1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/PredIteratorCache.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 using namespace llvm;
49
50 #define DEBUG_TYPE "lcssa"
51
52 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
53
54 /// Return true if the specified block is in the list.
isExitBlock(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & ExitBlocks)55 static bool isExitBlock(BasicBlock *BB,
56 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
57 return find(ExitBlocks, BB) != ExitBlocks.end();
58 }
59
60 /// Given an instruction in the loop, check to see if it has any uses that are
61 /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the
62 /// uses.
processInstruction(Loop & L,Instruction & Inst,DominatorTree & DT,const SmallVectorImpl<BasicBlock * > & ExitBlocks,PredIteratorCache & PredCache,LoopInfo * LI)63 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
64 const SmallVectorImpl<BasicBlock *> &ExitBlocks,
65 PredIteratorCache &PredCache, LoopInfo *LI) {
66 SmallVector<Use *, 16> UsesToRewrite;
67
68 // Tokens cannot be used in PHI nodes, so we skip over them.
69 // We can run into tokens which are live out of a loop with catchswitch
70 // instructions in Windows EH if the catchswitch has one catchpad which
71 // is inside the loop and another which is not.
72 if (Inst.getType()->isTokenTy())
73 return false;
74
75 BasicBlock *InstBB = Inst.getParent();
76
77 for (Use &U : Inst.uses()) {
78 Instruction *User = cast<Instruction>(U.getUser());
79 BasicBlock *UserBB = User->getParent();
80 if (PHINode *PN = dyn_cast<PHINode>(User))
81 UserBB = PN->getIncomingBlock(U);
82
83 if (InstBB != UserBB && !L.contains(UserBB))
84 UsesToRewrite.push_back(&U);
85 }
86
87 // If there are no uses outside the loop, exit with no change.
88 if (UsesToRewrite.empty())
89 return false;
90
91 ++NumLCSSA; // We are applying the transformation
92
93 // Invoke instructions are special in that their result value is not available
94 // along their unwind edge. The code below tests to see whether DomBB
95 // dominates the value, so adjust DomBB to the normal destination block,
96 // which is effectively where the value is first usable.
97 BasicBlock *DomBB = Inst.getParent();
98 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
99 DomBB = Inv->getNormalDest();
100
101 DomTreeNode *DomNode = DT.getNode(DomBB);
102
103 SmallVector<PHINode *, 16> AddedPHIs;
104 SmallVector<PHINode *, 8> PostProcessPHIs;
105
106 SSAUpdater SSAUpdate;
107 SSAUpdate.Initialize(Inst.getType(), Inst.getName());
108
109 // Insert the LCSSA phi's into all of the exit blocks dominated by the
110 // value, and add them to the Phi's map.
111 for (BasicBlock *ExitBB : ExitBlocks) {
112 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
113 continue;
114
115 // If we already inserted something for this BB, don't reprocess it.
116 if (SSAUpdate.HasValueForBlock(ExitBB))
117 continue;
118
119 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
120 Inst.getName() + ".lcssa", &ExitBB->front());
121
122 // Add inputs from inside the loop for this PHI.
123 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
124 PN->addIncoming(&Inst, Pred);
125
126 // If the exit block has a predecessor not within the loop, arrange for
127 // the incoming value use corresponding to that predecessor to be
128 // rewritten in terms of a different LCSSA PHI.
129 if (!L.contains(Pred))
130 UsesToRewrite.push_back(
131 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
132 PN->getNumIncomingValues() - 1)));
133 }
134
135 AddedPHIs.push_back(PN);
136
137 // Remember that this phi makes the value alive in this block.
138 SSAUpdate.AddAvailableValue(ExitBB, PN);
139
140 // LoopSimplify might fail to simplify some loops (e.g. when indirect
141 // branches are involved). In such situations, it might happen that an exit
142 // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
143 // PHIs in such an exit block, we are also inserting PHIs into L2's header.
