePosition pp2;
1010
1011 // the second matchToDelimiter() will compose our previous
1012 // partial result with whatever it gets back from its
1013 // substitution if there's a successful match, giving us
1014 // a real result
1015 temp.setTo(ruleText, sub2Pos, ruleText.length() - sub2Pos);
1016 partialResult = matchToDelimiter(workText2, 0, partialResult,
1017 temp, pp2, sub2,
1018 upperBound);
1019
1020 // if we got a successful match on this second
1021 // matchToDelimiter() call, update the high-water mark
1022 // and result (if necessary)
1023 if (pp2.getIndex() != 0 || sub2 == NULL) {
1024 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1025 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1026 result = partialResult;
1027 }
1028 }
1029 else {
1030 // commented out because ParsePosition doesn't have error index in 1.1.x
1031 // restored for ICU4C port
1032 int32_t temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1033 if (temp> parsePosition.getErrorIndex()) {
1034 parsePosition.setErrorIndex(temp);
1035 }
1036 }
1037 }
1038 else {
1039 // commented out because ParsePosition doesn't have error index in 1.1.x
1040 // restored for ICU4C port
1041 int32_t temp = sub1Pos + pp.getErrorIndex();
1042 if (temp > parsePosition.getErrorIndex()) {
1043 parsePosition.setErrorIndex(temp);
1044 }
1045 }
1046 // keep trying to match things until the outer matchToDelimiter()
1047 // call fails to make a match (each time, it picks up where it
1048 // left off the previous time)
1049 } while (sub1Pos != sub2Pos
1050 && pp.getIndex() > 0
1051 && pp.getIndex() < workText.length()
1052 && pp.getIndex() != start);
1053
1054 // update the caller's ParsePosition with our high-water mark
1055 // (i.e., it now points at the first character this function
1056 // didn't match-- the ParsePosition is therefore unchanged if
1057 // we didn't match anything)
1058 parsePosition.setIndex(highWaterMark);
1059 // commented out because ParsePosition doesn't have error index in 1.1.x
1060 // restored for ICU4C port
1061 if (highWaterMark > 0) {
1062 parsePosition.setErrorIndex(0);
1063 }
1064
1065 // this is a hack for one unusual condition: Normally, whether this
1066 // rule belong to a fraction rule set or not is handled by its
1067 // substitutions. But if that rule HAS NO substitutions, then
1068 // we have to account for it here. By definition, if the matching
1069 // rule in a fraction rule set has no substitutions, its numerator
1070 // is 1, and so the result is the reciprocal of its base value.
1071 if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
1072 result = 1 / result;
1073 }
1074
1075 resVal.setDouble(result);
1076 return TRUE; // ??? do we need to worry if it is a long or a double?
1077 }
1078
1079 /**
1080 * This function is used by parse() to match the text being parsed
1081 * against a possible prefix string. This function
1082 * matches characters from the beginning of the string being parsed
1083 * to characters from the prospective prefix. If they match, pp is
1084 * updated to the first character not matched, and the result is
1085 * the unparsed part of the string. If they don't match, the whole
1086 * string is returned, and pp is left unchanged.
1087 * @param text The string being parsed
1088 * @param prefix The text to match against
1089 * @param pp On entry, ignored and assumed to be 0. On exit, points
1090 * to the first unmatched character (assuming the whole prefix matched),
1091 * or is unchanged (if the whole prefix didn't match).
1092 * @return If things match, this is the unparsed part of "text";
1093 * if they didn't match, this is "text".
1094 */
1095 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const1096 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1097 {
1098 // if the prefix text is empty, dump out without doing anything
1099 if (prefix.length() != 0) {
1100 UErrorCode status = U_ZERO_ERROR;
1101 // use prefixLength() to match the beginning of
1102 // "text" against "prefix". This function returns the
1103 // number of characters from "text" that matched (or 0 if
1104 // we didn't match the whole prefix)
1105 int32_t pfl = prefixLength(text, prefix, status);
1106 if (U_FAILURE(status)) { // Memory allocation error.
1107 return;
1108 }
1109 if (pfl != 0) {
1110 // if we got a successful match, update the parse position
1111 // and strip the prefix off of "text"
1112 pp.setIndex(pp.getIndex() + pfl);
1113 text.remove(0, pfl);
1114 }
1115 }
1116 }
1117
1118 /**
1119 * Used by parse() to match a substitution and any following text.
1120 * "text" is searched for instances of "delimiter". For each instance
1121 * of delimiter, the intervening text is tested to see whether it
1122 * matches the substitution. The longest match wins.
