• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/GVMaterializer.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ModuleSummaryIndex.h"
30 #include "llvm/IR/OperandTraits.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/DataStream.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <deque>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 static cl::opt<bool> PrintSummaryGUIDs(
46     "print-summary-global-ids", cl::init(false), cl::Hidden,
47     cl::desc(
48         "Print the global id for each value when reading the module summary"));
49 
50 namespace {
51 enum {
52   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
53 };
54 
55 class BitcodeReaderValueList {
56   std::vector<WeakVH> ValuePtrs;
57 
58   /// As we resolve forward-referenced constants, we add information about them
59   /// to this vector.  This allows us to resolve them in bulk instead of
60   /// resolving each reference at a time.  See the code in
61   /// ResolveConstantForwardRefs for more information about this.
62   ///
63   /// The key of this vector is the placeholder constant, the value is the slot
64   /// number that holds the resolved value.
65   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
66   ResolveConstantsTy ResolveConstants;
67   LLVMContext &Context;
68 public:
BitcodeReaderValueList(LLVMContext & C)69   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()70   ~BitcodeReaderValueList() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72   }
73 
74   // vector compatibility methods
size() const75   unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)76   void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)77   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
78 
clear()79   void clear() {
80     assert(ResolveConstants.empty() && "Constants not resolved?");
81     ValuePtrs.clear();
82   }
83 
operator [](unsigned i) const84   Value *operator[](unsigned i) const {
85     assert(i < ValuePtrs.size());
86     return ValuePtrs[i];
87   }
88 
back() const89   Value *back() const { return ValuePtrs.back(); }
pop_back()90   void pop_back() { ValuePtrs.pop_back(); }
empty() const91   bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)92   void shrinkTo(unsigned N) {
93     assert(N <= size() && "Invalid shrinkTo request!");
94     ValuePtrs.resize(N);
95   }
96 
97   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
98   Value *getValueFwdRef(unsigned Idx, Type *Ty);
99 
100   void assignValue(Value *V, unsigned Idx);
101 
102   /// Once all constants are read, this method bulk resolves any forward
103   /// references.
104   void resolveConstantForwardRefs();
105 };
106 
107 class BitcodeReaderMetadataList {
108   unsigned NumFwdRefs;
109   bool AnyFwdRefs;
110   unsigned MinFwdRef;
111   unsigned MaxFwdRef;
112 
113   /// Array of metadata references.
114   ///
115   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
116   /// move) on resize, and TrackingMDRef is very expensive to copy.
117   SmallVector<TrackingMDRef, 1> MetadataPtrs;
118 
119   /// Structures for resolving old type refs.
120   struct {
121     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
122     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
123     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
124     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
125   } OldTypeRefs;
126 
127   LLVMContext &Context;
128 public:
BitcodeReaderMetadataList(LLVMContext & C)129   BitcodeReaderMetadataList(LLVMContext &C)
130       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
131 
132   // vector compatibility methods
size() const133   unsigned size() const { return MetadataPtrs.size(); }
resize(unsigned N)134   void resize(unsigned N) { MetadataPtrs.resize(N); }
push_back(Metadata * MD)135   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
clear()136   void clear() { MetadataPtrs.clear(); }
back() const137   Metadata *back() const { return MetadataPtrs.back(); }
pop_back()138   void pop_back() { MetadataPtrs.pop_back(); }
empty() const139   bool empty() const { return MetadataPtrs.empty(); }
140 
operator [](unsigned i) const141   Metadata *operator[](unsigned i) const {
142     assert(i < MetadataPtrs.size());
143     return MetadataPtrs[i];
144   }
145 
lookup(unsigned I) const146   Metadata *lookup(unsigned I) const {
147     if (I < MetadataPtrs.size())
148       return MetadataPtrs[I];
149     return nullptr;
150   }
151 
shrinkTo(unsigned N)152   void shrinkTo(unsigned N) {
153     assert(N <= size() && "Invalid shrinkTo request!");
154     assert(!AnyFwdRefs && "Unexpected forward refs");
155     MetadataPtrs.resize(N);
156   }
157 
158   /// Return the given metadata, creating a replaceable forward reference if
159   /// necessary.
160   Metadata *getMetadataFwdRef(unsigned Idx);
161 
162   /// Return the the given metadata only if it is fully resolved.
163   ///
164   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
165   /// would give \c false.
166   Metadata *getMetadataIfResolved(unsigned Idx);
167 
168   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
169   void assignValue(Metadata *MD, unsigned Idx);
170   void tryToResolveCycles();
hasFwdRefs() const171   bool hasFwdRefs() const { return AnyFwdRefs; }
172 
173   /// Upgrade a type that had an MDString reference.
174   void addTypeRef(MDString &UUID, DICompositeType &CT);
175 
176   /// Upgrade a type that had an MDString reference.
177   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
178 
179   /// Upgrade a type ref array that may have MDString references.
180   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
181 
182 private:
183   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
184 };
185 
186 class BitcodeReader : public GVMaterializer {
187   LLVMContext &Context;
188   Module *TheModule = nullptr;
189   std::unique_ptr<MemoryBuffer> Buffer;
190   std::unique_ptr<BitstreamReader> StreamFile;
191   BitstreamCursor Stream;
192   // Next offset to start scanning for lazy parsing of function bodies.
193   uint64_t NextUnreadBit = 0;
194   // Last function offset found in the VST.
195   uint64_t LastFunctionBlockBit = 0;
196   bool SeenValueSymbolTable = false;
197   uint64_t VSTOffset = 0;
198   // Contains an arbitrary and optional string identifying the bitcode producer
199   std::string ProducerIdentification;
200 
201   std::vector<Type*> TypeList;
202   BitcodeReaderValueList ValueList;
203   BitcodeReaderMetadataList MetadataList;
204   std::vector<Comdat *> ComdatList;
205   SmallVector<Instruction *, 64> InstructionList;
206 
207   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
208   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
209   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
210   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
211   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
212 
213   SmallVector<Instruction*, 64> InstsWithTBAATag;
214 
215   bool HasSeenOldLoopTags = false;
216 
217   /// The set of attributes by index.  Index zero in the file is for null, and
218   /// is thus not represented here.  As such all indices are off by one.
219   std::vector<AttributeSet> MAttributes;
220 
221   /// The set of attribute groups.
222   std::map<unsigned, AttributeSet> MAttributeGroups;
223 
224   /// While parsing a function body, this is a list of the basic blocks for the
225   /// function.
226   std::vector<BasicBlock*> FunctionBBs;
227 
228   // When reading the module header, this list is populated with functions that
229   // have bodies later in the file.
230   std::vector<Function*> FunctionsWithBodies;
231 
232   // When intrinsic functions are encountered which require upgrading they are
233   // stored here with their replacement function.
234   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
235   UpdatedIntrinsicMap UpgradedIntrinsics;
236   // Intrinsics which were remangled because of types rename
237   UpdatedIntrinsicMap RemangledIntrinsics;
238 
239   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
240   DenseMap<unsigned, unsigned> MDKindMap;
241 
242   // Several operations happen after the module header has been read, but
243   // before function bodies are processed. This keeps track of whether
244   // we've done this yet.
245   bool SeenFirstFunctionBody = false;
246 
247   /// When function bodies are initially scanned, this map contains info about
248   /// where to find deferred function body in the stream.
249   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
250 
251   /// When Metadata block is initially scanned when parsing the module, we may
252   /// choose to defer parsing of the metadata. This vector contains info about
253   /// which Metadata blocks are deferred.
254   std::vector<uint64_t> DeferredMetadataInfo;
255 
256   /// These are basic blocks forward-referenced by block addresses.  They are
257   /// inserted lazily into functions when they're loaded.  The basic block ID is
258   /// its index into the vector.
259   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
260   std::deque<Function *> BasicBlockFwdRefQueue;
261 
262   /// Indicates that we are using a new encoding for instruction operands where
263   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
264   /// instruction number, for a more compact encoding.  Some instruction
265   /// operands are not relative to the instruction ID: basic block numbers, and
266   /// types. Once the old style function blocks have been phased out, we would
267   /// not need this flag.
268   bool UseRelativeIDs = false;
269 
270   /// True if all functions will be materialized, negating the need to process
271   /// (e.g.) blockaddress forward references.
272   bool WillMaterializeAllForwardRefs = false;
273 
274   /// True if any Metadata block has been materialized.
275   bool IsMetadataMaterialized = false;
276 
277   bool StripDebugInfo = false;
278 
279   /// Functions that need to be matched with subprograms when upgrading old
280   /// metadata.
281   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
282 
283   std::vector<std::string> BundleTags;
284 
285 public:
286   std::error_code error(BitcodeError E, const Twine &Message);
287   std::error_code error(const Twine &Message);
288 
289   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
290   BitcodeReader(LLVMContext &Context);
~BitcodeReader()291   ~BitcodeReader() override { freeState(); }
292 
293   std::error_code materializeForwardReferencedFunctions();
294 
295   void freeState();
296 
297   void releaseBuffer();
298 
299   std::error_code materialize(GlobalValue *GV) override;
300   std::error_code materializeModule() override;
301   std::vector<StructType *> getIdentifiedStructTypes() const override;
302 
303   /// \brief Main interface to parsing a bitcode buffer.
304   /// \returns true if an error occurred.
305   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
306                                    Module *M,
307                                    bool ShouldLazyLoadMetadata = false);
308 
309   /// \brief Cheap mechanism to just extract module triple
310   /// \returns true if an error occurred.
311   ErrorOr<std::string> parseTriple();
312 
313   /// Cheap mechanism to just extract the identification block out of bitcode.
314   ErrorOr<std::string> parseIdentificationBlock();
315 
316   /// Peak at the module content and return true if any ObjC category or class
317   /// is found.
318   ErrorOr<bool> hasObjCCategory();
319 
320   static uint64_t decodeSignRotatedValue(uint64_t V);
321 
322   /// Materialize any deferred Metadata block.