144 // This could break LCSSA form for L2 because these inserted PHIs can also
145 // have uses outside of L2. Remember all PHIs in such situation as to
146 // revisit than later on. FIXME: Remove this if indirectbr support into
147 // LoopSimplify gets improved.
148 if (auto *OtherLoop = LI->getLoopFor(ExitBB))
149 if (!L.contains(OtherLoop))
150 PostProcessPHIs.push_back(PN);
151 }
152
153 // Rewrite all uses outside the loop in terms of the new PHIs we just
154 // inserted.
155 for (Use *UseToRewrite : UsesToRewrite) {
156 // If this use is in an exit block, rewrite to use the newly inserted PHI.
157 // This is required for correctness because SSAUpdate doesn't handle uses in
158 // the same block. It assumes the PHI we inserted is at the end of the
159 // block.
160 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
161 BasicBlock *UserBB = User->getParent();
162 if (PHINode *PN = dyn_cast<PHINode>(User))
163 UserBB = PN->getIncomingBlock(*UseToRewrite);
164
165 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
166 // Tell the VHs that the uses changed. This updates SCEV's caches.
167 if (UseToRewrite->get()->hasValueHandle())
168 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
169 UseToRewrite->set(&UserBB->front());
170 continue;
171 }
172
173 // Otherwise, do full PHI insertion.
174 SSAUpdate.RewriteUse(*UseToRewrite);
175 }
176
177 // Post process PHI instructions that were inserted into another disjoint loop
178 // and update their exits properly.
179 for (auto *I : PostProcessPHIs) {
180 if (I->use_empty())
181 continue;
182
183 BasicBlock *PHIBB = I->getParent();
184 Loop *OtherLoop = LI->getLoopFor(PHIBB);
185 SmallVector<BasicBlock *, 8> EBs;
186 OtherLoop->getExitBlocks(EBs);
187 if (EBs.empty())
188 continue;
189
190 // Recurse and re-process each PHI instruction. FIXME: we should really
191 // convert this entire thing to a worklist approach where we process a
192 // vector of instructions...
193 processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
194 }
195
196 // Remove PHI nodes that did not have any uses rewritten.
197 for (PHINode *PN : AddedPHIs)
198 if (PN->use_empty())
199 PN->eraseFromParent();
200
201 return true;
202 }
203
204 /// Return true if the specified block dominates at least
205 /// one of the blocks in the specified list.
206 static bool
blockDominatesAnExit(BasicBlock * BB,DominatorTree & DT,const SmallVectorImpl<BasicBlock * > & ExitBlocks)207 blockDominatesAnExit(BasicBlock *BB,
208 DominatorTree &DT,
209 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
210 DomTreeNode *DomNode = DT.getNode(BB);
211 return llvm::any_of(ExitBlocks, [&](BasicBlock * EB) {
212 return DT.dominates(DomNode, DT.getNode(EB));
213 });
214 }
215
formLCSSA(Loop & L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE)216 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
217 ScalarEvolution *SE) {
218 bool Changed = false;
219
220 // Get the set of exiting blocks.
221 SmallVector<BasicBlock *, 8> ExitBlocks;
222 L.getExitBlocks(ExitBlocks);
223
224 if (ExitBlocks.empty())
225 return false;
226
227 PredIteratorCache PredCache;
228
229 // Look at all the instructions in the loop, checking to see if they have uses
230 // outside the loop. If so, rewrite those uses.
231 for (BasicBlock *BB : L.blocks()) {
232 // For large loops, avoid use-scanning by using dominance information: In
233 // particular, if a block does not dominate any of the loop exits, then none
234 // of the values defined in the block could be used outside the loop.
235 if (!blockDominatesAnExit(BB, DT, ExitBlocks))
236 continue;
237
238 for (Instruction &I : *BB) {
239 // Reject two common cases fast: instructions with no uses (like stores)
240 // and instructions with one use that is in the same block as this.
