• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4  * Copyright © 2010 Intel Corporation
5  * Copyright © 2011 Bryan Cain
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24  * DEALINGS IN THE SOFTWARE.
25  */
26 
27 /**
28  * \file glsl_to_tgsi.cpp
29  *
30  * Translate GLSL IR to TGSI.
31  */
32 
33 #include "st_glsl_to_tgsi.h"
34 
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38 
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45 
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "st_format.h"
55 #include "st_glsl_types.h"
56 #include "st_nir.h"
57 
58 #include <algorithm>
59 
60 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) |    \
61                            (1 << PROGRAM_CONSTANT) |     \
62                            (1 << PROGRAM_UNIFORM))
63 
64 #define MAX_GLSL_TEXTURE_OFFSET 4
65 
66 class st_src_reg;
67 class st_dst_reg;
68 
69 static int swizzle_for_size(int size);
70 
swizzle_for_type(const glsl_type * type,int component=0)71 static int swizzle_for_type(const glsl_type *type, int component = 0)
72 {
73    unsigned num_elements = 4;
74 
75    if (type) {
76       type = type->without_array();
77       if (type->is_scalar() || type->is_vector() || type->is_matrix())
78          num_elements = type->vector_elements;
79    }
80 
81    int swizzle = swizzle_for_size(num_elements);
82    assert(num_elements + component <= 4);
83 
84    swizzle += component * MAKE_SWIZZLE4(1, 1, 1, 1);
85    return swizzle;
86 }
87 
88 /**
89  * This struct is a corresponding struct to TGSI ureg_src.
90  */
91 class st_src_reg {
92 public:
st_src_reg(gl_register_file file,int index,const glsl_type * type,int component=0,unsigned array_id=0)93    st_src_reg(gl_register_file file, int index, const glsl_type *type,
94               int component = 0, unsigned array_id = 0)
95    {
96       assert(file != PROGRAM_ARRAY || array_id != 0);
97       this->file = file;
98       this->index = index;
99       this->swizzle = swizzle_for_type(type, component);
100       this->negate = 0;
101       this->abs = 0;
102       this->index2D = 0;
103       this->type = type ? type->base_type : GLSL_TYPE_ERROR;
104       this->reladdr = NULL;
105       this->reladdr2 = NULL;
106       this->has_index2 = false;
107       this->double_reg2 = false;
108       this->array_id = array_id;
109       this->is_double_vertex_input = false;
110    }
111 
st_src_reg(gl_register_file file,int index,enum glsl_base_type type)112    st_src_reg(gl_register_file file, int index, enum glsl_base_type type)
113    {
114       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
115       this->type = type;
116       this->file = file;
117       this->index = index;
118       this->index2D = 0;
119       this->swizzle = SWIZZLE_XYZW;
120       this->negate = 0;
121       this->abs = 0;
122       this->reladdr = NULL;
123       this->reladdr2 = NULL;
124       this->has_index2 = false;
125       this->double_reg2 = false;
126       this->array_id = 0;
127       this->is_double_vertex_input = false;
128    }
129 
st_src_reg(gl_register_file file,int index,enum glsl_base_type type,int index2D)130    st_src_reg(gl_register_file file, int index, enum glsl_base_type type, int index2D)
131    {
132       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
133       this->type = type;
134       this->file = file;
135       this->index = index;
136       this->index2D = index2D;
137       this->swizzle = SWIZZLE_XYZW;
138       this->negate = 0;
139       this->abs = 0;
140       this->reladdr = NULL;
141       this->reladdr2 = NULL;
142       this->has_index2 = false;
143       this->double_reg2 = false;
144       this->array_id = 0;
145       this->is_double_vertex_input = false;
146    }
147 
st_src_reg()148    st_src_reg()
149    {
150       this->type = GLSL_TYPE_ERROR;
151       this->file = PROGRAM_UNDEFINED;
152       this->index = 0;
153       this->index2D = 0;
154       this->swizzle = 0;
155       this->negate = 0;
156       this->abs = 0;
157       this->reladdr = NULL;
158       this->reladdr2 = NULL;
159       this->has_index2 = false;
160       this->double_reg2 = false;
161       this->array_id = 0;
162       this->is_double_vertex_input = false;
163    }
164 
165    explicit st_src_reg(st_dst_reg reg);
166 
167    int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
168    int16_t index2D;
169    uint16_t swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
170    int negate:4; /**< NEGATE_XYZW mask from mesa */
171    unsigned abs:1;
172    enum glsl_base_type type:4; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
173    unsigned has_index2:1;
174    gl_register_file file:5; /**< PROGRAM_* from Mesa */
175    /*
176     * Is this the second half of a double register pair?
177     * currently used for input mapping only.
178     */
179    unsigned double_reg2:1;
180    unsigned is_double_vertex_input:1;
181    unsigned array_id:10;
182 
183    /** Register index should be offset by the integer in this reg. */
184    st_src_reg *reladdr;
185    st_src_reg *reladdr2;
186 
get_abs()187    st_src_reg get_abs()
188    {
189       st_src_reg reg = *this;
190       reg.negate = 0;
191       reg.abs = 1;
192       return reg;
193    }
194 };
195 
196 class st_dst_reg {
197 public:
st_dst_reg(gl_register_file file,int writemask,enum glsl_base_type type,int index)198    st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type, int index)
199    {
200       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
201       this->file = file;
202       this->index = index;
203       this->index2D = 0;
204       this->writemask = writemask;
205       this->reladdr = NULL;
206       this->reladdr2 = NULL;
207       this->has_index2 = false;
208       this->type = type;
209       this->array_id = 0;
210    }
211 
st_dst_reg(gl_register_file file,int writemask,enum glsl_base_type type)212    st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type)
213    {
214       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
215       this->file = file;
216       this->index = 0;
217       this->index2D = 0;
218       this->writemask = writemask;
219       this->reladdr = NULL;
220       this->reladdr2 = NULL;
221       this->has_index2 = false;
222       this->type = type;
223       this->array_id = 0;
224    }
225 
st_dst_reg()226    st_dst_reg()
227    {
228       this->type = GLSL_TYPE_ERROR;
229       this->file = PROGRAM_UNDEFINED;
230       this->index = 0;
231       this->index2D = 0;
232       this->writemask = 0;
233       this->reladdr = NULL;
234       this->reladdr2 = NULL;
235       this->has_index2 = false;
236       this->array_id = 0;
237    }
238 
239    explicit st_dst_reg(st_src_reg reg);
240 
241    int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
242    int16_t index2D;
243    gl_register_file file:5; /**< PROGRAM_* from Mesa */
244    unsigned writemask:4; /**< Bitfield of WRITEMASK_[XYZW] */
245    enum glsl_base_type type:4; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
246    unsigned has_index2:1;
247    unsigned array_id:10;
248 
249    /** Register index should be offset by the integer in this reg. */
250    st_src_reg *reladdr;
251    st_src_reg *reladdr2;
252 };
253 
st_src_reg(st_dst_reg reg)254 st_src_reg::st_src_reg(st_dst_reg reg)
255 {
256    this->type = reg.type;
257    this->file = reg.file;
258    this->index = reg.index;
259    this->swizzle = SWIZZLE_XYZW;
260    this->negate = 0;
261    this->abs = 0;
262    this->reladdr = reg.reladdr;
263    this->index2D = reg.index2D;
264    this->reladdr2 = reg.reladdr2;
265    this->has_index2 = reg.has_index2;
266    this->double_reg2 = false;
267    this->array_id = reg.array_id;
268    this->is_double_vertex_input = false;
269 }
270 
st_dst_reg(st_src_reg reg)271 st_dst_reg::st_dst_reg(st_src_reg reg)
272 {
273    this->type = reg.type;
274    this->file = reg.file;
275    this->index = reg.index;
276    this->writemask = WRITEMASK_XYZW;
277    this->reladdr = reg.reladdr;
278    this->index2D = reg.index2D;
279    this->reladdr2 = reg.reladdr2;
280    this->has_index2 = reg.has_index2;
281    this->array_id = reg.array_id;
282 }
283 
284 class glsl_to_tgsi_instruction : public exec_node {
285 public:
286    DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
287 
288    st_dst_reg dst[2];
289    st_src_reg src[4];
290    st_src_reg resource; /**< sampler or buffer register */
291    st_src_reg *tex_offsets;
292 
293    /** Pointer to the ir source this tree came from for debugging */
294    ir_instruction *ir;
295 
296    unsigned op:8; /**< TGSI opcode */
297    unsigned saturate:1;
298    unsigned is_64bit_expanded:1;
299    unsigned sampler_base:5;
300    unsigned sampler_array_size:6; /**< 1-based size of sampler array, 1 if not array */
301    unsigned tex_target:4; /**< One of TEXTURE_*_INDEX */
302    glsl_base_type tex_type:4;
303    unsigned tex_shadow:1;
304    unsigned image_format:9;
305    unsigned tex_offset_num_offset:3;
306    unsigned dead_mask:4; /**< Used in dead code elimination */
307    unsigned buffer_access:3; /**< buffer access type */
308 
309    const struct tgsi_opcode_info *info;
310 };
311 
312 class variable_storage : public exec_node {
313 public:
variable_storage(ir_variable * var,gl_register_file file,int index,unsigned array_id=0)314    variable_storage(ir_variable *var, gl_register_file file, int index,
315                     unsigned array_id = 0)
316       : file(file), index(index), component(0), var(var), array_id(array_id)
317    {
318       assert(file != PROGRAM_ARRAY || array_id != 0);
319    }
320 
321    gl_register_file file;
322    int index;
323 
324    /* Explicit component location. This is given in terms of the GLSL-style
325     * swizzles where each double is a single component, i.e. for 64-bit types
326     * it can only be 0 or 1.
327     */
328    int component;
329    ir_variable *var; /* variable that maps to this, if any */
330    unsigned array_id;
331 };
332 
333 class immediate_storage : public exec_node {
334 public:
immediate_storage(gl_constant_value * values,int size32,int type)335    immediate_storage(gl_constant_value *values, int size32, int type)
336    {
337       memcpy(this->values, values, size32 * sizeof(gl_constant_value));
338       this->size32 = size32;
339       this->type = type;
340    }
341 
342    /* doubles are stored across 2 gl_constant_values */
343    gl_constant_value values[4];
344    int size32; /**< Number of 32-bit components (1-4) */
345    int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
346 };
347 
348 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
349 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
350 
351 struct inout_decl {
352    unsigned mesa_index;
353    unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
354    unsigned size;
355    unsigned interp_loc;
356    unsigned gs_out_streams;
357    enum glsl_interp_mode interp;
358    enum glsl_base_type base_type;
359    ubyte usage_mask; /* GLSL-style usage-mask,  i.e. single bit per double */
360 };
361 
362 static struct inout_decl *
find_inout_array(struct inout_decl * decls,unsigned count,unsigned array_id)363 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
364 {
365    assert(array_id != 0);
366 
367    for (unsigned i = 0; i < count; i++) {
368       struct inout_decl *decl = &decls[i];
369 
370       if (array_id == decl->array_id) {
371          return decl;
372       }
373    }
374 
375    return NULL;
376 }
377 
378 static enum glsl_base_type
find_array_type(struct inout_decl * decls,unsigned count,unsigned array_id)379 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
380 {
381    if (!array_id)
382       return GLSL_TYPE_ERROR;
383    struct inout_decl *decl = find_inout_array(decls, count, array_id);
384    if (decl)
385       return decl->base_type;
386    return GLSL_TYPE_ERROR;
387 }
388 
389 struct rename_reg_pair {
390    int old_reg;
391    int new_reg;
392 };
393 
394 struct glsl_to_tgsi_visitor : public ir_visitor {
395 public:
396    glsl_to_tgsi_visitor();
397    ~glsl_to_tgsi_visitor();
398 
399    struct gl_context *ctx;
400    struct gl_program *prog;
401    struct gl_shader_program *shader_program;
402    struct gl_linked_shader *shader;
403    struct gl_shader_compiler_options *options;
404 
405    int next_temp;
406 
407    unsigned *array_sizes;
408    unsigned max_num_arrays;
409    unsigned next_array;
410 
411    struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
412    unsigned num_inputs;
413    unsigned num_input_arrays;
414    struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
415    unsigned num_outputs;
416    unsigned num_output_arrays;
417 
418    int num_address_regs;
419    uint32_t samplers_used;
420    glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
421    int sampler_targets[PIPE_MAX_SAMPLERS];   /**< One of TGSI_TEXTURE_* */
422    int buffers_used;
423    int images_used;
424    int image_targets[PIPE_MAX_SHADER_IMAGES];
425    unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
426    bool indirect_addr_consts;
427    int wpos_transform_const;
428 
429    int glsl_version;
430    bool native_integers;
431    bool have_sqrt;
432    bool have_fma;
433    bool use_shared_memory;
434 
435    variable_storage *find_variable_storage(ir_variable *var);
436 
437    int add_constant(gl_register_file file, gl_constant_value values[8],
438                     int size, int datatype, uint16_t *swizzle_out);
439 
440    st_src_reg get_temp(const glsl_type *type);
441    void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
442 
443    st_src_reg st_src_reg_for_double(double val);
444    st_src_reg st_src_reg_for_float(float val);
445    st_src_reg st_src_reg_for_int(int val);
446    st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
447 
448    /**
449     * \name Visit methods
450     *
451     * As typical for the visitor pattern, there must be one \c visit method for
452     * each concrete subclass of \c ir_instruction.  Virtual base classes within
453     * the hierarchy should not have \c visit methods.
454     */
455    /*@{*/
456    virtual void visit(ir_variable *);
457    virtual void visit(ir_loop *);
458    virtual void visit(ir_loop_jump *);
459    virtual void visit(ir_function_signature *);
460    virtual void visit(ir_function *);
461    virtual void visit(ir_expression *);
462    virtual void visit(ir_swizzle *);
463    virtual void visit(ir_dereference_variable  *);
464    virtual void visit(ir_dereference_array *);
465    virtual void visit(ir_dereference_record *);
466    virtual void visit(ir_assignment *);
467    virtual void visit(ir_constant *);
468    virtual void visit(ir_call *);
469    virtual void visit(ir_return *);
470    virtual void visit(ir_discard *);
471    virtual void visit(ir_texture *);
472    virtual void visit(ir_if *);
473    virtual void visit(ir_emit_vertex *);
474    virtual void visit(ir_end_primitive *);
475    virtual void visit(ir_barrier *);
476    /*@}*/
477 
478    void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
479 
480    void visit_atomic_counter_intrinsic(ir_call *);
481    void visit_ssbo_intrinsic(ir_call *);
482    void visit_membar_intrinsic(ir_call *);
483    void visit_shared_intrinsic(ir_call *);
484    void visit_image_intrinsic(ir_call *);
485 
486    st_src_reg result;
487 
488    /** List of variable_storage */
489    exec_list variables;
490 
491    /** List of immediate_storage */
492    exec_list immediates;
493    unsigned num_immediates;
494 
495    /** List of glsl_to_tgsi_instruction */
496    exec_list instructions;
497 
498    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
499                                       st_dst_reg dst = undef_dst,
500                                       st_src_reg src0 = undef_src,
501                                       st_src_reg src1 = undef_src,
502                                       st_src_reg src2 = undef_src,
503                                       st_src_reg src3 = undef_src);
504 
505    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
506                                       st_dst_reg dst, st_dst_reg dst1,
507                                       st_src_reg src0 = undef_src,
508                                       st_src_reg src1 = undef_src,
509                                       st_src_reg src2 = undef_src,
510                                       st_src_reg src3 = undef_src);
511 
512    unsigned get_opcode(unsigned op,
513                     st_dst_reg dst,
514                     st_src_reg src0, st_src_reg src1);
515 
516    /**
517     * Emit the correct dot-product instruction for the type of arguments
518     */
519    glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
520                                      st_dst_reg dst,
521                                      st_src_reg src0,
522                                      st_src_reg src1,
523                                      unsigned elements);
524 
525    void emit_scalar(ir_instruction *ir, unsigned op,
526                     st_dst_reg dst, st_src_reg src0);
527 
528    void emit_scalar(ir_instruction *ir, unsigned op,
529                     st_dst_reg dst, st_src_reg src0, st_src_reg src1);
530 
531    void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
532 
533    void get_deref_offsets(ir_dereference *ir,
534                           unsigned *array_size,
535                           unsigned *base,
536                           uint16_t *index,
537                           st_src_reg *reladdr,
538                           bool opaque);
539   void calc_deref_offsets(ir_dereference *tail,
540                           unsigned *array_elements,
541                           uint16_t *index,
542                           st_src_reg *indirect,
543                           unsigned *location);
544    st_src_reg canonicalize_gather_offset(st_src_reg offset);
545 
546    bool try_emit_mad(ir_expression *ir,
547               int mul_operand);
548    bool try_emit_mad_for_and_not(ir_expression *ir,
549               int mul_operand);
550 
551    void emit_swz(ir_expression *ir);
552 
553    bool process_move_condition(ir_rvalue *ir);
554 
555    void simplify_cmp(void);
556 
557    void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
558    void get_first_temp_read(int *first_reads);
559    void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
560    void get_last_temp_write(int *last_writes);
561 
562    void copy_propagate(void);
563    int eliminate_dead_code(void);
564 
565    void merge_two_dsts(void);
566    void merge_registers(void);
567    void renumber_registers(void);
568 
569    void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
570                        st_dst_reg *l, st_src_reg *r,
571                        st_src_reg *cond, bool cond_swap);
572 
573    void *mem_ctx;
574 };
575 
576 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
577 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
578 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
579 
580 static void
581 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
582 
583 static void
fail_link(struct gl_shader_program * prog,const char * fmt,...)584 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
585 {
586    va_list args;
587    va_start(args, fmt);
588    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
589    va_end(args);
590 
591    prog->data->LinkStatus = GL_FALSE;
592 }
593 
594 static int
swizzle_for_size(int size)595 swizzle_for_size(int size)
596 {
597    static const int size_swizzles[4] = {
598       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
599       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
600       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
601       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
602    };
603 
604    assert((size >= 1) && (size <= 4));
605    return size_swizzles[size - 1];
606 }
607 
608 static bool
is_resource_instruction(unsigned opcode)609 is_resource_instruction(unsigned opcode)
610 {
611    switch (opcode) {
612    case TGSI_OPCODE_RESQ:
613    case TGSI_OPCODE_LOAD:
614    case TGSI_OPCODE_ATOMUADD:
615    case TGSI_OPCODE_ATOMXCHG:
616    case TGSI_OPCODE_ATOMCAS:
617    case TGSI_OPCODE_ATOMAND:
618    case TGSI_OPCODE_ATOMOR:
619    case TGSI_OPCODE_ATOMXOR:
620    case TGSI_OPCODE_ATOMUMIN:
621    case TGSI_OPCODE_ATOMUMAX:
622    case TGSI_OPCODE_ATOMIMIN:
623    case TGSI_OPCODE_ATOMIMAX:
624       return true;
625    default:
626       return false;
627    }
628 }
629 
630 static unsigned
num_inst_dst_regs(const glsl_to_tgsi_instruction * op)631 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
632 {
633    return op->info->num_dst;
634 }
635 
636 static unsigned
num_inst_src_regs(const glsl_to_tgsi_instruction * op)637 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
638 {
639    return op->info->is_tex || is_resource_instruction(op->op) ?
640       op->info->num_src - 1 : op->info->num_src;
641 }
642 
643 glsl_to_tgsi_instruction *
emit_asm(ir_instruction * ir,unsigned op,st_dst_reg dst,st_dst_reg dst1,st_src_reg src0,st_src_reg src1,st_src_reg src2,st_src_reg src3)644 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
645                                st_dst_reg dst, st_dst_reg dst1,
646                                st_src_reg src0, st_src_reg src1,
647                                st_src_reg src2, st_src_reg src3)
648 {
649    glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
650    int num_reladdr = 0, i, j;
651    bool dst_is_64bit[2];
652 
653    op = get_opcode(op, dst, src0, src1);
654 
655    /* If we have to do relative addressing, we want to load the ARL
656     * reg directly for one of the regs, and preload the other reladdr
657     * sources into temps.
658     */
659    num_reladdr += dst.reladdr != NULL || dst.reladdr2;
660    num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
661    num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
662    num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
663    num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
664    num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
665 
666    reladdr_to_temp(ir, &src3, &num_reladdr);
667    reladdr_to_temp(ir, &src2, &num_reladdr);
668    reladdr_to_temp(ir, &src1, &num_reladdr);
669    reladdr_to_temp(ir, &src0, &num_reladdr);
670 
671    if (dst.reladdr || dst.reladdr2) {
672       if (dst.reladdr)
673          emit_arl(ir, address_reg, *dst.reladdr);
674       if (dst.reladdr2)
675          emit_arl(ir, address_reg2, *dst.reladdr2);
676       num_reladdr--;
677    }
678    if (dst1.reladdr) {
679       emit_arl(ir, address_reg, *dst1.reladdr);
680       num_reladdr--;
681    }
682    assert(num_reladdr == 0);
683 
684    /* inst->op has only 8 bits. */
685    STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
686 
687    inst->op = op;
688    inst->info = tgsi_get_opcode_info(op);
689    inst->dst[0] = dst;
690    inst->dst[1] = dst1;
691    inst->src[0] = src0;
692    inst->src[1] = src1;
693    inst->src[2] = src2;
694    inst->src[3] = src3;
695    inst->is_64bit_expanded = false;
696    inst->ir = ir;
697    inst->dead_mask = 0;
698    inst->tex_offsets = NULL;
699    inst->tex_offset_num_offset = 0;
700    inst->saturate = 0;
701    inst->tex_shadow = 0;
702    /* default to float, for paths where this is not initialized
703     * (since 0==UINT which is likely wrong):
704     */
705    inst->tex_type = GLSL_TYPE_FLOAT;
706 
707    /* Update indirect addressing status used by TGSI */
708    if (dst.reladdr || dst.reladdr2) {
709       switch(dst.file) {
710       case PROGRAM_STATE_VAR:
711       case PROGRAM_CONSTANT:
712       case PROGRAM_UNIFORM:
713          this->indirect_addr_consts = true;
714          break;
715       case PROGRAM_IMMEDIATE:
716          assert(!"immediates should not have indirect addressing");
717          break;
718       default:
719          break;
720       }
721    }
722    else {
723       for (i = 0; i < 4; i++) {
724          if(inst->src[i].reladdr) {
725             switch(inst->src[i].file) {
726             case PROGRAM_STATE_VAR:
727             case PROGRAM_CONSTANT:
728             case PROGRAM_UNIFORM:
729                this->indirect_addr_consts = true;
730                break;
731             case PROGRAM_IMMEDIATE:
732                assert(!"immediates should not have indirect addressing");
733                break;
734             default:
735                break;
736             }
737          }
738       }
739    }
740 
741    /*
742     * This section contains the double processing.
743     * GLSL just represents doubles as single channel values,
744     * however most HW and TGSI represent doubles as pairs of register channels.
745     *
746     * so we have to fixup destination writemask/index and src swizzle/indexes.
747     * dest writemasks need to translate from single channel write mask
748     * to a dual-channel writemask, but also need to modify the index,
749     * if we are touching the Z,W fields in the pre-translated writemask.
750     *
751     * src channels have similiar index modifications along with swizzle
752     * changes to we pick the XY, ZW pairs from the correct index.
753     *
754     * GLSL [0].x -> TGSI [0].xy
755     * GLSL [0].y -> TGSI [0].zw
756     * GLSL [0].z -> TGSI [1].xy
757     * GLSL [0].w -> TGSI [1].zw
758     */
759    for (j = 0; j < 2; j++) {
760       dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
761       if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
762          enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
763          if (glsl_base_type_is_64bit(type))
764             dst_is_64bit[j] = true;
765       }
766    }
767 
768    if (dst_is_64bit[0] || dst_is_64bit[1] ||
769        glsl_base_type_is_64bit(inst->src[0].type)) {
770       glsl_to_tgsi_instruction *dinst = NULL;
771       int initial_src_swz[4], initial_src_idx[4];
772       int initial_dst_idx[2], initial_dst_writemask[2];
773       /* select the writemask for dst0 or dst1 */
774       unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
775 
776       /* copy out the writemask, index and swizzles for all src/dsts. */
777       for (j = 0; j < 2; j++) {
778          initial_dst_writemask[j] = inst->dst[j].writemask;
779          initial_dst_idx[j] = inst->dst[j].index;
780       }
781 
782       for (j = 0; j < 4; j++) {
783          initial_src_swz[j] = inst->src[j].swizzle;
784          initial_src_idx[j] = inst->src[j].index;
785       }
786 
787       /*
788        * scan all the components in the dst writemask
789        * generate an instruction for each of them if required.
790        */
791       st_src_reg addr;
792       while (writemask) {
793 
794          int i = u_bit_scan(&writemask);
795 
796          /* before emitting the instruction, see if we have to adjust load / store
797           * address */
798          if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
799              addr.file == PROGRAM_UNDEFINED) {
800             /* We have to advance the buffer address by 16 */
801             addr = get_temp(glsl_type::uint_type);
802             emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
803                      inst->src[0], st_src_reg_for_int(16));
804          }
805 
806          /* first time use previous instruction */
807          if (dinst == NULL) {
808             dinst = inst;
809          } else {
810             /* create a new instructions for subsequent attempts */
811             dinst = new(mem_ctx) glsl_to_tgsi_instruction();
812             *dinst = *inst;
813             dinst->next = NULL;
814             dinst->prev = NULL;
815          }
816          this->instructions.push_tail(dinst);
817          dinst->is_64bit_expanded = true;
818 
819          /* modify the destination if we are splitting */
820          for (j = 0; j < 2; j++) {
821             if (dst_is_64bit[j]) {
822                dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
823                dinst->dst[j].index = initial_dst_idx[j];
824                if (i > 1) {
825                   if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
826                      dinst->src[0] = addr;
827                   if (dinst->op != TGSI_OPCODE_STORE)
828                      dinst->dst[j].index++;
829                }
830             } else {
831                /* if we aren't writing to a double, just get the bit of the initial writemask
832                   for this channel */
833                dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
834             }
835          }
836 
837          /* modify the src registers */
838          for (j = 0; j < 4; j++) {
839             int swz = GET_SWZ(initial_src_swz[j], i);
840 
841             if (glsl_base_type_is_64bit(dinst->src[j].type)) {
842                dinst->src[j].index = initial_src_idx[j];
843                if (swz > 1) {
844                   dinst->src[j].double_reg2 = true;
845                   dinst->src[j].index++;
846 	       }
847 
848                if (swz & 1)
849                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
850                else
851                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
852 
853             } else {
854                /* some opcodes are special case in what they use as sources
855                   - [FUI]2D/[UI]2I64 is a float/[u]int src0, DLDEXP is integer src1 */
856                if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
857                    op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
858                    op == TGSI_OPCODE_DLDEXP ||
859                    (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
860                   dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
861                }
862             }
863          }
864       }
865       inst = dinst;
866    } else {
867       this->instructions.push_tail(inst);
868    }
869 
870 
871    return inst;
872 }
873 
874 glsl_to_tgsi_instruction *
emit_asm(ir_instruction * ir,unsigned op,st_dst_reg dst,st_src_reg src0,st_src_reg src1,st_src_reg src2,st_src_reg src3)875 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
876                                st_dst_reg dst,
877                                st_src_reg src0, st_src_reg src1,
878                                st_src_reg src2, st_src_reg src3)
879 {
880    return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
881 }
882 
883 /**
884  * Determines whether to use an integer, unsigned integer, or float opcode
885  * based on the operands and input opcode, then emits the result.
