• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "common/gen_l3_config.h"
25 
26 #include "brw_context.h"
27 #include "brw_defines.h"
28 #include "brw_state.h"
29 #include "intel_batchbuffer.h"
30 
31 /**
32  * Calculate the desired L3 partitioning based on the current state of the
33  * pipeline.  For now this simply returns the conservative defaults calculated
34  * by get_default_l3_weights(), but we could probably do better by gathering
35  * more statistics from the pipeline state (e.g. guess of expected URB usage
36  * and bound surfaces), or by using feed-back from performance counters.
37  */
38 static struct gen_l3_weights
get_pipeline_state_l3_weights(const struct brw_context * brw)39 get_pipeline_state_l3_weights(const struct brw_context *brw)
40 {
41    const struct brw_stage_state *stage_states[] = {
42       [MESA_SHADER_VERTEX] = &brw->vs.base,
43       [MESA_SHADER_TESS_CTRL] = &brw->tcs.base,
44       [MESA_SHADER_TESS_EVAL] = &brw->tes.base,
45       [MESA_SHADER_GEOMETRY] = &brw->gs.base,
46       [MESA_SHADER_FRAGMENT] = &brw->wm.base,
47       [MESA_SHADER_COMPUTE] = &brw->cs.base
48    };
49    bool needs_dc = false, needs_slm = false;
50 
51    for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) {
52       const struct gl_shader_program *prog =
53          brw->ctx._Shader->CurrentProgram[stage_states[i]->stage];
54       const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data;
55 
56       needs_dc |= (prog && (prog->data->NumAtomicBuffers ||
57                             prog->data->NumShaderStorageBlocks)) ||
58          (prog_data && (prog_data->total_scratch || prog_data->nr_image_params));
59       needs_slm |= prog_data && prog_data->total_shared;
60    }
61 
62    return gen_get_default_l3_weights(&brw->screen->devinfo,
63                                      needs_dc, needs_slm);
64 }
65 
66 /**
67  * Program the hardware to use the specified L3 configuration.
68  */
69 static void
setup_l3_config(struct brw_context * brw,const struct gen_l3_config * cfg)70 setup_l3_config(struct brw_context *brw, const struct gen_l3_config *cfg)
71 {
72    const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
73    const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
74                        cfg->n[GEN_L3P_ALL];
75    const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
76                       cfg->n[GEN_L3P_ALL];
77    const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
78                       cfg->n[GEN_L3P_ALL];
79    const bool has_slm = cfg->n[GEN_L3P_SLM];
80 
81    /* According to the hardware docs, the L3 partitioning can only be changed
82     * while the pipeline is completely drained and the caches are flushed,
83     * which involves a first PIPE_CONTROL flush which stalls the pipeline...
84     */
85    brw_emit_pipe_control_flush(brw,
86                                PIPE_CONTROL_DATA_CACHE_FLUSH |
87                                PIPE_CONTROL_NO_WRITE |
88                                PIPE_CONTROL_CS_STALL);
89 
90    /* ...followed by a second pipelined PIPE_CONTROL that initiates
91     * invalidation of the relevant caches.  Note that because RO invalidation
92     * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
93     * command is processed by the CS) we cannot combine it with the previous
94     * stalling flush as the hardware documentation suggests, because that
95     * would cause the CS to stall on previous rendering *after* RO
96     * invalidation and wouldn't prevent the RO caches from being polluted by
97     * concurrent rendering before the stall completes.  This intentionally
98     * doesn't implement the SKL+ hardware workaround suggesting to enable CS
99     * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
100     * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
101     * already guarantee that there is no concurrent GPGPU kernel execution
102     * (see SKL HSD 2132585).
103     */
104    brw_emit_pipe_control_flush(brw,
105                                PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
106                                PIPE_CONTROL_CONST_CACHE_INVALIDATE |
107                                PIPE_CONTROL_INSTRUCTION_INVALIDATE |
108                                PIPE_CONTROL_STATE_CACHE_INVALIDATE |
109                                PIPE_CONTROL_NO_WRITE);
110 
111    /* Now send a third stalling flush to make sure that invalidation is
112     * complete when the L3 configuration registers are modified.
