• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_RUNTIME_NO_MALLOC
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 #include <Eigen/LU>
15 
generalized_eigensolver_real(const MatrixType & m)16 template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
17 {
18   typedef typename MatrixType::Index Index;
19   /* this test covers the following files:
20      GeneralizedEigenSolver.h
21   */
22   Index rows = m.rows();
23   Index cols = m.cols();
24 
25   typedef typename MatrixType::Scalar Scalar;
26   typedef std::complex<Scalar> ComplexScalar;
27   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
28 
29   MatrixType a = MatrixType::Random(rows,cols);
30   MatrixType b = MatrixType::Random(rows,cols);
31   MatrixType a1 = MatrixType::Random(rows,cols);
32   MatrixType b1 = MatrixType::Random(rows,cols);
33   MatrixType spdA =  a.adjoint() * a + a1.adjoint() * a1;
34   MatrixType spdB =  b.adjoint() * b + b1.adjoint() * b1;
35 
36   // lets compare to GeneralizedSelfAdjointEigenSolver
37   {
38     GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
39     GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
40 
41     VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
42 
43     VectorType realEigenvalues = eig.eigenvalues().real();
44     std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
45     VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
46 
47     // check eigenvectors
48     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
49     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
50     VERIFY_IS_APPROX(spdA*V, spdB*V*D);
51   }
52 
53   // non symmetric case:
54   {
55     GeneralizedEigenSolver<MatrixType> eig(rows);
56     // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition
57     //Eigen::internal::set_is_malloc_allowed(false);
58     eig.compute(a,b);
59     //Eigen::internal::set_is_malloc_allowed(true);
60     for(Index k=0; k<cols; ++k)
61     {
62       Matrix<ComplexScalar,Dynamic,Dynamic> tmp = (eig.betas()(k)*a).template cast<ComplexScalar>() - eig.alphas()(k)*b;
63       if(tmp.size()>1 && tmp.norm()>(std::numeric_limits<Scalar>::min)())
64         tmp /= tmp.norm();
65       VERIFY_IS_MUCH_SMALLER_THAN( std::abs(tmp.determinant()), Scalar(1) );
66     }
67     // check eigenvectors
68     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
69     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
70     VERIFY_IS_APPROX(a*V, b*V*D);
71   }
72 
73   // regression test for bug 1098
74   {
75     GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a,b.adjoint() * b);
76     eig1.compute(a.adjoint() * a,b.adjoint() * b);
77     GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a,b.adjoint() * b);
78     eig2.compute(a.adjoint() * a,b.adjoint() * b);
79   }
80 }
81 
test_eigensolver_generalized_real()82 void test_eigensolver_generalized_real()
83 {
84   for(int i = 0; i < g_repeat; i++) {
85     int s = 0;
86     CALL_SUBTEST_1( generalized_eigensolver_real(Matrix4f()) );
87     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
88     CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) );
89 
90     // some trivial but implementation-wise special cases
91     CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) );
92     CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) );
93     CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) );
94     CALL_SUBTEST_4( generalized_eigensolver_real(Matrix2d()) );
95     TEST_SET_BUT_UNUSED_VARIABLE(s)
96   }
97 }
98