886  */
887 unsigned
get_opcode(unsigned op,st_dst_reg dst,st_src_reg src0,st_src_reg src1)888 glsl_to_tgsi_visitor::get_opcode(unsigned op,
889                                  st_dst_reg dst,
890                                  st_src_reg src0, st_src_reg src1)
891 {
892    enum glsl_base_type type = GLSL_TYPE_FLOAT;
893 
894    if (op == TGSI_OPCODE_MOV)
895        return op;
896 
897    assert(src0.type != GLSL_TYPE_ARRAY);
898    assert(src0.type != GLSL_TYPE_STRUCT);
899    assert(src1.type != GLSL_TYPE_ARRAY);
900    assert(src1.type != GLSL_TYPE_STRUCT);
901 
902    if (is_resource_instruction(op))
903       type = src1.type;
904    else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
905       type = GLSL_TYPE_DOUBLE;
906    else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
907       type = GLSL_TYPE_FLOAT;
908    else if (native_integers)
909       type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
910 
911 #define case5(c, f, i, u, d)                    \
912    case TGSI_OPCODE_##c: \
913       if (type == GLSL_TYPE_DOUBLE)           \
914          op = TGSI_OPCODE_##d; \
915       else if (type == GLSL_TYPE_INT)       \
916          op = TGSI_OPCODE_##i; \
917       else if (type == GLSL_TYPE_UINT) \
918          op = TGSI_OPCODE_##u; \
919       else \
920          op = TGSI_OPCODE_##f; \
921       break;
922 
923 #define case4(c, f, i, u)                    \
924    case TGSI_OPCODE_##c: \
925       if (type == GLSL_TYPE_INT) \
926          op = TGSI_OPCODE_##i; \
927       else if (type == GLSL_TYPE_UINT) \
928          op = TGSI_OPCODE_##u; \
929       else \
930          op = TGSI_OPCODE_##f; \
931       break;
932 
933 #define case3(f, i, u)  case4(f, f, i, u)
934 #define case4d(f, i, u, d)  case5(f, f, i, u, d)
935 #define case3fid(f, i, d) case5(f, f, i, i, d)
936 #define case2fi(f, i)   case4(f, f, i, i)
937 #define case2iu(i, u)   case4(i, LAST, i, u)
938 
939 #define casecomp(c, f, i, u, d)                   \
940    case TGSI_OPCODE_##c: \
941       if (type == GLSL_TYPE_DOUBLE) \
942          op = TGSI_OPCODE_##d; \
943       else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE)       \
944          op = TGSI_OPCODE_##i; \
945       else if (type == GLSL_TYPE_UINT) \
946          op = TGSI_OPCODE_##u; \
947       else if (native_integers) \
948          op = TGSI_OPCODE_##f; \
949       else \
950          op = TGSI_OPCODE_##c; \
951       break;
952 
953    switch(op) {
954       case3fid(ADD, UADD, DADD);
955       case3fid(MUL, UMUL, DMUL);
956       case3fid(MAD, UMAD, DMAD);
957       case3fid(FMA, UMAD, DFMA);
958       case4d(DIV, IDIV, UDIV, DDIV);
959       case4d(MAX, IMAX, UMAX, DMAX);
960       case4d(MIN, IMIN, UMIN, DMIN);
961       case2iu(MOD, UMOD);
962 
963       casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
964       casecomp(SNE, FSNE, USNE, USNE, DSNE);
965       casecomp(SGE, FSGE, ISGE, USGE, DSGE);
966       casecomp(SLT, FSLT, ISLT, USLT, DSLT);
967 
968       case2iu(ISHR, USHR);
969 
970       case3fid(SSG, ISSG, DSSG);
971 
972       case2iu(IBFE, UBFE);
973       case2iu(IMSB, UMSB);
974       case2iu(IMUL_HI, UMUL_HI);
975 
976       case3fid(SQRT, SQRT, DSQRT);
977 
978       case3fid(RCP, RCP, DRCP);
979       case3fid(RSQ, RSQ, DRSQ);
980 
981       case3fid(FRC, FRC, DFRAC);
982       case3fid(TRUNC, TRUNC, DTRUNC);
983       case3fid(CEIL, CEIL, DCEIL);
984       case3fid(FLR, FLR, DFLR);
985       case3fid(ROUND, ROUND, DROUND);
986 
987       case2iu(ATOMIMAX, ATOMUMAX);
988       case2iu(ATOMIMIN, ATOMUMIN);
989 
990       default: break;
991    }
992 
993    assert(op != TGSI_OPCODE_LAST);
994    return op;
995 }
996 
997 glsl_to_tgsi_instruction *
emit_dp(ir_instruction * ir,st_dst_reg dst,st_src_reg src0,st_src_reg src1,unsigned elements)998 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
999                               st_dst_reg dst, st_src_reg src0, st_src_reg src1,
1000                               unsigned elements)
1001 {
1002    static const unsigned dot_opcodes[] = {
1003       TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
1004    };
1005 
1006    return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
1007 }
1008 
1009 /**
1010  * Emits TGSI scalar opcodes to produce unique answers across channels.
1011  *
1012  * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
1013  * channel determines the result across all channels.  So to do a vec4
1014  * of this operation, we want to emit a scalar per source channel used
1015  * to produce dest channels.
1016  */
1017 void
emit_scalar(ir_instruction * ir,unsigned op,st_dst_reg dst,st_src_reg orig_src0,st_src_reg orig_src1)1018 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1019                                   st_dst_reg dst,
1020                                   st_src_reg orig_src0, st_src_reg orig_src1)
1021 {
1022    int i, j;
1023    int done_mask = ~dst.writemask;
1024 
1025    /* TGSI RCP is a scalar operation splatting results to all channels,
1026     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
1027     * dst channels.
1028     */
1029    for (i = 0; i < 4; i++) {
1030       GLuint this_mask = (1 << i);
1031       st_src_reg src0 = orig_src0;
1032       st_src_reg src1 = orig_src1;
1033 
1034       if (done_mask & this_mask)
1035          continue;
1036 
1037       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
1038       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
1039       for (j = i + 1; j < 4; j++) {
1040          /* If there is another enabled component in the destination that is
1041           * derived from the same inputs, generate its value on this pass as
1042           * well.
1043           */
1044          if (!(done_mask & (1 << j)) &&
1045              GET_SWZ(src0.swizzle, j) == src0_swiz &&
1046              GET_SWZ(src1.swizzle, j) == src1_swiz) {
1047             this_mask |= (1 << j);
1048          }
1049       }
1050       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
1051                                    src0_swiz, src0_swiz);
1052       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
1053                                    src1_swiz, src1_swiz);
1054 
1055       dst.writemask = this_mask;
1056       emit_asm(ir, op, dst, src0, src1);
1057       done_mask |= this_mask;
1058    }
1059 }
1060 
1061 void
emit_scalar(ir_instruction * ir,unsigned op,st_dst_reg dst,st_src_reg src0)1062 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1063                                   st_dst_reg dst, st_src_reg src0)
1064 {
1065    st_src_reg undef = undef_src;
1066 
1067    undef.swizzle = SWIZZLE_XXXX;
1068 
1069    emit_scalar(ir, op, dst, src0, undef);
1070 }
1071 
1072 void
emit_arl(ir_instruction * ir,st_dst_reg dst,st_src_reg src0)1073 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
1074                                st_dst_reg dst, st_src_reg src0)
1075 {
1076    int op = TGSI_OPCODE_ARL;
1077 
1078    if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
1079       op = TGSI_OPCODE_UARL;
1080 
1081    assert(dst.file == PROGRAM_ADDRESS);
1082    if (dst.index >= this->num_address_regs)
1083       this->num_address_regs = dst.index + 1;
1084 
1085    emit_asm(NULL, op, dst, src0);
1086 }
1087 
1088 int
add_constant(gl_register_file file,gl_constant_value values[8],int size,int datatype,uint16_t * swizzle_out)1089 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
1090                                    gl_constant_value values[8], int size, int datatype,
1091                                    uint16_t *swizzle_out)
1092 {
1093    if (file == PROGRAM_CONSTANT) {
1094       GLuint swizzle = swizzle_out ? *swizzle_out : 0;
1095       int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
1096                                                     size, datatype, &swizzle);
1097       if (swizzle_out)
1098          *swizzle_out = swizzle;
1099       return result;
1100    }
1101 
1102    assert(file == PROGRAM_IMMEDIATE);
1103 
1104    int index = 0;
1105    immediate_storage *entry;
1106    int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
1107    int i;
1108 
1109    /* Search immediate storage to see if we already have an identical
1110     * immediate that we can use instead of adding a duplicate entry.
1111     */
1112    foreach_in_list(immediate_storage, entry, &this->immediates) {
1113       immediate_storage *tmp = entry;
1114 
1115       for (i = 0; i * 4 < size32; i++) {
1116          int slot_size = MIN2(size32 - (i * 4), 4);
1117          if (tmp->type != datatype || tmp->size32 != slot_size)
1118             break;
1119          if (memcmp(tmp->values, &values[i * 4],
1120                     slot_size * sizeof(gl_constant_value)))
1121             break;
1122 
1123          /* Everything matches, keep going until the full size is matched */
1124          tmp = (immediate_storage *)tmp->next;
1125       }
1126 
1127       /* The full value matched */
1128       if (i * 4 >= size32)
1129          return index;
1130 
1131       index++;
1132    }
1133 
1134    for (i = 0; i * 4 < size32; i++) {
1135       int slot_size = MIN2(size32 - (i * 4), 4);
1136       /* Add this immediate to the list. */
1137       entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1138       this->immediates.push_tail(entry);
1139       this->num_immediates++;
1140    }
1141    return index;
1142 }
1143 
1144 st_src_reg
st_src_reg_for_float(float val)1145 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1146 {
1147    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1148    union gl_constant_value uval;
1149 
1150    uval.f = val;
1151    src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1152 
1153    return src;
1154 }
1155 
1156 st_src_reg
st_src_reg_for_double(double val)1157 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1158 {
1159    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1160    union gl_constant_value uval[2];
1161 
1162    memcpy(uval, &val, sizeof(uval));
1163    src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1164    src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1165    return src;
1166 }
1167 
1168 st_src_reg
st_src_reg_for_int(int val)1169 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1170 {
1171    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1172    union gl_constant_value uval;
1173 
1174    assert(native_integers);
1175 
1176    uval.i = val;
1177    src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1178 
1179    return src;
1180 }
1181 
1182 st_src_reg
st_src_reg_for_type(enum glsl_base_type type,int val)1183 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1184 {
1185    if (native_integers)
1186       return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1187                                        st_src_reg_for_int(val);
1188    else
1189       return st_src_reg_for_float(val);
1190 }
1191 
1192 static int
attrib_type_size(const struct glsl_type * type,bool is_vs_input)1193 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1194 {
1195    return st_glsl_attrib_type_size(type, is_vs_input);
1196 }
1197 
1198 static int
type_size(const struct glsl_type * type)1199 type_size(const struct glsl_type *type)
1200 {
1201    return st_glsl_type_size(type);
1202 }
1203 
1204 /**
1205  * If the given GLSL type is an array or matrix or a structure containing
1206  * an array/matrix member, return true.  Else return false.
1207  *
1208  * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1209  * or PROGRAM_ARRAY) should be used for variables of this type.  Anytime
1210  * we have an array that might be indexed with a variable, we need to use
1211  * the later storage type.
1212  */
1213 static bool
type_has_array_or_matrix(const glsl_type * type)1214 type_has_array_or_matrix(const glsl_type *type)
1215 {
1216    if (type->is_array() || type->is_matrix())
1217       return true;
1218 
1219    if (type->is_record()) {
1220       for (unsigned i = 0; i < type->length; i++) {
1221          if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1222             return true;
1223          }
1224       }
1225    }
1226 
1227    return false;
1228 }
1229 
1230 
1231 /**
1232  * In the initial pass of codegen, we assign temporary numbers to
1233  * intermediate results.  (not SSA -- variable assignments will reuse
1234  * storage).
1235  */
1236 st_src_reg
get_temp(const glsl_type * type)1237 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1238 {
1239    st_src_reg src;
1240 
1241    src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1242    src.reladdr = NULL;
1243    src.negate = 0;
1244    src.abs = 0;
1245 
1246    if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1247       if (next_array >= max_num_arrays) {
1248          max_num_arrays += 32;
1249          array_sizes = (unsigned*)
1250             realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1251       }
1252 
1253       src.file = PROGRAM_ARRAY;
1254       src.index = 0;
1255       src.array_id = next_array + 1;
1256       array_sizes[next_array] = type_size(type);
1257       ++next_array;
1258 
1259    } else {
1260       src.file = PROGRAM_TEMPORARY;
1261       src.index = next_temp;
1262       next_temp += type_size(type);
1263    }
1264 
1265    if (type->is_array() || type->is_record()) {
1266       src.swizzle = SWIZZLE_NOOP;
1267    } else {
1268       src.swizzle = swizzle_for_size(type->vector_elements);
1269    }
1270 
1271    return src;
1272 }
1273 
1274 variable_storage *
find_variable_storage(ir_variable * var)1275 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1276 {
1277 
1278    foreach_in_list(variable_storage, entry, &this->variables) {
1279       if (entry->var == var)
1280          return entry;
1281    }
1282 
1283    return NULL;
1284 }
1285 
1286 void
visit(ir_variable * ir)1287 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1288 {
1289    if (strcmp(ir->name, "gl_FragCoord") == 0) {
1290       this->prog->OriginUpperLeft = ir->data.origin_upper_left;
1291       this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
1292    }
1293 
1294    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1295       unsigned int i;
1296       const ir_state_slot *const slots = ir->get_state_slots();
1297       assert(slots != NULL);
1298 
1299       /* Check if this statevar's setup in the STATE file exactly
1300        * matches how we'll want to reference it as a
1301        * struct/array/whatever.  If not, then we need to move it into
1302        * temporary storage and hope that it'll get copy-propagated
1303        * out.
1304        */
1305       for (i = 0; i < ir->get_num_state_slots(); i++) {
1306          if (slots[i].swizzle != SWIZZLE_XYZW) {
1307             break;
1308          }
1309       }
1310 
1311       variable_storage *storage;
1312       st_dst_reg dst;
1313       if (i == ir->get_num_state_slots()) {
1314          /* We'll set the index later. */
1315          storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1316          this->variables.push_tail(storage);
1317 
1318          dst = undef_dst;
1319       } else {
1320          /* The variable_storage constructor allocates slots based on the size
1321           * of the type.  However, this had better match the number of state
1322           * elements that we're going to copy into the new temporary.
1323           */
1324          assert((int) ir->get_num_state_slots() == type_size(ir->type));
1325 
1326          dst = st_dst_reg(get_temp(ir->type));
1327 
1328          storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1329                                                  dst.array_id);
1330 
1331          this->variables.push_tail(storage);
1332       }
1333 
1334 
1335       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1336          int index = _mesa_add_state_reference(this->prog->Parameters,
1337                                                (gl_state_index *)slots[i].tokens);
1338 
1339          if (storage->file == PROGRAM_STATE_VAR) {
1340             if (storage->index == -1) {
1341                storage->index = index;
1342             } else {
1343                assert(index == storage->index + (int)i);
1344             }
1345          } else {
1346             /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1347              * the data being moved since MOV does not care about the type of
1348              * data it is moving, and we don't want to declare registers with
1349              * array or struct types.
1350              */
1351             st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1352             src.swizzle = slots[i].swizzle;
1353             emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1354             /* even a float takes up a whole vec4 reg in a struct/array. */
1355             dst.index++;
1356          }
1357       }
1358 
1359       if (storage->file == PROGRAM_TEMPORARY &&
1360           dst.index != storage->index + (int) ir->get_num_state_slots()) {
1361          fail_link(this->shader_program,
1362                   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1363                   ir->name, dst.index - storage->index,
1364                   type_size(ir->type));
1365       }
1366    }
1367 }
1368 
1369 void
visit(ir_loop * ir)1370 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1371 {
1372    emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1373 
1374    visit_exec_list(&ir->body_instructions, this);
1375 
1376    emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1377 }
1378 
1379 void
visit(ir_loop_jump * ir)1380 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1381 {
1382    switch (ir->mode) {
1383    case ir_loop_jump::jump_break:
1384       emit_asm(NULL, TGSI_OPCODE_BRK);
1385       break;
1386    case ir_loop_jump::jump_continue:
1387       emit_asm(NULL, TGSI_OPCODE_CONT);
1388       break;
1389    }
1390 }
1391 
1392 
1393 void
visit(ir_function_signature * ir)1394 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1395 {
1396    assert(0);
1397    (void)ir;
1398 }
1399 
1400 void
visit(ir_function * ir)1401 glsl_to_tgsi_visitor::visit(ir_function *ir)
1402 {
1403    /* Ignore function bodies other than main() -- we shouldn't see calls to
1404     * them since they should all be inlined before we get to glsl_to_tgsi.
1405     */
1406    if (strcmp(ir->name, "main") == 0) {
1407       const ir_function_signature *sig;
1408       exec_list empty;
1409 
1410       sig = ir->matching_signature(NULL, &empty, false);
1411 
1412       assert(sig);
1413 
1414       foreach_in_list(ir_instruction, ir, &sig->body) {
1415          ir->accept(this);
1416       }
1417    }
1418 }
1419 
1420 bool
try_emit_mad(ir_expression * ir,int mul_operand)1421 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1422 {
1423    int nonmul_operand = 1 - mul_operand;
1424    st_src_reg a, b, c;
1425    st_dst_reg result_dst;
1426 
1427    ir_expression *expr = ir->operands[mul_operand]->as_expression();
1428    if (!expr || expr->operation != ir_binop_mul)
1429       return false;
1430 
1431    expr->operands[0]->accept(this);
1432    a = this->result;
1433    expr->operands[1]->accept(this);
1434    b = this->result;
1435    ir->operands[nonmul_operand]->accept(this);
1436    c = this->result;
1437 
1438    this->result = get_temp(ir->type);
1439    result_dst = st_dst_reg(this->result);
1440    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1441    emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1442 
1443    return true;
1444 }
1445 
1446 /**
1447  * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1448  *
1449  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1450  * implemented using multiplication, and logical-or is implemented using
1451  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1452  * As result, the logical expression (a & !b) can be rewritten as:
1453  *
1454  *     - a * !b
1455  *     - a * (1 - b)
1456  *     - (a * 1) - (a * b)
1457  *     - a + -(a * b)
1458  *     - a + (a * -b)
1459  *
1460  * This final expression can be implemented as a single MAD(a, -b, a)
1461  * instruction.
1462  */
1463 bool
try_emit_mad_for_and_not(ir_expression * ir,int try_operand)1464 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1465 {
1466    const int other_operand = 1 - try_operand;
1467    st_src_reg a, b;
1468 
1469    ir_expression *expr = ir->operands[try_operand]->as_expression();
1470    if (!expr || expr->operation != ir_unop_logic_not)
1471       return false;
1472 
1473    ir->operands[other_operand]->accept(this);
1474    a = this->result;
1475    expr->operands[0]->accept(this);
1476    b = this->result;
1477 
1478    b.negate = ~b.negate;
1479 
1480    this->result = get_temp(ir->type);
1481    emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1482 
1483    return true;
1484 }
1485 
1486 void
reladdr_to_temp(ir_instruction * ir,st_src_reg * reg,int * num_reladdr)1487 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1488                                       st_src_reg *reg, int *num_reladdr)
1489 {
1490    if (!reg->reladdr && !reg->reladdr2)
1491       return;
1492 
1493    if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1494    if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1495 
1496    if (*num_reladdr != 1) {
1497       st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1498 
1499       emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1500       *reg = temp;
1501    }
1502 
1503    (*num_reladdr)--;
1504 }
1505 
1506 void
visit(ir_expression * ir)1507 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1508 {
1509    st_src_reg op[ARRAY_SIZE(ir->operands)];
1510 
1511    /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1512     */
1513    if (ir->operation == ir_binop_add) {
1514       if (try_emit_mad(ir, 1))
1515          return;
1516       if (try_emit_mad(ir, 0))
1517          return;
1518    }
1519 
1520    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1521     */
1522    if (!native_integers && ir->operation == ir_binop_logic_and) {
1523       if (try_emit_mad_for_and_not(ir, 1))
1524          return;
1525       if (try_emit_mad_for_and_not(ir, 0))
1526          return;
1527    }
1528 
1529    if (ir->operation == ir_quadop_vector)
1530       assert(!"ir_quadop_vector should have been lowered");
1531 
1532    for (unsigned int operand = 0; operand < ir->get_num_operands(); operand++) {
1533       this->result.file = PROGRAM_UNDEFINED;
1534       ir->operands[operand]->accept(this);
1535       if (this->result.file == PROGRAM_UNDEFINED) {
1536          printf("Failed to get tree for expression operand:\n");
1537          ir->operands[operand]->print();
1538          printf("\n");
1539          exit(1);
1540       }
1541       op[operand] = this->result;
1542 
1543       /* Matrix expression operands should have been broken down to vector
1544        * operations already.
1545        */
1546       assert(!ir->operands[operand]->type->is_matrix());
1547    }
1548 
1549    visit_expression(ir, op);
1550 }
1551 
1552 /* The non-recursive part of the expression visitor lives in a separate
1553  * function and should be prevented from being inlined, to avoid a stack
1554  * explosion when deeply nested expressions are visited.
1555  */
1556 void
visit_expression(ir_expression * ir,st_src_reg * op)1557 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1558 {
1559    st_src_reg result_src;
1560    st_dst_reg result_dst;
1561 
1562    int vector_elements = ir->operands[0]->type->vector_elements;
1563    if (ir->operands[1]) {
1564       vector_elements = MAX2(vector_elements,
1565                              ir->operands[1]->type->vector_elements);
1566    }
1567 
1568    this->result.file = PROGRAM_UNDEFINED;
1569 
1570    /* Storage for our result.  Ideally for an assignment we'd be using
1571     * the actual storage for the result here, instead.
1572     */
1573    result_src = get_temp(ir->type);
1574    /* convenience for the emit functions below. */
1575    result_dst = st_dst_reg(result_src);
1576    /* Limit writes to the channels that will be used by result_src later.
1577     * This does limit this temp's use as a temporary for multi-instruction
1578     * sequences.
1579     */
1580    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1581 
1582    switch (ir->operation) {
1583    case ir_unop_logic_not:
1584       if (result_dst.type != GLSL_TYPE_FLOAT)
1585          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1586       else {
1587          /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1588           * older GPUs implement SEQ using multiple instructions (i915 uses two
1589           * SGE instructions and a MUL instruction).  Since our logic values are
1590           * 0.0 and 1.0, 1-x also implements !x.
1591           */
1592          op[0].negate = ~op[0].negate;
1593          emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1594       }
1595       break;
1596    case ir_unop_neg:
1597       if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1598          emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1599       else if (result_dst.type == GLSL_TYPE_DOUBLE)
1600          emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1601       else {
1602          op[0].negate = ~op[0].negate;
1603          result_src = op[0];
1604       }
1605       break;
1606    case ir_unop_subroutine_to_int:
1607       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1608       break;
1609    case ir_unop_abs:
1610       if (result_dst.type == GLSL_TYPE_FLOAT)
1611          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1612       else if (result_dst.type == GLSL_TYPE_DOUBLE)
1613          emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1614       else
1615          emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1616       break;
1617    case ir_unop_sign:
1618       emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1619       break;
1620    case ir_unop_rcp:
1621       emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1622       break;
1623 
1624    case ir_unop_exp2:
1625       emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1626       break;
1627    case ir_unop_exp:
1628    case ir_unop_log:
1629       assert(!"not reached: should be handled by ir_explog_to_explog2");
1630       break;
1631    case ir_unop_log2:
1632       emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1633       break;
1634    case ir_unop_sin:
1635       emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1636       break;
1637    case ir_unop_cos:
1638       emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1639       break;
1640    case ir_unop_saturate: {
1641       glsl_to_tgsi_instruction *inst;
1642       inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1643       inst->saturate = true;
1644       break;
1645    }
1646 
1647    case ir_unop_dFdx:
1648    case ir_unop_dFdx_coarse:
1649       emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1650       break;
1651    case ir_unop_dFdx_fine:
1652       emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1653       break;
1654    case ir_unop_dFdy:
1655    case ir_unop_dFdy_coarse:
1656    case ir_unop_dFdy_fine:
1657    {
1658       /* The X component contains 1 or -1 depending on whether the framebuffer
1659        * is a FBO or the window system buffer, respectively.
1660        * It is then multiplied with the source operand of DDY.
1661        */
1662       static const gl_state_index transform_y_state[STATE_LENGTH]
1663          = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1664 
1665       unsigned transform_y_index =
1666          _mesa_add_state_reference(this->prog->Parameters,
1667                                    transform_y_state);
1668 
1669       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1670                                           transform_y_index,
1671                                           glsl_type::vec4_type);
1672       transform_y.swizzle = SWIZZLE_XXXX;
1673 
1674       st_src_reg temp = get_temp(glsl_type::vec4_type);
1675 
1676       emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1677       emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1678            TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1679       break;
1680    }
1681 
1682    case ir_unop_frexp_sig:
1683       emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1684       break;
1685 
1686    case ir_unop_frexp_exp:
1687       emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1688       break;
1689 
1690    case ir_unop_noise: {
1691       /* At some point, a motivated person could add a better
1692        * implementation of noise.  Currently not even the nvidia
1693        * binary drivers do anything more than this.  In any case, the
1694        * place to do this is in the GL state tracker, not the poor
1695        * driver.
1696        */
1697       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1698       break;
1699    }
1700 
1701    case ir_binop_add:
1702       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1703       break;
1704    case ir_binop_sub:
1705       op[1].negate = ~op[1].negate;
1706       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1707       break;
1708 
1709    case ir_binop_mul:
1710       emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1711       break;
1712    case ir_binop_div:
1713       emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1714       break;
1715    case ir_binop_mod:
1716       if (result_dst.type == GLSL_TYPE_FLOAT)
1717          assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1718       else
1719          emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1720       break;
1721 
1722    case ir_binop_less:
1723       emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1724       break;
1725    case ir_binop_greater:
1726       emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1727       break;
1728    case ir_binop_lequal:
1729       emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1730       break;
1731    case ir_binop_gequal:
1732       emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1733       break;
1734    case ir_binop_equal:
1735       emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1736       break;
1737    case ir_binop_nequal:
1738       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1739       break;
1740    case ir_binop_all_equal:
1741       /* "==" operator producing a scalar boolean. */
1742       if (ir->operands[0]->type->is_vector() ||
1743           ir->operands[1]->type->is_vector()) {
1744          st_src_reg temp = get_temp(native_integers ?
1745                                     glsl_type::uvec4_type :
1746                                     glsl_type::vec4_type);
1747 
1748          if (native_integers) {
1749             st_dst_reg temp_dst = st_dst_reg(temp);
1750             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1751 
1752             if (ir->operands[0]->type->is_boolean() &&
1753                 ir->operands[1]->as_constant() &&
1754                 ir->operands[1]->as_constant()->is_one()) {
1755                emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1756             } else {
1757                emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1758             }
1759 
1760             /* Emit 1-3 AND operations to combine the SEQ results. */
1761             switch (ir->operands[0]->type->vector_elements) {
1762             case 2:
1763                break;
1764             case 3:
1765                temp_dst.writemask = WRITEMASK_Y;
1766                temp1.swizzle = SWIZZLE_YYYY;
1767                temp2.swizzle = SWIZZLE_ZZZZ;
1768                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1769                break;
1770             case 4:
1771                temp_dst.writemask = WRITEMASK_X;
1772                temp1.swizzle = SWIZZLE_XXXX;
1773                temp2.swizzle = SWIZZLE_YYYY;
1774                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1775                temp_dst.writemask = WRITEMASK_Y;
1776                temp1.swizzle = SWIZZLE_ZZZZ;
1777                temp2.swizzle = SWIZZLE_WWWW;
1778                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1779             }
1780 
1781             temp1.swizzle = SWIZZLE_XXXX;
1782             temp2.swizzle = SWIZZLE_YYYY;
1783             emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1784          } else {
1785             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1786 
1787             /* After the dot-product, the value will be an integer on the
1788              * range [0,4].  Zero becomes 1.0, and positive values become zero.
1789              */
1790             emit_dp(ir, result_dst, temp, temp, vector_elements);
1791 
1792             /* Negating the result of the dot-product gives values on the range
1793              * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1794              * This is achieved using SGE.
1795              */
1796             st_src_reg sge_src = result_src;
1797             sge_src.negate = ~sge_src.negate;
1798             emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1799          }
1800       } else {
1801          emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1802       }
1803       break;
1804    case ir_binop_any_nequal:
1805       /* "!=" operator producing a scalar boolean. */
1806       if (ir->operands[0]->type->is_vector() ||
1807           ir->operands[1]->type->is_vector()) {
1808          st_src_reg temp = get_temp(native_integers ?
1809                                     glsl_type::uvec4_type :
1810                                     glsl_type::vec4_type);
1811          if (ir->operands[0]->type->is_boolean() &&
1812              ir->operands[1]->as_constant() &&
1813              ir->operands[1]->as_constant()->is_zero()) {
1814             emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1815          } else {
1816             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1817          }
1818 
1819          if (native_integers) {
1820             st_dst_reg temp_dst = st_dst_reg(temp);
1821             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1822 
1823             /* Emit 1-3 OR operations to combine the SNE results. */
1824             switch (ir->operands[0]->type->vector_elements) {
1825             case 2:
1826                break;
1827             case 3:
1828                temp_dst.writemask = WRITEMASK_Y;
1829                temp1.swizzle = SWIZZLE_YYYY;
1830                temp2.swizzle = SWIZZLE_ZZZZ;
1831                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1832                break;
1833             case 4:
1834                temp_dst.writemask = WRITEMASK_X;
1835                temp1.swizzle = SWIZZLE_XXXX;
1836                temp2.swizzle = SWIZZLE_YYYY;
1837                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1838                temp_dst.writemask = WRITEMASK_Y;
1839                temp1.swizzle = SWIZZLE_ZZZZ;
1840                temp2.swizzle = SWIZZLE_WWWW;
1841                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1842             }
1843 
1844             temp1.swizzle = SWIZZLE_XXXX;
1845             temp2.swizzle = SWIZZLE_YYYY;
1846             emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1847          } else {
1848             /* After the dot-product, the value will be an integer on the
1849              * range [0,4].  Zero stays zero, and positive values become 1.0.