113     */
114    brw_emit_pipe_control_flush(brw,
115                                PIPE_CONTROL_DATA_CACHE_FLUSH |
116                                PIPE_CONTROL_NO_WRITE |
117                                PIPE_CONTROL_CS_STALL);
118 
119    if (brw->gen >= 8) {
120       assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
121 
122       BEGIN_BATCH(3);
123       OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
124 
125       /* Set up the L3 partitioning. */
126       OUT_BATCH(GEN8_L3CNTLREG);
127       OUT_BATCH((has_slm ? GEN8_L3CNTLREG_SLM_ENABLE : 0) |
128                 SET_FIELD(cfg->n[GEN_L3P_URB], GEN8_L3CNTLREG_URB_ALLOC) |
129                 SET_FIELD(cfg->n[GEN_L3P_RO], GEN8_L3CNTLREG_RO_ALLOC) |
130                 SET_FIELD(cfg->n[GEN_L3P_DC], GEN8_L3CNTLREG_DC_ALLOC) |
131                 SET_FIELD(cfg->n[GEN_L3P_ALL], GEN8_L3CNTLREG_ALL_ALLOC));
132 
133       ADVANCE_BATCH();
134 
135    } else {
136       assert(!cfg->n[GEN_L3P_ALL]);
137 
138       /* When enabled SLM only uses a portion of the L3 on half of the banks,
139        * the matching space on the remaining banks has to be allocated to a
140        * client (URB for all validated configurations) set to the
141        * lower-bandwidth 2-bank address hashing mode.
142        */
143       const bool urb_low_bw = has_slm && !brw->is_baytrail;
144       assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
145 
146       /* Minimum number of ways that can be allocated to the URB. */
147       const unsigned n0_urb = (brw->is_baytrail ? 32 : 0);
148       assert(cfg->n[GEN_L3P_URB] >= n0_urb);
149 
150       BEGIN_BATCH(7);
151       OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2));
152 
153       /* Demote any clients with no ways assigned to LLC. */
154       OUT_BATCH(GEN7_L3SQCREG1);
155       OUT_BATCH((brw->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
156                  brw->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
157                  IVB_L3SQCREG1_SQGHPCI_DEFAULT) |
158                 (has_dc ? 0 : GEN7_L3SQCREG1_CONV_DC_UC) |
159                 (has_is ? 0 : GEN7_L3SQCREG1_CONV_IS_UC) |
160                 (has_c ? 0 : GEN7_L3SQCREG1_CONV_C_UC) |
161                 (has_t ? 0 : GEN7_L3SQCREG1_CONV_T_UC));
162 
163       /* Set up the L3 partitioning. */
164       OUT_BATCH(GEN7_L3CNTLREG2);
165       OUT_BATCH((has_slm ? GEN7_L3CNTLREG2_SLM_ENABLE : 0) |
166                 SET_FIELD(cfg->n[GEN_L3P_URB] - n0_urb, GEN7_L3CNTLREG2_URB_ALLOC) |
167                 (urb_low_bw ? GEN7_L3CNTLREG2_URB_LOW_BW : 0) |
168                 SET_FIELD(cfg->n[GEN_L3P_ALL], GEN7_L3CNTLREG2_ALL_ALLOC) |
169                 SET_FIELD(cfg->n[GEN_L3P_RO], GEN7_L3CNTLREG2_RO_ALLOC) |
170                 SET_FIELD(cfg->n[GEN_L3P_DC], GEN7_L3CNTLREG2_DC_ALLOC));
171       OUT_BATCH(GEN7_L3CNTLREG3);
172       OUT_BATCH(SET_FIELD(cfg->n[GEN_L3P_IS], GEN7_L3CNTLREG3_IS_ALLOC) |
173                 SET_FIELD(cfg->n[GEN_L3P_C], GEN7_L3CNTLREG3_C_ALLOC) |
174                 SET_FIELD(cfg->n[GEN_L3P_T], GEN7_L3CNTLREG3_T_ALLOC));
175 
176       ADVANCE_BATCH();
177 
178       if (can_do_hsw_l3_atomics(brw->screen)) {
179          /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
180           * them disabled to avoid crashing the system hard.
181           */
182          BEGIN_BATCH(5);
183          OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
184          OUT_BATCH(HSW_SCRATCH1);
185          OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE);
186          OUT_BATCH(HSW_ROW_CHICKEN3);
187          OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) |
188                    (has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE));
189          ADVANCE_BATCH();
190       }
191    }
192 }
193 
194 /**
195  * Update the URB size in the context state for the specified L3
196  * configuration.