1123 * @param text The string being parsed
1124 * @param startPos The position in "text" where we should start looking
1125 * for "delimiter".
1126 * @param baseValue A partial parse result (often the rule's base value),
1127 * which is combined with the result from matching the substitution
1128 * @param delimiter The string to search "text" for.
1129 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
1130 * on exit this will point to the first unmatched character.
1131 * @param sub If we find "delimiter" in "text", this substitution is used
1132 * to match the text between the beginning of the string and the
1133 * position of "delimiter." (If "delimiter" is the empty string, then
1134 * this function just matches against this substitution and updates
1135 * everything accordingly.)
1136 * @param upperBound When matching the substitution, it will only
1137 * consider rules with base values lower than this value.
1138 * @return If there's a match, this is the result of composing
1139 * baseValue with the result of matching the substitution. Otherwise,
1140 * this is new Long(0). It's never null. If the result is an integer,
1141 * this will be an instance of Long; otherwise, it's an instance of
1142 * Double.
1143 *
1144 * !!! note {dlf} in point of fact, in the java code the caller always converts
1145 * the result to a double, so we might as well return one.
1146 */
1147 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,double upperBound) const1148 NFRule::matchToDelimiter(const UnicodeString& text,
1149 int32_t startPos,
1150 double _baseValue,
1151 const UnicodeString& delimiter,
1152 ParsePosition& pp,
1153 const NFSubstitution* sub,
1154 double upperBound) const
1155 {
1156 UErrorCode status = U_ZERO_ERROR;
1157 // if "delimiter" contains real (i.e., non-ignorable) text, search
1158 // it for "delimiter" beginning at "start". If that succeeds, then
1159 // use "sub"'s doParse() method to match the text before the
1160 // instance of "delimiter" we just found.
1161 if (!allIgnorable(delimiter, status)) {
1162 if (U_FAILURE(status)) { //Memory allocation error.
1163 return 0;
1164 }
1165 ParsePosition tempPP;
1166 Formattable result;
1167
1168 // use findText() to search for "delimiter". It returns a two-
1169 // element array: element 0 is the position of the match, and
1170 // element 1 is the number of characters that matched
1171 // "delimiter".
1172 int32_t dLen;
1173 int32_t dPos = findText(text, delimiter, startPos, &dLen);
1174
1175 // if findText() succeeded, isolate the text preceding the
1176 // match, and use "sub" to match that text
1177 while (dPos >= 0) {
1178 UnicodeString subText;
1179 subText.setTo(text, 0, dPos);
1180 if (subText.length() > 0) {
1181 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1182 #if UCONFIG_NO_COLLATION
1183 FALSE,
1184 #else
1185 formatter->isLenient(),
1186 #endif
1187 result);
1188
1189 // if the substitution could match all the text up to
1190 // where we found "delimiter", then this function has
1191 // a successful match. Bump the caller's parse position
1192 // to point to the first character after the text
1193 // that matches "delimiter", and return the result
1194 // we got from parsing the substitution.
1195 if (success && tempPP.getIndex() == dPos) {
1196 pp.setIndex(dPos + dLen);
1197 return result.getDouble();
1198 }
1199 else {
1200 // commented out because ParsePosition doesn't have error index in 1.1.x
1201 // restored for ICU4C port
1202 if (tempPP.getErrorIndex() > 0) {
1203 pp.setErrorIndex(tempPP.getErrorIndex());
1204 } else {
1205 pp.setErrorIndex(tempPP.getIndex());
1206 }
1207 }
1208 }
1209
1210 // if we didn't match the substitution, search for another
1211 // copy of "delimiter" in "text" and repeat the loop if
1212 // we find it
1213 tempPP.setIndex(0);
1214 dPos = findText(text, delimiter, dPos + dLen, &dLen);
1215 }
1216 // if we make it here, this was an unsuccessful match, and we
1217 // leave pp unchanged and return 0
1218 pp.setIndex(0);
1219 return 0;
1220
1221 // if "delimiter" is empty, or consists only of ignorable characters
1222 // (i.e., is semantically empty), thwe we obviously can't search
1223 // for "delimiter". Instead, just use "sub" to parse as much of
1224 // "text" as possible.