323   std::error_code materializeMetadata() override;
324 
325   void setStripDebugInfo() override;
326 
327 private:
328   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
329   // ProducerIdentification data member, and do some basic enforcement on the
330   // "epoch" encoded in the bitcode.
331   std::error_code parseBitcodeVersion();
332 
333   std::vector<StructType *> IdentifiedStructTypes;
334   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
335   StructType *createIdentifiedStructType(LLVMContext &Context);
336 
337   Type *getTypeByID(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)338   Value *getFnValueByID(unsigned ID, Type *Ty) {
339     if (Ty && Ty->isMetadataTy())
340       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
341     return ValueList.getValueFwdRef(ID, Ty);
342   }
getFnMetadataByID(unsigned ID)343   Metadata *getFnMetadataByID(unsigned ID) {
344     return MetadataList.getMetadataFwdRef(ID);
345   }
getBasicBlock(unsigned ID) const346   BasicBlock *getBasicBlock(unsigned ID) const {
347     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
348     return FunctionBBs[ID];
349   }
getAttributes(unsigned i) const350   AttributeSet getAttributes(unsigned i) const {
351     if (i-1 < MAttributes.size())
352       return MAttributes[i-1];
353     return AttributeSet();
354   }
355 
356   /// Read a value/type pair out of the specified record from slot 'Slot'.
357   /// Increment Slot past the number of slots used in the record. Return true on
358   /// failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)359   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
360                         unsigned InstNum, Value *&ResVal) {
361     if (Slot == Record.size()) return true;
362     unsigned ValNo = (unsigned)Record[Slot++];
363     // Adjust the ValNo, if it was encoded relative to the InstNum.
364     if (UseRelativeIDs)
365       ValNo = InstNum - ValNo;
366     if (ValNo < InstNum) {
367       // If this is not a forward reference, just return the value we already
368       // have.
369       ResVal = getFnValueByID(ValNo, nullptr);
370       return ResVal == nullptr;
371     }
372     if (Slot == Record.size())
373       return true;
374 
375     unsigned TypeNo = (unsigned)Record[Slot++];
376     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
377     return ResVal == nullptr;
378   }
379 
380   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
381   /// past the number of slots used by the value in the record. Return true if
382   /// there is an error.
popValue(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Type * Ty,Value * & ResVal)383   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
384                 unsigned InstNum, Type *Ty, Value *&ResVal) {
385     if (getValue(Record, Slot, InstNum, Ty, ResVal))
386       return true;
387     // All values currently take a single record slot.
388     ++Slot;
389     return false;
390   }
391 
392   /// Like popValue, but does not increment the Slot number.
getValue(SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty,Value * & ResVal)393   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
394                 unsigned InstNum, Type *Ty, Value *&ResVal) {
395     ResVal = getValue(Record, Slot, InstNum, Ty);
396     return ResVal == nullptr;
397   }
398 
399   /// Version of getValue that returns ResVal directly, or 0 if there is an
400   /// error.
getValue(SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty)401   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
402                   unsigned InstNum, Type *Ty) {
403     if (Slot == Record.size()) return nullptr;
404     unsigned ValNo = (unsigned)Record[Slot];
405     // Adjust the ValNo, if it was encoded relative to the InstNum.
406     if (UseRelativeIDs)
407       ValNo = InstNum - ValNo;
408     return getFnValueByID(ValNo, Ty);
409   }
410 
411   /// Like getValue, but decodes signed VBRs.
getValueSigned(SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty)412   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
413                         unsigned InstNum, Type *Ty) {
414     if (Slot == Record.size()) return nullptr;
415     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
416     // Adjust the ValNo, if it was encoded relative to the InstNum.
417     if (UseRelativeIDs)
418       ValNo = InstNum - ValNo;
419     return getFnValueByID(ValNo, Ty);
420   }
421 
422   /// Converts alignment exponent (i.e. power of two (or zero)) to the
423   /// corresponding alignment to use. If alignment is too large, returns
424   /// a corresponding error code.
425   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
426   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
427   std::error_code parseModule(uint64_t ResumeBit,
428                               bool ShouldLazyLoadMetadata = false);
429   std::error_code parseAttributeBlock();
430   std::error_code parseAttributeGroupBlock();
431   std::error_code parseTypeTable();
432   std::error_code parseTypeTableBody();
433   std::error_code parseOperandBundleTags();
434 
435   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
436                                unsigned NameIndex, Triple &TT);
437   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
438   std::error_code parseConstants();
439   std::error_code rememberAndSkipFunctionBodies();
440   std::error_code rememberAndSkipFunctionBody();
441   /// Save the positions of the Metadata blocks and skip parsing the blocks.
442   std::error_code rememberAndSkipMetadata();
443   std::error_code parseFunctionBody(Function *F);
444   std::error_code globalCleanup();
445   std::error_code resolveGlobalAndIndirectSymbolInits();
446   std::error_code parseMetadata(bool ModuleLevel = false);
447   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
448                                        StringRef Blob,
449                                        unsigned &NextMetadataNo);
450   std::error_code parseMetadataKinds();
451   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
452   std::error_code
453   parseGlobalObjectAttachment(GlobalObject &GO,
454                               ArrayRef<uint64_t> Record);
455   std::error_code parseMetadataAttachment(Function &F);
456   ErrorOr<std::string> parseModuleTriple();
457   ErrorOr<bool> hasObjCCategoryInModule();
458   std::error_code parseUseLists();
459   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
460   std::error_code initStreamFromBuffer();
461   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
462   std::error_code findFunctionInStream(
463       Function *F,
464       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
465 };
466 
467 /// Class to manage reading and parsing function summary index bitcode
468 /// files/sections.
469 class ModuleSummaryIndexBitcodeReader {
470   DiagnosticHandlerFunction DiagnosticHandler;
471 
472   /// Eventually points to the module index built during parsing.
473   ModuleSummaryIndex *TheIndex = nullptr;
474 
475   std::unique_ptr<MemoryBuffer> Buffer;
476   std::unique_ptr<BitstreamReader> StreamFile;
477   BitstreamCursor Stream;
478 
479   /// Used to indicate whether caller only wants to check for the presence
480   /// of the global value summary bitcode section. All blocks are skipped,
481   /// but the SeenGlobalValSummary boolean is set.
482   bool CheckGlobalValSummaryPresenceOnly = false;
483 
484   /// Indicates whether we have encountered a global value summary section
485   /// yet during parsing, used when checking if file contains global value
486   /// summary section.
487   bool SeenGlobalValSummary = false;
488 
489   /// Indicates whether we have already parsed the VST, used for error checking.
490   bool SeenValueSymbolTable = false;
491 
492   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
493   /// Used to enable on-demand parsing of the VST.
494   uint64_t VSTOffset = 0;
495 
496   // Map to save ValueId to GUID association that was recorded in the
497   // ValueSymbolTable. It is used after the VST is parsed to convert
498   // call graph edges read from the function summary from referencing
499   // callees by their ValueId to using the GUID instead, which is how
500   // they are recorded in the summary index being built.
501   // We save a second GUID which is the same as the first one, but ignoring the
502   // linkage, i.e. for value other than local linkage they are identical.
503   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
504       ValueIdToCallGraphGUIDMap;
505 
506   /// Map populated during module path string table parsing, from the
507   /// module ID to a string reference owned by the index's module
508   /// path string table, used to correlate with combined index
509   /// summary records.
510   DenseMap<uint64_t, StringRef> ModuleIdMap;
511 
512   /// Original source file name recorded in a bitcode record.
513   std::string SourceFileName;
514 
515 public:
516   std::error_code error(const Twine &Message);
517 
518   ModuleSummaryIndexBitcodeReader(
519       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
520       bool CheckGlobalValSummaryPresenceOnly = false);
~ModuleSummaryIndexBitcodeReader()521   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
522 
523   void freeState();
524 
525   void releaseBuffer();
526 
527   /// Check if the parser has encountered a summary section.
foundGlobalValSummary()528   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
529 
530   /// \brief Main interface to parsing a bitcode buffer.
531   /// \returns true if an error occurred.
532   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
533                                         ModuleSummaryIndex *I);
534 
535 private:
536   std::error_code parseModule();
537   std::error_code parseValueSymbolTable(
538       uint64_t Offset,
539       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
540   std::error_code parseEntireSummary();
541   std::error_code parseModuleStringTable();
542   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
543   std::error_code initStreamFromBuffer();
544   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
545   std::pair<GlobalValue::GUID, GlobalValue::GUID>
546   getGUIDFromValueId(unsigned ValueId);
547 };
548 } // end anonymous namespace
549 
BitcodeDiagnosticInfo(std::error_code EC,DiagnosticSeverity Severity,const Twine & Msg)550 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
551                                              DiagnosticSeverity Severity,
552                                              const Twine &Msg)
553     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
554 
print(DiagnosticPrinter & DP) const555 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
556 
error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC,const Twine & Message)557 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
558                              std::error_code EC, const Twine &Message) {
559   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
560   DiagnosticHandler(DI);
561   return EC;
562 }
563 
error(LLVMContext & Context,std::error_code EC,const Twine & Message)564 static std::error_code error(LLVMContext &Context, std::error_code EC,
565                              const Twine &Message) {
566   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
567                Message);
568 }
569 
error(LLVMContext & Context,const Twine & Message)570 static std::error_code error(LLVMContext &Context, const Twine &Message) {
571   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
572                Message);
573 }
574 
error(BitcodeError E,const Twine & Message)575 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
576   if (!ProducerIdentification.empty()) {
577     return ::error(Context, make_error_code(E),
578                    Message + " (Producer: '" + ProducerIdentification +
579                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
580   }
581   return ::error(Context, make_error_code(E), Message);
582 }
583 
error(const Twine & Message)584 std::error_code BitcodeReader::error(const Twine &Message) {
585   if (!ProducerIdentification.empty()) {
586     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
587                    Message + " (Producer: '" + ProducerIdentification +
588                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
589   }
590   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
591                  Message);
592 }
593 
BitcodeReader(MemoryBuffer * Buffer,LLVMContext & Context)594 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
595     : Context(Context), Buffer(Buffer), ValueList(Context),
596       MetadataList(Context) {}
597 
BitcodeReader(LLVMContext & Context)598 BitcodeReader::BitcodeReader(LLVMContext &Context)
599     : Context(Context), Buffer(nullptr), ValueList(Context),
600       MetadataList(Context) {}
601 
materializeForwardReferencedFunctions()602 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
603   if (WillMaterializeAllForwardRefs)
604     return std::error_code();
605 
606   // Prevent recursion.