1850              */
1851             glsl_to_tgsi_instruction *const dp =
1852                   emit_dp(ir, result_dst, temp, temp, vector_elements);
1853             if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1854                /* The clamping to [0,1] can be done for free in the fragment
1855                 * shader with a saturate.
1856                 */
1857                dp->saturate = true;
1858             } else {
1859                /* Negating the result of the dot-product gives values on the range
1860                 * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1861                 * achieved using SLT.
1862                 */
1863                st_src_reg slt_src = result_src;
1864                slt_src.negate = ~slt_src.negate;
1865                emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1866             }
1867          }
1868       } else {
1869          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1870       }
1871       break;
1872 
1873    case ir_binop_logic_xor:
1874       if (native_integers)
1875          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1876       else
1877          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1878       break;
1879 
1880    case ir_binop_logic_or: {
1881       if (native_integers) {
1882          /* If integers are used as booleans, we can use an actual "or"
1883           * instruction.
1884           */
1885          assert(native_integers);
1886          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1887       } else {
1888          /* After the addition, the value will be an integer on the
1889           * range [0,2].  Zero stays zero, and positive values become 1.0.
1890           */
1891          glsl_to_tgsi_instruction *add =
1892             emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1893          if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1894             /* The clamping to [0,1] can be done for free in the fragment
1895              * shader with a saturate if floats are being used as boolean values.
1896              */
1897             add->saturate = true;
1898          } else {
1899             /* Negating the result of the addition gives values on the range
1900              * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1901              * is achieved using SLT.
1902              */
1903             st_src_reg slt_src = result_src;
1904             slt_src.negate = ~slt_src.negate;
1905             emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1906          }
1907       }
1908       break;
1909    }
1910 
1911    case ir_binop_logic_and:
1912       /* If native integers are disabled, the bool args are stored as float 0.0
1913        * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1914        * actual AND opcode.
1915        */
1916       if (native_integers)
1917          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1918       else
1919          emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1920       break;
1921 
1922    case ir_binop_dot:
1923       assert(ir->operands[0]->type->is_vector());
1924       assert(ir->operands[0]->type == ir->operands[1]->type);
1925       emit_dp(ir, result_dst, op[0], op[1],
1926               ir->operands[0]->type->vector_elements);
1927       break;
1928 
1929    case ir_unop_sqrt:
1930       if (have_sqrt) {
1931          emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1932       } else {
1933          /* This is the only instruction sequence that makes the game "Risen"
1934           * render correctly. ABS is not required for the game, but since GLSL
1935           * declares negative values as "undefined", allowing us to do whatever
1936           * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1937           * behavior.
1938           */
1939          emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1940          emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1941       }
1942       break;
1943    case ir_unop_rsq:
1944       emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1945       break;
1946    case ir_unop_i2f:
1947       if (native_integers) {
1948          emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1949          break;
1950       }
1951       /* fallthrough to next case otherwise */
1952    case ir_unop_b2f:
1953       if (native_integers) {
1954          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1955          break;
1956       }
1957       /* fallthrough to next case otherwise */
1958    case ir_unop_i2u:
1959    case ir_unop_u2i:
1960       /* Converting between signed and unsigned integers is a no-op. */
1961       result_src = op[0];
1962       result_src.type = result_dst.type;
1963       break;
1964    case ir_unop_b2i:
1965       if (native_integers) {
1966          /* Booleans are stored as integers using ~0 for true and 0 for false.
1967           * GLSL requires that int(bool) return 1 for true and 0 for false.
1968           * This conversion is done with AND, but it could be done with NEG.
1969           */
1970          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1971       } else {
1972          /* Booleans and integers are both stored as floats when native
1973           * integers are disabled.
1974           */
1975          result_src = op[0];
1976       }
1977       break;
1978    case ir_unop_f2i:
1979       if (native_integers)
1980          emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1981       else
1982          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1983       break;
1984    case ir_unop_f2u:
1985       if (native_integers)
1986          emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1987       else
1988          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1989       break;
1990    case ir_unop_bitcast_f2i:
1991    case ir_unop_bitcast_f2u:
1992       /* Make sure we don't propagate the negate modifier to integer opcodes. */
1993       if (op[0].negate || op[0].abs)
1994          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1995       else
1996          result_src = op[0];
1997       result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
1998                                                                GLSL_TYPE_UINT;
1999       break;
2000    case ir_unop_bitcast_i2f:
2001    case ir_unop_bitcast_u2f:
2002       result_src = op[0];
2003       result_src.type = GLSL_TYPE_FLOAT;
2004       break;
2005    case ir_unop_f2b:
2006       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2007       break;
2008    case ir_unop_d2b:
2009       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
2010       break;
2011    case ir_unop_i2b:
2012       if (native_integers)
2013          emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
2014       else
2015          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2016       break;
2017    case ir_unop_trunc:
2018       emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2019       break;
2020    case ir_unop_ceil:
2021       emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
2022       break;
2023    case ir_unop_floor:
2024       emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
2025       break;
2026    case ir_unop_round_even:
2027       emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2028       break;
2029    case ir_unop_fract:
2030       emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2031       break;
2032 
2033    case ir_binop_min:
2034       emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2035       break;
2036    case ir_binop_max:
2037       emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2038       break;
2039    case ir_binop_pow:
2040       emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2041       break;
2042 
2043    case ir_unop_bit_not:
2044       if (native_integers) {
2045          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2046          break;
2047       }
2048    case ir_unop_u2f:
2049       if (native_integers) {
2050          emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2051          break;
2052       }
2053    case ir_binop_lshift:
2054       if (native_integers) {
2055          emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
2056          break;
2057       }
2058    case ir_binop_rshift:
2059       if (native_integers) {
2060          emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
2061          break;
2062       }
2063    case ir_binop_bit_and:
2064       if (native_integers) {
2065          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2066          break;
2067       }
2068    case ir_binop_bit_xor:
2069       if (native_integers) {
2070          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2071          break;
2072       }
2073    case ir_binop_bit_or:
2074       if (native_integers) {
2075          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2076          break;
2077       }
2078 
2079       assert(!"GLSL 1.30 features unsupported");
2080       break;
2081 
2082    case ir_binop_ubo_load: {
2083       ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2084       ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2085       unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2086       unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2087       st_src_reg index_reg = get_temp(glsl_type::uint_type);
2088       st_src_reg cbuf;
2089 
2090       cbuf.type = ir->type->base_type;
2091       cbuf.file = PROGRAM_CONSTANT;
2092       cbuf.index = 0;
2093       cbuf.reladdr = NULL;
2094       cbuf.negate = 0;
2095       cbuf.abs = 0;
2096 
2097       assert(ir->type->is_vector() || ir->type->is_scalar());
2098 
2099       if (const_offset_ir) {
2100          /* Constant index into constant buffer */
2101          cbuf.reladdr = NULL;
2102          cbuf.index = const_offset / 16;
2103       }
2104       else {
2105          ir_expression *offset_expr = ir->operands[1]->as_expression();
2106          st_src_reg offset = op[1];
2107 
2108          /* The OpenGL spec is written in such a way that accesses with
2109           * non-constant offset are almost always vec4-aligned. The only
2110           * exception to this are members of structs in arrays of structs:
2111           * each struct in an array of structs is at least vec4-aligned,
2112           * but single-element and [ui]vec2 members of the struct may be at
2113           * an offset that is not a multiple of 16 bytes.
2114           *
2115           * Here, we extract that offset, relying on previous passes to always
2116           * generate offset expressions of the form (+ expr constant_offset).
2117           *
2118           * Note that the std430 layout, which allows more cases of alignment
2119           * less than vec4 in arrays, is not supported for uniform blocks, so
2120           * we do not have to deal with it here.
2121           */
2122          if (offset_expr && offset_expr->operation == ir_binop_add) {
2123             const_offset_ir = offset_expr->operands[1]->as_constant();
2124             if (const_offset_ir) {
2125                const_offset = const_offset_ir->value.u[0];
2126                cbuf.index = const_offset / 16;
2127                offset_expr->operands[0]->accept(this);
2128                offset = this->result;
2129             }
2130          }
2131 
2132          /* Relative/variable index into constant buffer */
2133          emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
2134               st_src_reg_for_int(4));
2135          cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2136          memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2137       }
2138 
2139       if (const_uniform_block) {
2140          /* Constant constant buffer */
2141          cbuf.reladdr2 = NULL;
2142          cbuf.index2D = const_block;
2143          cbuf.has_index2 = true;
2144       }
2145       else {
2146          /* Relative/variable constant buffer */
2147          cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2148          cbuf.index2D = 1;
2149          memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2150          cbuf.has_index2 = true;
2151       }
2152 
2153       cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2154       if (glsl_base_type_is_64bit(cbuf.type))
2155          cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2156                                        const_offset % 16 / 8,
2157                                        const_offset % 16 / 8,
2158                                        const_offset % 16 / 8);
2159       else
2160          cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2161                                        const_offset % 16 / 4,
2162                                        const_offset % 16 / 4,
2163                                        const_offset % 16 / 4);
2164 
2165       if (ir->type->base_type == GLSL_TYPE_BOOL) {
2166          emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2167       } else {
2168          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2169       }
2170       break;
2171    }
2172    case ir_triop_lrp:
2173       /* note: we have to reorder the three args here */
2174       emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2175       break;
2176    case ir_triop_csel:
2177       if (this->ctx->Const.NativeIntegers)
2178          emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2179       else {
2180          op[0].negate = ~op[0].negate;
2181          emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2182       }
2183       break;
2184    case ir_triop_bitfield_extract:
2185       emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2186       break;
2187    case ir_quadop_bitfield_insert:
2188       emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2189       break;
2190    case ir_unop_bitfield_reverse:
2191       emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2192       break;
2193    case ir_unop_bit_count:
2194       emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2195       break;
2196    case ir_unop_find_msb:
2197       emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2198       break;
2199    case ir_unop_find_lsb:
2200       emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2201       break;
2202    case ir_binop_imul_high:
2203       emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2204       break;
2205    case ir_triop_fma:
2206       /* In theory, MAD is incorrect here. */
2207       if (have_fma)
2208          emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2209       else
2210          emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2211       break;
2212    case ir_unop_interpolate_at_centroid:
2213       emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2214       break;
2215    case ir_binop_interpolate_at_offset: {
2216       /* The y coordinate needs to be flipped for the default fb */
2217       static const gl_state_index transform_y_state[STATE_LENGTH]
2218          = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2219 
2220       unsigned transform_y_index =
2221          _mesa_add_state_reference(this->prog->Parameters,
2222                                    transform_y_state);
2223 
2224       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2225                                           transform_y_index,
2226                                           glsl_type::vec4_type);
2227       transform_y.swizzle = SWIZZLE_XXXX;
2228 
2229       st_src_reg temp = get_temp(glsl_type::vec2_type);
2230       st_dst_reg temp_dst = st_dst_reg(temp);
2231 
2232       emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2233       temp_dst.writemask = WRITEMASK_Y;
2234       emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2235       emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2236       break;
2237    }
2238    case ir_binop_interpolate_at_sample:
2239       emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2240       break;
2241 
2242    case ir_unop_d2f:
2243       emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2244       break;
2245    case ir_unop_f2d:
2246       emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2247       break;
2248    case ir_unop_d2i:
2249       emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2250       break;
2251    case ir_unop_i2d:
2252       emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2253       break;
2254    case ir_unop_d2u:
2255       emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2256       break;
2257    case ir_unop_u2d:
2258       emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2259       break;
2260    case ir_unop_unpack_double_2x32:
2261    case ir_unop_pack_double_2x32:
2262       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2263       break;
2264 
2265    case ir_binop_ldexp:
2266       if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2267          emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2268       } else {
2269          assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2270       }
2271       break;
2272 
2273    case ir_unop_pack_half_2x16:
2274       emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2275       break;
2276    case ir_unop_unpack_half_2x16:
2277       emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2278       break;
2279 
2280    case ir_unop_get_buffer_size: {
2281       ir_constant *const_offset = ir->operands[0]->as_constant();
2282       st_src_reg buffer(
2283             PROGRAM_BUFFER,
2284             ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2285             (const_offset ? const_offset->value.u[0] : 0),
2286             GLSL_TYPE_UINT);
2287       if (!const_offset) {
2288          buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2289          *buffer.reladdr = op[0];
2290          emit_arl(ir, sampler_reladdr, op[0]);
2291       }
2292       emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2293       break;
2294    }
2295 
2296    case ir_unop_vote_any:
2297       emit_asm(ir, TGSI_OPCODE_VOTE_ANY, result_dst, op[0]);
2298       break;
2299    case ir_unop_vote_all:
2300       emit_asm(ir, TGSI_OPCODE_VOTE_ALL, result_dst, op[0]);
2301       break;
2302    case ir_unop_vote_eq:
2303       emit_asm(ir, TGSI_OPCODE_VOTE_EQ, result_dst, op[0]);
2304       break;
2305 
2306    case ir_unop_pack_snorm_2x16:
2307    case ir_unop_pack_unorm_2x16:
2308    case ir_unop_pack_snorm_4x8:
2309    case ir_unop_pack_unorm_4x8:
2310 
2311    case ir_unop_unpack_snorm_2x16:
2312    case ir_unop_unpack_unorm_2x16:
2313    case ir_unop_unpack_snorm_4x8:
2314    case ir_unop_unpack_unorm_4x8:
2315 
2316    case ir_quadop_vector:
2317    case ir_binop_vector_extract:
2318    case ir_triop_vector_insert:
2319    case ir_binop_carry:
2320    case ir_binop_borrow:
2321    case ir_unop_ssbo_unsized_array_length:
2322       /* This operation is not supported, or should have already been handled.
2323        */
2324       assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2325       break;
2326    }
2327 
2328    this->result = result_src;
2329 }
2330 
2331 
2332 void
visit(ir_swizzle * ir)2333 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2334 {
2335    st_src_reg src;
2336    int i;
2337    int swizzle[4];
2338 
2339    /* Note that this is only swizzles in expressions, not those on the left
2340     * hand side of an assignment, which do write masking.  See ir_assignment
2341     * for that.
2342     */
2343 
2344    ir->val->accept(this);
2345    src = this->result;
2346    assert(src.file != PROGRAM_UNDEFINED);
2347    assert(ir->type->vector_elements > 0);
2348 
2349    for (i = 0; i < 4; i++) {
2350       if (i < ir->type->vector_elements) {
2351          switch (i) {
2352          case 0:
2353             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2354             break;
2355          case 1:
2356             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2357             break;
2358          case 2:
2359             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2360             break;
2361          case 3:
2362             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2363             break;
2364          }
2365       } else {
2366          /* If the type is smaller than a vec4, replicate the last
2367           * channel out.
2368           */
2369          swizzle[i] = swizzle[ir->type->vector_elements - 1];
2370       }
2371    }
2372 
2373    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2374 
2375    this->result = src;
2376 }
2377 
2378 /* Test if the variable is an array. Note that geometry and
2379  * tessellation shader inputs are outputs are always arrays (except
2380  * for patch inputs), so only the array element type is considered.
2381  */
2382 static bool
is_inout_array(unsigned stage,ir_variable * var,bool * remove_array)2383 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2384 {
2385    const glsl_type *type = var->type;
2386 
2387    *remove_array = false;
2388 
2389    if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2390        (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2391       return false;
2392 
2393    if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2394         (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2395         stage == MESA_SHADER_TESS_CTRL) &&
2396        !var->data.patch) {
2397       if (!var->type->is_array())
2398          return false; /* a system value probably */
2399 
2400       type = var->type->fields.array;
2401       *remove_array = true;
2402    }
2403 
2404    return type->is_array() || type->is_matrix();
2405 }
2406 
2407 static unsigned
st_translate_interp_loc(ir_variable * var)2408 st_translate_interp_loc(ir_variable *var)
2409 {
2410    if (var->data.centroid)
2411       return TGSI_INTERPOLATE_LOC_CENTROID;
2412    else if (var->data.sample)
2413       return TGSI_INTERPOLATE_LOC_SAMPLE;
2414    else
2415       return TGSI_INTERPOLATE_LOC_CENTER;
2416 }
2417 
2418 void
visit(ir_dereference_variable * ir)2419 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2420 {
2421    variable_storage *entry = find_variable_storage(ir->var);
2422    ir_variable *var = ir->var;
2423    bool remove_array;
2424 
2425    if (!entry) {
2426       switch (var->data.mode) {
2427       case ir_var_uniform:
2428          entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2429                                                var->data.param_index);
2430          this->variables.push_tail(entry);
2431          break;
2432       case ir_var_shader_in: {
2433          /* The linker assigns locations for varyings and attributes,
2434           * including deprecated builtins (like gl_Color), user-assign
2435           * generic attributes (glBindVertexLocation), and
2436           * user-defined varyings.
2437           */
2438          assert(var->data.location != -1);
2439 
2440          const glsl_type *type_without_array = var->type->without_array();
2441          struct inout_decl *decl = &inputs[num_inputs];
2442          unsigned component = var->data.location_frac;
2443          unsigned num_components;
2444          num_inputs++;
2445 
2446          if (type_without_array->is_64bit())
2447             component = component / 2;
2448          if (type_without_array->vector_elements)
2449             num_components = type_without_array->vector_elements;
2450          else
2451             num_components = 4;
2452 
2453          decl->mesa_index = var->data.location;
2454          decl->interp = (glsl_interp_mode) var->data.interpolation;
2455          decl->interp_loc = st_translate_interp_loc(var);
2456          decl->base_type = type_without_array->base_type;
2457          decl->usage_mask = u_bit_consecutive(component, num_components);
2458 
2459          if (is_inout_array(shader->Stage, var, &remove_array)) {
2460             decl->array_id = num_input_arrays + 1;
2461             num_input_arrays++;
2462          } else {
2463             decl->array_id = 0;
2464          }
2465 
2466          if (remove_array)
2467             decl->size = type_size(var->type->fields.array);
2468          else
2469             decl->size = type_size(var->type);
2470 
2471          entry = new(mem_ctx) variable_storage(var,
2472                                                PROGRAM_INPUT,
2473                                                decl->mesa_index,
2474                                                decl->array_id);
2475          entry->component = component;
2476 
2477          this->variables.push_tail(entry);
2478          break;
2479       }
2480       case ir_var_shader_out: {
2481          assert(var->data.location != -1);
2482 
2483          const glsl_type *type_without_array = var->type->without_array();
2484          struct inout_decl *decl = &outputs[num_outputs];
2485          unsigned component = var->data.location_frac;
2486          unsigned num_components;
2487          num_outputs++;
2488 
2489          if (type_without_array->is_64bit())
2490             component = component / 2;
2491          if (type_without_array->vector_elements)
2492             num_components = type_without_array->vector_elements;
2493          else
2494             num_components = 4;
2495 
2496          decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2497          decl->base_type = type_without_array->base_type;
2498          decl->usage_mask = u_bit_consecutive(component, num_components);
2499          if (var->data.stream & (1u << 31)) {
2500             decl->gs_out_streams = var->data.stream & ~(1u << 31);
2501          } else {
2502             assert(var->data.stream < 4);
2503             decl->gs_out_streams = 0;
2504             for (unsigned i = 0; i < num_components; ++i)
2505                decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2506          }
2507 
2508          if (is_inout_array(shader->Stage, var, &remove_array)) {
2509             decl->array_id = num_output_arrays + 1;
2510             num_output_arrays++;
2511          } else {
2512             decl->array_id = 0;
2513          }
2514 
2515          if (remove_array)
2516             decl->size = type_size(var->type->fields.array);
2517          else
2518             decl->size = type_size(var->type);
2519 
2520          if (var->data.fb_fetch_output) {
2521             st_dst_reg dst = st_dst_reg(get_temp(var->type));
2522             st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2523                                         var->type, component, decl->array_id);
2524             emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2525             entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2526                                                   dst.array_id);
2527          } else {
2528             entry = new(mem_ctx) variable_storage(var,
2529                                                   PROGRAM_OUTPUT,
2530                                                   decl->mesa_index,
2531                                                   decl->array_id);
2532          }
2533          entry->component = component;
2534 
2535          this->variables.push_tail(entry);
2536          break;
2537       }
2538       case ir_var_system_value:
2539          entry = new(mem_ctx) variable_storage(var,
2540                                                PROGRAM_SYSTEM_VALUE,
2541                                                var->data.location);
2542          break;
2543       case ir_var_auto:
2544       case ir_var_temporary:
2545          st_src_reg src = get_temp(var->type);
2546 
2547          entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2548                                                src.array_id);
2549          this->variables.push_tail(entry);
2550 
2551          break;
2552       }
2553 
2554       if (!entry) {
2555          printf("Failed to make storage for %s\n", var->name);
2556          exit(1);
2557       }
2558    }
2559 
2560    this->result = st_src_reg(entry->file, entry->index, var->type,
2561                              entry->component, entry->array_id);
2562    if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
2563       this->result.is_double_vertex_input = true;
2564    if (!native_integers)
2565       this->result.type = GLSL_TYPE_FLOAT;
2566 }
2567 
2568 static void
shrink_array_declarations(struct inout_decl * decls,unsigned count,GLbitfield64 * usage_mask,GLbitfield64 double_usage_mask,GLbitfield * patch_usage_mask)2569 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2570                           GLbitfield64* usage_mask,
2571                           GLbitfield64 double_usage_mask,
2572                           GLbitfield* patch_usage_mask)
2573 {
2574    unsigned i;
2575    int j;
2576 
2577    /* Fix array declarations by removing unused array elements at both ends
2578     * of the arrays. For example, mat4[3] where only mat[1] is used.
2579     */
2580    for (i = 0; i < count; i++) {
2581       struct inout_decl *decl = &decls[i];
2582       if (!decl->array_id)
2583          continue;
2584 
2585       /* Shrink the beginning. */
2586       for (j = 0; j < (int)decl->size; j++) {
2587          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2588             if (*patch_usage_mask &
2589                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2590                break;
2591          }
2592          else {
2593             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2594                break;
2595             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2596                break;
2597          }
2598 
2599          decl->mesa_index++;
2600          decl->size--;
2601          j--;
2602       }
2603 
2604       /* Shrink the end. */
2605       for (j = decl->size-1; j >= 0; j--) {
2606          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2607             if (*patch_usage_mask &
2608                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2609                break;
2610          }
2611          else {
2612             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2613                break;
2614             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2615                break;
2616          }
2617 
2618          decl->size--;
2619       }
2620 
2621       /* When not all entries of an array are accessed, we mark them as used
2622        * here anyway, to ensure that the input/output mapping logic doesn't get
2623        * confused.
2624        *
2625        * TODO This happens when an array isn't used via indirect access, which
2626        * some game ports do (at least eON-based). There is an optimization
2627        * opportunity here by replacing the array declaration with non-array
2628        * declarations of those slots that are actually used.
2629        */
2630       for (j = 1; j < (int)decl->size; ++j) {
2631          if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2632             *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2633          else
2634             *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2635       }
2636    }
2637 }
2638 
2639 void
visit(ir_dereference_array * ir)2640 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2641 {
2642    ir_constant *index;
2643    st_src_reg src;
2644    int element_size = type_size(ir->type);
2645    bool is_2D = false;
2646 
2647    index = ir->array_index->constant_expression_value();
2648 
2649    ir->array->accept(this);
2650    src = this->result;
2651 
2652    if (ir->array->ir_type != ir_type_dereference_array) {
2653       switch (this->prog->Target) {
2654       case GL_TESS_CONTROL_PROGRAM_NV:
2655          is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2656                  !ir->variable_referenced()->data.patch;
2657          break;
2658       case GL_TESS_EVALUATION_PROGRAM_NV:
2659          is_2D = src.file == PROGRAM_INPUT &&
2660                  !ir->variable_referenced()->data.patch;
2661          break;
2662       case GL_GEOMETRY_PROGRAM_NV:
2663          is_2D = src.file == PROGRAM_INPUT;
2664          break;
2665       }
2666    }
2667 
2668    if (is_2D)
2669       element_size = 1;
2670 
2671    if (index) {
2672 
2673       if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2674 	  src.file == PROGRAM_INPUT)
2675 	 element_size = attrib_type_size(ir->type, true);
2676       if (is_2D) {
2677          src.index2D = index->value.i[0];
2678          src.has_index2 = true;
2679       } else
2680          src.index += index->value.i[0] * element_size;
2681    } else {
2682       /* Variable index array dereference.  It eats the "vec4" of the
2683        * base of the array and an index that offsets the TGSI register
2684        * index.
2685        */
2686       ir->array_index->accept(this);
2687 
2688       st_src_reg index_reg;
2689 
2690       if (element_size == 1) {
2691          index_reg = this->result;
2692       } else {
2693          index_reg = get_temp(native_integers ?
2694                               glsl_type::int_type : glsl_type::float_type);
2695 
2696          emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2697               this->result, st_src_reg_for_type(index_reg.type, element_size));
2698       }
2699 
2700       /* If there was already a relative address register involved, add the
2701        * new and the old together to get the new offset.
2702        */
2703       if (!is_2D && src.reladdr != NULL) {
2704          st_src_reg accum_reg = get_temp(native_integers ?
2705                                 glsl_type::int_type : glsl_type::float_type);
2706 
2707          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2708               index_reg, *src.reladdr);
2709 
2710          index_reg = accum_reg;
2711       }
2712 
2713       if (is_2D) {
2714          src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2715          memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2716          src.index2D = 0;
2717          src.has_index2 = true;
2718       } else {
2719          src.reladdr = ralloc(mem_ctx, st_src_reg);
2720          memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2721       }
2722    }
2723 
2724    /* Change the register type to the element type of the array. */
2725    src.type = ir->type->base_type;
2726 
2727    this->result = src;
2728 }
2729 
2730 void
visit(ir_dereference_record * ir)2731 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2732 {
2733    unsigned int i;
2734    const glsl_type *struct_type = ir->record->type;
2735    int offset = 0;
2736 
2737    ir->record->accept(this);
2738 
2739    for (i = 0; i < struct_type->length; i++) {
2740       if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2741          break;
2742       offset += type_size(struct_type->fields.structure[i].type);
2743    }
2744 
2745    /* If the type is smaller than a vec4, replicate the last channel out. */
2746    if (ir->type->is_scalar() || ir->type->is_vector())
2747       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2748    else
2749       this->result.swizzle = SWIZZLE_NOOP;
2750 
2751    this->result.index += offset;
2752    this->result.type = ir->type->base_type;
2753 }
2754 
2755 /**
2756  * We want to be careful in assignment setup to hit the actual storage
2757  * instead of potentially using a temporary like we might with the
2758  * ir_dereference handler.
2759  */
2760 static st_dst_reg
get_assignment_lhs(ir_dereference * ir,glsl_to_tgsi_visitor * v,int * component)2761 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2762 {
2763    /* The LHS must be a dereference.  If the LHS is a variable indexed array
2764     * access of a vector, it must be separated into a series conditional moves
2765     * before reaching this point (see ir_vec_index_to_cond_assign).
2766     */
2767    assert(ir->as_dereference());
2768    ir_dereference_array *deref_array = ir->as_dereference_array();
2769    if (deref_array) {
2770       assert(!deref_array->array->type->is_vector());
2771    }
2772 
2773    /* Use the rvalue deref handler for the most part.  We write swizzles using
2774     * the writemask, but we do extract the base component for enhanced layouts
2775     * from the source swizzle.
2776     */
2777    ir->accept(v);
2778    *component = GET_SWZ(v->result.swizzle, 0);
2779    return st_dst_reg(v->result);
2780 }
2781 
2782 /**
2783  * Process the condition of a conditional assignment
2784  *
2785  * Examines the condition of a conditional assignment to generate the optimal
2786  * first operand of a \c CMP instruction.  If the condition is a relational
2787  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2788  * used as the source for the \c CMP instruction.  Otherwise the comparison
2789  * is processed to a boolean result, and the boolean result is used as the
2790  * operand to the CMP instruction.