1225 }
1226 else if (sub == NULL) {
1227 return _baseValue;
1228 }
1229 else {
1230 ParsePosition tempPP;
1231 Formattable result;
1232
1233 // try to match the whole string against the substitution
1234 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1235 #if UCONFIG_NO_COLLATION
1236 FALSE,
1237 #else
1238 formatter->isLenient(),
1239 #endif
1240 result);
1241 if (success && (tempPP.getIndex() != 0)) {
1242 // if there's a successful match (or it's a null
1243 // substitution), update pp to point to the first
1244 // character we didn't match, and pass the result from
1245 // sub.doParse() on through to the caller
1246 pp.setIndex(tempPP.getIndex());
1247 return result.getDouble();
1248 }
1249 else {
1250 // commented out because ParsePosition doesn't have error index in 1.1.x
1251 // restored for ICU4C port
1252 pp.setErrorIndex(tempPP.getErrorIndex());
1253 }
1254
1255 // and if we get to here, then nothing matched, so we return
1256 // 0 and leave pp alone
1257 return 0;
1258 }
1259 }
1260
1261 /**
1262 * Used by stripPrefix() to match characters. If lenient parse mode
1263 * is off, this just calls startsWith(). If lenient parse mode is on,
1264 * this function uses CollationElementIterators to match characters in
1265 * the strings (only primary-order differences are significant in
1266 * determining whether there's a match).
1267 * @param str The string being tested
1268 * @param prefix The text we're hoping to see at the beginning
1269 * of "str"
1270 * @return If "prefix" is found at the beginning of "str", this
1271 * is the number of characters in "str" that were matched (this
1272 * isn't necessarily the same as the length of "prefix" when matching
1273 * text with a collator). If there's no match, this is 0.
1274 */
1275 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1276 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1277 {
1278 // if we're looking for an empty prefix, it obviously matches
1279 // zero characters. Just go ahead and return 0.
1280 if (prefix.length() == 0) {
1281 return 0;
1282 }
1283
1284 #if !UCONFIG_NO_COLLATION
1285 // go through all this grief if we're in lenient-parse mode
1286 if (formatter->isLenient()) {
1287 // get the formatter's collator and use it to create two
1288 // collation element iterators, one over the target string
1289 // and another over the prefix (right now, we'll throw an
1290 // exception if the collator we get back from the formatter
1291 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1292 // the CollationElementIterator protocol. Hopefully, this
1293 // will change someday.)
1294 const RuleBasedCollator* collator = formatter->getCollator();
1295 if (collator == NULL) {
1296 status = U_MEMORY_ALLOCATION_ERROR;
1297 return 0;
1298 }
1299 LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1300 LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1301 // Check for memory allocation error.
1302 if (strIter.isNull() || prefixIter.isNull()) {
1303 status = U_MEMORY_ALLOCATION_ERROR;
1304 return 0;
1305 }
1306
1307 UErrorCode err = U_ZERO_ERROR;
1308
1309 // The original code was problematic. Consider this match:
1310 // prefix = "fifty-"
1311 // string = " fifty-7"
1312 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1313 // in the string. Unfortunately, we were getting a match, and then computing where
1314 // the match terminated by rematching the string. The rematch code was using as an
1315 // initial guess the substring of string between 0 and prefix.length. Because of
1316 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1317 // the position before the hyphen in the string. Recursing down, we then parsed the
1318 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1319 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1320 //
1321 // We have newer APIs now, so we can use calls on the iterator to determine what we
1322 // matched up to. If we terminate because we hit the last element in the string,
1323 // our match terminates at this length. If we terminate because we hit the last element
1324 // in the target, our match terminates at one before the element iterator position.
1325
1326 // match collation elements between the strings
1327 int32_t oStr = strIter->next(err);
1328 int32_t oPrefix = prefixIter->next(err);
1329
1330 while (oPrefix != CollationElementIterator::NULLORDER) {
1331 // skip over ignorable characters in the target string
1332 while (CollationElementIterator::primaryOrder(oStr) == 0
1333 && oStr != CollationElementIterator::NULLORDER) {
1334 oStr = strIter->next(err);
1335 }
1336
1337 // skip over ignorable characters in the prefix
1338 while (CollationElementIterator::primaryOrder(oPrefix) == 0
1339 && oPrefix != CollationElementIterator::NULLORDER) {
1340 oPrefix = prefixIter->next(err);
1341 }
1342
1343 // dlf: move this above following test, if we consume the
1344 // entire target, aren't we ok even if the source was also
1345 // entirely consumed?