607   WillMaterializeAllForwardRefs = true;
608 
609   while (!BasicBlockFwdRefQueue.empty()) {
610     Function *F = BasicBlockFwdRefQueue.front();
611     BasicBlockFwdRefQueue.pop_front();
612     assert(F && "Expected valid function");
613     if (!BasicBlockFwdRefs.count(F))
614       // Already materialized.
615       continue;
616 
617     // Check for a function that isn't materializable to prevent an infinite
618     // loop.  When parsing a blockaddress stored in a global variable, there
619     // isn't a trivial way to check if a function will have a body without a
620     // linear search through FunctionsWithBodies, so just check it here.
621     if (!F->isMaterializable())
622       return error("Never resolved function from blockaddress");
623 
624     // Try to materialize F.
625     if (std::error_code EC = materialize(F))
626       return EC;
627   }
628   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
629 
630   // Reset state.
631   WillMaterializeAllForwardRefs = false;
632   return std::error_code();
633 }
634 
freeState()635 void BitcodeReader::freeState() {
636   Buffer = nullptr;
637   std::vector<Type*>().swap(TypeList);
638   ValueList.clear();
639   MetadataList.clear();
640   std::vector<Comdat *>().swap(ComdatList);
641 
642   std::vector<AttributeSet>().swap(MAttributes);
643   std::vector<BasicBlock*>().swap(FunctionBBs);
644   std::vector<Function*>().swap(FunctionsWithBodies);
645   DeferredFunctionInfo.clear();
646   DeferredMetadataInfo.clear();
647   MDKindMap.clear();
648 
649   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
650   BasicBlockFwdRefQueue.clear();
651 }
652 
653 //===----------------------------------------------------------------------===//
654 //  Helper functions to implement forward reference resolution, etc.
655 //===----------------------------------------------------------------------===//
656 
657 /// Convert a string from a record into an std::string, return true on failure.
658 template <typename StrTy>
convertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)659 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
660                             StrTy &Result) {
661   if (Idx > Record.size())
662     return true;
663 
664   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
665     Result += (char)Record[i];
666   return false;
667 }
668 
hasImplicitComdat(size_t Val)669 static bool hasImplicitComdat(size_t Val) {
670   switch (Val) {
671   default:
672     return false;
673   case 1:  // Old WeakAnyLinkage
674   case 4:  // Old LinkOnceAnyLinkage
675   case 10: // Old WeakODRLinkage
676   case 11: // Old LinkOnceODRLinkage
677     return true;
678   }
679 }
680 
getDecodedLinkage(unsigned Val)681 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
682   switch (Val) {
683   default: // Map unknown/new linkages to external
684   case 0:
685     return GlobalValue::ExternalLinkage;
686   case 2:
687     return GlobalValue::AppendingLinkage;
688   case 3:
689     return GlobalValue::InternalLinkage;
690   case 5:
691     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
692   case 6:
693     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
694   case 7:
695     return GlobalValue::ExternalWeakLinkage;
696   case 8:
697     return GlobalValue::CommonLinkage;
698   case 9:
699     return GlobalValue::PrivateLinkage;
700   case 12:
701     return GlobalValue::AvailableExternallyLinkage;
702   case 13:
703     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
704   case 14:
705     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
706   case 15:
707     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
708   case 1: // Old value with implicit comdat.
709   case 16:
710     return GlobalValue::WeakAnyLinkage;
711   case 10: // Old value with implicit comdat.
712   case 17:
713     return GlobalValue::WeakODRLinkage;
714   case 4: // Old value with implicit comdat.
715   case 18:
716     return GlobalValue::LinkOnceAnyLinkage;
717   case 11: // Old value with implicit comdat.
718   case 19:
719     return GlobalValue::LinkOnceODRLinkage;
720   }
721 }
722 
723 // Decode the flags for GlobalValue in the summary
getDecodedGVSummaryFlags(uint64_t RawFlags,uint64_t Version)724 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
725                                                             uint64_t Version) {
726   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
727   // like getDecodedLinkage() above. Any future change to the linkage enum and
728   // to getDecodedLinkage() will need to be taken into account here as above.
729   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
730   RawFlags = RawFlags >> 4;
731   auto HasSection = RawFlags & 0x1; // bool
732   return GlobalValueSummary::GVFlags(Linkage, HasSection);
733 }
734 
getDecodedVisibility(unsigned Val)735 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
736   switch (Val) {
737   default: // Map unknown visibilities to default.
738   case 0: return GlobalValue::DefaultVisibility;
739   case 1: return GlobalValue::HiddenVisibility;
740   case 2: return GlobalValue::ProtectedVisibility;
741   }
742 }
743 
744 static GlobalValue::DLLStorageClassTypes
getDecodedDLLStorageClass(unsigned Val)745 getDecodedDLLStorageClass(unsigned Val) {
746   switch (Val) {
747   default: // Map unknown values to default.
748   case 0: return GlobalValue::DefaultStorageClass;
749   case 1: return GlobalValue::DLLImportStorageClass;
750   case 2: return GlobalValue::DLLExportStorageClass;
751   }
752 }
753 
getDecodedThreadLocalMode(unsigned Val)754 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
755   switch (Val) {
756     case 0: return GlobalVariable::NotThreadLocal;
757     default: // Map unknown non-zero value to general dynamic.
758     case 1: return GlobalVariable::GeneralDynamicTLSModel;
759     case 2: return GlobalVariable::LocalDynamicTLSModel;
760     case 3: return GlobalVariable::InitialExecTLSModel;
761     case 4: return GlobalVariable::LocalExecTLSModel;
762   }
763 }
764 
getDecodedUnnamedAddrType(unsigned Val)765 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
766   switch (Val) {
767     default: // Map unknown to UnnamedAddr::None.
768     case 0: return GlobalVariable::UnnamedAddr::None;
769     case 1: return GlobalVariable::UnnamedAddr::Global;
770     case 2: return GlobalVariable::UnnamedAddr::Local;
771   }
772 }
773 
getDecodedCastOpcode(unsigned Val)774 static int getDecodedCastOpcode(unsigned Val) {
775   switch (Val) {
776   default: return -1;
777   case bitc::CAST_TRUNC   : return Instruction::Trunc;
778   case bitc::CAST_ZEXT    : return Instruction::ZExt;
779   case bitc::CAST_SEXT    : return Instruction::SExt;
780   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
781   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
782   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
783   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
784   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
785   case bitc::CAST_FPEXT   : return Instruction::FPExt;
786   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
787   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
788   case bitc::CAST_BITCAST : return Instruction::BitCast;
789   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
790   }
791 }
792 
getDecodedBinaryOpcode(unsigned Val,Type * Ty)793 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
794   bool IsFP = Ty->isFPOrFPVectorTy();
795   // BinOps are only valid for int/fp or vector of int/fp types
796   if (!IsFP && !Ty->isIntOrIntVectorTy())
797     return -1;
798 
799   switch (Val) {
800   default:
801     return -1;
802   case bitc::BINOP_ADD:
803     return IsFP ? Instruction::FAdd : Instruction::Add;
804   case bitc::BINOP_SUB:
805     return IsFP ? Instruction::FSub : Instruction::Sub;
806   case bitc::BINOP_MUL:
807     return IsFP ? Instruction::FMul : Instruction::Mul;
808   case bitc::BINOP_UDIV:
809     return IsFP ? -1 : Instruction::UDiv;
810   case bitc::BINOP_SDIV:
811     return IsFP ? Instruction::FDiv : Instruction::SDiv;
812   case bitc::BINOP_UREM:
813     return IsFP ? -1 : Instruction::URem;
814   case bitc::BINOP_SREM:
815     return IsFP ? Instruction::FRem : Instruction::SRem;
816   case bitc::BINOP_SHL:
817     return IsFP ? -1 : Instruction::Shl;
818   case bitc::BINOP_LSHR:
819     return IsFP ? -1 : Instruction::LShr;
820   case bitc::BINOP_ASHR:
821     return IsFP ? -1 : Instruction::AShr;
822   case bitc::BINOP_AND:
823     return IsFP ? -1 : Instruction::And;
824   case bitc::BINOP_OR:
825     return IsFP ? -1 : Instruction::Or;
826   case bitc::BINOP_XOR:
827     return IsFP ? -1 : Instruction::Xor;
828   }
829 }
830 
getDecodedRMWOperation(unsigned Val)831 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
832   switch (Val) {
833   default: return AtomicRMWInst::BAD_BINOP;
834   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
835   case bitc::RMW_ADD: return AtomicRMWInst::Add;
836   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
837   case bitc::RMW_AND: return AtomicRMWInst::And;
838   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
839   case bitc::RMW_OR: return AtomicRMWInst::Or;
840   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
841   case bitc::RMW_MAX: return AtomicRMWInst::Max;
842   case bitc::RMW_MIN: return AtomicRMWInst::Min;
843   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
844   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
845   }
846 }
847 
getDecodedOrdering(unsigned Val)848 static AtomicOrdering getDecodedOrdering(unsigned Val) {
849   switch (Val) {
850   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
851   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
852   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
853   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
854   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
855   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
856   default: // Map unknown orderings to sequentially-consistent.
857   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
858   }
859 }
860 
getDecodedSynchScope(unsigned Val)861 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
862   switch (Val) {
863   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
864   default: // Map unknown scopes to cross-thread.
865   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
866   }
867 }
868 
getDecodedComdatSelectionKind(unsigned Val)869 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
870   switch (Val) {
871   default: // Map unknown selection kinds to any.
