1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "large_object_space.h"
18
19 #include <sys/mman.h>
20
21 #include <memory>
22
23 #include "base/logging.h"
24 #include "base/memory_tool.h"
25 #include "base/mutex-inl.h"
26 #include "base/stl_util.h"
27 #include "gc/accounting/heap_bitmap-inl.h"
28 #include "gc/accounting/space_bitmap-inl.h"
29 #include "gc/heap.h"
30 #include "image.h"
31 #include "os.h"
32 #include "scoped_thread_state_change-inl.h"
33 #include "space-inl.h"
34 #include "thread-current-inl.h"
35
36 namespace art {
37 namespace gc {
38 namespace space {
39
40 class MemoryToolLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
41 public:
MemoryToolLargeObjectMapSpace(const std::string & name)42 explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
43 }
44
~MemoryToolLargeObjectMapSpace()45 ~MemoryToolLargeObjectMapSpace() OVERRIDE {
46 // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't
47 // freed since they are held live by the class linker.
48 MutexLock mu(Thread::Current(), lock_);
49 for (auto& m : large_objects_) {
50 delete m.second.mem_map;
51 }
52 }
53
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)54 mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
55 size_t* usable_size, size_t* bytes_tl_bulk_allocated)
56 OVERRIDE {
57 mirror::Object* obj =
58 LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated,
59 usable_size, bytes_tl_bulk_allocated);
60 mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
61 reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes);
62 MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes);
63 MEMORY_TOOL_MAKE_NOACCESS(
64 reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
65 kMemoryToolRedZoneBytes);
66 if (usable_size != nullptr) {
67 *usable_size = num_bytes; // Since we have redzones, shrink the usable size.
68 }
69 return object_without_rdz;
70 }
71
AllocationSize(mirror::Object * obj,size_t * usable_size)72 size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
73 return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
74 }
75
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const76 bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE {
77 return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
78 }
79
Free(Thread * self,mirror::Object * obj)80 size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
81 mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
82 MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
83 return LargeObjectMapSpace::Free(self, object_with_rdz);
84 }
85
Contains(const mirror::Object * obj) const86 bool Contains(const mirror::Object* obj) const OVERRIDE {
87 return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
88 }
89
90 private:
ObjectWithRedzone(const mirror::Object * obj)91 static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
92 return reinterpret_cast<const mirror::Object*>(
93 reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
94 }
95
ObjectWithRedzone(mirror::Object * obj)96 static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
97 return reinterpret_cast<mirror::Object*>(
98 reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
99 }
100
101 static constexpr size_t kMemoryToolRedZoneBytes = kPageSize;
102 };
103
SwapBitmaps()104 void LargeObjectSpace::SwapBitmaps() {
105 live_bitmap_.swap(mark_bitmap_);
106 // Swap names to get more descriptive diagnostics.
107 std::string temp_name = live_bitmap_->GetName();
108 live_bitmap_->SetName(mark_bitmap_->GetName());
109 mark_bitmap_->SetName(temp_name);
110 }
111
LargeObjectSpace(const std::string & name,uint8_t * begin,uint8_t * end)112 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end)
113 : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
114 num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
115 total_objects_allocated_(0), begin_(begin), end_(end) {
116 }
117
118
CopyLiveToMarked()119 void LargeObjectSpace::CopyLiveToMarked() {
120 mark_bitmap_->CopyFrom(live_bitmap_.get());
121 }
122
LargeObjectMapSpace(const std::string & name)123 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
124 : LargeObjectSpace(name, nullptr, nullptr),
125 lock_("large object map space lock", kAllocSpaceLock) {}
126
Create(const std::string & name)127 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
128 if (Runtime::Current()->IsRunningOnMemoryTool()) {
129 return new MemoryToolLargeObjectMapSpace(name);
130 } else {
131 return new LargeObjectMapSpace(name);
132 }
133 }
134
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)135 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
136 size_t* bytes_allocated, size_t* usable_size,
137 size_t* bytes_tl_bulk_allocated) {
138 std::string error_msg;
139 MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes,
140 PROT_READ | PROT_WRITE, true, false, &error_msg);
141 if (UNLIKELY(mem_map == nullptr)) {
142 LOG(WARNING) << "Large object allocation failed: " << error_msg;
143 return nullptr;
144 }