241 if (I.use_empty() ||
242 (I.hasOneUse() && I.user_back()->getParent() == BB &&
243 !isa<PHINode>(I.user_back())))
244 continue;
245
246 Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI);
247 }
248 }
249
250 // If we modified the code, remove any caches about the loop from SCEV to
251 // avoid dangling entries.
252 // FIXME: This is a big hammer, can we clear the cache more selectively?
253 if (SE && Changed)
254 SE->forgetLoop(&L);
255
256 assert(L.isLCSSAForm(DT));
257
258 return Changed;
259 }
260
261 /// Process a loop nest depth first.
formLCSSARecursively(Loop & L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE)262 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
263 ScalarEvolution *SE) {
264 bool Changed = false;
265
266 // Recurse depth-first through inner loops.
267 for (Loop *SubLoop : L.getSubLoops())
268 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
269
270 Changed |= formLCSSA(L, DT, LI, SE);
271 return Changed;
272 }
273
274 /// Process all loops in the function, inner-most out.
formLCSSAOnAllLoops(LoopInfo * LI,DominatorTree & DT,ScalarEvolution * SE)275 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
276 ScalarEvolution *SE) {
277 bool Changed = false;
278 for (auto &L : *LI)
279 Changed |= formLCSSARecursively(*L, DT, LI, SE);
280 return Changed;
281 }
282
283 namespace {
284 struct LCSSAWrapperPass : public FunctionPass {
285 static char ID; // Pass identification, replacement for typeid
LCSSAWrapperPass__anon99ed11e50211::LCSSAWrapperPass286 LCSSAWrapperPass() : FunctionPass(ID) {
287 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
288 }
289
290 // Cached analysis information for the current function.
291 DominatorTree *DT;
292 LoopInfo *LI;
293 ScalarEvolution *SE;
294
295 bool runOnFunction(Function &F) override;
296
297 /// This transformation requires natural loop information & requires that
298 /// loop preheaders be inserted into the CFG. It maintains both of these,
299 /// as well as the CFG. It also requires dominator information.
getAnalysisUsage__anon99ed11e50211::LCSSAWrapperPass300 void getAnalysisUsage(AnalysisUsage &AU) const override {
301 AU.setPreservesCFG();
302
303 AU.addRequired<DominatorTreeWrapperPass>();
304 AU.addRequired<LoopInfoWrapperPass>();
305 AU.addPreservedID(LoopSimplifyID);
306 AU.addPreserved<AAResultsWrapperPass>();
307 AU.addPreserved<BasicAAWrapperPass>();
308 AU.addPreserved<GlobalsAAWrapperPass>();
309 AU.addPreserved<ScalarEvolutionWrapperPass>();
310 AU.addPreserved<SCEVAAWrapperPass>();
311 }
312 };
313 }
314
315 char LCSSAWrapperPass::ID = 0;
316 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
317 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)318 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
319 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
320 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
321 false, false)
322
323 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
324 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
325
326 /// Transform \p F into loop-closed SSA form.
runOnFunction(Function & F)327 bool LCSSAWrapperPass::runOnFunction(Function &F) {
328 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
329 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
330 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
331 SE = SEWP ? &SEWP->getSE() : nullptr;
332
333 return formLCSSAOnAllLoops(LI, *DT, SE);
334 }
335
run(Function & F,AnalysisManager<Function> & AM)336 PreservedAnalyses LCSSAPass::run(Function &F, AnalysisManager<Function> &AM) {
337 auto &LI = AM.getResult<LoopAnalysis>(F);
338 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
339 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
340 if (!formLCSSAOnAllLoops(&LI, DT, SE))
341 return PreservedAnalyses::all();
342
343 // FIXME: This should also 'preserve the CFG'.
344 PreservedAnalyses PA;
345 PA.preserve<BasicAA>();
346 PA.preserve<GlobalsAA>();
347 PA.preserve<SCEVAA>();
348 PA.preserve<ScalarEvolutionAnalysis>();
349 return PA;
350 }
351