872   case bitc::COMDAT_SELECTION_KIND_ANY:
873     return Comdat::Any;
874   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
875     return Comdat::ExactMatch;
876   case bitc::COMDAT_SELECTION_KIND_LARGEST:
877     return Comdat::Largest;
878   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
879     return Comdat::NoDuplicates;
880   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
881     return Comdat::SameSize;
882   }
883 }
884 
getDecodedFastMathFlags(unsigned Val)885 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
886   FastMathFlags FMF;
887   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
888     FMF.setUnsafeAlgebra();
889   if (0 != (Val & FastMathFlags::NoNaNs))
890     FMF.setNoNaNs();
891   if (0 != (Val & FastMathFlags::NoInfs))
892     FMF.setNoInfs();
893   if (0 != (Val & FastMathFlags::NoSignedZeros))
894     FMF.setNoSignedZeros();
895   if (0 != (Val & FastMathFlags::AllowReciprocal))
896     FMF.setAllowReciprocal();
897   return FMF;
898 }
899 
upgradeDLLImportExportLinkage(llvm::GlobalValue * GV,unsigned Val)900 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
901   switch (Val) {
902   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
903   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
904   }
905 }
906 
907 namespace llvm {
908 namespace {
909 /// \brief A class for maintaining the slot number definition
910 /// as a placeholder for the actual definition for forward constants defs.
911 class ConstantPlaceHolder : public ConstantExpr {
912   void operator=(const ConstantPlaceHolder &) = delete;
913 
914 public:
915   // allocate space for exactly one operand
operator new(size_t s)916   void *operator new(size_t s) { return User::operator new(s, 1); }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)917   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
918       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
919     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
920   }
921 
922   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)923   static bool classof(const Value *V) {
924     return isa<ConstantExpr>(V) &&
925            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
926   }
927 
928   /// Provide fast operand accessors
929   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
930 };
931 } // end anonymous namespace
932 
933 // FIXME: can we inherit this from ConstantExpr?
934 template <>
935 struct OperandTraits<ConstantPlaceHolder> :
936   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
937 };
938 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
939 } // end namespace llvm
940 
assignValue(Value * V,unsigned Idx)941 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
942   if (Idx == size()) {
943     push_back(V);
944     return;
945   }
946 
947   if (Idx >= size())
948     resize(Idx+1);
949 
950   WeakVH &OldV = ValuePtrs[Idx];
951   if (!OldV) {
952     OldV = V;
953     return;
954   }
955 
956   // Handle constants and non-constants (e.g. instrs) differently for
957   // efficiency.
958   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
959     ResolveConstants.push_back(std::make_pair(PHC, Idx));
960     OldV = V;
961   } else {
962     // If there was a forward reference to this value, replace it.
963     Value *PrevVal = OldV;
964     OldV->replaceAllUsesWith(V);
965     delete PrevVal;
966   }
967 }
968 
getConstantFwdRef(unsigned Idx,Type * Ty)969 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
970                                                     Type *Ty) {
971   if (Idx >= size())
972     resize(Idx + 1);
973 
974   if (Value *V = ValuePtrs[Idx]) {
975     if (Ty != V->getType())
976       report_fatal_error("Type mismatch in constant table!");
977     return cast<Constant>(V);
978   }
979 
980   // Create and return a placeholder, which will later be RAUW'd.
981   Constant *C = new ConstantPlaceHolder(Ty, Context);
982   ValuePtrs[Idx] = C;
983   return C;
984 }
985 
getValueFwdRef(unsigned Idx,Type * Ty)986 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
987   // Bail out for a clearly invalid value. This would make us call resize(0)
988   if (Idx == UINT_MAX)
989     return nullptr;
990 
991   if (Idx >= size())
992     resize(Idx + 1);
993 
994   if (Value *V = ValuePtrs[Idx]) {
995     // If the types don't match, it's invalid.
996     if (Ty && Ty != V->getType())
997       return nullptr;
998     return V;
999   }
1000 
1001   // No type specified, must be invalid reference.
1002   if (!Ty) return nullptr;
1003 
1004   // Create and return a placeholder, which will later be RAUW'd.
1005   Value *V = new Argument(Ty);
1006   ValuePtrs[Idx] = V;
1007   return V;
1008 }
1009 
1010 /// Once all constants are read, this method bulk resolves any forward
1011 /// references.  The idea behind this is that we sometimes get constants (such
1012 /// as large arrays) which reference *many* forward ref constants.  Replacing
1013 /// each of these causes a lot of thrashing when building/reuniquing the
1014 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1015 /// the place holders at once for any constant that uses a placeholder.
resolveConstantForwardRefs()1016 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1017   // Sort the values by-pointer so that they are efficient to look up with a
1018   // binary search.
1019   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1020 
1021   SmallVector<Constant*, 64> NewOps;
1022 
1023   while (!ResolveConstants.empty()) {
1024     Value *RealVal = operator[](ResolveConstants.back().second);
1025     Constant *Placeholder = ResolveConstants.back().first;
1026     ResolveConstants.pop_back();
1027 
1028     // Loop over all users of the placeholder, updating them to reference the
1029     // new value.  If they reference more than one placeholder, update them all
1030     // at once.
1031     while (!Placeholder->use_empty()) {
1032       auto UI = Placeholder->user_begin();
1033       User *U = *UI;
1034 
1035       // If the using object isn't uniqued, just update the operands.  This
1036       // handles instructions and initializers for global variables.
1037       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1038         UI.getUse().set(RealVal);
1039         continue;
1040       }
1041 
1042       // Otherwise, we have a constant that uses the placeholder.  Replace that
1043       // constant with a new constant that has *all* placeholder uses updated.
1044       Constant *UserC = cast<Constant>(U);
1045       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1046            I != E; ++I) {
1047         Value *NewOp;
1048         if (!isa<ConstantPlaceHolder>(*I)) {
1049           // Not a placeholder reference.
1050           NewOp = *I;
1051         } else if (*I == Placeholder) {
1052           // Common case is that it just references this one placeholder.
1053           NewOp = RealVal;
1054         } else {
1055           // Otherwise, look up the placeholder in ResolveConstants.
1056           ResolveConstantsTy::iterator It =
1057             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1058                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1059                                                             0));
1060           assert(It != ResolveConstants.end() && It->first == *I);
1061           NewOp = operator[](It->second);
1062         }
1063 
1064         NewOps.push_back(cast<Constant>(NewOp));
1065       }
1066 
1067       // Make the new constant.
1068       Constant *NewC;
1069       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1070         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1071       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1072         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1073       } else if (isa<ConstantVector>(UserC)) {
1074         NewC = ConstantVector::get(NewOps);
1075       } else {
1076         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1077         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1078       }
1079 
1080       UserC->replaceAllUsesWith(NewC);
1081       UserC->destroyConstant();
1082       NewOps.clear();
1083     }
1084 
1085     // Update all ValueHandles, they should be the only users at this point.
1086     Placeholder->replaceAllUsesWith(RealVal);
1087     delete Placeholder;
1088   }
1089 }
1090 
assignValue(Metadata * MD,unsigned Idx)1091 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1092   if (Idx == size()) {
1093     push_back(MD);
1094     return;
1095   }
1096 
1097   if (Idx >= size())
1098     resize(Idx+1);
1099 
1100   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1101   if (!OldMD) {
1102     OldMD.reset(MD);
1103     return;
1104   }
1105 
1106   // If there was a forward reference to this value, replace it.
1107   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1108   PrevMD->replaceAllUsesWith(MD);
1109   --NumFwdRefs;
1110 }
1111 
getMetadataFwdRef(unsigned Idx)1112 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1113   if (Idx >= size())
1114     resize(Idx + 1);
1115 
1116   if (Metadata *MD = MetadataPtrs[Idx])
1117     return MD;
1118 
1119   // Track forward refs to be resolved later.
1120   if (AnyFwdRefs) {
1121     MinFwdRef = std::min(MinFwdRef, Idx);
1122     MaxFwdRef = std::max(MaxFwdRef, Idx);
1123   } else {
1124     AnyFwdRefs = true;
1125     MinFwdRef = MaxFwdRef = Idx;
1126   }
1127   ++NumFwdRefs;
1128 
1129   // Create and return a placeholder, which will later be RAUW'd.
1130   Metadata *MD = MDNode::getTemporary(Context, None).release();
1131   MetadataPtrs[Idx].reset(MD);
1132   return MD;
1133 }
1134 
getMetadataIfResolved(unsigned Idx)1135 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1136   Metadata *MD = lookup(Idx);
1137   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1138     if (!N->isResolved())
1139       return nullptr;
1140   return MD;
1141 }
1142 
getMDNodeFwdRefOrNull(unsigned Idx)1143 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1144   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1145 }
1146 
tryToResolveCycles()1147 void BitcodeReaderMetadataList::tryToResolveCycles() {
1148   if (NumFwdRefs)
1149     // Still forward references... can't resolve cycles.
1150     return;
1151 
1152   bool DidReplaceTypeRefs = false;
1153 
1154   // Give up on finding a full definition for any forward decls that remain.
1155   for (const auto &Ref : OldTypeRefs.FwdDecls)
1156     OldTypeRefs.Final.insert(Ref);
1157   OldTypeRefs.FwdDecls.clear();
1158 
1159   // Upgrade from old type ref arrays.  In strange cases, this could add to
1160   // OldTypeRefs.Unknown.
1161   for (const auto &Array : OldTypeRefs.Arrays) {
1162     DidReplaceTypeRefs = true;
1163     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1164   }
1165   OldTypeRefs.Arrays.clear();
1166 
1167   // Replace old string-based type refs with the resolved node, if possible.
1168   // If we haven't seen the node, leave it to the verifier to complain about
1169   // the invalid string reference.
1170   for (const auto &Ref : OldTypeRefs.Unknown) {
1171     DidReplaceTypeRefs = true;
1172     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1173       Ref.second->replaceAllUsesWith(CT);
1174     else
1175       Ref.second->replaceAllUsesWith(Ref.first);
1176   }
1177   OldTypeRefs.Unknown.clear();
1178 
1179   // Make sure all the upgraded types are resolved.
