1 /* Generate the LR(0) parser states for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2007, 2009-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include <config.h>
26 #include "system.h"
27
28 #include <bitset.h>
29
30 #include "LR0.h"
31 #include "closure.h"
32 #include "complain.h"
33 #include "getargs.h"
34 #include "gram.h"
35 #include "gram.h"
36 #include "lalr.h"
37 #include "reader.h"
38 #include "reduce.h"
39 #include "state.h"
40 #include "symtab.h"
41
42 typedef struct state_list
43 {
44 struct state_list *next;
45 state *state;
46 } state_list;
47
48 static state_list *first_state = NULL;
49 static state_list *last_state = NULL;
50
51
52 /*------------------------------------------------------------------.
53 | A state was just discovered from another state. Queue it for |
54 | later examination, in order to find its transitions. Return it. |
55 `------------------------------------------------------------------*/
56
57 static state *
state_list_append(symbol_number sym,size_t core_size,item_number * core)58 state_list_append (symbol_number sym, size_t core_size, item_number *core)
59 {
60 state_list *node = xmalloc (sizeof *node);
61 state *s = state_new (sym, core_size, core);
62
63 if (trace_flag & trace_automaton)
64 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
65 nstates, sym, symbols[sym]->tag);
66
67 node->next = NULL;
68 node->state = s;
69
70 if (!first_state)
71 first_state = node;
72 if (last_state)
73 last_state->next = node;
74 last_state = node;
75
76 return s;
77 }
78
79 static int nshifts;
80 static symbol_number *shift_symbol;
81
82 static rule **redset;
83 static state **shiftset;
84
85 static item_number **kernel_base;
86 static int *kernel_size;
87 static item_number *kernel_items;
88
89
90 static void
allocate_itemsets(void)91 allocate_itemsets (void)
92 {
93 symbol_number i;
94 rule_number r;
95 item_number *rhsp;
96
97 /* Count the number of occurrences of all the symbols in RITEMS.
98 Note that useless productions (hence useless nonterminals) are
99 browsed too, hence we need to allocate room for _all_ the
100 symbols. */
101 size_t count = 0;
102 size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
103 sizeof *symbol_count);
104
105 for (r = 0; r < nrules; ++r)
106 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
107 {
108 count++;
109 symbol_count[*rhsp]++;
110 }
111
112 /* See comments before new_itemsets. All the vectors of items
113 live inside KERNEL_ITEMS. The number of active items after
114 some symbol S cannot be more than the number of times that S
115 appears as an item, which is SYMBOL_COUNT[S].
116 We allocate that much space for each symbol. */
117
118 kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
119 kernel_items = xnmalloc (count, sizeof *kernel_items);
120
121 count = 0;
122 for (i = 0; i < nsyms; i++)
123 {
124 kernel_base[i] = kernel_items + count;
125 count += symbol_count[i];
126 }
127
128 free (symbol_count);
129 kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
130 }
131
132
133 static void
allocate_storage(void)134 allocate_storage (void)
135 {
136 allocate_itemsets ();
137
138 shiftset = xnmalloc (nsyms, sizeof *shiftset);
139 redset = xnmalloc (nrules, sizeof *redset);
140 state_hash_new ();
141 shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
142 }
143
144
145 static void
free_storage(void)146 free_storage (void)
147 {
148 free (shift_symbol);
149 free (redset);
150 free (shiftset);
151 free (kernel_base);
152 free (kernel_size);
153 free (kernel_items);
154 state_hash_free ();
155 }
156
157
158
159
160 /*---------------------------------------------------------------.
161 | Find which symbols can be shifted in S, and for each one |
162 | record which items would be active after that shift. Uses the |
163 | contents of itemset. |
164 | |
165 | shift_symbol is set to a vector of the symbols that can be |
166 | shifted. For each symbol in the grammar, kernel_base[symbol] |
167 | points to a vector of item numbers activated if that symbol is |
168 | shifted, and kernel_size[symbol] is their numbers. |
169 | |
170 | itemset is sorted on item index in ritem, which is sorted on |
171 | rule number. Compute each kernel_base[symbol] with the same |
172 | sort. |
173 `---------------------------------------------------------------*/
174
175 static void
new_itemsets(state * s)176 new_itemsets (state *s)
177 {
178 size_t i;
179
180 if (trace_flag & trace_automaton)
181 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
182
183 memset (kernel_size, 0, nsyms * sizeof *kernel_size);
184
185 nshifts = 0;
186
187 for (i = 0; i < nitemset; ++i)
188 if (item_number_is_symbol_number (ritem[itemset[i]]))
189 {
190 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
191 if (!kernel_size[sym])
192 {
193 shift_symbol[nshifts] = sym;
194 nshifts++;
195 }
196
197 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
198 kernel_size[sym]++;
199 }
200 }
201
202
203
204 /*--------------------------------------------------------------.