2791  */
2792 bool
process_move_condition(ir_rvalue * ir)2793 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2794 {
2795    ir_rvalue *src_ir = ir;
2796    bool negate = true;
2797    bool switch_order = false;
2798 
2799    ir_expression *const expr = ir->as_expression();
2800 
2801    if (native_integers) {
2802       if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2803          enum glsl_base_type type = expr->operands[0]->type->base_type;
2804          if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2805              type == GLSL_TYPE_BOOL) {
2806             if (expr->operation == ir_binop_equal) {
2807                if (expr->operands[0]->is_zero()) {
2808                   src_ir = expr->operands[1];
2809                   switch_order = true;
2810                }
2811                else if (expr->operands[1]->is_zero()) {
2812                   src_ir = expr->operands[0];
2813                   switch_order = true;
2814                }
2815             }
2816             else if (expr->operation == ir_binop_nequal) {
2817                if (expr->operands[0]->is_zero()) {
2818                   src_ir = expr->operands[1];
2819                }
2820                else if (expr->operands[1]->is_zero()) {
2821                   src_ir = expr->operands[0];
2822                }
2823             }
2824          }
2825       }
2826 
2827       src_ir->accept(this);
2828       return switch_order;
2829    }
2830 
2831    if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2832       bool zero_on_left = false;
2833 
2834       if (expr->operands[0]->is_zero()) {
2835          src_ir = expr->operands[1];
2836          zero_on_left = true;
2837       } else if (expr->operands[1]->is_zero()) {
2838          src_ir = expr->operands[0];
2839          zero_on_left = false;
2840       }
2841 
2842       /*      a is -  0  +            -  0  +
2843        * (a <  0)  T  F  F  ( a < 0)  T  F  F
2844        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2845        * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2846        * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2847        * (a >  0)  F  F  T  (-a < 0)  F  F  T
2848        * (0 >  a)  T  F  F  ( a < 0)  T  F  F
2849        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2850        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2851        *
2852        * Note that exchanging the order of 0 and 'a' in the comparison simply
2853        * means that the value of 'a' should be negated.
2854        */
2855       if (src_ir != ir) {
2856          switch (expr->operation) {
2857          case ir_binop_less:
2858             switch_order = false;
2859             negate = zero_on_left;
2860             break;
2861 
2862          case ir_binop_greater:
2863             switch_order = false;
2864             negate = !zero_on_left;
2865             break;
2866 
2867          case ir_binop_lequal:
2868             switch_order = true;
2869             negate = !zero_on_left;
2870             break;
2871 
2872          case ir_binop_gequal:
2873             switch_order = true;
2874             negate = zero_on_left;
2875             break;
2876 
2877          default:
2878             /* This isn't the right kind of comparison afterall, so make sure
2879              * the whole condition is visited.
2880              */
2881             src_ir = ir;
2882             break;
2883          }
2884       }
2885    }
2886 
2887    src_ir->accept(this);
2888 
2889    /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2890     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
2891     * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2892     * computing the condition.
2893     */
2894    if (negate)
2895       this->result.negate = ~this->result.negate;
2896 
2897    return switch_order;
2898 }
2899 
2900 void
emit_block_mov(ir_assignment * ir,const struct glsl_type * type,st_dst_reg * l,st_src_reg * r,st_src_reg * cond,bool cond_swap)2901 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2902                                      st_dst_reg *l, st_src_reg *r,
2903                                      st_src_reg *cond, bool cond_swap)
2904 {
2905    if (type->base_type == GLSL_TYPE_STRUCT) {
2906       for (unsigned int i = 0; i < type->length; i++) {
2907          emit_block_mov(ir, type->fields.structure[i].type, l, r,
2908                         cond, cond_swap);
2909       }
2910       return;
2911    }
2912 
2913    if (type->is_array()) {
2914       for (unsigned int i = 0; i < type->length; i++) {
2915          emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2916       }
2917       return;
2918    }
2919 
2920    if (type->is_matrix()) {
2921       const struct glsl_type *vec_type;
2922 
2923       vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
2924                                          type->vector_elements, 1);
2925 
2926       for (int i = 0; i < type->matrix_columns; i++) {
2927          emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2928       }
2929       return;
2930    }
2931 
2932    assert(type->is_scalar() || type->is_vector());
2933 
2934    l->type = type->base_type;
2935    r->type = type->base_type;
2936    if (cond) {
2937       st_src_reg l_src = st_src_reg(*l);
2938       l_src.swizzle = swizzle_for_size(type->vector_elements);
2939 
2940       if (native_integers) {
2941          emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2942               cond_swap ? l_src : *r,
2943               cond_swap ? *r : l_src);
2944       } else {
2945          emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2946               cond_swap ? l_src : *r,
2947               cond_swap ? *r : l_src);
2948       }
2949    } else {
2950       emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2951    }
2952    l->index++;
2953    r->index++;
2954    if (type->is_dual_slot()) {
2955       l->index++;
2956       if (r->is_double_vertex_input == false)
2957 	 r->index++;
2958    }
2959 }
2960 
2961 void
visit(ir_assignment * ir)2962 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2963 {
2964    int dst_component;
2965    st_dst_reg l;
2966    st_src_reg r;
2967 
2968    ir->rhs->accept(this);
2969    r = this->result;
2970 
2971    l = get_assignment_lhs(ir->lhs, this, &dst_component);
2972 
2973    {
2974       int swizzles[4];
2975       int first_enabled_chan = 0;
2976       int rhs_chan = 0;
2977       ir_variable *variable = ir->lhs->variable_referenced();
2978 
2979       if (shader->Stage == MESA_SHADER_FRAGMENT &&
2980           variable->data.mode == ir_var_shader_out &&
2981           (variable->data.location == FRAG_RESULT_DEPTH ||
2982            variable->data.location == FRAG_RESULT_STENCIL)) {
2983          assert(ir->lhs->type->is_scalar());
2984          assert(ir->write_mask == WRITEMASK_X);
2985 
2986          if (variable->data.location == FRAG_RESULT_DEPTH)
2987             l.writemask = WRITEMASK_Z;
2988          else {
2989             assert(variable->data.location == FRAG_RESULT_STENCIL);
2990             l.writemask = WRITEMASK_Y;
2991          }
2992       } else if (ir->write_mask == 0) {
2993          assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2994 
2995          unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
2996 
2997          if (num_elements) {
2998             l.writemask = u_bit_consecutive(0, num_elements);
2999          } else {
3000             /* The type is a struct or an array of (array of) structs. */
3001             l.writemask = WRITEMASK_XYZW;
3002          }
3003       } else {
3004          l.writemask = ir->write_mask;
3005       }
3006 
3007       for (int i = 0; i < 4; i++) {
3008          if (l.writemask & (1 << i)) {
3009             first_enabled_chan = GET_SWZ(r.swizzle, i);
3010             break;
3011          }
3012       }
3013 
3014       l.writemask = l.writemask << dst_component;
3015 
3016       /* Swizzle a small RHS vector into the channels being written.
3017        *
3018        * glsl ir treats write_mask as dictating how many channels are
3019        * present on the RHS while TGSI treats write_mask as just
3020        * showing which channels of the vec4 RHS get written.
3021        */
3022       for (int i = 0; i < 4; i++) {
3023          if (l.writemask & (1 << i))
3024             swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3025          else
3026             swizzles[i] = first_enabled_chan;
3027       }
3028       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3029                                 swizzles[2], swizzles[3]);
3030    }
3031 
3032    assert(l.file != PROGRAM_UNDEFINED);
3033    assert(r.file != PROGRAM_UNDEFINED);
3034 
3035    if (ir->condition) {
3036       const bool switch_order = this->process_move_condition(ir->condition);
3037       st_src_reg condition = this->result;
3038 
3039       emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3040    } else if (ir->rhs->as_expression() &&
3041               this->instructions.get_tail() &&
3042               ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3043               !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3044               type_size(ir->lhs->type) == 1 &&
3045               l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3046       /* To avoid emitting an extra MOV when assigning an expression to a
3047        * variable, emit the last instruction of the expression again, but
3048        * replace the destination register with the target of the assignment.
3049        * Dead code elimination will remove the original instruction.
3050        */
3051       glsl_to_tgsi_instruction *inst, *new_inst;
3052       inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3053       new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3054       new_inst->saturate = inst->saturate;
3055       inst->dead_mask = inst->dst[0].writemask;
3056    } else {
3057       emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3058    }
3059 }
3060 
3061 
3062 void
visit(ir_constant * ir)3063 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3064 {
3065    st_src_reg src;
3066    GLdouble stack_vals[4] = { 0 };
3067    gl_constant_value *values = (gl_constant_value *) stack_vals;
3068    GLenum gl_type = GL_NONE;
3069    unsigned int i;
3070    static int in_array = 0;
3071    gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3072 
3073    /* Unfortunately, 4 floats is all we can get into
3074     * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
3075     * aggregate constant and move each constant value into it.  If we
3076     * get lucky, copy propagation will eliminate the extra moves.
3077     */
3078    if (ir->type->base_type == GLSL_TYPE_STRUCT) {
3079       st_src_reg temp_base = get_temp(ir->type);
3080       st_dst_reg temp = st_dst_reg(temp_base);
3081 
3082       foreach_in_list(ir_constant, field_value, &ir->components) {
3083          int size = type_size(field_value->type);
3084 
3085          assert(size > 0);
3086 
3087          field_value->accept(this);
3088          src = this->result;
3089 
3090          for (i = 0; i < (unsigned int)size; i++) {
3091             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3092 
3093             src.index++;
3094             temp.index++;
3095          }
3096       }
3097       this->result = temp_base;
3098       return;
3099    }
3100 
3101    if (ir->type->is_array()) {
3102       st_src_reg temp_base = get_temp(ir->type);
3103       st_dst_reg temp = st_dst_reg(temp_base);
3104       int size = type_size(ir->type->fields.array);
3105 
3106       assert(size > 0);
3107       in_array++;
3108 
3109       for (i = 0; i < ir->type->length; i++) {
3110          ir->array_elements[i]->accept(this);
3111          src = this->result;
3112          for (int j = 0; j < size; j++) {
3113             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3114 
3115             src.index++;
3116             temp.index++;
3117          }
3118       }
3119       this->result = temp_base;
3120       in_array--;
3121       return;
3122    }
3123 
3124    if (ir->type->is_matrix()) {
3125       st_src_reg mat = get_temp(ir->type);
3126       st_dst_reg mat_column = st_dst_reg(mat);
3127 
3128       for (i = 0; i < ir->type->matrix_columns; i++) {
3129          switch (ir->type->base_type) {
3130          case GLSL_TYPE_FLOAT:
3131             values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3132 
3133             src = st_src_reg(file, -1, ir->type->base_type);
3134             src.index = add_constant(file,
3135                                      values,
3136                                      ir->type->vector_elements,
3137                                      GL_FLOAT,
3138                                      &src.swizzle);
3139             emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3140             break;
3141          case GLSL_TYPE_DOUBLE:
3142             values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3143             src = st_src_reg(file, -1, ir->type->base_type);
3144             src.index = add_constant(file,
3145                                      values,
3146                                      ir->type->vector_elements,
3147                                      GL_DOUBLE,
3148                                      &src.swizzle);
3149             if (ir->type->vector_elements >= 2) {
3150                mat_column.writemask = WRITEMASK_XY;
3151                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3152                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3153             } else {
3154                mat_column.writemask = WRITEMASK_X;
3155                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3156                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3157             }
3158             src.index++;
3159             if (ir->type->vector_elements > 2) {
3160                if (ir->type->vector_elements == 4) {
3161                   mat_column.writemask = WRITEMASK_ZW;
3162                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3163                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3164                } else {
3165                   mat_column.writemask = WRITEMASK_Z;
3166                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3167                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3168                   mat_column.writemask = WRITEMASK_XYZW;
3169                   src.swizzle = SWIZZLE_XYZW;
3170                }
3171                mat_column.index++;
3172             }
3173             break;
3174          default:
3175             unreachable("Illegal matrix constant type.\n");
3176             break;
3177          }
3178          mat_column.index++;
3179       }
3180       this->result = mat;
3181       return;
3182    }
3183 
3184    switch (ir->type->base_type) {
3185    case GLSL_TYPE_FLOAT:
3186       gl_type = GL_FLOAT;
3187       for (i = 0; i < ir->type->vector_elements; i++) {
3188          values[i].f = ir->value.f[i];
3189       }
3190       break;
3191    case GLSL_TYPE_DOUBLE:
3192       gl_type = GL_DOUBLE;
3193       for (i = 0; i < ir->type->vector_elements; i++) {
3194          memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3195       }
3196       break;
3197    case GLSL_TYPE_UINT:
3198       gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3199       for (i = 0; i < ir->type->vector_elements; i++) {
3200          if (native_integers)
3201             values[i].u = ir->value.u[i];
3202          else
3203             values[i].f = ir->value.u[i];
3204       }
3205       break;
3206    case GLSL_TYPE_INT:
3207       gl_type = native_integers ? GL_INT : GL_FLOAT;
3208       for (i = 0; i < ir->type->vector_elements; i++) {
3209          if (native_integers)
3210             values[i].i = ir->value.i[i];
3211          else
3212             values[i].f = ir->value.i[i];
3213       }
3214       break;
3215    case GLSL_TYPE_BOOL:
3216       gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3217       for (i = 0; i < ir->type->vector_elements; i++) {
3218          values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3219       }
3220       break;
3221    default:
3222       assert(!"Non-float/uint/int/bool constant");
3223    }
3224 
3225    this->result = st_src_reg(file, -1, ir->type);
3226    this->result.index = add_constant(file,
3227                                      values,
3228                                      ir->type->vector_elements,
3229                                      gl_type,
3230                                      &this->result.swizzle);
3231 }
3232 
3233 void
visit_atomic_counter_intrinsic(ir_call * ir)3234 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3235 {
3236    exec_node *param = ir->actual_parameters.get_head();
3237    ir_dereference *deref = static_cast<ir_dereference *>(param);
3238    ir_variable *location = deref->variable_referenced();
3239 
3240    st_src_reg buffer(
3241          PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3242 
3243    /* Calculate the surface offset */
3244    st_src_reg offset;
3245    unsigned array_size = 0, base = 0;
3246    uint16_t index = 0;
3247 
3248    get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3249 
3250    if (offset.file != PROGRAM_UNDEFINED) {
3251       emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3252                offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3253       emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3254                offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3255    } else {
3256       offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3257    }
3258 
3259    ir->return_deref->accept(this);
3260    st_dst_reg dst(this->result);
3261    dst.writemask = WRITEMASK_X;
3262 
3263    glsl_to_tgsi_instruction *inst;
3264 
3265    if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3266       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3267    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3268       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3269                       st_src_reg_for_int(1));
3270    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3271       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3272                       st_src_reg_for_int(-1));
3273       emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3274    } else {
3275       param = param->get_next();
3276       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3277       val->accept(this);
3278 
3279       st_src_reg data = this->result, data2 = undef_src;
3280       unsigned opcode;
3281       switch (ir->callee->intrinsic_id) {
3282       case ir_intrinsic_atomic_counter_add:
3283          opcode = TGSI_OPCODE_ATOMUADD;
3284          break;
3285       case ir_intrinsic_atomic_counter_min:
3286          opcode = TGSI_OPCODE_ATOMIMIN;
3287          break;
3288       case ir_intrinsic_atomic_counter_max:
3289          opcode = TGSI_OPCODE_ATOMIMAX;
3290          break;
3291       case ir_intrinsic_atomic_counter_and:
3292          opcode = TGSI_OPCODE_ATOMAND;
3293          break;
3294       case ir_intrinsic_atomic_counter_or:
3295          opcode = TGSI_OPCODE_ATOMOR;
3296          break;
3297       case ir_intrinsic_atomic_counter_xor:
3298          opcode = TGSI_OPCODE_ATOMXOR;
3299          break;
3300       case ir_intrinsic_atomic_counter_exchange:
3301          opcode = TGSI_OPCODE_ATOMXCHG;
3302          break;
3303       case ir_intrinsic_atomic_counter_comp_swap: {
3304          opcode = TGSI_OPCODE_ATOMCAS;
3305          param = param->get_next();
3306          val = ((ir_instruction *)param)->as_rvalue();
3307          val->accept(this);
3308          data2 = this->result;
3309          break;
3310       }
3311       default:
3312          assert(!"Unexpected intrinsic");
3313          return;
3314       }
3315 
3316       inst = emit_asm(ir, opcode, dst, offset, data, data2);
3317    }
3318 
3319    inst->resource = buffer;
3320 }
3321 
3322 void
visit_ssbo_intrinsic(ir_call * ir)3323 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3324 {
3325    exec_node *param = ir->actual_parameters.get_head();
3326 
3327    ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3328 
3329    param = param->get_next();
3330    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3331 
3332    ir_constant *const_block = block->as_constant();
3333 
3334    st_src_reg buffer(
3335          PROGRAM_BUFFER,
3336          ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3337          (const_block ? const_block->value.u[0] : 0),
3338          GLSL_TYPE_UINT);
3339 
3340    if (!const_block) {
3341       block->accept(this);
3342       buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3343       *buffer.reladdr = this->result;
3344       emit_arl(ir, sampler_reladdr, this->result);
3345    }
3346 
3347    /* Calculate the surface offset */
3348    offset->accept(this);
3349    st_src_reg off = this->result;
3350 
3351    st_dst_reg dst = undef_dst;
3352    if (ir->return_deref) {
3353       ir->return_deref->accept(this);
3354       dst = st_dst_reg(this->result);
3355       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3356    }
3357 
3358    glsl_to_tgsi_instruction *inst;
3359 
3360    if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3361       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3362       if (dst.type == GLSL_TYPE_BOOL)
3363          emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3364    } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3365       param = param->get_next();
3366       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3367       val->accept(this);
3368 
3369       param = param->get_next();
3370       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3371       assert(write_mask);
3372       dst.writemask = write_mask->value.u[0];
3373 
3374       dst.type = this->result.type;
3375       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3376    } else {
3377       param = param->get_next();
3378       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3379       val->accept(this);
3380 
3381       st_src_reg data = this->result, data2 = undef_src;
3382       unsigned opcode;
3383       switch (ir->callee->intrinsic_id) {
3384       case ir_intrinsic_ssbo_atomic_add:
3385          opcode = TGSI_OPCODE_ATOMUADD;
3386          break;
3387       case ir_intrinsic_ssbo_atomic_min:
3388          opcode = TGSI_OPCODE_ATOMIMIN;
3389          break;
3390       case ir_intrinsic_ssbo_atomic_max:
3391          opcode = TGSI_OPCODE_ATOMIMAX;
3392          break;
3393       case ir_intrinsic_ssbo_atomic_and:
3394          opcode = TGSI_OPCODE_ATOMAND;
3395          break;
3396       case ir_intrinsic_ssbo_atomic_or:
3397          opcode = TGSI_OPCODE_ATOMOR;
3398          break;
3399       case ir_intrinsic_ssbo_atomic_xor:
3400          opcode = TGSI_OPCODE_ATOMXOR;
3401          break;
3402       case ir_intrinsic_ssbo_atomic_exchange:
3403          opcode = TGSI_OPCODE_ATOMXCHG;
3404          break;
3405       case ir_intrinsic_ssbo_atomic_comp_swap:
3406          opcode = TGSI_OPCODE_ATOMCAS;
3407          param = param->get_next();
3408          val = ((ir_instruction *)param)->as_rvalue();
3409          val->accept(this);
3410          data2 = this->result;
3411          break;
3412       default:
3413          assert(!"Unexpected intrinsic");
3414          return;
3415       }
3416 
3417       inst = emit_asm(ir, opcode, dst, off, data, data2);
3418    }
3419 
3420    param = param->get_next();
3421    ir_constant *access = NULL;
3422    if (!param->is_tail_sentinel()) {
3423       access = ((ir_instruction *)param)->as_constant();
3424       assert(access);
3425    }
3426 
3427    /* The emit_asm() might have actually split the op into pieces, e.g. for
3428     * double stores. We have to go back and fix up all the generated ops.
3429     */
3430    unsigned op = inst->op;
3431    do {
3432       inst->resource = buffer;
3433       if (access)
3434          inst->buffer_access = access->value.u[0];
3435 
3436       if (inst == this->instructions.get_head_raw())
3437          break;
3438       inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3439 
3440       if (inst->op == TGSI_OPCODE_UADD) {
3441          if (inst == this->instructions.get_head_raw())
3442             break;
3443          inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3444       }
3445    } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
3446 }
3447 
3448 void
visit_membar_intrinsic(ir_call * ir)3449 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3450 {
3451    switch (ir->callee->intrinsic_id) {
3452    case ir_intrinsic_memory_barrier:
3453       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3454                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3455                                   TGSI_MEMBAR_ATOMIC_BUFFER |
3456                                   TGSI_MEMBAR_SHADER_IMAGE |
3457                                   TGSI_MEMBAR_SHARED));
3458       break;
3459    case ir_intrinsic_memory_barrier_atomic_counter:
3460       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3461                st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3462       break;
3463    case ir_intrinsic_memory_barrier_buffer:
3464       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3465                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3466       break;
3467    case ir_intrinsic_memory_barrier_image:
3468       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3469                st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3470       break;
3471    case ir_intrinsic_memory_barrier_shared:
3472       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3473                st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3474       break;
3475    case ir_intrinsic_group_memory_barrier:
3476       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3477                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3478                                   TGSI_MEMBAR_ATOMIC_BUFFER |
3479                                   TGSI_MEMBAR_SHADER_IMAGE |
3480                                   TGSI_MEMBAR_SHARED |
3481                                   TGSI_MEMBAR_THREAD_GROUP));
3482       break;
3483    default:
3484       assert(!"Unexpected memory barrier intrinsic");
3485    }
3486 }
3487 
3488 void
visit_shared_intrinsic(ir_call * ir)3489 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3490 {
3491    exec_node *param = ir->actual_parameters.get_head();
3492 
3493    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3494 
3495    st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3496 
3497    /* Calculate the surface offset */
3498    offset->accept(this);
3499    st_src_reg off = this->result;
3500 
3501    st_dst_reg dst = undef_dst;
3502    if (ir->return_deref) {
3503       ir->return_deref->accept(this);
3504       dst = st_dst_reg(this->result);
3505       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3506    }
3507 
3508    glsl_to_tgsi_instruction *inst;
3509 
3510    if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3511       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3512       inst->resource = buffer;
3513    } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3514       param = param->get_next();
3515       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3516       val->accept(this);
3517 
3518       param = param->get_next();
3519       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3520       assert(write_mask);
3521       dst.writemask = write_mask->value.u[0];
3522 
3523       dst.type = this->result.type;
3524       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3525       inst->resource = buffer;
3526    } else {
3527       param = param->get_next();
3528       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3529       val->accept(this);
3530 
3531       st_src_reg data = this->result, data2 = undef_src;
3532       unsigned opcode;
3533       switch (ir->callee->intrinsic_id) {
3534       case ir_intrinsic_shared_atomic_add:
3535          opcode = TGSI_OPCODE_ATOMUADD;
3536          break;
3537       case ir_intrinsic_shared_atomic_min:
3538          opcode = TGSI_OPCODE_ATOMIMIN;
3539          break;
3540       case ir_intrinsic_shared_atomic_max:
3541          opcode = TGSI_OPCODE_ATOMIMAX;
3542          break;
3543       case ir_intrinsic_shared_atomic_and:
3544          opcode = TGSI_OPCODE_ATOMAND;
3545          break;
3546       case ir_intrinsic_shared_atomic_or:
3547          opcode = TGSI_OPCODE_ATOMOR;
3548          break;
3549       case ir_intrinsic_shared_atomic_xor:
3550          opcode = TGSI_OPCODE_ATOMXOR;
3551          break;
3552       case ir_intrinsic_shared_atomic_exchange:
3553          opcode = TGSI_OPCODE_ATOMXCHG;
3554          break;
3555       case ir_intrinsic_shared_atomic_comp_swap:
3556          opcode = TGSI_OPCODE_ATOMCAS;
3557          param = param->get_next();
3558          val = ((ir_instruction *)param)->as_rvalue();
3559          val->accept(this);
3560          data2 = this->result;
3561          break;
3562       default:
3563          assert(!"Unexpected intrinsic");
3564          return;
3565       }
3566 
3567       inst = emit_asm(ir, opcode, dst, off, data, data2);
3568       inst->resource = buffer;
3569    }
3570 }
3571 
3572 void
visit_image_intrinsic(ir_call * ir)3573 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3574 {
3575    exec_node *param = ir->actual_parameters.get_head();
3576 
3577    ir_dereference *img = (ir_dereference *)param;
3578    const ir_variable *imgvar = img->variable_referenced();
3579    const glsl_type *type = imgvar->type->without_array();
3580    unsigned sampler_array_size = 1, sampler_base = 0;
3581 
3582    st_src_reg reladdr;
3583    st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3584 
3585    get_deref_offsets(img, &sampler_array_size, &sampler_base,
3586                      (uint16_t*)&image.index, &reladdr, true);
3587 
3588    if (reladdr.file != PROGRAM_UNDEFINED) {
3589       image.reladdr = ralloc(mem_ctx, st_src_reg);
3590       *image.reladdr = reladdr;
3591       emit_arl(ir, sampler_reladdr, reladdr);
3592    }
3593 
3594    st_dst_reg dst = undef_dst;
3595    if (ir->return_deref) {
3596       ir->return_deref->accept(this);
3597       dst = st_dst_reg(this->result);
3598       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3599    }
3600 
3601    glsl_to_tgsi_instruction *inst;
3602 
3603    if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3604       dst.writemask = WRITEMASK_XYZ;
3605       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3606    } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3607       st_src_reg res = get_temp(glsl_type::ivec4_type);
3608       st_dst_reg dstres = st_dst_reg(res);
3609       dstres.writemask = WRITEMASK_W;
3610       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3611       res.swizzle = SWIZZLE_WWWW;
3612       emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3613    } else {
3614       st_src_reg arg1 = undef_src, arg2 = undef_src;
3615       st_src_reg coord;
3616       st_dst_reg coord_dst;
3617       coord = get_temp(glsl_type::ivec4_type);
3618       coord_dst = st_dst_reg(coord);
3619       coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3620       param = param->get_next();
3621       ((ir_dereference *)param)->accept(this);
3622       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3623       coord.swizzle = SWIZZLE_XXXX;
3624       switch (type->coordinate_components()) {
3625       case 4: assert(!"unexpected coord count");
3626       /* fallthrough */
3627       case 3: coord.swizzle |= SWIZZLE_Z << 6;
3628       /* fallthrough */
3629       case 2: coord.swizzle |= SWIZZLE_Y << 3;
3630       }
3631 
3632       if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3633          param = param->get_next();
3634          ((ir_dereference *)param)->accept(this);
3635          st_src_reg sample = this->result;
3636          sample.swizzle = SWIZZLE_XXXX;
3637          coord_dst.writemask = WRITEMASK_W;
3638          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3639          coord.swizzle |= SWIZZLE_W << 9;
3640       }
3641 
3642       param = param->get_next();
3643       if (!param->is_tail_sentinel()) {
3644          ((ir_dereference *)param)->accept(this);
3645          arg1 = this->result;
3646          param = param->get_next();
3647       }
3648 
3649       if (!param->is_tail_sentinel()) {
3650          ((ir_dereference *)param)->accept(this);
3651          arg2 = this->result;
3652          param = param->get_next();
3653       }
3654 
3655       assert(param->is_tail_sentinel());
3656 
3657       unsigned opcode;
3658       switch (ir->callee->intrinsic_id) {
3659       case ir_intrinsic_image_load:
3660          opcode = TGSI_OPCODE_LOAD;
3661          break;
3662       case ir_intrinsic_image_store:
3663          opcode = TGSI_OPCODE_STORE;
3664          break;
3665       case ir_intrinsic_image_atomic_add:
3666          opcode = TGSI_OPCODE_ATOMUADD;
3667          break;
3668       case ir_intrinsic_image_atomic_min:
3669          opcode = TGSI_OPCODE_ATOMIMIN;
3670          break;
3671       case ir_intrinsic_image_atomic_max:
3672          opcode = TGSI_OPCODE_ATOMIMAX;
3673          break;
3674       case ir_intrinsic_image_atomic_and:
3675          opcode = TGSI_OPCODE_ATOMAND;
3676          break;
3677       case ir_intrinsic_image_atomic_or:
3678          opcode = TGSI_OPCODE_ATOMOR;
3679          break;
3680       case ir_intrinsic_image_atomic_xor:
3681          opcode = TGSI_OPCODE_ATOMXOR;
3682          break;
3683       case ir_intrinsic_image_atomic_exchange:
3684          opcode = TGSI_OPCODE_ATOMXCHG;
3685          break;
3686       case ir_intrinsic_image_atomic_comp_swap:
3687          opcode = TGSI_OPCODE_ATOMCAS;
3688          break;
3689       default:
3690          assert(!"Unexpected intrinsic");
3691          return;
3692       }
3693 
3694       inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3695       if (opcode == TGSI_OPCODE_STORE)
3696          inst->dst[0].writemask = WRITEMASK_XYZW;
3697    }
3698 
3699    inst->resource = image;
3700    inst->sampler_array_size = sampler_array_size;
3701    inst->sampler_base = sampler_base;
3702 
3703    switch (type->sampler_dimensionality) {
3704    case GLSL_SAMPLER_DIM_1D:
3705       inst->tex_target = (type->sampler_array)
3706          ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3707       break;
3708    case GLSL_SAMPLER_DIM_2D:
3709       inst->tex_target = (type->sampler_array)
3710          ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3711       break;
3712    case GLSL_SAMPLER_DIM_3D:
3713       inst->tex_target = TEXTURE_3D_INDEX;
3714       break;
3715    case GLSL_SAMPLER_DIM_CUBE:
3716       inst->tex_target = (type->sampler_array)
3717          ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3718       break;
3719    case GLSL_SAMPLER_DIM_RECT:
3720       inst->tex_target = TEXTURE_RECT_INDEX;
3721       break;
3722    case GLSL_SAMPLER_DIM_BUF:
3723       inst->tex_target = TEXTURE_BUFFER_INDEX;
3724       break;
3725    case GLSL_SAMPLER_DIM_EXTERNAL:
3726       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3727       break;
3728    case GLSL_SAMPLER_DIM_MS:
3729       inst->tex_target = (type->sampler_array)
3730          ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3731       break;
3732    default:
3733       assert(!"Should not get here.");
3734    }
3735 
3736    inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3737          _mesa_get_shader_image_format(imgvar->data.image_format));
3738 
3739    if (imgvar->data.image_coherent)
3740       inst->buffer_access |= TGSI_MEMORY_COHERENT;
3741    if (imgvar->data.image_restrict)
3742       inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3743    if (imgvar->data.image_volatile)
3744       inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3745 }
3746 
3747 void
visit(ir_call * ir)3748 glsl_to_tgsi_visitor::visit(ir_call *ir)
3749 {
3750    ir_function_signature *sig = ir->callee;
3751 
3752    /* Filter out intrinsics */
3753    switch (sig->intrinsic_id) {
3754    case ir_intrinsic_atomic_counter_read:
3755    case ir_intrinsic_atomic_counter_increment:
3756    case ir_intrinsic_atomic_counter_predecrement:
3757    case ir_intrinsic_atomic_counter_add:
3758    case ir_intrinsic_atomic_counter_min:
3759    case ir_intrinsic_atomic_counter_max:
3760    case ir_intrinsic_atomic_counter_and:
3761    case ir_intrinsic_atomic_counter_or:
3762    case ir_intrinsic_atomic_counter_xor:
3763    case ir_intrinsic_atomic_counter_exchange:
3764    case ir_intrinsic_atomic_counter_comp_swap:
3765       visit_atomic_counter_intrinsic(ir);
3766       return;
3767 
3768    case ir_intrinsic_ssbo_load:
3769    case ir_intrinsic_ssbo_store:
3770    case ir_intrinsic_ssbo_atomic_add:
3771    case ir_intrinsic_ssbo_atomic_min:
3772    case ir_intrinsic_ssbo_atomic_max:
3773    case ir_intrinsic_ssbo_atomic_and:
3774    case ir_intrinsic_ssbo_atomic_or:
3775    case ir_intrinsic_ssbo_atomic_xor:
3776    case ir_intrinsic_ssbo_atomic_exchange:
3777    case ir_intrinsic_ssbo_atomic_comp_swap:
3778       visit_ssbo_intrinsic(ir);
3779       return;
3780 
3781    case ir_intrinsic_memory_barrier:
3782    case ir_intrinsic_memory_barrier_atomic_counter:
3783    case ir_intrinsic_memory_barrier_buffer:
3784    case ir_intrinsic_memory_barrier_image:
3785    case ir_intrinsic_memory_barrier_shared:
3786    case ir_intrinsic_group_memory_barrier:
3787       visit_membar_intrinsic(ir);
3788       return;
3789 
3790    case ir_intrinsic_shared_load:
3791    case ir_intrinsic_shared_store:
3792    case ir_intrinsic_shared_atomic_add:
3793    case ir_intrinsic_shared_atomic_min:
3794    case ir_intrinsic_shared_atomic_max:
3795    case ir_intrinsic_shared_atomic_and:
3796    case ir_intrinsic_shared_atomic_or:
3797    case ir_intrinsic_shared_atomic_xor:
3798    case ir_intrinsic_shared_atomic_exchange:
3799    case ir_intrinsic_shared_atomic_comp_swap:
3800       visit_shared_intrinsic(ir);
3801       return;
3802 
3803    case ir_intrinsic_image_load:
3804    case ir_intrinsic_image_store:
3805    case ir_intrinsic_image_atomic_add:
3806    case ir_intrinsic_image_atomic_min:
3807    case ir_intrinsic_image_atomic_max:
3808    case ir_intrinsic_image_atomic_and:
3809    case ir_intrinsic_image_atomic_or:
3810    case ir_intrinsic_image_atomic_xor:
3811    case ir_intrinsic_image_atomic_exchange:
3812    case ir_intrinsic_image_atomic_comp_swap:
3813    case ir_intrinsic_image_size:
3814    case ir_intrinsic_image_samples:
3815       visit_image_intrinsic(ir);
3816       return;
3817 
3818    case ir_intrinsic_invalid:
3819    case ir_intrinsic_generic_load:
3820    case ir_intrinsic_generic_store:
3821    case ir_intrinsic_generic_atomic_add:
3822    case ir_intrinsic_generic_atomic_and:
3823    case ir_intrinsic_generic_atomic_or:
3824    case ir_intrinsic_generic_atomic_xor:
3825    case ir_intrinsic_generic_atomic_min:
3826    case ir_intrinsic_generic_atomic_max:
3827    case ir_intrinsic_generic_atomic_exchange:
3828    case ir_intrinsic_generic_atomic_comp_swap:
3829    case ir_intrinsic_shader_clock:
3830       unreachable("Invalid intrinsic");
3831    }
3832 }
3833 
3834 void
calc_deref_offsets(ir_dereference * tail,unsigned * array_elements,uint16_t * index,st_src_reg * indirect,unsigned * location)3835 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
3836                                          unsigned *array_elements,
3837                                          uint16_t *index,
3838                                          st_src_reg *indirect,
3839                                          unsigned *location)
3840 {
3841    switch (tail->ir_type) {
3842    case ir_type_dereference_record: {
3843       ir_dereference_record *deref_record = tail->as_dereference_record();
3844       const glsl_type *struct_type = deref_record->record->type;
3845       int field_index = deref_record->record->type->field_index(deref_record->field);
3846 
3847       calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
3848 
3849       assert(field_index >= 0);
3850       *location += struct_type->record_location_offset(field_index);
3851       break;
3852    }
3853 
3854    case ir_type_dereference_array: {
3855       ir_dereference_array *deref_arr = tail->as_dereference_array();
3856       ir_constant *array_index = deref_arr->array_index->constant_expression_value();
3857 
3858       if (!array_index) {
3859          st_src_reg temp_reg;
3860          st_dst_reg temp_dst;
3861 
3862          temp_reg = get_temp(glsl_type::uint_type);
3863          temp_dst = st_dst_reg(temp_reg);
3864          temp_dst.writemask = 1;
3865 
3866          deref_arr->array_index->accept(this);
3867          if (*array_elements != 1)
3868             emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
3869          else
3870             emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
3871 
3872          if (indirect->file == PROGRAM_UNDEFINED)
3873             *indirect = temp_reg;
3874          else {
3875             temp_dst = st_dst_reg(*indirect);
3876             temp_dst.writemask = 1;
3877             emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
3878          }
3879       } else
3880          *index += array_index->value.u[0] * *array_elements;
3881 
3882       *array_elements *= deref_arr->array->type->length;
3883 
3884       calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
3885       break;
3886    }
3887    default:
3888       break;
3889    }
3890 }
3891 
3892 void
get_deref_offsets(ir_dereference * ir,unsigned * array_size,unsigned * base,uint16_t * index,st_src_reg * reladdr,bool opaque)3893 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
3894                                         unsigned *array_size,
3895                                         unsigned *base,
3896                                         uint16_t *index,
3897                                         st_src_reg *reladdr,
3898                                         bool opaque)
3899 {
3900    GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
3901    unsigned location = 0;
3902    ir_variable *var = ir->variable_referenced();
3903 
3904    memset(reladdr, 0, sizeof(*reladdr));
3905    reladdr->file = PROGRAM_UNDEFINED;
3906 
3907    *base = 0;
3908    *array_size = 1;
3909 
3910    assert(var);
3911    location = var->data.location;
3912    calc_deref_offsets(ir, array_size, index, reladdr, &location);
3913 
3914    /*
3915     * If we end up with no indirect then adjust the base to the index,
3916     * and set the array size to 1.