1180   if (DidReplaceTypeRefs) {
1181     AnyFwdRefs = true;
1182     MinFwdRef = 0;
1183     MaxFwdRef = MetadataPtrs.size() - 1;
1184   }
1185 
1186   if (!AnyFwdRefs)
1187     // Nothing to do.
1188     return;
1189 
1190   // Resolve any cycles.
1191   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1192     auto &MD = MetadataPtrs[I];
1193     auto *N = dyn_cast_or_null<MDNode>(MD);
1194     if (!N)
1195       continue;
1196 
1197     assert(!N->isTemporary() && "Unexpected forward reference");
1198     N->resolveCycles();
1199   }
1200 
1201   // Make sure we return early again until there's another forward ref.
1202   AnyFwdRefs = false;
1203 }
1204 
addTypeRef(MDString & UUID,DICompositeType & CT)1205 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1206                                            DICompositeType &CT) {
1207   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1208   if (CT.isForwardDecl())
1209     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1210   else
1211     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1212 }
1213 
upgradeTypeRef(Metadata * MaybeUUID)1214 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1215   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1216   if (LLVM_LIKELY(!UUID))
1217     return MaybeUUID;
1218 
1219   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1220     return CT;
1221 
1222   auto &Ref = OldTypeRefs.Unknown[UUID];
1223   if (!Ref)
1224     Ref = MDNode::getTemporary(Context, None);
1225   return Ref.get();
1226 }
1227 
upgradeTypeRefArray(Metadata * MaybeTuple)1228 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1229   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1230   if (!Tuple || Tuple->isDistinct())
1231     return MaybeTuple;
1232 
1233   // Look through the array immediately if possible.
1234   if (!Tuple->isTemporary())
1235     return resolveTypeRefArray(Tuple);
1236 
1237   // Create and return a placeholder to use for now.  Eventually
1238   // resolveTypeRefArrays() will be resolve this forward reference.
1239   OldTypeRefs.Arrays.emplace_back(
1240       std::piecewise_construct, std::forward_as_tuple(Tuple),
1241       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1242   return OldTypeRefs.Arrays.back().second.get();
1243 }
1244 
resolveTypeRefArray(Metadata * MaybeTuple)1245 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1246   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1247   if (!Tuple || Tuple->isDistinct())
1248     return MaybeTuple;
1249 
1250   // Look through the DITypeRefArray, upgrading each DITypeRef.
1251   SmallVector<Metadata *, 32> Ops;
1252   Ops.reserve(Tuple->getNumOperands());
1253   for (Metadata *MD : Tuple->operands())
1254     Ops.push_back(upgradeTypeRef(MD));
1255 
1256   return MDTuple::get(Context, Ops);
1257 }
1258 
getTypeByID(unsigned ID)1259 Type *BitcodeReader::getTypeByID(unsigned ID) {
1260   // The type table size is always specified correctly.
1261   if (ID >= TypeList.size())
1262     return nullptr;
1263 
1264   if (Type *Ty = TypeList[ID])
1265     return Ty;
1266 
1267   // If we have a forward reference, the only possible case is when it is to a
1268   // named struct.  Just create a placeholder for now.
1269   return TypeList[ID] = createIdentifiedStructType(Context);
1270 }
1271 
createIdentifiedStructType(LLVMContext & Context,StringRef Name)1272 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1273                                                       StringRef Name) {
1274   auto *Ret = StructType::create(Context, Name);
1275   IdentifiedStructTypes.push_back(Ret);
1276   return Ret;
1277 }
1278 
createIdentifiedStructType(LLVMContext & Context)1279 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1280   auto *Ret = StructType::create(Context);
1281   IdentifiedStructTypes.push_back(Ret);
1282   return Ret;
1283 }
1284 
1285 //===----------------------------------------------------------------------===//
1286 //  Functions for parsing blocks from the bitcode file
1287 //===----------------------------------------------------------------------===//
1288 
1289 
1290 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1291 /// been decoded from the given integer. This function must stay in sync with
1292 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)1293 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1294                                            uint64_t EncodedAttrs) {
1295   // FIXME: Remove in 4.0.
1296 
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                 (EncodedAttrs & 0xffff));
1307 }
1308 
parseAttributeBlock()1309 std::error_code BitcodeReader::parseAttributeBlock() {
1310   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return error("Invalid record");
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeSet, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (1) {
1322     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1323 
1324     switch (Entry.Kind) {
1325     case BitstreamEntry::SubBlock: // Handled for us already.
1326     case BitstreamEntry::Error:
1327       return error("Malformed block");
1328     case BitstreamEntry::EndBlock:
1329       return std::error_code();
1330     case BitstreamEntry::Record:
1331       // The interesting case.
1332       break;
1333     }
1334 
1335     // Read a record.
1336     Record.clear();
1337     switch (Stream.readRecord(Entry.ID, Record)) {
1338     default:  // Default behavior: ignore.
1339       break;
1340     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1341       // FIXME: Remove in 4.0.
1342       if (Record.size() & 1)
1343         return error("Invalid record");
1344 
1345       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1346         AttrBuilder B;
1347         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1348         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1349       }
1350 
1351       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1352       Attrs.clear();
1353       break;
1354     }
1355     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1356       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1357         Attrs.push_back(MAttributeGroups[Record[i]]);
1358 
1359       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1360       Attrs.clear();
1361       break;
1362     }
1363     }
1364   }
1365 }
1366 
1367 // Returns Attribute::None on unrecognized codes.
getAttrFromCode(uint64_t Code)1368 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1369   switch (Code) {
1370   default:
1371     return Attribute::None;
1372   case bitc::ATTR_KIND_ALIGNMENT:
1373     return Attribute::Alignment;
1374   case bitc::ATTR_KIND_ALWAYS_INLINE:
1375     return Attribute::AlwaysInline;
1376   case bitc::ATTR_KIND_ARGMEMONLY:
1377     return Attribute::ArgMemOnly;
1378   case bitc::ATTR_KIND_BUILTIN:
1379     return Attribute::Builtin;
1380   case bitc::ATTR_KIND_BY_VAL:
1381     return Attribute::ByVal;
1382   case bitc::ATTR_KIND_IN_ALLOCA:
1383     return Attribute::InAlloca;
1384   case bitc::ATTR_KIND_COLD:
1385     return Attribute::Cold;
1386   case bitc::ATTR_KIND_CONVERGENT:
1387     return Attribute::Convergent;
1388   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1389     return Attribute::InaccessibleMemOnly;
1390   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1391     return Attribute::InaccessibleMemOrArgMemOnly;
1392   case bitc::ATTR_KIND_INLINE_HINT:
1393     return Attribute::InlineHint;
1394   case bitc::ATTR_KIND_IN_REG:
1395     return Attribute::InReg;
1396   case bitc::ATTR_KIND_JUMP_TABLE:
1397     return Attribute::JumpTable;
1398   case bitc::ATTR_KIND_MIN_SIZE:
1399     return Attribute::MinSize;
1400   case bitc::ATTR_KIND_NAKED:
1401     return Attribute::Naked;
1402   case bitc::ATTR_KIND_NEST:
1403     return Attribute::Nest;
1404   case bitc::ATTR_KIND_NO_ALIAS:
1405     return Attribute::NoAlias;
1406   case bitc::ATTR_KIND_NO_BUILTIN:
1407     return Attribute::NoBuiltin;
1408   case bitc::ATTR_KIND_NO_CAPTURE:
1409     return Attribute::NoCapture;
1410   case bitc::ATTR_KIND_NO_DUPLICATE:
1411     return Attribute::NoDuplicate;
1412   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1413     return Attribute::NoImplicitFloat;
1414   case bitc::ATTR_KIND_NO_INLINE:
1415     return Attribute::NoInline;
1416   case bitc::ATTR_KIND_NO_RECURSE:
1417     return Attribute::NoRecurse;
1418   case bitc::ATTR_KIND_NON_LAZY_BIND:
1419     return Attribute::NonLazyBind;
1420   case bitc::ATTR_KIND_NON_NULL:
1421     return Attribute::NonNull;
1422   case bitc::ATTR_KIND_DEREFERENCEABLE:
1423     return Attribute::Dereferenceable;
1424   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1425     return Attribute::DereferenceableOrNull;
1426   case bitc::ATTR_KIND_ALLOC_SIZE:
1427     return Attribute::AllocSize;
1428   case bitc::ATTR_KIND_NO_RED_ZONE:
1429     return Attribute::NoRedZone;
1430   case bitc::ATTR_KIND_NO_RETURN:
1431     return Attribute::NoReturn;
1432   case bitc::ATTR_KIND_NO_UNWIND:
1433     return Attribute::NoUnwind;
1434   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1435     return Attribute::OptimizeForSize;
1436   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1437     return Attribute::OptimizeNone;
1438   case bitc::ATTR_KIND_READ_NONE:
1439     return Attribute::ReadNone;
1440   case bitc::ATTR_KIND_READ_ONLY:
1441     return Attribute::ReadOnly;
1442   case bitc::ATTR_KIND_RETURNED:
1443     return Attribute::Returned;
1444   case bitc::ATTR_KIND_RETURNS_TWICE:
1445     return Attribute::ReturnsTwice;
1446   case bitc::ATTR_KIND_S_EXT:
1447     return Attribute::SExt;
1448   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1449     return Attribute::StackAlignment;
1450   case bitc::ATTR_KIND_STACK_PROTECT:
1451     return Attribute::StackProtect;
1452   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1453     return Attribute::StackProtectReq;
1454   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1455     return Attribute::StackProtectStrong;
1456   case bitc::ATTR_KIND_SAFESTACK:
1457     return Attribute::SafeStack;
1458   case bitc::ATTR_KIND_STRUCT_RET:
1459     return Attribute::StructRet;
1460   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1461     return Attribute::SanitizeAddress;
1462   case bitc::ATTR_KIND_SANITIZE_THREAD:
1463     return Attribute::SanitizeThread;
1464   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1465     return Attribute::SanitizeMemory;
1466   case bitc::ATTR_KIND_SWIFT_ERROR:
1467     return Attribute::SwiftError;
1468   case bitc::ATTR_KIND_SWIFT_SELF:
1469     return Attribute::SwiftSelf;
1470   case bitc::ATTR_KIND_UW_TABLE:
1471     return Attribute::UWTable;
1472   case bitc::ATTR_KIND_WRITEONLY:
1473     return Attribute::WriteOnly;
1474   case bitc::ATTR_KIND_Z_EXT:
1475     return Attribute::ZExt;
1476   }
1477 }
1478 
parseAlignmentValue(uint64_t Exponent,unsigned & Alignment)1479 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1480                                                    unsigned &Alignment) {
1481   // Note: Alignment in bitcode files is incremented by 1, so that zero
1482   // can be used for default alignment.