145 mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
146 MutexLock mu(self, lock_);
147 large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */});
148 const size_t allocation_size = mem_map->BaseSize();
149 DCHECK(bytes_allocated != nullptr);
150
151 if (begin_ == nullptr || begin_ > reinterpret_cast<uint8_t*>(obj)) {
152 begin_ = reinterpret_cast<uint8_t*>(obj);
153 }
154 end_ = std::max(end_, reinterpret_cast<uint8_t*>(obj) + allocation_size);
155
156 *bytes_allocated = allocation_size;
157 if (usable_size != nullptr) {
158 *usable_size = allocation_size;
159 }
160 DCHECK(bytes_tl_bulk_allocated != nullptr);
161 *bytes_tl_bulk_allocated = allocation_size;
162 num_bytes_allocated_ += allocation_size;
163 total_bytes_allocated_ += allocation_size;
164 ++num_objects_allocated_;
165 ++total_objects_allocated_;
166 return obj;
167 }
168
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const169 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
170 MutexLock mu(self, lock_);
171 auto it = large_objects_.find(obj);
172 CHECK(it != large_objects_.end());
173 return it->second.is_zygote;
174 }
175
SetAllLargeObjectsAsZygoteObjects(Thread * self)176 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
177 MutexLock mu(self, lock_);
178 for (auto& pair : large_objects_) {
179 pair.second.is_zygote = true;
180 }
181 }
182
Free(Thread * self,mirror::Object * ptr)183 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
184 MutexLock mu(self, lock_);
185 auto it = large_objects_.find(ptr);
186 if (UNLIKELY(it == large_objects_.end())) {
187 ScopedObjectAccess soa(self);
188 Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(FATAL_WITHOUT_ABORT));
189 LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
190 }
191 MemMap* mem_map = it->second.mem_map;
192 const size_t map_size = mem_map->BaseSize();
193 DCHECK_GE(num_bytes_allocated_, map_size);
194 size_t allocation_size = map_size;
195 num_bytes_allocated_ -= allocation_size;
196 --num_objects_allocated_;
197 delete mem_map;
198 large_objects_.erase(it);
199 return allocation_size;
200 }
201
AllocationSize(mirror::Object * obj,size_t * usable_size)202 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
203 MutexLock mu(Thread::Current(), lock_);
204 auto it = large_objects_.find(obj);
205 CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
206 size_t alloc_size = it->second.mem_map->BaseSize();
207 if (usable_size != nullptr) {
208 *usable_size = alloc_size;
209 }
210 return alloc_size;
211 }
212
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)213 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
214 size_t total = 0;
215 for (size_t i = 0; i < num_ptrs; ++i) {
216 if (kDebugSpaces) {
217 CHECK(Contains(ptrs[i]));
218 }
219 total += Free(self, ptrs[i]);
220 }
221 return total;
222 }
223
Walk(DlMallocSpace::WalkCallback callback,void * arg)224 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
225 MutexLock mu(Thread::Current(), lock_);
226 for (auto& pair : large_objects_) {
227 MemMap* mem_map = pair.second.mem_map;
228 callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
229 callback(nullptr, nullptr, 0, arg);
230 }
231 }
232
Contains(const mirror::Object * obj) const233 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
234 Thread* self = Thread::Current();
235 if (lock_.IsExclusiveHeld(self)) {
236 // We hold lock_ so do the check.
237 return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
238 } else {
239 MutexLock mu(self, lock_);
240 return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
241 }
242 }
243
244 // Keeps track of allocation sizes + whether or not the previous allocation is free.
245 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
246 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
247 // block preceding it. Implemented in such a way that we can also find the iterator for any
248 // allocation info pointer.
249 class AllocationInfo {
250 public:
AllocationInfo()251 AllocationInfo() : prev_free_(0), alloc_size_(0) {
252 }
253 // Return the number of pages that the allocation info covers.
AlignSize() const254 size_t AlignSize() const {
255 return alloc_size_ & kFlagsMask;
256 }
257 // Returns the allocation size in bytes.
ByteSize() const258 size_t ByteSize() const {
259 return AlignSize() * FreeListSpace::kAlignment;
260 }
261 // Updates the allocation size and whether or not it is free.
SetByteSize(size_t size,bool free)262 void SetByteSize(size_t size, bool free) {
263 DCHECK_EQ(size & ~kFlagsMask, 0u);
264 DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
265 alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
266 }
267 // Returns true if the block is free.
IsFree() const268 bool IsFree() const {
269 return (alloc_size_ & kFlagFree) != 0;
270 }
271 // Return true if the large object is a zygote object.
IsZygoteObject() const272 bool IsZygoteObject() const {
273 return (alloc_size_ & kFlagZygote) != 0;
274 }
275 // Change the object to be a zygote object.