197  */
198 static void
update_urb_size(struct brw_context * brw,const struct gen_l3_config * cfg)199 update_urb_size(struct brw_context *brw, const struct gen_l3_config *cfg)
200 {
201    const struct gen_device_info *devinfo = &brw->screen->devinfo;
202    const unsigned sz = gen_get_l3_config_urb_size(devinfo, cfg);
203 
204    if (brw->urb.size != sz) {
205       brw->urb.size = sz;
206       brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE;
207    }
208 }
209 
210 static void
emit_l3_state(struct brw_context * brw)211 emit_l3_state(struct brw_context *brw)
212 {
213    const struct gen_l3_weights w = get_pipeline_state_l3_weights(brw);
214    const float dw = gen_diff_l3_weights(w, gen_get_l3_config_weights(brw->l3.config));
215    /* The distance between any two compatible weight vectors cannot exceed two
216     * due to the triangle inequality.
217     */
218    const float large_dw_threshold = 2.0;
219    /* Somewhat arbitrary, simply makes sure that there will be no repeated
220     * transitions to the same L3 configuration, could probably do better here.
221     */
222    const float small_dw_threshold = 0.5;
223    /* If we're emitting a new batch the caches should already be clean and the
224     * transition should be relatively cheap, so it shouldn't hurt much to use
225     * the smaller threshold.  Otherwise use the larger threshold so that we
226     * only reprogram the L3 mid-batch if the most recently programmed
227     * configuration is incompatible with the current pipeline state.
228     */
229    const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ?
230                                small_dw_threshold : large_dw_threshold);
231 
232    if (dw > dw_threshold && can_do_pipelined_register_writes(brw->screen)) {
233       const struct gen_l3_config *const cfg =
234          gen_get_l3_config(&brw->screen->devinfo, w);
235 
236       setup_l3_config(brw, cfg);
237       update_urb_size(brw, cfg);
238       brw->l3.config = cfg;
239 
240       if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
241          fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold);
242          gen_dump_l3_config(cfg, stderr);
243       }
244    }
245 }
246 
247 const struct brw_tracked_state gen7_l3_state = {
248    .dirty = {
249       .mesa = 0,
250       .brw = BRW_NEW_BATCH |
251              BRW_NEW_BLORP |
252              BRW_NEW_CS_PROG_DATA |
253              BRW_NEW_FS_PROG_DATA |
254              BRW_NEW_GS_PROG_DATA |
255              BRW_NEW_VS_PROG_DATA,
256    },
257    .emit = emit_l3_state
258 };
259 
260 /**
261  * Hack to restore the default L3 configuration.
262  *
263  * This will be called at the end of every batch in order to reset the L3
264  * configuration to the default values for the time being until the kernel is
265  * fixed.  Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
266  * (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting
267  * batch buffers for the default context used by the DDX, which meant that any
268  * context state changed by the GL would leak into the DDX, the assumption
269  * being that the DDX would initialize any state it cares about manually.  The
270  * DDX is however not careful enough to program an L3 configuration
271  * explicitly, and it makes assumptions about it (URB size) which won't hold
272  * and cause it to misrender if we let our L3 set-up to leak into the DDX.
273  *
274  * Since v4.1 of the Linux kernel the default context is saved and restored
275  * normally, so it's far less likely for our L3 programming to interfere with
276  * other contexts -- In fact restoring the default L3 configuration at the end
277  * of the batch will be redundant most of the time.  A kind of state leak is
278  * still possible though if the context making assumptions about L3 state is
279  * created immediately after our context was active (e.g. without the DDX
280  * default context being scheduled in between) because at present the DRM
281  * doesn't fully initialize the contents of newly created contexts and instead
282  * sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the
283  * last active context.
284  *
285  * It's possible to realize such a scenario if, say, an X server (or a GL
286  * application using an outdated non-L3-aware Mesa version) is started while
287  * another GL application is running and happens to have modified the L3
288  * configuration, or if no X server is running at all and a GL application
289  * using a non-L3-aware Mesa version is started after another GL application
290  * ran and modified the L3 configuration -- The latter situation can actually
291  * be reproduced easily on IVB in our CI system.
292  */
293 void
gen7_restore_default_l3_config(struct brw_context * brw)294 gen7_restore_default_l3_config(struct brw_context *brw)
295 {
296    const struct gen_device_info *devinfo = &brw->screen->devinfo;
297    const struct gen_l3_config *const cfg = gen_get_default_l3_config(devinfo);
298 
299    if (cfg != brw->l3.config &&
300        can_do_pipelined_register_writes(brw->screen)) {
301       setup_l3_config(brw, cfg);
302       update_urb_size(brw, cfg);
303       brw->l3.config = cfg;
304    }
305 }
306