1483   if (Exponent > Value::MaxAlignmentExponent + 1)
1484     return error("Invalid alignment value");
1485   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1486   return std::error_code();
1487 }
1488 
parseAttrKind(uint64_t Code,Attribute::AttrKind * Kind)1489 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1490                                              Attribute::AttrKind *Kind) {
1491   *Kind = getAttrFromCode(Code);
1492   if (*Kind == Attribute::None)
1493     return error(BitcodeError::CorruptedBitcode,
1494                  "Unknown attribute kind (" + Twine(Code) + ")");
1495   return std::error_code();
1496 }
1497 
parseAttributeGroupBlock()1498 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1499   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1500     return error("Invalid record");
1501 
1502   if (!MAttributeGroups.empty())
1503     return error("Invalid multiple blocks");
1504 
1505   SmallVector<uint64_t, 64> Record;
1506 
1507   // Read all the records.
1508   while (1) {
1509     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1510 
1511     switch (Entry.Kind) {
1512     case BitstreamEntry::SubBlock: // Handled for us already.
1513     case BitstreamEntry::Error:
1514       return error("Malformed block");
1515     case BitstreamEntry::EndBlock:
1516       return std::error_code();
1517     case BitstreamEntry::Record:
1518       // The interesting case.
1519       break;
1520     }
1521 
1522     // Read a record.
1523     Record.clear();
1524     switch (Stream.readRecord(Entry.ID, Record)) {
1525     default:  // Default behavior: ignore.
1526       break;
1527     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1528       if (Record.size() < 3)
1529         return error("Invalid record");
1530 
1531       uint64_t GrpID = Record[0];
1532       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1533 
1534       AttrBuilder B;
1535       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1536         if (Record[i] == 0) {        // Enum attribute
1537           Attribute::AttrKind Kind;
1538           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1539             return EC;
1540 
1541           B.addAttribute(Kind);
1542         } else if (Record[i] == 1) { // Integer attribute
1543           Attribute::AttrKind Kind;
1544           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1545             return EC;
1546           if (Kind == Attribute::Alignment)
1547             B.addAlignmentAttr(Record[++i]);
1548           else if (Kind == Attribute::StackAlignment)
1549             B.addStackAlignmentAttr(Record[++i]);
1550           else if (Kind == Attribute::Dereferenceable)
1551             B.addDereferenceableAttr(Record[++i]);
1552           else if (Kind == Attribute::DereferenceableOrNull)
1553             B.addDereferenceableOrNullAttr(Record[++i]);
1554           else if (Kind == Attribute::AllocSize)
1555             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1556         } else {                     // String attribute
1557           assert((Record[i] == 3 || Record[i] == 4) &&
1558                  "Invalid attribute group entry");
1559           bool HasValue = (Record[i++] == 4);
1560           SmallString<64> KindStr;
1561           SmallString<64> ValStr;
1562 
1563           while (Record[i] != 0 && i != e)
1564             KindStr += Record[i++];
1565           assert(Record[i] == 0 && "Kind string not null terminated");
1566 
1567           if (HasValue) {
1568             // Has a value associated with it.
1569             ++i; // Skip the '0' that terminates the "kind" string.
1570             while (Record[i] != 0 && i != e)
1571               ValStr += Record[i++];
1572             assert(Record[i] == 0 && "Value string not null terminated");
1573           }
1574 
1575           B.addAttribute(KindStr.str(), ValStr.str());
1576         }
1577       }
1578 
1579       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1580       break;
1581     }
1582     }
1583   }
1584 }
1585 
parseTypeTable()1586 std::error_code BitcodeReader::parseTypeTable() {
1587   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1588     return error("Invalid record");
1589 
1590   return parseTypeTableBody();
1591 }
1592 
parseTypeTableBody()1593 std::error_code BitcodeReader::parseTypeTableBody() {
1594   if (!TypeList.empty())
1595     return error("Invalid multiple blocks");
1596 
1597   SmallVector<uint64_t, 64> Record;
1598   unsigned NumRecords = 0;
1599 
1600   SmallString<64> TypeName;
1601 
1602   // Read all the records for this type table.
1603   while (1) {
1604     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1605 
1606     switch (Entry.Kind) {
1607     case BitstreamEntry::SubBlock: // Handled for us already.
1608     case BitstreamEntry::Error:
1609       return error("Malformed block");
1610     case BitstreamEntry::EndBlock:
1611       if (NumRecords != TypeList.size())
1612         return error("Malformed block");
1613       return std::error_code();
1614     case BitstreamEntry::Record:
1615       // The interesting case.
1616       break;
1617     }
1618 
1619     // Read a record.
1620     Record.clear();
1621     Type *ResultTy = nullptr;
1622     switch (Stream.readRecord(Entry.ID, Record)) {
1623     default:
1624       return error("Invalid value");
1625     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1626       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1627       // type list.  This allows us to reserve space.
1628       if (Record.size() < 1)
1629         return error("Invalid record");
1630       TypeList.resize(Record[0]);
1631       continue;
1632     case bitc::TYPE_CODE_VOID:      // VOID
1633       ResultTy = Type::getVoidTy(Context);
1634       break;
1635     case bitc::TYPE_CODE_HALF:     // HALF
1636       ResultTy = Type::getHalfTy(Context);
1637       break;
1638     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1639       ResultTy = Type::getFloatTy(Context);
1640       break;
1641     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1642       ResultTy = Type::getDoubleTy(Context);
1643       break;
1644     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1645       ResultTy = Type::getX86_FP80Ty(Context);
1646       break;
1647     case bitc::TYPE_CODE_FP128:     // FP128
1648       ResultTy = Type::getFP128Ty(Context);
1649       break;
1650     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1651       ResultTy = Type::getPPC_FP128Ty(Context);
1652       break;
1653     case bitc::TYPE_CODE_LABEL:     // LABEL
1654       ResultTy = Type::getLabelTy(Context);
1655       break;
1656     case bitc::TYPE_CODE_METADATA:  // METADATA
1657       ResultTy = Type::getMetadataTy(Context);
1658       break;
1659     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1660       ResultTy = Type::getX86_MMXTy(Context);
1661       break;
1662     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1663       ResultTy = Type::getTokenTy(Context);
1664       break;
1665     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1666       if (Record.size() < 1)
1667         return error("Invalid record");
1668 
1669       uint64_t NumBits = Record[0];
1670       if (NumBits < IntegerType::MIN_INT_BITS ||
1671           NumBits > IntegerType::MAX_INT_BITS)
1672         return error("Bitwidth for integer type out of range");
1673       ResultTy = IntegerType::get(Context, NumBits);
1674       break;
1675     }
1676     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1677                                     //          [pointee type, address space]
1678       if (Record.size() < 1)
1679         return error("Invalid record");
1680       unsigned AddressSpace = 0;
1681       if (Record.size() == 2)
1682         AddressSpace = Record[1];
1683       ResultTy = getTypeByID(Record[0]);
1684       if (!ResultTy ||
1685           !PointerType::isValidElementType(ResultTy))
1686         return error("Invalid type");
1687       ResultTy = PointerType::get(ResultTy, AddressSpace);
1688       break;
1689     }
1690     case bitc::TYPE_CODE_FUNCTION_OLD: {
1691       // FIXME: attrid is dead, remove it in LLVM 4.0
1692       // FUNCTION: [vararg, attrid, retty, paramty x N]
1693       if (Record.size() < 3)
1694         return error("Invalid record");
1695       SmallVector<Type*, 8> ArgTys;
1696       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1697         if (Type *T = getTypeByID(Record[i]))
1698           ArgTys.push_back(T);
1699         else
1700           break;
1701       }
1702 
1703       ResultTy = getTypeByID(Record[2]);
1704       if (!ResultTy || ArgTys.size() < Record.size()-3)
1705         return error("Invalid type");
1706 
1707       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1708       break;
1709     }
1710     case bitc::TYPE_CODE_FUNCTION: {
1711       // FUNCTION: [vararg, retty, paramty x N]
1712       if (Record.size() < 2)
1713         return error("Invalid record");
1714       SmallVector<Type*, 8> ArgTys;
1715       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1716         if (Type *T = getTypeByID(Record[i])) {
1717           if (!FunctionType::isValidArgumentType(T))
1718             return error("Invalid function argument type");
1719           ArgTys.push_back(T);
1720         }
1721         else
1722           break;
1723       }
1724 
1725       ResultTy = getTypeByID(Record[1]);
1726       if (!ResultTy || ArgTys.size() < Record.size()-2)
1727         return error("Invalid type");
1728 
1729       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1730       break;
1731     }
1732     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1733       if (Record.size() < 1)
1734         return error("Invalid record");
1735       SmallVector<Type*, 8> EltTys;
1736       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1737         if (Type *T = getTypeByID(Record[i]))
1738           EltTys.push_back(T);
1739         else
1740           break;
1741       }
1742       if (EltTys.size() != Record.size()-1)
1743         return error("Invalid type");
1744       ResultTy = StructType::get(Context, EltTys, Record[0]);
1745       break;
1746     }
1747     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1748       if (convertToString(Record, 0, TypeName))
1749         return error("Invalid record");
1750       continue;
1751 
1752     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1753       if (Record.size() < 1)
1754         return error("Invalid record");
1755 
1756       if (NumRecords >= TypeList.size())
1757         return error("Invalid TYPE table");
1758 
1759       // Check to see if this was forward referenced, if so fill in the temp.