SetZygoteObject()276 void SetZygoteObject() {
277 alloc_size_ |= kFlagZygote;
278 }
279 // Return true if this is a zygote large object.
280 // Finds and returns the next non free allocation info after ourself.
GetNextInfo()281 AllocationInfo* GetNextInfo() {
282 return this + AlignSize();
283 }
GetNextInfo() const284 const AllocationInfo* GetNextInfo() const {
285 return this + AlignSize();
286 }
287 // Returns the previous free allocation info by using the prev_free_ member to figure out
288 // where it is. This is only used for coalescing so we only need to be able to do it if the
289 // previous allocation info is free.
GetPrevFreeInfo()290 AllocationInfo* GetPrevFreeInfo() {
291 DCHECK_NE(prev_free_, 0U);
292 return this - prev_free_;
293 }
294 // Returns the address of the object associated with this allocation info.
GetObjectAddress()295 mirror::Object* GetObjectAddress() {
296 return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
297 }
298 // Return how many kAlignment units there are before the free block.
GetPrevFree() const299 size_t GetPrevFree() const {
300 return prev_free_;
301 }
302 // Returns how many free bytes there is before the block.
GetPrevFreeBytes() const303 size_t GetPrevFreeBytes() const {
304 return GetPrevFree() * FreeListSpace::kAlignment;
305 }
306 // Update the size of the free block prior to the allocation.
SetPrevFreeBytes(size_t bytes)307 void SetPrevFreeBytes(size_t bytes) {
308 DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
309 prev_free_ = bytes / FreeListSpace::kAlignment;
310 }
311
312 private:
313 static constexpr uint32_t kFlagFree = 0x80000000; // If block is free.
314 static constexpr uint32_t kFlagZygote = 0x40000000; // If the large object is a zygote object.
315 static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote); // Combined flags for masking.
316 // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
317 // allocation before us is not free.
318 // These variables are undefined in the middle of allocations / free blocks.
319 uint32_t prev_free_;
320 // Allocation size of this object in kAlignment as the unit.
321 uint32_t alloc_size_;
322 };
323
GetSlotIndexForAllocationInfo(const AllocationInfo * info) const324 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
325 DCHECK_GE(info, allocation_info_);
326 DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
327 return info - allocation_info_;
328 }
329
GetAllocationInfoForAddress(uintptr_t address)330 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
331 return &allocation_info_[GetSlotIndexForAddress(address)];
332 }
333
GetAllocationInfoForAddress(uintptr_t address) const334 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
335 return &allocation_info_[GetSlotIndexForAddress(address)];
336 }
337
operator ()(const AllocationInfo * a,const AllocationInfo * b) const338 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
339 const AllocationInfo* b) const {
340 if (a->GetPrevFree() < b->GetPrevFree()) return true;
341 if (a->GetPrevFree() > b->GetPrevFree()) return false;
342 if (a->AlignSize() < b->AlignSize()) return true;
343 if (a->AlignSize() > b->AlignSize()) return false;
344 return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
345 }
346
Create(const std::string & name,uint8_t * requested_begin,size_t size)347 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) {
348 CHECK_EQ(size % kAlignment, 0U);
349 std::string error_msg;
350 MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
351 PROT_READ | PROT_WRITE, true, false, &error_msg);
352 CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg;
353 return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
354 }
355
FreeListSpace(const std::string & name,MemMap * mem_map,uint8_t * begin,uint8_t * end)356 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end)
357 : LargeObjectSpace(name, begin, end),
358 mem_map_(mem_map),
359 lock_("free list space lock", kAllocSpaceLock) {
360 const size_t space_capacity = end - begin;
361 free_end_ = space_capacity;
362 CHECK_ALIGNED(space_capacity, kAlignment);
363 const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
364 std::string error_msg;
365 allocation_info_map_.reset(
366 MemMap::MapAnonymous("large object free list space allocation info map",
367 nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
368 false, false, &error_msg));
369 CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
370 << error_msg;
371 allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
372 }
373
~FreeListSpace()374 FreeListSpace::~FreeListSpace() {}
375
Walk(DlMallocSpace::WalkCallback callback,void * arg)376 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
377 MutexLock mu(Thread::Current(), lock_);
378 const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
379 AllocationInfo* cur_info = &allocation_info_[0];
380 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
381 while (cur_info < end_info) {
382 if (!cur_info->IsFree()) {
383 size_t alloc_size = cur_info->ByteSize();
384 uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
385 uint8_t* byte_end = byte_start + alloc_size;
386 callback(byte_start, byte_end, alloc_size, arg);
387 callback(nullptr, nullptr, 0, arg);
388 }
389 cur_info = cur_info->GetNextInfo();
390 }
391 CHECK_EQ(cur_info, end_info);
392 }
393
RemoveFreePrev(AllocationInfo * info)394 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
395 CHECK_GT(info->GetPrevFree(), 0U);
396 auto it = free_blocks_.lower_bound(info);
397 CHECK(it != free_blocks_.end());
398 CHECK_EQ(*it, info);
399 free_blocks_.erase(it);
400 }
401
Free(Thread * self,mirror::Object * obj)402 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
403 MutexLock mu(self, lock_);
404 DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
405 << reinterpret_cast<void*>(End());
406 DCHECK_ALIGNED(obj, kAlignment);
407 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
408 DCHECK(!info->IsFree());
409 const size_t allocation_size = info->ByteSize();
410 DCHECK_GT(allocation_size, 0U);
411 DCHECK_ALIGNED(allocation_size, kAlignment);
412 info->SetByteSize(allocation_size, true); // Mark as free.