3917     */
3918    if (reladdr->file == PROGRAM_UNDEFINED) {
3919       *base = *index;
3920       *array_size = 1;
3921    }
3922 
3923    if (opaque) {
3924       assert(location != 0xffffffff);
3925       *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
3926       *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
3927    }
3928 }
3929 
3930 st_src_reg
canonicalize_gather_offset(st_src_reg offset)3931 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
3932 {
3933    if (offset.reladdr || offset.reladdr2) {
3934       st_src_reg tmp = get_temp(glsl_type::ivec2_type);
3935       st_dst_reg tmp_dst = st_dst_reg(tmp);
3936       tmp_dst.writemask = WRITEMASK_XY;
3937       emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
3938       return tmp;
3939    }
3940 
3941    return offset;
3942 }
3943 
3944 void
visit(ir_texture * ir)3945 glsl_to_tgsi_visitor::visit(ir_texture *ir)
3946 {
3947    st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
3948    st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
3949    st_src_reg levels_src, reladdr;
3950    st_dst_reg result_dst, coord_dst, cube_sc_dst;
3951    glsl_to_tgsi_instruction *inst = NULL;
3952    unsigned opcode = TGSI_OPCODE_NOP;
3953    const glsl_type *sampler_type = ir->sampler->type;
3954    unsigned sampler_array_size = 1, sampler_base = 0;
3955    uint16_t sampler_index = 0;
3956    bool is_cube_array = false;
3957    unsigned i;
3958 
3959    /* if we are a cube array sampler */
3960    if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3961         sampler_type->sampler_array)) {
3962       is_cube_array = true;
3963    }
3964 
3965    if (ir->coordinate) {
3966       ir->coordinate->accept(this);
3967 
3968       /* Put our coords in a temp.  We'll need to modify them for shadow,
3969        * projection, or LOD, so the only case we'd use it as-is is if
3970        * we're doing plain old texturing.  The optimization passes on
3971        * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
3972        */
3973       coord = get_temp(glsl_type::vec4_type);
3974       coord_dst = st_dst_reg(coord);
3975       coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
3976       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3977    }
3978 
3979    if (ir->projector) {
3980       ir->projector->accept(this);
3981       projector = this->result;
3982    }
3983 
3984    /* Storage for our result.  Ideally for an assignment we'd be using
3985     * the actual storage for the result here, instead.
3986     */
3987    result_src = get_temp(ir->type);
3988    result_dst = st_dst_reg(result_src);
3989    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
3990 
3991    switch (ir->op) {
3992    case ir_tex:
3993       opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
3994       if (ir->offset) {
3995          ir->offset->accept(this);
3996          offset[0] = this->result;
3997       }
3998       break;
3999    case ir_txb:
4000       if (is_cube_array ||
4001           sampler_type == glsl_type::samplerCubeShadow_type) {
4002          opcode = TGSI_OPCODE_TXB2;
4003       }
4004       else {
4005          opcode = TGSI_OPCODE_TXB;
4006       }
4007       ir->lod_info.bias->accept(this);
4008       lod_info = this->result;
4009       if (ir->offset) {
4010          ir->offset->accept(this);
4011          offset[0] = this->result;
4012       }
4013       break;
4014    case ir_txl:
4015       opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4016       ir->lod_info.lod->accept(this);
4017       lod_info = this->result;
4018       if (ir->offset) {
4019          ir->offset->accept(this);
4020          offset[0] = this->result;
4021       }
4022       break;
4023    case ir_txd:
4024       opcode = TGSI_OPCODE_TXD;
4025       ir->lod_info.grad.dPdx->accept(this);
4026       dx = this->result;
4027       ir->lod_info.grad.dPdy->accept(this);
4028       dy = this->result;
4029       if (ir->offset) {
4030          ir->offset->accept(this);
4031          offset[0] = this->result;
4032       }
4033       break;
4034    case ir_txs:
4035       opcode = TGSI_OPCODE_TXQ;
4036       ir->lod_info.lod->accept(this);
4037       lod_info = this->result;
4038       break;
4039    case ir_query_levels:
4040       opcode = TGSI_OPCODE_TXQ;
4041       lod_info = undef_src;
4042       levels_src = get_temp(ir->type);
4043       break;
4044    case ir_txf:
4045       opcode = TGSI_OPCODE_TXF;
4046       ir->lod_info.lod->accept(this);
4047       lod_info = this->result;
4048       if (ir->offset) {
4049          ir->offset->accept(this);
4050          offset[0] = this->result;
4051       }
4052       break;
4053    case ir_txf_ms:
4054       opcode = TGSI_OPCODE_TXF;
4055       ir->lod_info.sample_index->accept(this);
4056       sample_index = this->result;
4057       break;
4058    case ir_tg4:
4059       opcode = TGSI_OPCODE_TG4;
4060       ir->lod_info.component->accept(this);
4061       component = this->result;
4062       if (ir->offset) {
4063          ir->offset->accept(this);
4064          if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
4065             const glsl_type *elt_type = ir->offset->type->fields.array;
4066             for (i = 0; i < ir->offset->type->length; i++) {
4067                offset[i] = this->result;
4068                offset[i].index += i * type_size(elt_type);
4069                offset[i].type = elt_type->base_type;
4070                offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4071                offset[i] = canonicalize_gather_offset(offset[i]);
4072             }
4073          } else {
4074             offset[0] = canonicalize_gather_offset(this->result);
4075          }
4076       }
4077       break;
4078    case ir_lod:
4079       opcode = TGSI_OPCODE_LODQ;
4080       break;
4081    case ir_texture_samples:
4082       opcode = TGSI_OPCODE_TXQS;
4083       break;
4084    case ir_samples_identical:
4085       unreachable("Unexpected ir_samples_identical opcode");
4086    }
4087 
4088    if (ir->projector) {
4089       if (opcode == TGSI_OPCODE_TEX) {
4090          /* Slot the projector in as the last component of the coord. */
4091          coord_dst.writemask = WRITEMASK_W;
4092          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4093          coord_dst.writemask = WRITEMASK_XYZW;
4094          opcode = TGSI_OPCODE_TXP;
4095       } else {
4096          st_src_reg coord_w = coord;
4097          coord_w.swizzle = SWIZZLE_WWWW;
4098 
4099          /* For the other TEX opcodes there's no projective version
4100           * since the last slot is taken up by LOD info.  Do the
4101           * projective divide now.
4102           */
4103          coord_dst.writemask = WRITEMASK_W;
4104          emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4105 
4106          /* In the case where we have to project the coordinates "by hand,"
4107           * the shadow comparator value must also be projected.
4108           */
4109          st_src_reg tmp_src = coord;
4110          if (ir->shadow_comparator) {
4111             /* Slot the shadow value in as the second to last component of the
4112              * coord.
4113              */
4114             ir->shadow_comparator->accept(this);
4115 
4116             tmp_src = get_temp(glsl_type::vec4_type);
4117             st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4118 
4119             /* Projective division not allowed for array samplers. */
4120             assert(!sampler_type->sampler_array);
4121 
4122             tmp_dst.writemask = WRITEMASK_Z;
4123             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4124 
4125             tmp_dst.writemask = WRITEMASK_XY;
4126             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4127          }
4128 
4129          coord_dst.writemask = WRITEMASK_XYZ;
4130          emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4131 
4132          coord_dst.writemask = WRITEMASK_XYZW;
4133          coord.swizzle = SWIZZLE_XYZW;
4134       }
4135    }
4136 
4137    /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4138     * comparator was put in the correct place (and projected) by the code,
4139     * above, that handles by-hand projection.
4140     */
4141    if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4142       /* Slot the shadow value in as the second to last component of the
4143        * coord.
4144        */
4145       ir->shadow_comparator->accept(this);
4146 
4147       if (is_cube_array) {
4148          cube_sc = get_temp(glsl_type::float_type);
4149          cube_sc_dst = st_dst_reg(cube_sc);
4150          cube_sc_dst.writemask = WRITEMASK_X;
4151          emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4152          cube_sc_dst.writemask = WRITEMASK_X;
4153       }
4154       else {
4155          if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4156               sampler_type->sampler_array) ||
4157              sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4158             coord_dst.writemask = WRITEMASK_W;
4159          } else {
4160             coord_dst.writemask = WRITEMASK_Z;
4161          }
4162          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4163          coord_dst.writemask = WRITEMASK_XYZW;
4164       }
4165    }
4166 
4167    if (ir->op == ir_txf_ms) {
4168       coord_dst.writemask = WRITEMASK_W;
4169       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4170       coord_dst.writemask = WRITEMASK_XYZW;
4171    } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4172        opcode == TGSI_OPCODE_TXF) {
4173       /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4174       coord_dst.writemask = WRITEMASK_W;
4175       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4176       coord_dst.writemask = WRITEMASK_XYZW;
4177    }
4178 
4179    get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4180                      &sampler_index, &reladdr, true);
4181    if (reladdr.file != PROGRAM_UNDEFINED)
4182       emit_arl(ir, sampler_reladdr, reladdr);
4183 
4184    if (opcode == TGSI_OPCODE_TXD)
4185       inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4186    else if (opcode == TGSI_OPCODE_TXQ) {
4187       if (ir->op == ir_query_levels) {
4188          /* the level is stored in W */
4189          inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4190          result_dst.writemask = WRITEMASK_X;
4191          levels_src.swizzle = SWIZZLE_WWWW;
4192          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4193       } else
4194          inst = emit_asm(ir, opcode, result_dst, lod_info);
4195    } else if (opcode == TGSI_OPCODE_TXQS) {
4196       inst = emit_asm(ir, opcode, result_dst);
4197    } else if (opcode == TGSI_OPCODE_TXF) {
4198       inst = emit_asm(ir, opcode, result_dst, coord);
4199    } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4200       inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4201    } else if (opcode == TGSI_OPCODE_TEX2) {
4202       inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4203    } else if (opcode == TGSI_OPCODE_TG4) {
4204       if (is_cube_array && ir->shadow_comparator) {
4205          inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4206       } else {
4207          inst = emit_asm(ir, opcode, result_dst, coord, component);
4208       }
4209    } else
4210       inst = emit_asm(ir, opcode, result_dst, coord);
4211 
4212    if (ir->shadow_comparator)
4213       inst->tex_shadow = GL_TRUE;
4214 
4215    inst->resource.index = sampler_index;
4216    inst->sampler_array_size = sampler_array_size;
4217    inst->sampler_base = sampler_base;
4218 
4219    if (reladdr.file != PROGRAM_UNDEFINED) {
4220       inst->resource.reladdr = ralloc(mem_ctx, st_src_reg);
4221       memcpy(inst->resource.reladdr, &reladdr, sizeof(reladdr));
4222    }
4223 
4224    if (ir->offset) {
4225       if (!inst->tex_offsets)
4226          inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
4227 
4228       for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4229          inst->tex_offsets[i] = offset[i];
4230       inst->tex_offset_num_offset = i;
4231    }
4232 
4233    switch (sampler_type->sampler_dimensionality) {
4234    case GLSL_SAMPLER_DIM_1D:
4235       inst->tex_target = (sampler_type->sampler_array)
4236          ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
4237       break;
4238    case GLSL_SAMPLER_DIM_2D:
4239       inst->tex_target = (sampler_type->sampler_array)
4240          ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
4241       break;
4242    case GLSL_SAMPLER_DIM_3D:
4243       inst->tex_target = TEXTURE_3D_INDEX;
4244       break;
4245    case GLSL_SAMPLER_DIM_CUBE:
4246       inst->tex_target = (sampler_type->sampler_array)
4247          ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
4248       break;
4249    case GLSL_SAMPLER_DIM_RECT:
4250       inst->tex_target = TEXTURE_RECT_INDEX;
4251       break;
4252    case GLSL_SAMPLER_DIM_BUF:
4253       inst->tex_target = TEXTURE_BUFFER_INDEX;
4254       break;
4255    case GLSL_SAMPLER_DIM_EXTERNAL:
4256       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
4257       break;
4258    case GLSL_SAMPLER_DIM_MS:
4259       inst->tex_target = (sampler_type->sampler_array)
4260          ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
4261       break;
4262    default:
4263       assert(!"Should not get here.");
4264    }
4265 
4266    inst->tex_type = ir->type->base_type;
4267 
4268    this->result = result_src;
4269 }
4270 
4271 void
visit(ir_return * ir)4272 glsl_to_tgsi_visitor::visit(ir_return *ir)
4273 {
4274    assert(!ir->get_value());
4275 
4276    emit_asm(ir, TGSI_OPCODE_RET);
4277 }
4278 
4279 void
visit(ir_discard * ir)4280 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4281 {
4282    if (ir->condition) {
4283       ir->condition->accept(this);
4284       st_src_reg condition = this->result;
4285 
4286       /* Convert the bool condition to a float so we can negate. */
4287       if (native_integers) {
4288          st_src_reg temp = get_temp(ir->condition->type);
4289          emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4290               condition, st_src_reg_for_float(1.0));
4291          condition = temp;
4292       }
4293 
4294       condition.negate = ~condition.negate;
4295       emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4296    } else {
4297       /* unconditional kil */
4298       emit_asm(ir, TGSI_OPCODE_KILL);
4299    }
4300 }
4301 
4302 void
visit(ir_if * ir)4303 glsl_to_tgsi_visitor::visit(ir_if *ir)
4304 {
4305    unsigned if_opcode;
4306    glsl_to_tgsi_instruction *if_inst;
4307 
4308    ir->condition->accept(this);
4309    assert(this->result.file != PROGRAM_UNDEFINED);
4310 
4311    if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4312 
4313    if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4314 
4315    this->instructions.push_tail(if_inst);
4316 
4317    visit_exec_list(&ir->then_instructions, this);
4318 
4319    if (!ir->else_instructions.is_empty()) {
4320       emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4321       visit_exec_list(&ir->else_instructions, this);
4322    }
4323 
4324    if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4325 }
4326 
4327 
4328 void
visit(ir_emit_vertex * ir)4329 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4330 {
4331    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4332 
4333    ir->stream->accept(this);
4334    emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4335 }
4336 
4337 void
visit(ir_end_primitive * ir)4338 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4339 {
4340    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4341 
4342    ir->stream->accept(this);
4343    emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4344 }
4345 
4346 void
visit(ir_barrier * ir)4347 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4348 {
4349    assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4350           this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4351 
4352    emit_asm(ir, TGSI_OPCODE_BARRIER);
4353 }
4354 
glsl_to_tgsi_visitor()4355 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4356 {
4357    STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4358 
4359    result.file = PROGRAM_UNDEFINED;
4360    next_temp = 1;
4361    array_sizes = NULL;
4362    max_num_arrays = 0;
4363    next_array = 0;
4364    num_inputs = 0;
4365    num_outputs = 0;
4366    num_input_arrays = 0;
4367    num_output_arrays = 0;
4368    num_immediates = 0;
4369    num_address_regs = 0;
4370    samplers_used = 0;
4371    buffers_used = 0;
4372    images_used = 0;
4373    indirect_addr_consts = false;
4374    wpos_transform_const = -1;
4375    glsl_version = 0;
4376    native_integers = false;
4377    mem_ctx = ralloc_context(NULL);
4378    ctx = NULL;
4379    prog = NULL;
4380    shader_program = NULL;
4381    shader = NULL;
4382    options = NULL;
4383    have_sqrt = false;
4384    have_fma = false;
4385    use_shared_memory = false;
4386 }
4387 
~glsl_to_tgsi_visitor()4388 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4389 {
4390    free(array_sizes);
4391    ralloc_free(mem_ctx);
4392 }
4393 
free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor * v)4394 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4395 {
4396    delete v;
4397 }
4398 
4399 
4400 /**
4401  * Count resources used by the given gpu program (number of texture
4402  * samplers, etc).
4403  */
4404 static void
count_resources(glsl_to_tgsi_visitor * v,gl_program * prog)4405 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4406 {
4407    v->samplers_used = 0;
4408    v->buffers_used = 0;
4409    v->images_used = 0;
4410 
4411    foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4412       if (inst->info->is_tex) {
4413          for (int i = 0; i < inst->sampler_array_size; i++) {
4414             unsigned idx = inst->sampler_base + i;
4415             v->samplers_used |= 1u << idx;
4416 
4417             debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4418             v->sampler_types[idx] = inst->tex_type;
4419             v->sampler_targets[idx] =
4420                st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4421 
4422             if (inst->tex_shadow) {
4423                prog->ShadowSamplers |= 1 << (inst->resource.index + i);
4424             }
4425          }
4426       }
4427 
4428       if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4429          prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4430 
4431       if (inst->resource.file != PROGRAM_UNDEFINED && (
4432                 is_resource_instruction(inst->op) ||
4433                 inst->op == TGSI_OPCODE_STORE)) {
4434          if (inst->resource.file == PROGRAM_BUFFER) {
4435             v->buffers_used |= 1 << inst->resource.index;
4436          } else if (inst->resource.file == PROGRAM_MEMORY) {
4437             v->use_shared_memory = true;
4438          } else {
4439             assert(inst->resource.file == PROGRAM_IMAGE);
4440             for (int i = 0; i < inst->sampler_array_size; i++) {
4441                unsigned idx = inst->sampler_base + i;
4442                v->images_used |= 1 << idx;
4443                v->image_targets[idx] =
4444                   st_translate_texture_target(inst->tex_target, false);
4445                v->image_formats[idx] = inst->image_format;
4446             }
4447          }
4448       }
4449    }
4450    prog->SamplersUsed = v->samplers_used;
4451 
4452    if (v->shader_program != NULL)
4453       _mesa_update_shader_textures_used(v->shader_program, prog);
4454 }
4455 
4456 /**
4457  * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4458  * are read from the given src in this instruction
4459  */
4460 static int
get_src_arg_mask(st_dst_reg dst,st_src_reg src)4461 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4462 {
4463    int read_mask = 0, comp;
4464 
4465    /* Now, given the src swizzle and the written channels, find which
4466     * components are actually read
4467     */
4468    for (comp = 0; comp < 4; ++comp) {
4469       const unsigned coord = GET_SWZ(src.swizzle, comp);
4470       assert(coord < 4);
4471       if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4472          read_mask |= 1 << coord;
4473    }
4474 
4475    return read_mask;
4476 }
4477 
4478 /**
4479  * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4480  * instruction is the first instruction to write to register T0.  There are
4481  * several lowering passes done in GLSL IR (e.g. branches and
4482  * relative addressing) that create a large number of conditional assignments
4483  * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4484  *
4485  * Here is why this conversion is safe:
4486  * CMP T0, T1 T2 T0 can be expanded to:
4487  * if (T1 < 0.0)
4488  *   MOV T0, T2;
4489  * else
4490  *   MOV T0, T0;
4491  *
4492  * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4493  * as the original program.  If (T1 < 0.0) evaluates to false, executing
4494  * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4495  * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4496  * because any instruction that was going to read from T0 after this was going
4497  * to read a garbage value anyway.