1346
1347 // if skipping over ignorables brought to the end of
1348 // the prefix, we DID match: drop out of the loop
1349 if (oPrefix == CollationElementIterator::NULLORDER) {
1350 break;
1351 }
1352
1353 // if skipping over ignorables brought us to the end
1354 // of the target string, we didn't match and return 0
1355 if (oStr == CollationElementIterator::NULLORDER) {
1356 return 0;
1357 }
1358
1359 // match collation elements from the two strings
1360 // (considering only primary differences). If we
1361 // get a mismatch, dump out and return 0
1362 if (CollationElementIterator::primaryOrder(oStr)
1363 != CollationElementIterator::primaryOrder(oPrefix)) {
1364 return 0;
1365
1366 // otherwise, advance to the next character in each string
1367 // and loop (we drop out of the loop when we exhaust
1368 // collation elements in the prefix)
1369 } else {
1370 oStr = strIter->next(err);
1371 oPrefix = prefixIter->next(err);
1372 }
1373 }
1374
1375 int32_t result = strIter->getOffset();
1376 if (oStr != CollationElementIterator::NULLORDER) {
1377 --result; // back over character that we don't want to consume;
1378 }
1379
1380 #ifdef RBNF_DEBUG
1381 fprintf(stderr, "prefix length: %d\n", result);
1382 #endif
1383 return result;
1384 #if 0
1385 //----------------------------------------------------------------
1386 // JDK 1.2-specific API call
1387 // return strIter.getOffset();
1388 //----------------------------------------------------------------
1389 // JDK 1.1 HACK (take out for 1.2-specific code)
1390
1391 // if we make it to here, we have a successful match. Now we
1392 // have to find out HOW MANY characters from the target string
1393 // matched the prefix (there isn't necessarily a one-to-one
1394 // mapping between collation elements and characters).
1395 // In JDK 1.2, there's a simple getOffset() call we can use.
1396 // In JDK 1.1, on the other hand, we have to go through some
1397 // ugly contortions. First, use the collator to compare the
1398 // same number of characters from the prefix and target string.
1399 // If they're equal, we're done.
1400 collator->setStrength(Collator::PRIMARY);
1401 if (str.length() >= prefix.length()) {
1402 UnicodeString temp;
1403 temp.setTo(str, 0, prefix.length());
1404 if (collator->equals(temp, prefix)) {
1405 #ifdef RBNF_DEBUG
1406 fprintf(stderr, "returning: %d\n", prefix.length());
1407 #endif
1408 return prefix.length();
1409 }
1410 }
1411
1412 // if they're not equal, then we have to compare successively
1413 // larger and larger substrings of the target string until we
1414 // get to one that matches the prefix. At that point, we know
1415 // how many characters matched the prefix, and we can return.
1416 int32_t p = 1;
1417 while (p <= str.length()) {
1418 UnicodeString temp;
1419 temp.setTo(str, 0, p);
1420 if (collator->equals(temp, prefix)) {
1421 return p;
1422 } else {
1423 ++p;
1424 }
1425 }
1426
1427 // SHOULD NEVER GET HERE!!!
1428 return 0;
1429 //----------------------------------------------------------------
1430 #endif
1431
1432 // If lenient parsing is turned off, forget all that crap above.
1433 // Just use String.startsWith() and be done with it.
1434 } else
1435 #endif
1436 {
1437 if (str.startsWith(prefix)) {
1438 return prefix.length();
1439 } else {
1440 return 0;
1441 }
1442 }
1443 }
1444
1445 /**
1446 * Searches a string for another string. If lenient parsing is off,
1447 * this just calls indexOf(). If lenient parsing is on, this function
1448 * uses CollationElementIterator to match characters, and only
1449 * primary-order differences are significant in determining whether
1450 * there's a match.