1760       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1761       if (Res) {
1762         Res->setName(TypeName);
1763         TypeList[NumRecords] = nullptr;
1764       } else  // Otherwise, create a new struct.
1765         Res = createIdentifiedStructType(Context, TypeName);
1766       TypeName.clear();
1767 
1768       SmallVector<Type*, 8> EltTys;
1769       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1770         if (Type *T = getTypeByID(Record[i]))
1771           EltTys.push_back(T);
1772         else
1773           break;
1774       }
1775       if (EltTys.size() != Record.size()-1)
1776         return error("Invalid record");
1777       Res->setBody(EltTys, Record[0]);
1778       ResultTy = Res;
1779       break;
1780     }
1781     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1782       if (Record.size() != 1)
1783         return error("Invalid record");
1784 
1785       if (NumRecords >= TypeList.size())
1786         return error("Invalid TYPE table");
1787 
1788       // Check to see if this was forward referenced, if so fill in the temp.
1789       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1790       if (Res) {
1791         Res->setName(TypeName);
1792         TypeList[NumRecords] = nullptr;
1793       } else  // Otherwise, create a new struct with no body.
1794         Res = createIdentifiedStructType(Context, TypeName);
1795       TypeName.clear();
1796       ResultTy = Res;
1797       break;
1798     }
1799     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1800       if (Record.size() < 2)
1801         return error("Invalid record");
1802       ResultTy = getTypeByID(Record[1]);
1803       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1804         return error("Invalid type");
1805       ResultTy = ArrayType::get(ResultTy, Record[0]);
1806       break;
1807     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1808       if (Record.size() < 2)
1809         return error("Invalid record");
1810       if (Record[0] == 0)
1811         return error("Invalid vector length");
1812       ResultTy = getTypeByID(Record[1]);
1813       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1814         return error("Invalid type");
1815       ResultTy = VectorType::get(ResultTy, Record[0]);
1816       break;
1817     }
1818 
1819     if (NumRecords >= TypeList.size())
1820       return error("Invalid TYPE table");
1821     if (TypeList[NumRecords])
1822       return error(
1823           "Invalid TYPE table: Only named structs can be forward referenced");
1824     assert(ResultTy && "Didn't read a type?");
1825     TypeList[NumRecords++] = ResultTy;
1826   }
1827 }
1828 
parseOperandBundleTags()1829 std::error_code BitcodeReader::parseOperandBundleTags() {
1830   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1831     return error("Invalid record");
1832 
1833   if (!BundleTags.empty())
1834     return error("Invalid multiple blocks");
1835 
1836   SmallVector<uint64_t, 64> Record;
1837 
1838   while (1) {
1839     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1840 
1841     switch (Entry.Kind) {
1842     case BitstreamEntry::SubBlock: // Handled for us already.
1843     case BitstreamEntry::Error:
1844       return error("Malformed block");
1845     case BitstreamEntry::EndBlock:
1846       return std::error_code();
1847     case BitstreamEntry::Record:
1848       // The interesting case.
1849       break;
1850     }
1851 
1852     // Tags are implicitly mapped to integers by their order.
1853 
1854     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1855       return error("Invalid record");
1856 
1857     // OPERAND_BUNDLE_TAG: [strchr x N]
1858     BundleTags.emplace_back();
1859     if (convertToString(Record, 0, BundleTags.back()))
1860       return error("Invalid record");
1861     Record.clear();
1862   }
1863 }
1864 
1865 /// Associate a value with its name from the given index in the provided record.
recordValue(SmallVectorImpl<uint64_t> & Record,unsigned NameIndex,Triple & TT)1866 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1867                                             unsigned NameIndex, Triple &TT) {
1868   SmallString<128> ValueName;
1869   if (convertToString(Record, NameIndex, ValueName))
1870     return error("Invalid record");
1871   unsigned ValueID = Record[0];
1872   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1873     return error("Invalid record");
1874   Value *V = ValueList[ValueID];
1875 
1876   StringRef NameStr(ValueName.data(), ValueName.size());
1877   if (NameStr.find_first_of(0) != StringRef::npos)
1878     return error("Invalid value name");
1879   V->setName(NameStr);
1880   auto *GO = dyn_cast<GlobalObject>(V);
1881   if (GO) {
1882     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1883       if (TT.isOSBinFormatMachO())
1884         GO->setComdat(nullptr);
1885       else
1886         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1887     }
1888   }
1889   return V;
1890 }
1891 
1892 /// Helper to note and return the current location, and jump to the given
1893 /// offset.
jumpToValueSymbolTable(uint64_t Offset,BitstreamCursor & Stream)1894 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1895                                        BitstreamCursor &Stream) {
1896   // Save the current parsing location so we can jump back at the end
1897   // of the VST read.
1898   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1899   Stream.JumpToBit(Offset * 32);
1900 #ifndef NDEBUG
1901   // Do some checking if we are in debug mode.
1902   BitstreamEntry Entry = Stream.advance();
1903   assert(Entry.Kind == BitstreamEntry::SubBlock);
1904   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1905 #else
1906   // In NDEBUG mode ignore the output so we don't get an unused variable
1907   // warning.
1908   Stream.advance();
1909 #endif
1910   return CurrentBit;
1911 }
1912 
1913 /// Parse the value symbol table at either the current parsing location or
1914 /// at the given bit offset if provided.
parseValueSymbolTable(uint64_t Offset)1915 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1916   uint64_t CurrentBit;
1917   // Pass in the Offset to distinguish between calling for the module-level
1918   // VST (where we want to jump to the VST offset) and the function-level
1919   // VST (where we don't).
1920   if (Offset > 0)
1921     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1922 
1923   // Compute the delta between the bitcode indices in the VST (the word offset
1924   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1925   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1926   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1927   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1928   // just before entering the VST subblock because: 1) the EnterSubBlock
1929   // changes the AbbrevID width; 2) the VST block is nested within the same
1930   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1931   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1932   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1933   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1934   unsigned FuncBitcodeOffsetDelta =
1935       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1936 
1937   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1938     return error("Invalid record");
1939 
1940   SmallVector<uint64_t, 64> Record;
1941 
1942   Triple TT(TheModule->getTargetTriple());
1943 
1944   // Read all the records for this value table.
1945   SmallString<128> ValueName;
1946   while (1) {
1947     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1948 
1949     switch (Entry.Kind) {
1950     case BitstreamEntry::SubBlock: // Handled for us already.
1951     case BitstreamEntry::Error:
1952       return error("Malformed block");
1953     case BitstreamEntry::EndBlock:
1954       if (Offset > 0)
1955         Stream.JumpToBit(CurrentBit);
1956       return std::error_code();
1957     case BitstreamEntry::Record:
1958       // The interesting case.
1959       break;
1960     }
1961 
1962     // Read a record.
1963     Record.clear();
1964     switch (Stream.readRecord(Entry.ID, Record)) {
1965     default:  // Default behavior: unknown type.
1966       break;
1967     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1968       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1969       if (std::error_code EC = ValOrErr.getError())
1970         return EC;
1971       ValOrErr.get();
1972       break;
1973     }
1974     case bitc::VST_CODE_FNENTRY: {
1975       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1976       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1977       if (std::error_code EC = ValOrErr.getError())
1978         return EC;
1979       Value *V = ValOrErr.get();
1980 
1981       auto *GO = dyn_cast<GlobalObject>(V);
1982       if (!GO) {
1983         // If this is an alias, need to get the actual Function object
1984         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1985         auto *GA = dyn_cast<GlobalAlias>(V);
1986         if (GA)
1987           GO = GA->getBaseObject();
1988         assert(GO);
1989       }
1990 
1991       uint64_t FuncWordOffset = Record[1];
1992       Function *F = dyn_cast<Function>(GO);
1993       assert(F);
1994       uint64_t FuncBitOffset = FuncWordOffset * 32;
1995       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1996       // Set the LastFunctionBlockBit to point to the last function block.
1997       // Later when parsing is resumed after function materialization,
1998       // we can simply skip that last function block.
1999       if (FuncBitOffset > LastFunctionBlockBit)
2000         LastFunctionBlockBit = FuncBitOffset;
2001       break;
2002     }
2003     case bitc::VST_CODE_BBENTRY: {
2004       if (convertToString(Record, 1, ValueName))
2005         return error("Invalid record");
2006       BasicBlock *BB = getBasicBlock(Record[0]);
2007       if (!BB)
2008         return error("Invalid record");
2009 
2010       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2011       ValueName.clear();
2012       break;
2013     }
2014     }
2015   }
2016 }
2017 
2018 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2019 std::error_code
parseMetadataKindRecord(SmallVectorImpl<uint64_t> & Record)2020 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2021   if (Record.size() < 2)
2022     return error("Invalid record");
2023 
2024   unsigned Kind = Record[0];
2025   SmallString<8> Name(Record.begin() + 1, Record.end());
2026 
2027   unsigned NewKind = TheModule->getMDKindID(Name.str());
2028   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2029     return error("Conflicting METADATA_KIND records");
2030   return std::error_code();
2031 }
2032 
unrotateSign(uint64_t U)2033 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2034 
parseMetadataStrings(ArrayRef<uint64_t> Record,StringRef Blob,unsigned & NextMetadataNo)2035 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2036                                                     StringRef Blob,
2037                                                     unsigned &NextMetadataNo) {
2038   // All the MDStrings in the block are emitted together in a single
2039   // record.  The strings are concatenated and stored in a blob along with
2040   // their sizes.
2041   if (Record.size() != 2)
2042     return error("Invalid record: metadata strings layout");
2043 
2044   unsigned NumStrings = Record[0];
2045   unsigned StringsOffset = Record[1];
2046   if (!NumStrings)
2047     return error("Invalid record: metadata strings with no strings");
2048   if (StringsOffset > Blob.size())
2049     return error("Invalid record: metadata strings corrupt offset");
2050 
2051   StringRef Lengths = Blob.slice(0, StringsOffset);
2052   SimpleBitstreamCursor R(*StreamFile);
2053   R.jumpToPointer(Lengths.begin());
2054 
2055   // Ensure that Blob doesn't get invalidated, even if this is reading from
2056   // a StreamingMemoryObject with corrupt data.