4498  */
4499 void
simplify_cmp(void)4500 glsl_to_tgsi_visitor::simplify_cmp(void)
4501 {
4502    int tempWritesSize = 0;
4503    unsigned *tempWrites = NULL;
4504    unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4505 
4506    memset(outputWrites, 0, sizeof(outputWrites));
4507 
4508    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4509       unsigned prevWriteMask = 0;
4510 
4511       /* Give up if we encounter relative addressing or flow control. */
4512       if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4513           inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4514           tgsi_get_opcode_info(inst->op)->is_branch ||
4515           inst->op == TGSI_OPCODE_CONT ||
4516           inst->op == TGSI_OPCODE_END ||
4517           inst->op == TGSI_OPCODE_RET) {
4518          break;
4519       }
4520 
4521       if (inst->dst[0].file == PROGRAM_OUTPUT) {
4522          assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4523          prevWriteMask = outputWrites[inst->dst[0].index];
4524          outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4525       } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4526          if (inst->dst[0].index >= tempWritesSize) {
4527             const int inc = 4096;
4528 
4529             tempWrites = (unsigned*)
4530                          realloc(tempWrites,
4531                                  (tempWritesSize + inc) * sizeof(unsigned));
4532             if (!tempWrites)
4533                return;
4534 
4535             memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4536             tempWritesSize += inc;
4537          }
4538 
4539          prevWriteMask = tempWrites[inst->dst[0].index];
4540          tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4541       } else
4542          continue;
4543 
4544       /* For a CMP to be considered a conditional write, the destination
4545        * register and source register two must be the same. */
4546       if (inst->op == TGSI_OPCODE_CMP
4547           && !(inst->dst[0].writemask & prevWriteMask)
4548           && inst->src[2].file == inst->dst[0].file
4549           && inst->src[2].index == inst->dst[0].index
4550           && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4551 
4552          inst->op = TGSI_OPCODE_MOV;
4553          inst->info = tgsi_get_opcode_info(inst->op);
4554          inst->src[0] = inst->src[1];
4555       }
4556    }
4557 
4558    free(tempWrites);
4559 }
4560 
4561 /* Replaces all references to a temporary register index with another index. */
4562 void
rename_temp_registers(int num_renames,struct rename_reg_pair * renames)4563 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
4564 {
4565    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4566       unsigned j;
4567       int k;
4568       for (j = 0; j < num_inst_src_regs(inst); j++) {
4569          if (inst->src[j].file == PROGRAM_TEMPORARY)
4570             for (k = 0; k < num_renames; k++)
4571                if (inst->src[j].index == renames[k].old_reg)
4572                   inst->src[j].index = renames[k].new_reg;
4573       }
4574 
4575       for (j = 0; j < inst->tex_offset_num_offset; j++) {
4576          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4577             for (k = 0; k < num_renames; k++)
4578                if (inst->tex_offsets[j].index == renames[k].old_reg)
4579                   inst->tex_offsets[j].index = renames[k].new_reg;
4580       }
4581 
4582       for (j = 0; j < num_inst_dst_regs(inst); j++) {
4583          if (inst->dst[j].file == PROGRAM_TEMPORARY)
4584              for (k = 0; k < num_renames; k++)
4585                 if (inst->dst[j].index == renames[k].old_reg)
4586                    inst->dst[j].index = renames[k].new_reg;
4587       }
4588    }
4589 }
4590 
4591 void
get_first_temp_read(int * first_reads)4592 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4593 {
4594    int depth = 0; /* loop depth */
4595    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4596    unsigned i = 0, j;
4597 
4598    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4599       for (j = 0; j < num_inst_src_regs(inst); j++) {
4600          if (inst->src[j].file == PROGRAM_TEMPORARY) {
4601             if (first_reads[inst->src[j].index] == -1)
4602                 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4603          }
4604       }
4605       for (j = 0; j < inst->tex_offset_num_offset; j++) {
4606          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4607             if (first_reads[inst->tex_offsets[j].index] == -1)
4608                first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4609          }
4610       }
4611       if (inst->op == TGSI_OPCODE_BGNLOOP) {
4612          if(depth++ == 0)
4613             loop_start = i;
4614       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4615          if (--depth == 0)
4616             loop_start = -1;
4617       }
4618       assert(depth >= 0);
4619       i++;
4620    }
4621 }
4622 
4623 void
get_last_temp_read_first_temp_write(int * last_reads,int * first_writes)4624 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4625 {
4626    int depth = 0; /* loop depth */
4627    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4628    unsigned i = 0, j;
4629    int k;
4630    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4631       for (j = 0; j < num_inst_src_regs(inst); j++) {
4632          if (inst->src[j].file == PROGRAM_TEMPORARY)
4633             last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4634       }
4635       for (j = 0; j < num_inst_dst_regs(inst); j++) {
4636          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4637             if (first_writes[inst->dst[j].index] == -1)
4638                first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4639             last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4640          }
4641       }
4642       for (j = 0; j < inst->tex_offset_num_offset; j++) {
4643          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4644             last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4645       }
4646       if (inst->op == TGSI_OPCODE_BGNLOOP) {
4647          if(depth++ == 0)
4648             loop_start = i;
4649       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4650          if (--depth == 0) {
4651             loop_start = -1;
4652             for (k = 0; k < this->next_temp; k++) {
4653                if (last_reads[k] == -2) {
4654                   last_reads[k] = i;
4655                }
4656             }
4657          }
4658       }
4659       assert(depth >= 0);
4660       i++;
4661    }
4662 }
4663 
4664 void
get_last_temp_write(int * last_writes)4665 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4666 {
4667    int depth = 0; /* loop depth */
4668    int i = 0, k;
4669    unsigned j;
4670 
4671    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4672       for (j = 0; j < num_inst_dst_regs(inst); j++) {
4673          if (inst->dst[j].file == PROGRAM_TEMPORARY)
4674             last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4675       }
4676 
4677       if (inst->op == TGSI_OPCODE_BGNLOOP)
4678          depth++;
4679       else if (inst->op == TGSI_OPCODE_ENDLOOP)
4680          if (--depth == 0) {
4681             for (k = 0; k < this->next_temp; k++) {
4682                if (last_writes[k] == -2) {
4683                   last_writes[k] = i;
4684                }
4685             }
4686          }
4687       assert(depth >= 0);
4688       i++;
4689    }
4690 }
4691 
4692 /*
4693  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
4694  * channels for copy propagation and updates following instructions to
4695  * use the original versions.
4696  *
4697  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4698  * will occur.  As an example, a TXP production before this pass:
4699  *
4700  * 0: MOV TEMP[1], INPUT[4].xyyy;
4701  * 1: MOV TEMP[1].w, INPUT[4].wwww;
4702  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
4703  *
4704  * and after:
4705  *
4706  * 0: MOV TEMP[1], INPUT[4].xyyy;
4707  * 1: MOV TEMP[1].w, INPUT[4].wwww;
4708  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4709  *
4710  * which allows for dead code elimination on TEMP[1]'s writes.
4711  */
4712 void
copy_propagate(void)4713 glsl_to_tgsi_visitor::copy_propagate(void)
4714 {
4715    glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
4716                                                   glsl_to_tgsi_instruction *,
4717                                                   this->next_temp * 4);
4718    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4719    int level = 0;
4720 
4721    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4722       assert(inst->dst[0].file != PROGRAM_TEMPORARY
4723              || inst->dst[0].index < this->next_temp);
4724 
4725       /* First, do any copy propagation possible into the src regs. */
4726       for (int r = 0; r < 3; r++) {
4727          glsl_to_tgsi_instruction *first = NULL;
4728          bool good = true;
4729          int acp_base = inst->src[r].index * 4;
4730 
4731          if (inst->src[r].file != PROGRAM_TEMPORARY ||
4732              inst->src[r].reladdr ||
4733              inst->src[r].reladdr2)
4734             continue;
4735 
4736          /* See if we can find entries in the ACP consisting of MOVs
4737           * from the same src register for all the swizzled channels
4738           * of this src register reference.
4739           */
4740          for (int i = 0; i < 4; i++) {
4741             int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4742             glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
4743 
4744             if (!copy_chan) {
4745                good = false;
4746                break;
4747             }
4748 
4749             assert(acp_level[acp_base + src_chan] <= level);
4750 
4751             if (!first) {
4752                first = copy_chan;
4753             } else {
4754                if (first->src[0].file != copy_chan->src[0].file ||
4755                    first->src[0].index != copy_chan->src[0].index ||
4756                    first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
4757                    first->src[0].index2D != copy_chan->src[0].index2D) {
4758                   good = false;
4759                   break;
4760                }
4761             }
4762          }
4763 
4764          if (good) {
4765             /* We've now validated that we can copy-propagate to
4766              * replace this src register reference.  Do it.
4767              */
4768             inst->src[r].file = first->src[0].file;
4769             inst->src[r].index = first->src[0].index;
4770             inst->src[r].index2D = first->src[0].index2D;
4771             inst->src[r].has_index2 = first->src[0].has_index2;
4772             inst->src[r].double_reg2 = first->src[0].double_reg2;
4773             inst->src[r].array_id = first->src[0].array_id;
4774 
4775             int swizzle = 0;
4776             for (int i = 0; i < 4; i++) {
4777                int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4778                glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
4779                swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
4780             }
4781             inst->src[r].swizzle = swizzle;
4782          }
4783       }
4784 
4785       switch (inst->op) {
4786       case TGSI_OPCODE_BGNLOOP:
4787       case TGSI_OPCODE_ENDLOOP:
4788          /* End of a basic block, clear the ACP entirely. */
4789          memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4790          break;
4791 
4792       case TGSI_OPCODE_IF:
4793       case TGSI_OPCODE_UIF:
4794          ++level;
4795          break;
4796 
4797       case TGSI_OPCODE_ENDIF:
4798       case TGSI_OPCODE_ELSE:
4799          /* Clear all channels written inside the block from the ACP, but
4800           * leaving those that were not touched.
4801           */
4802          for (int r = 0; r < this->next_temp; r++) {
4803             for (int c = 0; c < 4; c++) {
4804                if (!acp[4 * r + c])
4805                   continue;
4806 
4807                if (acp_level[4 * r + c] >= level)
4808                   acp[4 * r + c] = NULL;
4809             }
4810          }
4811          if (inst->op == TGSI_OPCODE_ENDIF)
4812             --level;
4813          break;
4814 
4815       default:
4816          /* Continuing the block, clear any written channels from
4817           * the ACP.
4818           */
4819          for (int d = 0; d < 2; d++) {
4820             if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4821                /* Any temporary might be written, so no copy propagation
4822                 * across this instruction.
4823                 */
4824                memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4825             } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
4826                        inst->dst[d].reladdr) {
4827                /* Any output might be written, so no copy propagation
4828                 * from outputs across this instruction.
4829                 */
4830                for (int r = 0; r < this->next_temp; r++) {
4831                   for (int c = 0; c < 4; c++) {
4832                      if (!acp[4 * r + c])
4833                         continue;
4834 
4835                      if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
4836                         acp[4 * r + c] = NULL;
4837                   }
4838                }
4839             } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
4840                        inst->dst[d].file == PROGRAM_OUTPUT) {
4841                /* Clear where it's used as dst. */
4842                if (inst->dst[d].file == PROGRAM_TEMPORARY) {
4843                   for (int c = 0; c < 4; c++) {
4844                      if (inst->dst[d].writemask & (1 << c))
4845                         acp[4 * inst->dst[d].index + c] = NULL;
4846                   }
4847                }
4848 
4849                /* Clear where it's used as src. */
4850                for (int r = 0; r < this->next_temp; r++) {
4851                   for (int c = 0; c < 4; c++) {
4852                      if (!acp[4 * r + c])
4853                         continue;
4854 
4855                      int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
4856 
4857                      if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
4858                          acp[4 * r + c]->src[0].index == inst->dst[d].index &&
4859                          inst->dst[d].writemask & (1 << src_chan)) {
4860                         acp[4 * r + c] = NULL;
4861                      }
4862                   }
4863                }
4864             }
4865          }
4866          break;
4867       }
4868 
4869       /* If this is a copy, add it to the ACP. */
4870       if (inst->op == TGSI_OPCODE_MOV &&
4871           inst->dst[0].file == PROGRAM_TEMPORARY &&
4872           !(inst->dst[0].file == inst->src[0].file &&
4873              inst->dst[0].index == inst->src[0].index) &&
4874           !inst->dst[0].reladdr &&
4875           !inst->dst[0].reladdr2 &&
4876           !inst->saturate &&
4877           inst->src[0].file != PROGRAM_ARRAY &&
4878           !inst->src[0].reladdr &&
4879           !inst->src[0].reladdr2 &&
4880           !inst->src[0].negate &&
4881           !inst->src[0].abs) {
4882          for (int i = 0; i < 4; i++) {
4883             if (inst->dst[0].writemask & (1 << i)) {
4884                acp[4 * inst->dst[0].index + i] = inst;
4885                acp_level[4 * inst->dst[0].index + i] = level;
4886             }
4887          }
4888       }
4889    }
4890 
4891    ralloc_free(acp_level);
4892    ralloc_free(acp);
4893 }
4894 
4895 /*
4896  * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
4897  * code elimination.
4898  *
4899  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4900  * will occur.  As an example, a TXP production after copy propagation but
4901  * before this pass:
4902  *
4903  * 0: MOV TEMP[1], INPUT[4].xyyy;
4904  * 1: MOV TEMP[1].w, INPUT[4].wwww;
4905  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4906  *
4907  * and after this pass:
4908  *
4909  * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4910  */
4911 int
eliminate_dead_code(void)4912 glsl_to_tgsi_visitor::eliminate_dead_code(void)
4913 {
4914    glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
4915                                                      glsl_to_tgsi_instruction *,
4916                                                      this->next_temp * 4);
4917    int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4918    int level = 0;
4919    int removed = 0;
4920 
4921    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4922       assert(inst->dst[0].file != PROGRAM_TEMPORARY
4923              || inst->dst[0].index < this->next_temp);
4924 
4925       switch (inst->op) {
4926       case TGSI_OPCODE_BGNLOOP:
4927       case TGSI_OPCODE_ENDLOOP:
4928       case TGSI_OPCODE_CONT:
4929       case TGSI_OPCODE_BRK:
4930          /* End of a basic block, clear the write array entirely.
4931           *
4932           * This keeps us from killing dead code when the writes are
4933           * on either side of a loop, even when the register isn't touched
4934           * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
4935           * dead code of this type, so it shouldn't make a difference as long as
4936           * the dead code elimination pass in the GLSL compiler does its job.
4937           */
4938          memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4939          break;
4940 
4941       case TGSI_OPCODE_ENDIF:
4942       case TGSI_OPCODE_ELSE:
4943          /* Promote the recorded level of all channels written inside the
4944           * preceding if or else block to the level above the if/else block.
4945           */
4946          for (int r = 0; r < this->next_temp; r++) {
4947             for (int c = 0; c < 4; c++) {
4948                if (!writes[4 * r + c])
4949                   continue;
4950 
4951                if (write_level[4 * r + c] == level)
4952                   write_level[4 * r + c] = level-1;
4953             }
4954          }
4955          if(inst->op == TGSI_OPCODE_ENDIF)
4956             --level;
4957          break;
4958 
4959       case TGSI_OPCODE_IF:
4960       case TGSI_OPCODE_UIF:
4961          ++level;
4962          /* fallthrough to default case to mark the condition as read */
4963       default:
4964          /* Continuing the block, clear any channels from the write array that
4965           * are read by this instruction.
4966           */
4967          for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
4968             if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
4969                /* Any temporary might be read, so no dead code elimination
4970                 * across this instruction.
4971                 */
4972                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4973             } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
4974                /* Clear where it's used as src. */
4975                int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
4976                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
4977                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
4978                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
4979 
4980                for (int c = 0; c < 4; c++) {
4981                   if (src_chans & (1 << c))
4982                      writes[4 * inst->src[i].index + c] = NULL;
4983                }
4984             }
4985          }
4986          for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
4987             if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
4988                /* Any temporary might be read, so no dead code elimination
4989                 * across this instruction.
4990                 */
4991                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4992             } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
4993                /* Clear where it's used as src. */
4994                int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
4995                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
4996                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
4997                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
4998 
4999                for (int c = 0; c < 4; c++) {
5000                   if (src_chans & (1 << c))
5001                      writes[4 * inst->tex_offsets[i].index + c] = NULL;
5002                }
5003             }
5004          }
5005          break;
5006       }
5007 
5008       /* If this instruction writes to a temporary, add it to the write array.
5009        * If there is already an instruction in the write array for one or more
5010        * of the channels, flag that channel write as dead.
5011        */
5012       for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5013          if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5014              !inst->dst[i].reladdr) {
5015             for (int c = 0; c < 4; c++) {
5016                if (inst->dst[i].writemask & (1 << c)) {
5017                   if (writes[4 * inst->dst[i].index + c]) {
5018                      if (write_level[4 * inst->dst[i].index + c] < level)
5019                         continue;
5020                      else
5021                         writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5022                   }
5023                   writes[4 * inst->dst[i].index + c] = inst;
5024                   write_level[4 * inst->dst[i].index + c] = level;
5025                }
5026             }
5027          }
5028       }
5029    }
5030 
5031    /* Anything still in the write array at this point is dead code. */
5032    for (int r = 0; r < this->next_temp; r++) {
5033       for (int c = 0; c < 4; c++) {
5034          glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5035          if (inst)
5036             inst->dead_mask |= (1 << c);
5037       }
5038    }
5039 
5040    /* Now actually remove the instructions that are completely dead and update
5041     * the writemask of other instructions with dead channels.
5042     */
5043    foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5044       if (!inst->dead_mask || !inst->dst[0].writemask)
5045          continue;
5046       /* No amount of dead masks should remove memory stores */
5047       if (inst->info->is_store)
5048          continue;
5049 
5050       if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5051          inst->remove();
5052          delete inst;
5053          removed++;
5054       } else {
5055          if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5056             if (inst->dead_mask == WRITEMASK_XY ||
5057                 inst->dead_mask == WRITEMASK_ZW)
5058                inst->dst[0].writemask &= ~(inst->dead_mask);
5059          } else
5060             inst->dst[0].writemask &= ~(inst->dead_mask);
5061       }
5062    }
5063 
5064    ralloc_free(write_level);
5065    ralloc_free(writes);
5066 
5067    return removed;
5068 }
5069 
5070 /* merge DFRACEXP instructions into one. */
5071 void
merge_two_dsts(void)5072 glsl_to_tgsi_visitor::merge_two_dsts(void)
5073 {
5074    foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5075       glsl_to_tgsi_instruction *inst2;
5076       bool merged;
5077       if (num_inst_dst_regs(inst) != 2)
5078          continue;
5079 
5080       if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5081           inst->dst[1].file != PROGRAM_UNDEFINED)
5082          continue;
5083 
5084       inst2 = (glsl_to_tgsi_instruction *) inst->next;
5085       do {
5086 
5087          if (inst->src[0].file == inst2->src[0].file &&
5088              inst->src[0].index == inst2->src[0].index &&
5089              inst->src[0].type == inst2->src[0].type &&
5090              inst->src[0].swizzle == inst2->src[0].swizzle)
5091             break;
5092          inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5093       } while (inst2);
5094 
5095       if (!inst2)
5096          continue;
5097       merged = false;
5098       if (inst->dst[0].file == PROGRAM_UNDEFINED) {
5099          merged = true;
5100          inst->dst[0] = inst2->dst[0];
5101       } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
5102          inst->dst[1] = inst2->dst[1];
5103          merged = true;
5104       }
5105 
5106       if (merged) {
5107          inst2->remove();
5108          delete inst2;
5109       }
5110    }
5111 }
5112 
5113 /* Merges temporary registers together where possible to reduce the number of
5114  * registers needed to run a program.
5115  *
5116  * Produces optimal code only after copy propagation and dead code elimination
5117  * have been run. */
5118 void
merge_registers(void)5119 glsl_to_tgsi_visitor::merge_registers(void)
5120 {
5121    int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5122    int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
5123    struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5124    int i, j;
5125    int num_renames = 0;
5126 
5127    /* Read the indices of the last read and first write to each temp register
5128     * into an array so that we don't have to traverse the instruction list as
5129     * much. */
5130    for (i = 0; i < this->next_temp; i++) {
5131       last_reads[i] = -1;
5132       first_writes[i] = -1;
5133    }
5134    get_last_temp_read_first_temp_write(last_reads, first_writes);
5135 
5136    /* Start looking for registers with non-overlapping usages that can be
5137     * merged together. */
5138    for (i = 0; i < this->next_temp; i++) {
5139       /* Don't touch unused registers. */
5140       if (last_reads[i] < 0 || first_writes[i] < 0) continue;
5141 
5142       for (j = 0; j < this->next_temp; j++) {
5143          /* Don't touch unused registers. */
5144          if (last_reads[j] < 0 || first_writes[j] < 0) continue;
5145 
5146          /* We can merge the two registers if the first write to j is after or
5147           * in the same instruction as the last read from i.  Note that the
5148           * register at index i will always be used earlier or at the same time
5149           * as the register at index j. */
5150          if (first_writes[i] <= first_writes[j] &&
5151              last_reads[i] <= first_writes[j]) {
5152             renames[num_renames].old_reg = j;
5153             renames[num_renames].new_reg = i;
5154             num_renames++;
5155 
5156             /* Update the first_writes and last_reads arrays with the new
5157              * values for the merged register index, and mark the newly unused
5158              * register index as such. */
5159             assert(last_reads[j] >= last_reads[i]);
5160             last_reads[i] = last_reads[j];
5161             first_writes[j] = -1;
5162             last_reads[j] = -1;
5163          }
5164       }
5165    }
5166 
5167    rename_temp_registers(num_renames, renames);
5168    ralloc_free(renames);
5169    ralloc_free(last_reads);
5170    ralloc_free(first_writes);
5171 }
5172 
5173 /* Reassign indices to temporary registers by reusing unused indices created
5174  * by optimization passes. */
5175 void
renumber_registers(void)5176 glsl_to_tgsi_visitor::renumber_registers(void)
5177 {
5178    int i = 0;
5179    int new_index = 0;
5180    int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5181    struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5182    int num_renames = 0;
5183    for (i = 0; i < this->next_temp; i++) {
5184       first_reads[i] = -1;
5185    }
5186    get_first_temp_read(first_reads);
5187 
5188    for (i = 0; i < this->next_temp; i++) {
5189       if (first_reads[i] < 0) continue;
5190       if (i != new_index) {
5191          renames[num_renames].old_reg = i;
5192          renames[num_renames].new_reg = new_index;
5193          num_renames++;
5194       }
5195       new_index++;
5196    }
5197 
5198    rename_temp_registers(num_renames, renames);
5199    this->next_temp = new_index;
5200    ralloc_free(renames);
5201    ralloc_free(first_reads);
5202 }
5203 
5204 /* ------------------------- TGSI conversion stuff -------------------------- */
5205 
5206 /**
5207  * Intermediate state used during shader translation.
5208  */
5209 struct st_translate {
5210    struct ureg_program *ureg;
5211 
5212    unsigned temps_size;
5213    struct ureg_dst *temps;
5214 
5215    struct ureg_dst *arrays;
5216    unsigned num_temp_arrays;
5217    struct ureg_src *constants;
5218    int num_constants;
5219    struct ureg_src *immediates;
5220    int num_immediates;
5221    struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5222    struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5223    struct ureg_dst address[3];
5224    struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5225    struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5226    struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5227    struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5228    struct ureg_src shared_memory;
5229    unsigned *array_sizes;
5230    struct inout_decl *input_decls;
5231    unsigned num_input_decls;
5232    struct inout_decl *output_decls;
5233    unsigned num_output_decls;
5234 
5235    const GLuint *inputMapping;
5236    const GLuint *outputMapping;
5237 
5238    unsigned procType;  /**< PIPE_SHADER_VERTEX/FRAGMENT */
5239 };
5240 
5241 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5242 unsigned
_mesa_sysval_to_semantic(unsigned sysval)5243 _mesa_sysval_to_semantic(unsigned sysval)
5244 {
5245    switch (sysval) {
5246    /* Vertex shader */
5247    case SYSTEM_VALUE_VERTEX_ID:
5248       return TGSI_SEMANTIC_VERTEXID;
5249    case SYSTEM_VALUE_INSTANCE_ID:
5250       return TGSI_SEMANTIC_INSTANCEID;
5251    case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5252       return TGSI_SEMANTIC_VERTEXID_NOBASE;
5253    case SYSTEM_VALUE_BASE_VERTEX:
5254       return TGSI_SEMANTIC_BASEVERTEX;
5255    case SYSTEM_VALUE_BASE_INSTANCE:
5256       return TGSI_SEMANTIC_BASEINSTANCE;
5257    case SYSTEM_VALUE_DRAW_ID:
5258       return TGSI_SEMANTIC_DRAWID;
5259 
5260    /* Geometry shader */
5261    case SYSTEM_VALUE_INVOCATION_ID:
5262       return TGSI_SEMANTIC_INVOCATIONID;
5263 
5264    /* Fragment shader */
5265    case SYSTEM_VALUE_FRAG_COORD:
5266       return TGSI_SEMANTIC_POSITION;
5267    case SYSTEM_VALUE_FRONT_FACE:
5268       return TGSI_SEMANTIC_FACE;
5269    case SYSTEM_VALUE_SAMPLE_ID:
5270       return TGSI_SEMANTIC_SAMPLEID;
5271    case SYSTEM_VALUE_SAMPLE_POS:
5272       return TGSI_SEMANTIC_SAMPLEPOS;
5273    case SYSTEM_VALUE_SAMPLE_MASK_IN:
5274       return TGSI_SEMANTIC_SAMPLEMASK;
5275    case SYSTEM_VALUE_HELPER_INVOCATION:
5276       return TGSI_SEMANTIC_HELPER_INVOCATION;
5277 
5278    /* Tessellation shader */
5279    case SYSTEM_VALUE_TESS_COORD:
5280       return TGSI_SEMANTIC_TESSCOORD;
5281    case SYSTEM_VALUE_VERTICES_IN:
5282       return TGSI_SEMANTIC_VERTICESIN;
5283    case SYSTEM_VALUE_PRIMITIVE_ID:
5284       return TGSI_SEMANTIC_PRIMID;
5285    case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5286       return TGSI_SEMANTIC_TESSOUTER;
5287    case SYSTEM_VALUE_TESS_LEVEL_INNER:
5288       return TGSI_SEMANTIC_TESSINNER;
5289 
5290    /* Compute shader */
5291    case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5292       return TGSI_SEMANTIC_THREAD_ID;
5293    case SYSTEM_VALUE_WORK_GROUP_ID:
5294       return TGSI_SEMANTIC_BLOCK_ID;
5295    case SYSTEM_VALUE_NUM_WORK_GROUPS:
5296       return TGSI_SEMANTIC_GRID_SIZE;
5297    case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
5298       return TGSI_SEMANTIC_BLOCK_SIZE;
5299 
5300    /* Unhandled */
5301    case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5302    case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5303    case SYSTEM_VALUE_VERTEX_CNT:
5304    default:
5305       assert(!"Unexpected SYSTEM_VALUE_ enum");
5306       return TGSI_SEMANTIC_COUNT;
5307    }
5308 }
5309 
5310 /**
5311  * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5312  */
5313 static struct ureg_src
emit_immediate(struct st_translate * t,gl_constant_value values[4],int type,int size)5314 emit_immediate(struct st_translate *t,
5315                gl_constant_value values[4],
5316                int type, int size)
5317 {
5318    struct ureg_program *ureg = t->ureg;
5319 
5320    switch(type)
5321    {
5322    case GL_FLOAT:
5323       return ureg_DECL_immediate(ureg, &values[0].f, size);
5324    case GL_DOUBLE:
5325       return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5326    case GL_INT:
5327       return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5328    case GL_UNSIGNED_INT:
5329    case GL_BOOL:
5330       return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5331    default:
5332       assert(!"should not get here - type must be float, int, uint, or bool");
5333       return ureg_src_undef();
5334    }
5335 }
5336 
5337 /**
5338  * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5339  */
5340 static struct ureg_dst
dst_register(struct st_translate * t,gl_register_file file,unsigned index,unsigned array_id)5341 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5342              unsigned array_id)
5343 {
5344    unsigned array;
5345 
5346    switch(file) {
5347    case PROGRAM_UNDEFINED:
5348       return ureg_dst_undef();
5349 
5350    case PROGRAM_TEMPORARY:
5351       /* Allocate space for temporaries on demand. */
5352       if (index >= t->temps_size) {
5353          const int inc = align(index - t->temps_size + 1, 4096);
5354 
5355          t->temps = (struct ureg_dst*)
5356                     realloc(t->temps,
5357                             (t->temps_size + inc) * sizeof(struct ureg_dst));
5358          if (!t->temps)
5359             return ureg_dst_undef();
5360 
5361          memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5362          t->temps_size += inc;
5363       }
5364 
5365       if (ureg_dst_is_undef(t->temps[index]))
5366          t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5367 
5368       return t->temps[index];
5369 
5370    case PROGRAM_ARRAY:
5371       assert(array_id && array_id <= t->num_temp_arrays);
5372       array = array_id - 1;
5373 
5374       if (ureg_dst_is_undef(t->arrays[array]))
5375          t->arrays[array] = ureg_DECL_array_temporary(
5376             t->ureg, t->array_sizes[array], TRUE);
5377 
5378       return ureg_dst_array_offset(t->arrays[array], index);
5379 
5380    case PROGRAM_OUTPUT:
5381       if (!array_id) {
5382          if (t->procType == PIPE_SHADER_FRAGMENT)
5383             assert(index < 2 * FRAG_RESULT_MAX);
5384          else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5385                   t->procType == PIPE_SHADER_TESS_EVAL)
5386             assert(index < VARYING_SLOT_TESS_MAX);
5387          else
5388             assert(index < VARYING_SLOT_MAX);
5389 
5390          assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5391          assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5392          return t->outputs[t->outputMapping[index]];
5393       }
5394       else {
5395          struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
5396          unsigned mesa_index = decl->mesa_index;
5397          int slot = t->outputMapping[mesa_index];
5398 
5399          assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5400 
5401          struct ureg_dst dst = t->outputs[slot];
5402          dst.ArrayID = array_id;
5403          return ureg_dst_array_offset(dst, index - mesa_index);
5404       }
5405 
5406    case PROGRAM_ADDRESS:
5407       return t->address[index];
5408 
5409    default:
5410       assert(!"unknown dst register file");
5411       return ureg_dst_undef();
5412    }
5413 }
5414 
5415 /**
5416  * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
5417  */
5418 static struct ureg_src
src_register(struct st_translate * t,const st_src_reg * reg)5419 src_register(struct st_translate *t, const st_src_reg *reg)
5420 {
5421    int index = reg->index;
5422    int double_reg2 = reg->double_reg2 ? 1 : 0;
5423 
5424    switch(reg->file) {
5425    case PROGRAM_UNDEFINED:
5426       return ureg_imm4f(t->ureg, 0, 0, 0, 0);
5427 
5428    case PROGRAM_TEMPORARY:
5429    case PROGRAM_ARRAY:
5430       return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
5431 
5432    case PROGRAM_OUTPUT: {
5433       struct ureg_dst dst = dst_register(t, reg->file, reg->index, reg->array_id);
5434       assert(dst.WriteMask != 0);
5435       unsigned shift = ffs(dst.WriteMask) - 1;
5436       return ureg_swizzle(ureg_src(dst),
5437                           shift,
5438                           MIN2(shift + 1, 3),
5439                           MIN2(shift + 2, 3),
5440                           MIN2(shift + 3, 3));
5441    }
5442 
5443    case PROGRAM_UNIFORM:
5444       assert(reg->index >= 0);
5445       return reg->index < t->num_constants ?