413 // Look at the next chunk.
414 AllocationInfo* next_info = info->GetNextInfo();
415 // Calculate the start of the end free block.
416 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
417 size_t prev_free_bytes = info->GetPrevFreeBytes();
418 size_t new_free_size = allocation_size;
419 if (prev_free_bytes != 0) {
420 // Coalesce with previous free chunk.
421 new_free_size += prev_free_bytes;
422 RemoveFreePrev(info);
423 info = info->GetPrevFreeInfo();
424 // The previous allocation info must not be free since we are supposed to always coalesce.
425 DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
426 }
427 uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
428 if (next_addr >= free_end_start) {
429 // Easy case, the next chunk is the end free region.
430 CHECK_EQ(next_addr, free_end_start);
431 free_end_ += new_free_size;
432 } else {
433 AllocationInfo* new_free_info;
434 if (next_info->IsFree()) {
435 AllocationInfo* next_next_info = next_info->GetNextInfo();
436 // Next next info can't be free since we always coalesce.
437 DCHECK(!next_next_info->IsFree());
438 DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment);
439 new_free_info = next_next_info;
440 new_free_size += next_next_info->GetPrevFreeBytes();
441 RemoveFreePrev(next_next_info);
442 } else {
443 new_free_info = next_info;
444 }
445 new_free_info->SetPrevFreeBytes(new_free_size);
446 free_blocks_.insert(new_free_info);
447 info->SetByteSize(new_free_size, true);
448 DCHECK_EQ(info->GetNextInfo(), new_free_info);
449 }
450 --num_objects_allocated_;
451 DCHECK_LE(allocation_size, num_bytes_allocated_);
452 num_bytes_allocated_ -= allocation_size;
453 madvise(obj, allocation_size, MADV_DONTNEED);
454 if (kIsDebugBuild) {
455 // Can't disallow reads since we use them to find next chunks during coalescing.
456 mprotect(obj, allocation_size, PROT_READ);
457 }
458 return allocation_size;
459 }
460
AllocationSize(mirror::Object * obj,size_t * usable_size)461 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
462 DCHECK(Contains(obj));
463 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
464 DCHECK(!info->IsFree());
465 size_t alloc_size = info->ByteSize();
466 if (usable_size != nullptr) {
467 *usable_size = alloc_size;
468 }
469 return alloc_size;
470 }
471
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)472 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
473 size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
474 MutexLock mu(self, lock_);
475 const size_t allocation_size = RoundUp(num_bytes, kAlignment);
476 AllocationInfo temp_info;
477 temp_info.SetPrevFreeBytes(allocation_size);
478 temp_info.SetByteSize(0, false);
479 AllocationInfo* new_info;
480 // Find the smallest chunk at least num_bytes in size.
481 auto it = free_blocks_.lower_bound(&temp_info);
482 if (it != free_blocks_.end()) {
483 AllocationInfo* info = *it;
484 free_blocks_.erase(it);
485 // Fit our object in the previous allocation info free space.
486 new_info = info->GetPrevFreeInfo();
487 // Remove the newly allocated block from the info and update the prev_free_.
488 info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
489 if (info->GetPrevFreeBytes() > 0) {
490 AllocationInfo* new_free = info - info->GetPrevFree();
491 new_free->SetPrevFreeBytes(0);
492 new_free->SetByteSize(info->GetPrevFreeBytes(), true);
493 // If there is remaining space, insert back into the free set.
494 free_blocks_.insert(info);
495 }
496 } else {
497 // Try to steal some memory from the free space at the end of the space.