1451 * @param str The string to search
1452 * @param key The string to search "str" for
1453 * @param startingAt The index into "str" where the search is to
1454 * begin
1455 * @return A two-element array of ints. Element 0 is the position
1456 * of the match, or -1 if there was no match. Element 1 is the
1457 * number of characters in "str" that matched (which isn't necessarily
1458 * the same as the length of "key")
1459 */
1460 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1461 NFRule::findText(const UnicodeString& str,
1462 const UnicodeString& key,
1463 int32_t startingAt,
1464 int32_t* length) const
1465 {
1466 if (rulePatternFormat) {
1467 Formattable result;
1468 FieldPosition position(UNUM_INTEGER_FIELD);
1469 position.setBeginIndex(startingAt);
1470 rulePatternFormat->parseType(str, this, result, position);
1471 int start = position.getBeginIndex();
1472 if (start >= 0) {
1473 int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
1474 int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1475 int32_t matchLen = position.getEndIndex() - start;
1476 UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart));
1477 UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix));
1478 if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1479 && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1480 {
1481 *length = matchLen + prefix.length() + suffix.length();
1482 return start - prefix.length();
1483 }
1484 }
1485 *length = 0;
1486 return -1;
1487 }
1488 if (!formatter->isLenient()) {
1489 // if lenient parsing is turned off, this is easy: just call
1490 // String.indexOf() and we're done
1491 *length = key.length();
1492 return str.indexOf(key, startingAt);
1493 }
1494 else {
1495 // but if lenient parsing is turned ON, we've got some work
1496 // ahead of us
1497 return findTextLenient(str, key, startingAt, length);
1498 }
1499 }
1500
1501 int32_t
findTextLenient(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1502 NFRule::findTextLenient(const UnicodeString& str,
1503 const UnicodeString& key,
1504 int32_t startingAt,
1505 int32_t* length) const
1506 {
1507 //----------------------------------------------------------------
1508 // JDK 1.1 HACK (take out of 1.2-specific code)
1509
1510 // in JDK 1.2, CollationElementIterator provides us with an
1511 // API to map between character offsets and collation elements
1512 // and we can do this by marching through the string comparing
1513 // collation elements. We can't do that in JDK 1.1. Insted,
1514 // we have to go through this horrible slow mess:
1515 int32_t p = startingAt;
1516 int32_t keyLen = 0;
1517
1518 // basically just isolate smaller and smaller substrings of
1519 // the target string (each running to the end of the string,
1520 // and with the first one running from startingAt to the end)
1521 // and then use prefixLength() to see if the search key is at
1522 // the beginning of each substring. This is excruciatingly
1523 // slow, but it will locate the key and tell use how long the
1524 // matching text was.
1525 UnicodeString temp;
1526 UErrorCode status = U_ZERO_ERROR;
1527 while (p < str.length() && keyLen == 0) {
1528 temp.setTo(str, p, str.length() - p);
1529 keyLen = prefixLength(temp, key, status);
1530 if (U_FAILURE(status)) {
1531 break;
1532 }
1533 if (keyLen != 0) {
1534 *length = keyLen;
1535 return p;
1536 }
1537 ++p;
1538 }
1539 // if we make it to here, we didn't find it. Return -1 for the
1540 // location. The length should be ignored, but set it to 0,
1541 // which should be "safe"
1542 *length = 0;
1543 return -1;
1544 }
1545
1546 /**
1547 * Checks to see whether a string consists entirely of ignorable
1548 * characters.
1549 * @param str The string to test.
1550 * @return true if the string is empty of consists entirely of
1551 * characters that the number formatter's collator says are
1552 * ignorable at the primary-order level. false otherwise.
1553 */
1554 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1555 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1556 {
1557 // if the string is empty, we can just return true
1558 if (str.length() == 0) {
1559 return TRUE;
1560 }
1561
1562 #if !UCONFIG_NO_COLLATION
1563 // if lenient parsing is turned on, walk through the string with
1564 // a collation element iterator and make sure each collation
1565 // element is 0 (ignorable) at the primary level
1566 if (formatter->isLenient()) {
1567 const RuleBasedCollator* collator = formatter->getCollator();
1568 if (collator == NULL) {
1569 status = U_MEMORY_ALLOCATION_ERROR;
1570 return FALSE;
1571 }
1572 LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1573
1574 // Memory allocation error check.
1575 if (iter.isNull()) {
1576 status = U_MEMORY_ALLOCATION_ERROR;
1577 return FALSE;
1578 }
1579
1580 UErrorCode err = U_ZERO_ERROR;
1581 int32_t o = iter->next(err);
1582 while (o != CollationElementIterator::NULLORDER
1583 && CollationElementIterator::primaryOrder(o) == 0) {
1584 o = iter->next(err);
1585 }
1586
1587 return o == CollationElementIterator::NULLORDER;
1588 }
1589 #endif
1590
1591 // if lenient parsing is turned off, there is no such thing as
1592 // an ignorable character: return true only if the string is empty
1593 return FALSE;
1594 }
1595
1596 void
setDecimalFormatSymbols(const DecimalFormatSymbols & newSymbols,UErrorCode & status)1597 NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1598 if (sub1 != NULL) {
1599 sub1->setDecimalFormatSymbols(newSymbols, status);
1600 }
1601 if (sub2 != NULL) {
1602 sub2->setDecimalFormatSymbols(newSymbols, status);
1603 }
1604 }
1605
1606 U_NAMESPACE_END
1607
1608 /* U_HAVE_RBNF */
1609 #endif
1610