5446                t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5447    case PROGRAM_STATE_VAR:
5448    case PROGRAM_CONSTANT:       /* ie, immediate */
5449       if (reg->has_index2)
5450          return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
5451       else
5452          return reg->index >= 0 && reg->index < t->num_constants ?
5453                   t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5454 
5455    case PROGRAM_IMMEDIATE:
5456       assert(reg->index >= 0 && reg->index < t->num_immediates);
5457       return t->immediates[reg->index];
5458 
5459    case PROGRAM_INPUT:
5460       /* GLSL inputs are 64-bit containers, so we have to
5461        * map back to the original index and add the offset after
5462        * mapping. */
5463       index -= double_reg2;
5464       if (!reg->array_id) {
5465          assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5466          assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5467          return t->inputs[t->inputMapping[index] + double_reg2];
5468       }
5469       else {
5470          struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls, reg->array_id);
5471          unsigned mesa_index = decl->mesa_index;
5472          int slot = t->inputMapping[mesa_index];
5473 
5474          assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5475 
5476          struct ureg_src src = t->inputs[slot];
5477          src.ArrayID = reg->array_id;
5478          return ureg_src_array_offset(src, index + double_reg2 - mesa_index);
5479       }
5480 
5481    case PROGRAM_ADDRESS:
5482       return ureg_src(t->address[reg->index]);
5483 
5484    case PROGRAM_SYSTEM_VALUE:
5485       assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
5486       return t->systemValues[reg->index];
5487 
5488    default:
5489       assert(!"unknown src register file");
5490       return ureg_src_undef();
5491    }
5492 }
5493 
5494 /**
5495  * Create a TGSI ureg_dst register from an st_dst_reg.
5496  */
5497 static struct ureg_dst
translate_dst(struct st_translate * t,const st_dst_reg * dst_reg,bool saturate)5498 translate_dst(struct st_translate *t,
5499               const st_dst_reg *dst_reg,
5500               bool saturate)
5501 {
5502    struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5503                                       dst_reg->array_id);
5504 
5505    if (dst.File == TGSI_FILE_NULL)
5506       return dst;
5507 
5508    dst = ureg_writemask(dst, dst_reg->writemask);
5509 
5510    if (saturate)
5511       dst = ureg_saturate(dst);
5512 
5513    if (dst_reg->reladdr != NULL) {
5514       assert(dst_reg->file != PROGRAM_TEMPORARY);
5515       dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
5516    }
5517 
5518    if (dst_reg->has_index2) {
5519       if (dst_reg->reladdr2)
5520          dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
5521                                            dst_reg->index2D);
5522       else
5523          dst = ureg_dst_dimension(dst, dst_reg->index2D);
5524    }
5525 
5526    return dst;
5527 }
5528 
5529 /**
5530  * Create a TGSI ureg_src register from an st_src_reg.
5531  */
5532 static struct ureg_src
translate_src(struct st_translate * t,const st_src_reg * src_reg)5533 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5534 {
5535    struct ureg_src src = src_register(t, src_reg);
5536 
5537    if (src_reg->has_index2) {
5538       /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5539        * and UBO constant buffers (buffer, position).
5540        */
5541       if (src_reg->reladdr2)
5542          src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
5543                                            src_reg->index2D);
5544       else
5545          src = ureg_src_dimension(src, src_reg->index2D);
5546    }
5547 
5548    src = ureg_swizzle(src,
5549                       GET_SWZ(src_reg->swizzle, 0) & 0x3,
5550                       GET_SWZ(src_reg->swizzle, 1) & 0x3,
5551                       GET_SWZ(src_reg->swizzle, 2) & 0x3,
5552                       GET_SWZ(src_reg->swizzle, 3) & 0x3);
5553 
5554    if (src_reg->abs)
5555       src = ureg_abs(src);
5556 
5557    if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5558       src = ureg_negate(src);
5559 
5560    if (src_reg->reladdr != NULL) {
5561       assert(src_reg->file != PROGRAM_TEMPORARY);
5562       src = ureg_src_indirect(src, ureg_src(t->address[0]));
5563    }
5564 
5565    return src;
5566 }
5567 
5568 static struct tgsi_texture_offset
translate_tex_offset(struct st_translate * t,const st_src_reg * in_offset)5569 translate_tex_offset(struct st_translate *t,
5570                      const st_src_reg *in_offset)
5571 {
5572    struct tgsi_texture_offset offset;
5573    struct ureg_src src = translate_src(t, in_offset);
5574 
5575    offset.File = src.File;
5576    offset.Index = src.Index;
5577    offset.SwizzleX = src.SwizzleX;
5578    offset.SwizzleY = src.SwizzleY;
5579    offset.SwizzleZ = src.SwizzleZ;
5580    offset.Padding = 0;
5581 
5582    assert(!src.Indirect);
5583    assert(!src.DimIndirect);
5584    assert(!src.Dimension);
5585    assert(!src.Absolute); /* those shouldn't be used with integers anyway */
5586    assert(!src.Negate);
5587 
5588    return offset;
5589 }
5590 
5591 static void
compile_tgsi_instruction(struct st_translate * t,const glsl_to_tgsi_instruction * inst)5592 compile_tgsi_instruction(struct st_translate *t,
5593                          const glsl_to_tgsi_instruction *inst)
5594 {
5595    struct ureg_program *ureg = t->ureg;
5596    int i;
5597    struct ureg_dst dst[2];
5598    struct ureg_src src[4];
5599    struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5600 
5601    int num_dst;
5602    int num_src;
5603    unsigned tex_target = 0;
5604 
5605    num_dst = num_inst_dst_regs(inst);
5606    num_src = num_inst_src_regs(inst);
5607 
5608    for (i = 0; i < num_dst; i++)
5609       dst[i] = translate_dst(t,
5610                              &inst->dst[i],
5611                              inst->saturate);
5612 
5613    for (i = 0; i < num_src; i++)
5614       src[i] = translate_src(t, &inst->src[i]);
5615 
5616    switch(inst->op) {
5617    case TGSI_OPCODE_BGNLOOP:
5618    case TGSI_OPCODE_ELSE:
5619    case TGSI_OPCODE_ENDLOOP:
5620    case TGSI_OPCODE_IF:
5621    case TGSI_OPCODE_UIF:
5622       assert(num_dst == 0);
5623       ureg_insn(ureg, inst->op, NULL, 0, src, num_src);
5624       return;
5625 
5626    case TGSI_OPCODE_TEX:
5627    case TGSI_OPCODE_TXB:
5628    case TGSI_OPCODE_TXD:
5629    case TGSI_OPCODE_TXL:
5630    case TGSI_OPCODE_TXP:
5631    case TGSI_OPCODE_TXQ:
5632    case TGSI_OPCODE_TXQS:
5633    case TGSI_OPCODE_TXF:
5634    case TGSI_OPCODE_TEX2:
5635    case TGSI_OPCODE_TXB2:
5636    case TGSI_OPCODE_TXL2:
5637    case TGSI_OPCODE_TG4:
5638    case TGSI_OPCODE_LODQ:
5639       src[num_src] = t->samplers[inst->resource.index];
5640       assert(src[num_src].File != TGSI_FILE_NULL);
5641       if (inst->resource.reladdr)
5642          src[num_src] =
5643             ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
5644       num_src++;
5645       for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5646          texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
5647       }
5648       tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5649 
5650       ureg_tex_insn(ureg,
5651                     inst->op,
5652                     dst, num_dst,
5653                     tex_target,
5654                     texoffsets, inst->tex_offset_num_offset,
5655                     src, num_src);
5656       return;
5657 
5658    case TGSI_OPCODE_RESQ:
5659    case TGSI_OPCODE_LOAD:
5660    case TGSI_OPCODE_ATOMUADD:
5661    case TGSI_OPCODE_ATOMXCHG:
5662    case TGSI_OPCODE_ATOMCAS:
5663    case TGSI_OPCODE_ATOMAND:
5664    case TGSI_OPCODE_ATOMOR:
5665    case TGSI_OPCODE_ATOMXOR:
5666    case TGSI_OPCODE_ATOMUMIN:
5667    case TGSI_OPCODE_ATOMUMAX:
5668    case TGSI_OPCODE_ATOMIMIN:
5669    case TGSI_OPCODE_ATOMIMAX:
5670       for (i = num_src - 1; i >= 0; i--)
5671          src[i + 1] = src[i];
5672       num_src++;
5673       if (inst->resource.file == PROGRAM_MEMORY) {
5674          src[0] = t->shared_memory;
5675       } else if (inst->resource.file == PROGRAM_BUFFER) {
5676          src[0] = t->buffers[inst->resource.index];
5677       } else {
5678          src[0] = t->images[inst->resource.index];
5679          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5680       }
5681       if (inst->resource.reladdr)
5682          src[0] = ureg_src_indirect(src[0], ureg_src(t->address[2]));
5683       assert(src[0].File != TGSI_FILE_NULL);
5684       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5685                        inst->buffer_access,
5686                        tex_target, inst->image_format);
5687       break;
5688 
5689    case TGSI_OPCODE_STORE:
5690       if (inst->resource.file == PROGRAM_MEMORY) {
5691          dst[0] = ureg_dst(t->shared_memory);
5692       } else if (inst->resource.file == PROGRAM_BUFFER) {
5693          dst[0] = ureg_dst(t->buffers[inst->resource.index]);
5694       } else {
5695          dst[0] = ureg_dst(t->images[inst->resource.index]);
5696          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5697       }
5698       dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
5699       if (inst->resource.reladdr)
5700          dst[0] = ureg_dst_indirect(dst[0], ureg_src(t->address[2]));
5701       assert(dst[0].File != TGSI_FILE_NULL);
5702       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5703                        inst->buffer_access,
5704                        tex_target, inst->image_format);
5705       break;
5706 
5707    case TGSI_OPCODE_SCS:
5708       dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
5709       ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
5710       break;
5711 
5712    default:
5713       ureg_insn(ureg,
5714                 inst->op,
5715                 dst, num_dst,
5716                 src, num_src);
5717       break;
5718    }
5719 }
5720 
5721 /**
5722  * Emit the TGSI instructions for inverting and adjusting WPOS.
5723  * This code is unavoidable because it also depends on whether
5724  * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
5725  */
5726 static void
emit_wpos_adjustment(struct gl_context * ctx,struct st_translate * t,int wpos_transform_const,boolean invert,GLfloat adjX,GLfloat adjY[2])5727 emit_wpos_adjustment(struct gl_context *ctx,
5728                      struct st_translate *t,
5729                      int wpos_transform_const,
5730                      boolean invert,
5731                      GLfloat adjX, GLfloat adjY[2])
5732 {
5733    struct ureg_program *ureg = t->ureg;
5734 
5735    assert(wpos_transform_const >= 0);
5736 
5737    /* Fragment program uses fragment position input.
5738     * Need to replace instances of INPUT[WPOS] with temp T
5739     * where T = INPUT[WPOS] is inverted by Y.
5740     */
5741    struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
5742    struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
5743    struct ureg_src *wpos =
5744       ctx->Const.GLSLFragCoordIsSysVal ?
5745          &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
5746          &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
5747    struct ureg_src wpos_input = *wpos;
5748 
5749    /* First, apply the coordinate shift: */
5750    if (adjX || adjY[0] || adjY[1]) {
5751       if (adjY[0] != adjY[1]) {
5752          /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
5753           * depending on whether inversion is actually going to be applied
5754           * or not, which is determined by testing against the inversion
5755           * state variable used below, which will be either +1 or -1.
5756           */
5757          struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
5758 
5759          ureg_CMP(ureg, adj_temp,
5760                   ureg_scalar(wpostrans, invert ? 2 : 0),
5761                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
5762                   ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
5763          ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
5764       } else {
5765          ureg_ADD(ureg, wpos_temp, wpos_input,
5766                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
5767       }
5768       wpos_input = ureg_src(wpos_temp);
5769    } else {
5770       /* MOV wpos_temp, input[wpos]
5771        */
5772       ureg_MOV( ureg, wpos_temp, wpos_input );
5773    }
5774 
5775    /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
5776     * inversion/identity, or the other way around if we're drawing to an FBO.
5777     */
5778    if (invert) {
5779       /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
5780        */
5781       ureg_MAD( ureg,
5782                 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5783                 wpos_input,
5784                 ureg_scalar(wpostrans, 0),
5785                 ureg_scalar(wpostrans, 1));
5786    } else {
5787       /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
5788        */
5789       ureg_MAD( ureg,
5790                 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5791                 wpos_input,
5792                 ureg_scalar(wpostrans, 2),
5793                 ureg_scalar(wpostrans, 3));
5794    }
5795 
5796    /* Use wpos_temp as position input from here on:
5797     */
5798    *wpos = ureg_src(wpos_temp);
5799 }
5800 
5801 
5802 /**
5803  * Emit fragment position/ooordinate code.
5804  */
5805 static void
emit_wpos(struct st_context * st,struct st_translate * t,const struct gl_program * program,struct ureg_program * ureg,int wpos_transform_const)5806 emit_wpos(struct st_context *st,
5807           struct st_translate *t,
5808           const struct gl_program *program,
5809           struct ureg_program *ureg,
5810           int wpos_transform_const)
5811 {
5812    struct pipe_screen *pscreen = st->pipe->screen;
5813    GLfloat adjX = 0.0f;
5814    GLfloat adjY[2] = { 0.0f, 0.0f };
5815    boolean invert = FALSE;
5816 
5817    /* Query the pixel center conventions supported by the pipe driver and set
5818     * adjX, adjY to help out if it cannot handle the requested one internally.
5819     *
5820     * The bias of the y-coordinate depends on whether y-inversion takes place
5821     * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
5822     * drawing to an FBO (causes additional inversion), and whether the pipe
5823     * driver origin and the requested origin differ (the latter condition is
5824     * stored in the 'invert' variable).
5825     *
5826     * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
5827     *
5828     * center shift only:
5829     * i -> h: +0.5
5830     * h -> i: -0.5
5831     *
5832     * inversion only:
5833     * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
5834     * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
5835     * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
5836     * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
5837     *
5838     * inversion and center shift:
5839     * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
5840     * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
5841     * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
5842     * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
5843     */
5844    if (program->OriginUpperLeft) {
5845       /* Fragment shader wants origin in upper-left */
5846       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
5847          /* the driver supports upper-left origin */
5848       }
5849       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
5850          /* the driver supports lower-left origin, need to invert Y */
5851          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5852                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
5853          invert = TRUE;
5854       }
5855       else
5856          assert(0);
5857    }
5858    else {
5859       /* Fragment shader wants origin in lower-left */
5860       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
5861          /* the driver supports lower-left origin */
5862          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5863                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
5864       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
5865          /* the driver supports upper-left origin, need to invert Y */
5866          invert = TRUE;
5867       else
5868          assert(0);
5869    }
5870 
5871    if (program->PixelCenterInteger) {
5872       /* Fragment shader wants pixel center integer */
5873       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5874          /* the driver supports pixel center integer */
5875          adjY[1] = 1.0f;
5876          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5877                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5878       }
5879       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5880          /* the driver supports pixel center half integer, need to bias X,Y */
5881          adjX = -0.5f;
5882          adjY[0] = -0.5f;
5883          adjY[1] = 0.5f;
5884       }
5885       else
5886          assert(0);
5887    }
5888    else {
5889       /* Fragment shader wants pixel center half integer */
5890       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5891          /* the driver supports pixel center half integer */
5892       }
5893       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5894          /* the driver supports pixel center integer, need to bias X,Y */
5895          adjX = adjY[0] = adjY[1] = 0.5f;
5896          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5897                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5898       }
5899       else
5900          assert(0);
5901    }
5902 
5903    /* we invert after adjustment so that we avoid the MOV to temporary,
5904     * and reuse the adjustment ADD instead */
5905    emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
5906 }
5907 
5908 /**
5909  * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
5910  * TGSI uses +1 for front, -1 for back.
5911  * This function converts the TGSI value to the GL value.  Simply clamping/
5912  * saturating the value to [0,1] does the job.
5913  */
5914 static void
emit_face_var(struct gl_context * ctx,struct st_translate * t)5915 emit_face_var(struct gl_context *ctx, struct st_translate *t)
5916 {
5917    struct ureg_program *ureg = t->ureg;
5918    struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
5919    struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
5920 
5921    if (ctx->Const.NativeIntegers) {
5922       ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
5923    }
5924    else {
5925       /* MOV_SAT face_temp, input[face] */
5926       ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
5927    }
5928 
5929    /* Use face_temp as face input from here on: */
5930    t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
5931 }
5932 
5933 static void
emit_compute_block_size(const struct gl_program * prog,struct ureg_program * ureg)5934 emit_compute_block_size(const struct gl_program *prog,
5935                         struct ureg_program *ureg) {
5936    ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
5937                  prog->info.cs.local_size[0]);
5938    ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
5939                  prog->info.cs.local_size[1]);
5940    ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
5941                  prog->info.cs.local_size[2]);
5942 }
5943 
5944 struct sort_inout_decls {
operator ()sort_inout_decls5945    bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
5946       return mapping[a.mesa_index] < mapping[b.mesa_index];
5947    }
5948 
5949    const GLuint *mapping;
5950 };
5951 
5952 /* Sort the given array of decls by the corresponding slot (TGSI file index).
5953  *
5954  * This is for the benefit of older drivers which are broken when the
5955  * declarations aren't sorted in this way.
5956  */
5957 static void
sort_inout_decls_by_slot(struct inout_decl * decls,unsigned count,const GLuint mapping[])5958 sort_inout_decls_by_slot(struct inout_decl *decls,
5959                          unsigned count,
5960                          const GLuint mapping[])
5961 {
5962    sort_inout_decls sorter;
5963    sorter.mapping = mapping;
5964    std::sort(decls, decls + count, sorter);
5965 }
5966 
5967 static unsigned
st_translate_interp(enum glsl_interp_mode glsl_qual,GLuint varying)5968 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
5969 {
5970    switch (glsl_qual) {
5971    case INTERP_MODE_NONE:
5972       if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
5973          return TGSI_INTERPOLATE_COLOR;
5974       return TGSI_INTERPOLATE_PERSPECTIVE;
5975    case INTERP_MODE_SMOOTH:
5976       return TGSI_INTERPOLATE_PERSPECTIVE;
5977    case INTERP_MODE_FLAT:
5978       return TGSI_INTERPOLATE_CONSTANT;
5979    case INTERP_MODE_NOPERSPECTIVE:
5980       return TGSI_INTERPOLATE_LINEAR;
5981    default:
5982       assert(0 && "unexpected interp mode in st_translate_interp()");
5983       return TGSI_INTERPOLATE_PERSPECTIVE;
5984    }
5985 }
5986 
5987 /**
5988  * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
5989  * \param program  the program to translate
5990  * \param numInputs  number of input registers used
5991  * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
5992  *                      input indexes
5993  * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
5994  * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
5995  *                            each input
5996  * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
5997  * \param numOutputs  number of output registers used
5998  * \param outputMapping  maps Mesa fragment program outputs to TGSI
5999  *                       generic outputs
6000  * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
6001  * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
6002  *                             each output
6003  *
6004  * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6005  */
6006 extern "C" enum pipe_error
st_translate_program(struct gl_context * ctx,uint procType,struct ureg_program * ureg,glsl_to_tgsi_visitor * program,const struct gl_program * proginfo,GLuint numInputs,const GLuint inputMapping[],const GLuint inputSlotToAttr[],const ubyte inputSemanticName[],const ubyte inputSemanticIndex[],const GLuint interpMode[],GLuint numOutputs,const GLuint outputMapping[],const GLuint outputSlotToAttr[],const ubyte outputSemanticName[],const ubyte outputSemanticIndex[])6007 st_translate_program(
6008    struct gl_context *ctx,
6009    uint procType,
6010    struct ureg_program *ureg,
6011    glsl_to_tgsi_visitor *program,
6012    const struct gl_program *proginfo,
6013    GLuint numInputs,
6014    const GLuint inputMapping[],
6015    const GLuint inputSlotToAttr[],
6016    const ubyte inputSemanticName[],
6017    const ubyte inputSemanticIndex[],
6018    const GLuint interpMode[],
6019    GLuint numOutputs,
6020    const GLuint outputMapping[],
6021    const GLuint outputSlotToAttr[],
6022    const ubyte outputSemanticName[],
6023    const ubyte outputSemanticIndex[])
6024 {
6025    struct st_translate *t;
6026    unsigned i;
6027    struct gl_program_constants *frag_const =
6028       &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6029    enum pipe_error ret = PIPE_OK;
6030 
6031    assert(numInputs <= ARRAY_SIZE(t->inputs));
6032    assert(numOutputs <= ARRAY_SIZE(t->outputs));
6033 
6034    t = CALLOC_STRUCT(st_translate);
6035    if (!t) {
6036       ret = PIPE_ERROR_OUT_OF_MEMORY;
6037       goto out;
6038    }
6039 
6040    t->procType = procType;
6041    t->inputMapping = inputMapping;
6042    t->outputMapping = outputMapping;
6043    t->ureg = ureg;
6044    t->num_temp_arrays = program->next_array;
6045    if (t->num_temp_arrays)
6046       t->arrays = (struct ureg_dst*)
6047                   calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6048 
6049    /*
6050     * Declare input attributes.
6051     */
6052    switch (procType) {
6053    case PIPE_SHADER_FRAGMENT:
6054    case PIPE_SHADER_GEOMETRY:
6055    case PIPE_SHADER_TESS_EVAL:
6056    case PIPE_SHADER_TESS_CTRL:
6057       sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6058 
6059       for (i = 0; i < program->num_inputs; ++i) {
6060          struct inout_decl *decl = &program->inputs[i];
6061          unsigned slot = inputMapping[decl->mesa_index];
6062          struct ureg_src src;
6063          ubyte tgsi_usage_mask = decl->usage_mask;
6064 
6065          if (glsl_base_type_is_64bit(decl->base_type)) {
6066             if (tgsi_usage_mask == 1)
6067                tgsi_usage_mask = TGSI_WRITEMASK_XY;
6068             else if (tgsi_usage_mask == 2)
6069                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6070             else
6071                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6072          }
6073 
6074          unsigned interp_mode = 0;
6075          unsigned interp_location = 0;
6076          if (procType == PIPE_SHADER_FRAGMENT) {
6077             assert(interpMode);
6078             interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6079                interpMode[slot] :
6080                st_translate_interp(decl->interp, inputSlotToAttr[slot]);
6081 
6082             interp_location = decl->interp_loc;
6083          }
6084 
6085          src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6086                   inputSemanticName[slot], inputSemanticIndex[slot],
6087                   interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6088                   decl->array_id, decl->size);
6089 
6090          for (unsigned j = 0; j < decl->size; ++j) {
6091             if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6092                /* The ArrayID is set up in dst_register */
6093                t->inputs[slot + j] = src;
6094                t->inputs[slot + j].ArrayID = 0;
6095                t->inputs[slot + j].Index += j;
6096             }
6097          }
6098       }
6099       break;
6100    case PIPE_SHADER_VERTEX:
6101       for (i = 0; i < numInputs; i++) {
6102          t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6103       }
6104       break;
6105    case PIPE_SHADER_COMPUTE:
6106       break;
6107    default:
6108       assert(0);
6109    }
6110 
6111    /*
6112     * Declare output attributes.
6113     */
6114    switch (procType) {
6115    case PIPE_SHADER_FRAGMENT:
6116    case PIPE_SHADER_COMPUTE:
6117       break;
6118    case PIPE_SHADER_GEOMETRY:
6119    case PIPE_SHADER_TESS_EVAL:
6120    case PIPE_SHADER_TESS_CTRL:
6121    case PIPE_SHADER_VERTEX:
6122       sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6123 
6124       for (i = 0; i < program->num_outputs; ++i) {
6125          struct inout_decl *decl = &program->outputs[i];
6126          unsigned slot = outputMapping[decl->mesa_index];
6127          struct ureg_dst dst;
6128          ubyte tgsi_usage_mask = decl->usage_mask;
6129 
6130          if (glsl_base_type_is_64bit(decl->base_type)) {
6131             if (tgsi_usage_mask == 1)
6132                tgsi_usage_mask = TGSI_WRITEMASK_XY;
6133             else if (tgsi_usage_mask == 2)
6134                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6135             else
6136                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6137          }
6138 
6139          dst = ureg_DECL_output_layout(ureg,
6140                      outputSemanticName[slot], outputSemanticIndex[slot],
6141                      decl->gs_out_streams,
6142                      slot, tgsi_usage_mask, decl->array_id, decl->size);
6143 
6144          for (unsigned j = 0; j < decl->size; ++j) {
6145             if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6146                /* The ArrayID is set up in dst_register */
6147                t->outputs[slot + j] = dst;
6148                t->outputs[slot + j].ArrayID = 0;
6149                t->outputs[slot + j].Index += j;
6150             }
6151          }
6152       }
6153       break;
6154    default:
6155       assert(0);
6156    }
6157 
6158    if (procType == PIPE_SHADER_FRAGMENT) {
6159       if (program->shader->info.EarlyFragmentTests)
6160          ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6161 
6162       if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6163           /* Must do this after setting up t->inputs. */
6164           emit_wpos(st_context(ctx), t, proginfo, ureg,
6165                     program->wpos_transform_const);
6166       }
6167 
6168       if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6169          emit_face_var(ctx, t);
6170 
6171       for (i = 0; i < numOutputs; i++) {
6172          switch (outputSemanticName[i]) {
6173          case TGSI_SEMANTIC_POSITION:
6174             t->outputs[i] = ureg_DECL_output(ureg,
6175                                              TGSI_SEMANTIC_POSITION, /* Z/Depth */
6176                                              outputSemanticIndex[i]);
6177             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6178             break;
6179          case TGSI_SEMANTIC_STENCIL:
6180             t->outputs[i] = ureg_DECL_output(ureg,
6181                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
6182                                              outputSemanticIndex[i]);
6183             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6184             break;
6185          case TGSI_SEMANTIC_COLOR:
6186             t->outputs[i] = ureg_DECL_output(ureg,
6187                                              TGSI_SEMANTIC_COLOR,
6188                                              outputSemanticIndex[i]);
6189             break;
6190          case TGSI_SEMANTIC_SAMPLEMASK:
6191             t->outputs[i] = ureg_DECL_output(ureg,
6192                                              TGSI_SEMANTIC_SAMPLEMASK,
6193                                              outputSemanticIndex[i]);
6194             /* TODO: If we ever support more than 32 samples, this will have
6195              * to become an array.
6196              */
6197             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6198             break;
6199          default:
6200             assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6201             ret = PIPE_ERROR_BAD_INPUT;
6202             goto out;
6203          }
6204       }
6205    }
6206    else if (procType == PIPE_SHADER_VERTEX) {
6207       for (i = 0; i < numOutputs; i++) {
6208          if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6209             /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6210             ureg_MOV(ureg,
6211                      ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6212                      ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6213             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6214          }
6215       }
6216    }
6217 
6218    if (procType == PIPE_SHADER_COMPUTE) {
6219       emit_compute_block_size(proginfo, ureg);
6220    }
6221 
6222    /* Declare address register.
6223     */
6224    if (program->num_address_regs > 0) {
6225       assert(program->num_address_regs <= 3);
6226       for (int i = 0; i < program->num_address_regs; i++)
6227          t->address[i] = ureg_DECL_address(ureg);
6228    }
6229 
6230    /* Declare misc input registers
6231     */
6232    {
6233       GLbitfield sysInputs = proginfo->info.system_values_read;
6234 
6235       for (i = 0; sysInputs; i++) {
6236          if (sysInputs & (1 << i)) {
6237             unsigned semName = _mesa_sysval_to_semantic(i);
6238 
6239             t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6240 
6241             if (semName == TGSI_SEMANTIC_INSTANCEID ||
6242                 semName == TGSI_SEMANTIC_VERTEXID) {
6243                /* From Gallium perspective, these system values are always
6244                 * integer, and require native integer support.  However, if
6245                 * native integer is supported on the vertex stage but not the
6246                 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6247                 * assumes these system values are floats. To resolve the
6248                 * inconsistency, we insert a U2F.