498 if (LIKELY(free_end_ >= allocation_size)) {
499 // Fit our object at the start of the end free block.
500 new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
501 free_end_ -= allocation_size;
502 } else {
503 return nullptr;
504 }
505 }
506 DCHECK(bytes_allocated != nullptr);
507 *bytes_allocated = allocation_size;
508 if (usable_size != nullptr) {
509 *usable_size = allocation_size;
510 }
511 DCHECK(bytes_tl_bulk_allocated != nullptr);
512 *bytes_tl_bulk_allocated = allocation_size;
513 // Need to do these inside of the lock.
514 ++num_objects_allocated_;
515 ++total_objects_allocated_;
516 num_bytes_allocated_ += allocation_size;
517 total_bytes_allocated_ += allocation_size;
518 mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
519 // We always put our object at the start of the free block, there cannot be another free block
520 // before it.
521 if (kIsDebugBuild) {
522 mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
523 }
524 new_info->SetPrevFreeBytes(0);
525 new_info->SetByteSize(allocation_size, false);
526 return obj;
527 }
528
Dump(std::ostream & os) const529 void FreeListSpace::Dump(std::ostream& os) const {
530 MutexLock mu(Thread::Current(), lock_);
531 os << GetName() << " -"
532 << " begin: " << reinterpret_cast<void*>(Begin())
533 << " end: " << reinterpret_cast<void*>(End()) << "\n";
534 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
535 const AllocationInfo* cur_info =
536 GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
537 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
538 while (cur_info < end_info) {
539 size_t size = cur_info->ByteSize();
540 uintptr_t address = GetAddressForAllocationInfo(cur_info);
541 if (cur_info->IsFree()) {
542 os << "Free block at address: " << reinterpret_cast<const void*>(address)
543 << " of length " << size << " bytes\n";
544 } else {
545 os << "Large object at address: " << reinterpret_cast<const void*>(address)
546 << " of length " << size << " bytes\n";
547 }
548 cur_info = cur_info->GetNextInfo();
549 }
550 if (free_end_) {
551 os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
552 << " of length " << free_end_ << " bytes\n";
553 }
554 }
555
IsZygoteLargeObject(Thread * self ATTRIBUTE_UNUSED,mirror::Object * obj) const556 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
557 const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
558 DCHECK(info != nullptr);
559 return info->IsZygoteObject();
560 }
561
SetAllLargeObjectsAsZygoteObjects(Thread * self)562 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
563 MutexLock mu(self, lock_);
564 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
565 for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
566 *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
567 cur_info = cur_info->GetNextInfo()) {
568 if (!cur_info->IsFree()) {
569 cur_info->SetZygoteObject();
570 }
571 }
572 }
573
SweepCallback(size_t num_ptrs,mirror::Object ** ptrs,void * arg)574 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
575 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
576 space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
577 Thread* self = context->self;
578 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
579 // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
580 // the bitmaps as an optimization.
581 if (!context->swap_bitmaps) {
582 accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
583 for (size_t i = 0; i < num_ptrs; ++i) {
584 bitmap->Clear(ptrs[i]);
585 }
586 }
587 context->freed.objects += num_ptrs;
588 context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
589 }
590
Sweep(bool swap_bitmaps)591 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
592 if (Begin() >= End()) {
593 return collector::ObjectBytePair(0, 0);
594 }
595 accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
596 accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
597 if (swap_bitmaps) {
598 std::swap(live_bitmap, mark_bitmap);
599 }
600 AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
601 std::pair<uint8_t*, uint8_t*> range = GetBeginEndAtomic();
602 accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
603 reinterpret_cast<uintptr_t>(range.first),
604 reinterpret_cast<uintptr_t>(range.second),
605 SweepCallback,
606 &scc);
607 return scc.freed;
608 }
609
LogFragmentationAllocFailure(std::ostream &,size_t)610 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
611 size_t /*failed_alloc_bytes*/) {
612 UNIMPLEMENTED(FATAL);
613 }
614
GetBeginEndAtomic() const615 std::pair<uint8_t*, uint8_t*> LargeObjectMapSpace::GetBeginEndAtomic() const {
616 MutexLock mu(Thread::Current(), lock_);
617 return std::make_pair(Begin(), End());
618 }
619
GetBeginEndAtomic() const620 std::pair<uint8_t*, uint8_t*> FreeListSpace::GetBeginEndAtomic() const {
621 MutexLock mu(Thread::Current(), lock_);
622 return std::make_pair(Begin(), End());
623 }
624
625 } // namespace space
626 } // namespace gc
627 } // namespace art
628