205 | Find the state we would get to (from the current state) by |
206 | shifting SYM. Create a new state if no equivalent one exists |
207 | already. Used by append_states. |
208 `--------------------------------------------------------------*/
209
210 static state *
get_state(symbol_number sym,size_t core_size,item_number * core)211 get_state (symbol_number sym, size_t core_size, item_number *core)
212 {
213 state *s;
214
215 if (trace_flag & trace_automaton)
216 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
217 sym, symbols[sym]->tag);
218
219 s = state_hash_lookup (core_size, core);
220 if (!s)
221 s = state_list_append (sym, core_size, core);
222
223 if (trace_flag & trace_automaton)
224 fprintf (stderr, "Exiting get_state => %d\n", s->number);
225
226 return s;
227 }
228
229 /*---------------------------------------------------------------.
230 | Use the information computed by new_itemsets to find the state |
231 | numbers reached by each shift transition from S. |
232 | |
233 | SHIFTSET is set up as a vector of those states. |
234 `---------------------------------------------------------------*/
235
236 static void
append_states(state * s)237 append_states (state *s)
238 {
239 int i;
240
241 if (trace_flag & trace_automaton)
242 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
243
244 /* First sort shift_symbol into increasing order. */
245
246 for (i = 1; i < nshifts; i++)
247 {
248 symbol_number sym = shift_symbol[i];
249 int j;
250 for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
251 shift_symbol[j] = shift_symbol[j - 1];
252 shift_symbol[j] = sym;
253 }
254
255 for (i = 0; i < nshifts; i++)
256 {
257 symbol_number sym = shift_symbol[i];
258 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
259 }
260 }
261
262
263 /*----------------------------------------------------------------.
264 | Find which rules can be used for reduction transitions from the |
265 | current state and make a reductions structure for the state to |
266 | record their rule numbers. |
267 `----------------------------------------------------------------*/
268
269 static void
save_reductions(state * s)270 save_reductions (state *s)
271 {
272 int count = 0;
273 size_t i;
274
275 /* Find and count the active items that represent ends of rules. */
276 for (i = 0; i < nitemset; ++i)
277 {
278 item_number item = ritem[itemset[i]];
279 if (item_number_is_rule_number (item))
280 {
281 rule_number r = item_number_as_rule_number (item);
282 redset[count++] = &rules[r];
283 if (r == 0)
284 {
285 /* This is "reduce 0", i.e., accept. */
286 aver (!final_state);
287 final_state = s;
288 }
289 }
290 }
291
292 /* Make a reductions structure and copy the data into it. */
293 state_reductions_set (s, count, redset);
294 }
295
296
297 /*---------------.
298 | Build STATES. |
299 `---------------*/
300
301 static void
set_states(void)302 set_states (void)
303 {
304 states = xcalloc (nstates, sizeof *states);
305
306 while (first_state)
307 {
308 state_list *this = first_state;
309
310 /* Pessimization, but simplification of the code: make sure all
311 the states have valid transitions and reductions members,
312 even if reduced to 0. It is too soon for errs, which are
313 computed later, but set_conflicts. */
314 state *s = this->state;
315 if (!s->transitions)
316 state_transitions_set (s, 0, 0);
317 if (!s->reductions)
318 state_reductions_set (s, 0, 0);
319
320 states[s->number] = s;
321
322 first_state = this->next;
323 free (this);
324 }
325 first_state = NULL;
326 last_state = NULL;
327 }
328
329
330 /*-------------------------------------------------------------------.
331 | Compute the LR(0) parser states (see state.h for details) from the |
332 | grammar. |
333 `-------------------------------------------------------------------*/
334
335 void
generate_states(void)336 generate_states (void)
337 {
338 item_number initial_core = 0;
339 state_list *list = NULL;
340 allocate_storage ();
341 new_closure (nritems);
342
343 /* Create the initial state. The 0 at the lhs is the index of the
344 item of this initial rule. */
345 state_list_append (0, 1, &initial_core);
346
347 /* States are queued when they are created; process them all. */
348 for (list = first_state; list; list = list->next)
349 {
350 state *s = list->state;
351 if (trace_flag & trace_automaton)
352 fprintf (stderr, "Processing state %d (reached by %s)\n",
353 s->number,
354 symbols[s->accessing_symbol]->tag);
355 /* Set up itemset for the transitions out of this state. itemset gets a
356 vector of all the items that could be accepted next. */
357 closure (s->items, s->nitems);
358 /* Record the reductions allowed out of this state. */
359 save_reductions (s);
360 /* Find the itemsets of the states that shifts can reach. */
361 new_itemsets (s);
362 /* Find or create the core structures for those states. */
363 append_states (s);
364
365 /* Create the shifts structures for the shifts to those states,
366 now that the state numbers transitioning to are known. */
367 state_transitions_set (s, nshifts, shiftset);
368 }
369
370 /* discard various storage */
371 free_closure ();
372 free_storage ();
373
374 /* Set up STATES. */
375 set_states ();
376 }
377