6249                 */
6250                struct st_context *st = st_context(ctx);
6251                struct pipe_screen *pscreen = st->pipe->screen;
6252                assert(procType == PIPE_SHADER_VERTEX);
6253                assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6254                (void) pscreen;
6255                if (!ctx->Const.NativeIntegers) {
6256                   struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6257                   ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6258                   t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6259                }
6260             }
6261 
6262             if (procType == PIPE_SHADER_FRAGMENT &&
6263                 semName == TGSI_SEMANTIC_POSITION)
6264                emit_wpos(st_context(ctx), t, proginfo, ureg,
6265                          program->wpos_transform_const);
6266 
6267             sysInputs &= ~(1 << i);
6268          }
6269       }
6270    }
6271 
6272    t->array_sizes = program->array_sizes;
6273    t->input_decls = program->inputs;
6274    t->num_input_decls = program->num_inputs;
6275    t->output_decls = program->outputs;
6276    t->num_output_decls = program->num_outputs;
6277 
6278    /* Emit constants and uniforms.  TGSI uses a single index space for these,
6279     * so we put all the translated regs in t->constants.
6280     */
6281    if (proginfo->Parameters) {
6282       t->constants = (struct ureg_src *)
6283          calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6284       if (t->constants == NULL) {
6285          ret = PIPE_ERROR_OUT_OF_MEMORY;
6286          goto out;
6287       }
6288       t->num_constants = proginfo->Parameters->NumParameters;
6289 
6290       for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6291          switch (proginfo->Parameters->Parameters[i].Type) {
6292          case PROGRAM_STATE_VAR:
6293          case PROGRAM_UNIFORM:
6294             t->constants[i] = ureg_DECL_constant(ureg, i);
6295             break;
6296 
6297          /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6298           * addressing of the const buffer.
6299           * FIXME: Be smarter and recognize param arrays:
6300           * indirect addressing is only valid within the referenced
6301           * array.
6302           */
6303          case PROGRAM_CONSTANT:
6304             if (program->indirect_addr_consts)
6305                t->constants[i] = ureg_DECL_constant(ureg, i);
6306             else
6307                t->constants[i] = emit_immediate(t,
6308                                                 proginfo->Parameters->ParameterValues[i],
6309                                                 proginfo->Parameters->Parameters[i].DataType,
6310                                                 4);
6311             break;
6312          default:
6313             break;
6314          }
6315       }
6316    }
6317 
6318    for (i = 0; i < proginfo->info.num_ubos; i++) {
6319       unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6320       unsigned num_const_vecs = (size + 15) / 16;
6321       unsigned first, last;
6322       assert(num_const_vecs > 0);
6323       first = 0;
6324       last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6325       ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6326    }
6327 
6328    /* Emit immediate values.
6329     */
6330    t->immediates = (struct ureg_src *)
6331       calloc(program->num_immediates, sizeof(struct ureg_src));
6332    if (t->immediates == NULL) {
6333       ret = PIPE_ERROR_OUT_OF_MEMORY;
6334       goto out;
6335    }
6336    t->num_immediates = program->num_immediates;
6337 
6338    i = 0;
6339    foreach_in_list(immediate_storage, imm, &program->immediates) {
6340       assert(i < program->num_immediates);
6341       t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6342    }
6343    assert(i == program->num_immediates);
6344 
6345    /* texture samplers */
6346    for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6347       if (program->samplers_used & (1u << i)) {
6348          unsigned type;
6349 
6350          t->samplers[i] = ureg_DECL_sampler(ureg, i);
6351 
6352          switch (program->sampler_types[i]) {
6353          case GLSL_TYPE_INT:
6354             type = TGSI_RETURN_TYPE_SINT;
6355             break;
6356          case GLSL_TYPE_UINT:
6357             type = TGSI_RETURN_TYPE_UINT;
6358             break;
6359          case GLSL_TYPE_FLOAT:
6360             type = TGSI_RETURN_TYPE_FLOAT;
6361             break;
6362          default:
6363             unreachable("not reached");
6364          }
6365 
6366          ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6367                                  type, type, type, type );
6368       }
6369    }
6370 
6371    for (i = 0; i < frag_const->MaxAtomicBuffers; i++) {
6372       if (program->buffers_used & (1 << i)) {
6373          t->buffers[i] = ureg_DECL_buffer(ureg, i, true);
6374       }
6375    }
6376 
6377    for (; i < frag_const->MaxAtomicBuffers + frag_const->MaxShaderStorageBlocks;
6378         i++) {
6379       if (program->buffers_used & (1 << i)) {
6380          t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
6381       }
6382    }
6383 
6384    if (program->use_shared_memory)
6385       t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6386 
6387    for (i = 0; i < program->shader->Program->info.num_images; i++) {
6388       if (program->images_used & (1 << i)) {
6389          t->images[i] = ureg_DECL_image(ureg, i,
6390                                         program->image_targets[i],
6391                                         program->image_formats[i],
6392                                         true, false);
6393       }
6394    }
6395 
6396    /* Emit each instruction in turn:
6397     */
6398    foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6399       compile_tgsi_instruction(t, inst);
6400 
6401    /* Set the next shader stage hint for VS and TES. */
6402    switch (procType) {
6403    case PIPE_SHADER_VERTEX:
6404    case PIPE_SHADER_TESS_EVAL:
6405       if (program->shader_program->SeparateShader)
6406          break;
6407 
6408       for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6409          if (program->shader_program->_LinkedShaders[i]) {
6410             unsigned next;
6411 
6412             switch (i) {
6413             case MESA_SHADER_TESS_CTRL:
6414                next = PIPE_SHADER_TESS_CTRL;
6415                break;
6416             case MESA_SHADER_TESS_EVAL:
6417                next = PIPE_SHADER_TESS_EVAL;
6418                break;
6419             case MESA_SHADER_GEOMETRY:
6420                next = PIPE_SHADER_GEOMETRY;
6421                break;
6422             case MESA_SHADER_FRAGMENT:
6423                next = PIPE_SHADER_FRAGMENT;
6424                break;
6425             default:
6426                assert(0);
6427                continue;
6428             }
6429 
6430             ureg_set_next_shader_processor(ureg, next);
6431             break;
6432          }
6433       }
6434       break;
6435    }
6436 
6437 out:
6438    if (t) {
6439       free(t->arrays);
6440       free(t->temps);
6441       free(t->constants);
6442       t->num_constants = 0;
6443       free(t->immediates);
6444       t->num_immediates = 0;
6445       FREE(t);
6446    }
6447 
6448    return ret;
6449 }
6450 /* ----------------------------- End TGSI code ------------------------------ */
6451 
6452 
6453 /**
6454  * Convert a shader's GLSL IR into a Mesa gl_program, although without
6455  * generating Mesa IR.
6456  */
6457 static struct gl_program *
get_mesa_program_tgsi(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)6458 get_mesa_program_tgsi(struct gl_context *ctx,
6459                       struct gl_shader_program *shader_program,
6460                       struct gl_linked_shader *shader)
6461 {
6462    glsl_to_tgsi_visitor* v;
6463    struct gl_program *prog;
6464    struct gl_shader_compiler_options *options =
6465          &ctx->Const.ShaderCompilerOptions[shader->Stage];
6466    struct pipe_screen *pscreen = ctx->st->pipe->screen;
6467    enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
6468 
6469    validate_ir_tree(shader->ir);
6470 
6471    prog = shader->Program;
6472 
6473    prog->Parameters = _mesa_new_parameter_list();
6474    v = new glsl_to_tgsi_visitor();
6475    v->ctx = ctx;
6476    v->prog = prog;
6477    v->shader_program = shader_program;
6478    v->shader = shader;
6479    v->options = options;
6480    v->glsl_version = ctx->Const.GLSLVersion;
6481    v->native_integers = ctx->Const.NativeIntegers;
6482 
6483    v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6484                                             PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6485    v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6486                                            PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6487 
6488    _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
6489                                                prog->Parameters);
6490 
6491    /* Remove reads from output registers. */
6492    if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
6493       lower_output_reads(shader->Stage, shader->ir);
6494 
6495    /* Emit intermediate IR for main(). */
6496    visit_exec_list(shader->ir, v);
6497 
6498 #if 0
6499    /* Print out some information (for debugging purposes) used by the
6500     * optimization passes. */
6501    {
6502       int i;
6503       int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6504       int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6505       int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6506       int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6507 
6508       for (i = 0; i < v->next_temp; i++) {
6509          first_writes[i] = -1;
6510          first_reads[i] = -1;
6511          last_writes[i] = -1;
6512          last_reads[i] = -1;
6513       }
6514       v->get_first_temp_read(first_reads);
6515       v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6516       v->get_last_temp_write(last_writes);
6517       for (i = 0; i < v->next_temp; i++)
6518          printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6519                 first_writes[i],
6520                 last_reads[i],
6521                 last_writes[i]);
6522       ralloc_free(first_writes);
6523       ralloc_free(first_reads);
6524       ralloc_free(last_writes);
6525       ralloc_free(last_reads);
6526    }
6527 #endif
6528 
6529    /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6530    v->simplify_cmp();
6531 
6532    if (shader->Stage != MESA_SHADER_TESS_CTRL &&
6533        shader->Stage != MESA_SHADER_TESS_EVAL)
6534       v->copy_propagate();
6535 
6536    while (v->eliminate_dead_code());
6537 
6538    v->merge_two_dsts();
6539    v->merge_registers();
6540    v->renumber_registers();
6541 
6542    /* Write the END instruction. */
6543    v->emit_asm(NULL, TGSI_OPCODE_END);
6544 
6545    if (ctx->_Shader->Flags & GLSL_DUMP) {
6546       _mesa_log("\n");
6547       _mesa_log("GLSL IR for linked %s program %d:\n",
6548              _mesa_shader_stage_to_string(shader->Stage),
6549              shader_program->Name);
6550       _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6551       _mesa_log("\n\n");
6552    }
6553 
6554    do_set_program_inouts(shader->ir, prog, shader->Stage);
6555    _mesa_copy_linked_program_data(shader_program, shader);
6556    shrink_array_declarations(v->inputs, v->num_inputs,
6557                              &prog->info.inputs_read,
6558                              prog->info.double_inputs_read,
6559                              &prog->info.patch_inputs_read);
6560    shrink_array_declarations(v->outputs, v->num_outputs,
6561                              &prog->info.outputs_written, 0ULL,
6562                              &prog->info.patch_outputs_written);
6563    count_resources(v, prog);
6564 
6565    /* The GLSL IR won't be needed anymore. */
6566    ralloc_free(shader->ir);
6567    shader->ir = NULL;
6568 
6569    /* This must be done before the uniform storage is associated. */
6570    if (shader->Stage == MESA_SHADER_FRAGMENT &&
6571        (prog->info.inputs_read & VARYING_BIT_POS ||
6572         prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6573       static const gl_state_index wposTransformState[STATE_LENGTH] = {
6574          STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6575       };
6576 
6577       v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6578                                                           wposTransformState);
6579    }
6580 
6581    /* Avoid reallocation of the program parameter list, because the uniform
6582     * storage is only associated with the original parameter list.
6583     * This should be enough for Bitmap and DrawPixels constants.
6584     */
6585    _mesa_reserve_parameter_storage(prog->Parameters, 8);
6586 
6587    /* This has to be done last.  Any operation the can cause
6588     * prog->ParameterValues to get reallocated (e.g., anything that adds a
6589     * program constant) has to happen before creating this linkage.
6590     */
6591    _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
6592    if (!shader_program->data->LinkStatus) {
6593       free_glsl_to_tgsi_visitor(v);
6594       _mesa_reference_program(ctx, &shader->Program, NULL);
6595       return NULL;
6596    }
6597 
6598    struct st_vertex_program *stvp;
6599    struct st_fragment_program *stfp;
6600    struct st_geometry_program *stgp;
6601    struct st_tessctrl_program *sttcp;
6602    struct st_tesseval_program *sttep;
6603    struct st_compute_program *stcp;
6604 
6605    switch (shader->Stage) {
6606    case MESA_SHADER_VERTEX:
6607       stvp = (struct st_vertex_program *)prog;
6608       stvp->glsl_to_tgsi = v;
6609       break;
6610    case MESA_SHADER_FRAGMENT:
6611       stfp = (struct st_fragment_program *)prog;
6612       stfp->glsl_to_tgsi = v;
6613       break;
6614    case MESA_SHADER_GEOMETRY:
6615       stgp = (struct st_geometry_program *)prog;
6616       stgp->glsl_to_tgsi = v;
6617       break;
6618    case MESA_SHADER_TESS_CTRL:
6619       sttcp = (struct st_tessctrl_program *)prog;
6620       sttcp->glsl_to_tgsi = v;
6621       break;
6622    case MESA_SHADER_TESS_EVAL:
6623       sttep = (struct st_tesseval_program *)prog;
6624       sttep->glsl_to_tgsi = v;
6625       break;
6626    case MESA_SHADER_COMPUTE:
6627       stcp = (struct st_compute_program *)prog;
6628       stcp->glsl_to_tgsi = v;
6629       break;
6630    default:
6631       assert(!"should not be reached");
6632       return NULL;
6633    }
6634 
6635    return prog;
6636 }
6637 
6638 static void
set_affected_state_flags(uint64_t * states,struct gl_program * prog,uint64_t new_constants,uint64_t new_sampler_views,uint64_t new_samplers,uint64_t new_images,uint64_t new_ubos,uint64_t new_ssbos,uint64_t new_atomics)6639 set_affected_state_flags(uint64_t *states,
6640                          struct gl_program *prog,
6641                          uint64_t new_constants,
6642                          uint64_t new_sampler_views,
6643                          uint64_t new_samplers,
6644                          uint64_t new_images,
6645                          uint64_t new_ubos,
6646                          uint64_t new_ssbos,
6647                          uint64_t new_atomics)
6648 {
6649    if (prog->Parameters->NumParameters)
6650       *states |= new_constants;
6651 
6652    if (prog->info.num_textures)
6653       *states |= new_sampler_views | new_samplers;
6654 
6655    if (prog->info.num_images)
6656       *states |= new_images;
6657 
6658    if (prog->info.num_ubos)
6659       *states |= new_ubos;
6660 
6661    if (prog->info.num_ssbos)
6662       *states |= new_ssbos;
6663 
6664    if (prog->info.num_abos)
6665       *states |= new_atomics;
6666 }
6667 
6668 static struct gl_program *
get_mesa_program(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)6669 get_mesa_program(struct gl_context *ctx,
6670                  struct gl_shader_program *shader_program,
6671                  struct gl_linked_shader *shader)
6672 {
6673    struct pipe_screen *pscreen = ctx->st->pipe->screen;
6674    enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
6675    enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
6676       pscreen->get_shader_param(pscreen, ptarget, PIPE_SHADER_CAP_PREFERRED_IR);
6677    struct gl_program *prog = NULL;
6678 
6679    if (preferred_ir == PIPE_SHADER_IR_NIR) {
6680       /* TODO only for GLSL VS/FS for now: */
6681       switch (shader->Stage) {
6682       case MESA_SHADER_VERTEX:
6683       case MESA_SHADER_FRAGMENT:
6684          prog = st_nir_get_mesa_program(ctx, shader_program, shader);
6685       default:
6686          break;
6687       }
6688    } else {
6689       prog = get_mesa_program_tgsi(ctx, shader_program, shader);
6690    }
6691 
6692    if (prog) {
6693       uint64_t *states;
6694 
6695       /* This determines which states will be updated when the shader is
6696        * bound.
6697        */
6698       switch (shader->Stage) {
6699       case MESA_SHADER_VERTEX:
6700          states = &((struct st_vertex_program*)prog)->affected_states;
6701 
6702          *states = ST_NEW_VS_STATE |
6703                    ST_NEW_RASTERIZER |
6704                    ST_NEW_VERTEX_ARRAYS;
6705 
6706          set_affected_state_flags(states, prog,
6707                                   ST_NEW_VS_CONSTANTS,
6708                                   ST_NEW_VS_SAMPLER_VIEWS,
6709                                   ST_NEW_RENDER_SAMPLERS,
6710                                   ST_NEW_VS_IMAGES,
6711                                   ST_NEW_VS_UBOS,
6712                                   ST_NEW_VS_SSBOS,
6713                                   ST_NEW_VS_ATOMICS);
6714          break;
6715 
6716       case MESA_SHADER_TESS_CTRL:
6717          states = &((struct st_tessctrl_program*)prog)->affected_states;
6718 
6719          *states = ST_NEW_TCS_STATE;
6720 
6721          set_affected_state_flags(states, prog,
6722                                   ST_NEW_TCS_CONSTANTS,
6723                                   ST_NEW_TCS_SAMPLER_VIEWS,
6724                                   ST_NEW_RENDER_SAMPLERS,
6725                                   ST_NEW_TCS_IMAGES,
6726                                   ST_NEW_TCS_UBOS,
6727                                   ST_NEW_TCS_SSBOS,
6728                                   ST_NEW_TCS_ATOMICS);
6729          break;
6730 
6731       case MESA_SHADER_TESS_EVAL:
6732          states = &((struct st_tesseval_program*)prog)->affected_states;
6733 
6734          *states = ST_NEW_TES_STATE |
6735                    ST_NEW_RASTERIZER;
6736 
6737          set_affected_state_flags(states, prog,
6738                                   ST_NEW_TES_CONSTANTS,
6739                                   ST_NEW_TES_SAMPLER_VIEWS,
6740                                   ST_NEW_RENDER_SAMPLERS,
6741                                   ST_NEW_TES_IMAGES,
6742                                   ST_NEW_TES_UBOS,
6743                                   ST_NEW_TES_SSBOS,
6744                                   ST_NEW_TES_ATOMICS);
6745          break;
6746 
6747       case MESA_SHADER_GEOMETRY:
6748          states = &((struct st_geometry_program*)prog)->affected_states;
6749 
6750          *states = ST_NEW_GS_STATE |
6751                    ST_NEW_RASTERIZER;
6752 
6753          set_affected_state_flags(states, prog,
6754                                   ST_NEW_GS_CONSTANTS,
6755                                   ST_NEW_GS_SAMPLER_VIEWS,
6756                                   ST_NEW_RENDER_SAMPLERS,
6757                                   ST_NEW_GS_IMAGES,
6758                                   ST_NEW_GS_UBOS,
6759                                   ST_NEW_GS_SSBOS,
6760                                   ST_NEW_GS_ATOMICS);
6761          break;
6762 
6763       case MESA_SHADER_FRAGMENT:
6764          states = &((struct st_fragment_program*)prog)->affected_states;
6765 
6766          /* gl_FragCoord and glDrawPixels always use constants. */
6767          *states = ST_NEW_FS_STATE |
6768                    ST_NEW_SAMPLE_SHADING |
6769                    ST_NEW_FS_CONSTANTS;
6770 
6771          set_affected_state_flags(states, prog,
6772                                   ST_NEW_FS_CONSTANTS,
6773                                   ST_NEW_FS_SAMPLER_VIEWS,
6774                                   ST_NEW_RENDER_SAMPLERS,
6775                                   ST_NEW_FS_IMAGES,
6776                                   ST_NEW_FS_UBOS,
6777                                   ST_NEW_FS_SSBOS,
6778                                   ST_NEW_FS_ATOMICS);
6779          break;
6780 
6781       case MESA_SHADER_COMPUTE:
6782          states = &((struct st_compute_program*)prog)->affected_states;
6783 
6784          *states = ST_NEW_CS_STATE;
6785 
6786          set_affected_state_flags(states, prog,
6787                                   ST_NEW_CS_CONSTANTS,
6788                                   ST_NEW_CS_SAMPLER_VIEWS,
6789                                   ST_NEW_CS_SAMPLERS,
6790                                   ST_NEW_CS_IMAGES,
6791                                   ST_NEW_CS_UBOS,
6792                                   ST_NEW_CS_SSBOS,
6793                                   ST_NEW_CS_ATOMICS);
6794          break;
6795 
6796       default:
6797          unreachable("unhandled shader stage");
6798       }
6799    }
6800 
6801    return prog;
6802 }
6803 
6804 /* See if there are unsupported control flow statements. */
6805 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
6806 private:
6807    const struct gl_shader_compiler_options *options;
6808 public:
ir_control_flow_info_visitor(const struct gl_shader_compiler_options * options)6809    ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
6810       : options(options),
6811         unsupported(false)
6812    {
6813    }
6814 
visit_enter(ir_function * ir)6815    virtual ir_visitor_status visit_enter(ir_function *ir)
6816    {
6817       /* Other functions are skipped (same as glsl_to_tgsi). */
6818       if (strcmp(ir->name, "main") == 0)
6819          return visit_continue;
6820 
6821       return visit_continue_with_parent;
6822    }
6823 
visit_enter(ir_call * ir)6824    virtual ir_visitor_status visit_enter(ir_call *ir)
6825    {
6826       if (!ir->callee->is_intrinsic()) {
6827          unsupported = true; /* it's a function call */
6828          return visit_stop;
6829       }
6830       return visit_continue;
6831    }
6832 
visit_enter(ir_return * ir)6833    virtual ir_visitor_status visit_enter(ir_return *ir)
6834    {
6835       if (options->EmitNoMainReturn) {
6836          unsupported = true;
6837          return visit_stop;
6838       }
6839       return visit_continue;
6840    }
6841 
6842    bool unsupported;
6843 };
6844 
6845 static bool
has_unsupported_control_flow(exec_list * ir,const struct gl_shader_compiler_options * options)6846 has_unsupported_control_flow(exec_list *ir,
6847                              const struct gl_shader_compiler_options *options)
6848 {
6849    ir_control_flow_info_visitor visitor(options);
6850    visit_list_elements(&visitor, ir);
6851    return visitor.unsupported;
6852 }
6853 
6854 extern "C" {
6855 
6856 /**
6857  * Link a shader.
6858  * Called via ctx->Driver.LinkShader()
6859  * This actually involves converting GLSL IR into an intermediate TGSI-like IR
6860  * with code lowering and other optimizations.
6861  */
6862 GLboolean
st_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)6863 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
6864 {
6865    struct pipe_screen *pscreen = ctx->st->pipe->screen;
6866    assert(prog->data->LinkStatus);
6867 
6868    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6869       if (prog->_LinkedShaders[i] == NULL)
6870          continue;
6871 
6872       struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6873       exec_list *ir = shader->ir;
6874       gl_shader_stage stage = shader->Stage;
6875       const struct gl_shader_compiler_options *options =
6876             &ctx->Const.ShaderCompilerOptions[stage];
6877       enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(stage);
6878       bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
6879                                                    PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
6880       bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
6881                                                    PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
6882       unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
6883                                                         PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
6884 
6885       /* If there are forms of indirect addressing that the driver
6886        * cannot handle, perform the lowering pass.
6887        */
6888       if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
6889           options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
6890          lower_variable_index_to_cond_assign(stage, ir,
6891                                              options->EmitNoIndirectInput,
6892                                              options->EmitNoIndirectOutput,
6893                                              options->EmitNoIndirectTemp,
6894                                              options->EmitNoIndirectUniform);
6895       }
6896 
6897       if (ctx->Extensions.ARB_shading_language_packing) {
6898          unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
6899                                LOWER_UNPACK_SNORM_2x16 |
6900                                LOWER_PACK_UNORM_2x16 |
6901                                LOWER_UNPACK_UNORM_2x16 |
6902                                LOWER_PACK_SNORM_4x8 |
6903                                LOWER_UNPACK_SNORM_4x8 |
6904                                LOWER_UNPACK_UNORM_4x8 |
6905                                LOWER_PACK_UNORM_4x8;
6906 
6907          if (ctx->Extensions.ARB_gpu_shader5)
6908             lower_inst |= LOWER_PACK_USE_BFI |
6909                           LOWER_PACK_USE_BFE;
6910          if (!ctx->st->has_half_float_packing)
6911             lower_inst |= LOWER_PACK_HALF_2x16 |
6912                           LOWER_UNPACK_HALF_2x16;
6913 
6914          lower_packing_builtins(ir, lower_inst);
6915       }
6916 
6917       if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
6918          lower_offset_arrays(ir);
6919       do_mat_op_to_vec(ir);
6920 
6921       if (stage == MESA_SHADER_FRAGMENT)
6922          lower_blend_equation_advanced(shader);
6923 
6924       lower_instructions(ir,
6925                          MOD_TO_FLOOR |
6926                          FDIV_TO_MUL_RCP |
6927                          EXP_TO_EXP2 |
6928                          LOG_TO_LOG2 |
6929                          LDEXP_TO_ARITH |
6930                          (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
6931                          CARRY_TO_ARITH |
6932                          BORROW_TO_ARITH |
6933                          (have_dround ? 0 : DOPS_TO_DFRAC) |
6934                          (options->EmitNoPow ? POW_TO_EXP2 : 0) |
6935                          (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
6936                          (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
6937                          /* Assume that if ARB_gpu_shader5 is not supported
6938                           * then all of the extended integer functions need
6939                           * lowering.  It may be necessary to add some caps
6940                           * for individual instructions.
6941                           */
6942                          (!ctx->Extensions.ARB_gpu_shader5
6943                           ? BIT_COUNT_TO_MATH |
6944                             EXTRACT_TO_SHIFTS |
6945                             INSERT_TO_SHIFTS |
6946                             REVERSE_TO_SHIFTS |
6947                             FIND_LSB_TO_FLOAT_CAST |
6948                             FIND_MSB_TO_FLOAT_CAST |
6949                             IMUL_HIGH_TO_MUL
6950                           : 0));
6951 
6952       do_vec_index_to_cond_assign(ir);
6953       lower_vector_insert(ir, true);
6954       lower_quadop_vector(ir, false);
6955       lower_noise(ir);
6956       if (options->MaxIfDepth == 0) {
6957          lower_discard(ir);
6958       }
6959 
6960       if (ctx->Const.GLSLOptimizeConservatively) {
6961          /* Do it once and repeat only if there's unsupported control flow. */
6962          do {
6963             do_common_optimization(ir, true, true, options,
6964                                    ctx->Const.NativeIntegers);
6965             lower_if_to_cond_assign((gl_shader_stage)i, ir,
6966                                     options->MaxIfDepth, if_threshold);
6967          } while (has_unsupported_control_flow(ir, options));
6968       } else {
6969          /* Repeat it until it stops making changes. */
6970          bool progress;
6971          do {
6972             progress = do_common_optimization(ir, true, true, options,
6973                                               ctx->Const.NativeIntegers);
6974             progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
6975                                                 options->MaxIfDepth, if_threshold);
6976          } while (progress);
6977       }
6978 
6979       validate_ir_tree(ir);
6980    }
6981 
6982    build_program_resource_list(ctx, prog);
6983 
6984    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6985       struct gl_program *linked_prog;
6986 
6987       if (prog->_LinkedShaders[i] == NULL)
6988          continue;
6989 
6990       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
6991 
6992       if (linked_prog) {
6993          if (!ctx->Driver.ProgramStringNotify(ctx,
6994                                               _mesa_shader_stage_to_program(i),
6995                                               linked_prog)) {
6996             _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
6997                                     NULL);
6998             return GL_FALSE;
6999          }
7000       }
7001    }
7002 
7003    return GL_TRUE;
7004 }
7005 
7006 void
st_translate_stream_output_info(glsl_to_tgsi_visitor * glsl_to_tgsi,const GLuint outputMapping[],struct pipe_stream_output_info * so)7007 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
7008                                 const GLuint outputMapping[],
7009                                 struct pipe_stream_output_info *so)
7010 {
7011    struct gl_transform_feedback_info *info =
7012       glsl_to_tgsi->shader_program->xfb_program->sh.LinkedTransformFeedback;
7013    st_translate_stream_output_info2(info, outputMapping, so);
7014 }
7015 
7016 void
st_translate_stream_output_info2(struct gl_transform_feedback_info * info,const GLuint outputMapping[],struct pipe_stream_output_info * so)7017 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
7018                                 const GLuint outputMapping[],
7019                                 struct pipe_stream_output_info *so)
7020 {
7021    unsigned i;
7022 
7023    for (i = 0; i < info->NumOutputs; i++) {
7024       so->output[i].register_index =
7025          outputMapping[info->Outputs[i].OutputRegister];
7026       so->output[i].start_component = info->Outputs[i].ComponentOffset;
7027       so->output[i].num_components = info->Outputs[i].NumComponents;
7028       so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
7029       so->output[i].dst_offset = info->Outputs[i].DstOffset;
7030       so->output[i].stream = info->Outputs[i].StreamId;
7031    }
7032 
7033    for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
7034       so->stride[i] = info->Buffers[i].Stride;
7035    }
7036    so->num_outputs = info->NumOutputs;
7037 }
7038 
7039 } /* extern "C" */
7040