2057   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2058 
2059   StringRef Strings = Blob.drop_front(StringsOffset);
2060   do {
2061     if (R.AtEndOfStream())
2062       return error("Invalid record: metadata strings bad length");
2063 
2064     unsigned Size = R.ReadVBR(6);
2065     if (Strings.size() < Size)
2066       return error("Invalid record: metadata strings truncated chars");
2067 
2068     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2069                              NextMetadataNo++);
2070     Strings = Strings.drop_front(Size);
2071   } while (--NumStrings);
2072 
2073   return std::error_code();
2074 }
2075 
2076 namespace {
2077 class PlaceholderQueue {
2078   // Placeholders would thrash around when moved, so store in a std::deque
2079   // instead of some sort of vector.
2080   std::deque<DistinctMDOperandPlaceholder> PHs;
2081 
2082 public:
2083   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2084   void flush(BitcodeReaderMetadataList &MetadataList);
2085 };
2086 } // end namespace
2087 
getPlaceholderOp(unsigned ID)2088 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2089   PHs.emplace_back(ID);
2090   return PHs.back();
2091 }
2092 
flush(BitcodeReaderMetadataList & MetadataList)2093 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2094   while (!PHs.empty()) {
2095     PHs.front().replaceUseWith(
2096         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2097     PHs.pop_front();
2098   }
2099 }
2100 
2101 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2102 /// module level metadata.
parseMetadata(bool ModuleLevel)2103 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2104   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2105          "Must read all module-level metadata before function-level");
2106 
2107   IsMetadataMaterialized = true;
2108   unsigned NextMetadataNo = MetadataList.size();
2109 
2110   if (!ModuleLevel && MetadataList.hasFwdRefs())
2111     return error("Invalid metadata: fwd refs into function blocks");
2112 
2113   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2114     return error("Invalid record");
2115 
2116   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2117   SmallVector<uint64_t, 64> Record;
2118 
2119   PlaceholderQueue Placeholders;
2120   bool IsDistinct;
2121   auto getMD = [&](unsigned ID) -> Metadata * {
2122     if (!IsDistinct)
2123       return MetadataList.getMetadataFwdRef(ID);
2124     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2125       return MD;
2126     return &Placeholders.getPlaceholderOp(ID);
2127   };
2128   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2129     if (ID)
2130       return getMD(ID - 1);
2131     return nullptr;
2132   };
2133   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2134     if (ID)
2135       return MetadataList.getMetadataFwdRef(ID - 1);
2136     return nullptr;
2137   };
2138   auto getMDString = [&](unsigned ID) -> MDString *{
2139     // This requires that the ID is not really a forward reference.  In
2140     // particular, the MDString must already have been resolved.
2141     return cast_or_null<MDString>(getMDOrNull(ID));
2142   };
2143 
2144   // Support for old type refs.
2145   auto getDITypeRefOrNull = [&](unsigned ID) {
2146     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2147   };
2148 
2149 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2150   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2151 
2152   // Read all the records.
2153   while (1) {
2154     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2155 
2156     switch (Entry.Kind) {
2157     case BitstreamEntry::SubBlock: // Handled for us already.
2158     case BitstreamEntry::Error:
2159       return error("Malformed block");
2160     case BitstreamEntry::EndBlock:
2161       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2162       for (auto CU_SP : CUSubprograms)
2163         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2164           for (auto &Op : SPs->operands())
2165             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2166               SP->replaceOperandWith(7, CU_SP.first);
2167 
2168       MetadataList.tryToResolveCycles();
2169       Placeholders.flush(MetadataList);
2170       return std::error_code();
2171     case BitstreamEntry::Record:
2172       // The interesting case.
2173       break;
2174     }
2175 
2176     // Read a record.
2177     Record.clear();
2178     StringRef Blob;
2179     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2180     IsDistinct = false;
2181     switch (Code) {
2182     default:  // Default behavior: ignore.
2183       break;
2184     case bitc::METADATA_NAME: {
2185       // Read name of the named metadata.
2186       SmallString<8> Name(Record.begin(), Record.end());
2187       Record.clear();
2188       Code = Stream.ReadCode();
2189 
2190       unsigned NextBitCode = Stream.readRecord(Code, Record);
2191       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2192         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2193 
2194       // Read named metadata elements.
2195       unsigned Size = Record.size();
2196       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2197       for (unsigned i = 0; i != Size; ++i) {
2198         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2199         if (!MD)
2200           return error("Invalid record");
2201         NMD->addOperand(MD);
2202       }
2203       break;
2204     }
2205     case bitc::METADATA_OLD_FN_NODE: {
2206       // FIXME: Remove in 4.0.
2207       // This is a LocalAsMetadata record, the only type of function-local
2208       // metadata.
2209       if (Record.size() % 2 == 1)
2210         return error("Invalid record");
2211 
2212       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2213       // to be legal, but there's no upgrade path.
2214       auto dropRecord = [&] {
2215         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2216       };
2217       if (Record.size() != 2) {
2218         dropRecord();
2219         break;
2220       }
2221 
2222       Type *Ty = getTypeByID(Record[0]);
2223       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2224         dropRecord();
2225         break;
2226       }
2227 
2228       MetadataList.assignValue(
2229           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2230           NextMetadataNo++);
2231       break;
2232     }
2233     case bitc::METADATA_OLD_NODE: {
2234       // FIXME: Remove in 4.0.
2235       if (Record.size() % 2 == 1)
2236         return error("Invalid record");
2237 
2238       unsigned Size = Record.size();
2239       SmallVector<Metadata *, 8> Elts;
2240       for (unsigned i = 0; i != Size; i += 2) {
2241         Type *Ty = getTypeByID(Record[i]);
2242         if (!Ty)
2243           return error("Invalid record");
2244         if (Ty->isMetadataTy())
2245           Elts.push_back(getMD(Record[i + 1]));
2246         else if (!Ty->isVoidTy()) {
2247           auto *MD =
2248               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2249           assert(isa<ConstantAsMetadata>(MD) &&
2250                  "Expected non-function-local metadata");
2251           Elts.push_back(MD);
2252         } else
2253           Elts.push_back(nullptr);
2254       }
2255       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2256       break;
2257     }
2258     case bitc::METADATA_VALUE: {
2259       if (Record.size() != 2)
2260         return error("Invalid record");
2261 
2262       Type *Ty = getTypeByID(Record[0]);
2263       if (Ty->isMetadataTy() || Ty->isVoidTy())
2264         return error("Invalid record");
2265 
2266       MetadataList.assignValue(
2267           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2268           NextMetadataNo++);
2269       break;
2270     }
2271     case bitc::METADATA_DISTINCT_NODE:
2272       IsDistinct = true;
2273       // fallthrough...
2274     case bitc::METADATA_NODE: {
2275       SmallVector<Metadata *, 8> Elts;
2276       Elts.reserve(Record.size());
2277       for (unsigned ID : Record)
2278         Elts.push_back(getMDOrNull(ID));
2279       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2280                                           : MDNode::get(Context, Elts),
2281                                NextMetadataNo++);
2282       break;
2283     }
2284     case bitc::METADATA_LOCATION: {
2285       if (Record.size() != 5)
2286         return error("Invalid record");
2287 
2288       IsDistinct = Record[0];
2289       unsigned Line = Record[1];
2290       unsigned Column = Record[2];
2291       Metadata *Scope = getMD(Record[3]);
2292       Metadata *InlinedAt = getMDOrNull(Record[4]);
2293       MetadataList.assignValue(
2294           GET_OR_DISTINCT(DILocation,
2295                           (Context, Line, Column, Scope, InlinedAt)),
2296           NextMetadataNo++);
2297       break;
2298     }
2299     case bitc::METADATA_GENERIC_DEBUG: {
2300       if (Record.size() < 4)
2301         return error("Invalid record");
2302 
2303       IsDistinct = Record[0];
2304       unsigned Tag = Record[1];
2305       unsigned Version = Record[2];
2306 
2307       if (Tag >= 1u << 16 || Version != 0)
2308         return error("Invalid record");
2309 
2310       auto *Header = getMDString(Record[3]);
2311       SmallVector<Metadata *, 8> DwarfOps;
2312       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2313         DwarfOps.push_back(getMDOrNull(Record[I]));
2314       MetadataList.assignValue(
2315           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2316           NextMetadataNo++);
2317       break;
2318     }
2319     case bitc::METADATA_SUBRANGE: {
2320       if (Record.size() != 3)
2321         return error("Invalid record");
2322 
2323       IsDistinct = Record[0];
2324       MetadataList.assignValue(
2325           GET_OR_DISTINCT(DISubrange,
2326                           (Context, Record[1], unrotateSign(Record[2]))),
2327           NextMetadataNo++);
2328       break;
2329     }
2330     case bitc::METADATA_ENUMERATOR: {
2331       if (Record.size() != 3)
2332         return error("Invalid record");
2333 
2334       IsDistinct = Record[0];
2335       MetadataList.assignValue(
2336           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2337                                          getMDString(Record[2]))),
2338           NextMetadataNo++);
2339       break;
2340     }
2341     case bitc::METADATA_BASIC_TYPE: {
2342       if (Record.size() != 6)
2343         return error("Invalid record");
2344 
2345       IsDistinct = Record[0];
2346       MetadataList.assignValue(
2347           GET_OR_DISTINCT(DIBasicType,
2348                           (Context, Record[1], getMDString(Record[2]),
2349                            Record[3], Record[4], Record[5])),
2350           NextMetadataNo++);
2351       break;
2352     }
2353     case bitc::METADATA_DERIVED_TYPE: {
2354       if (Record.size() != 12)
2355         return error("Invalid record");
2356 
2357       IsDistinct = Record[0];
2358       MetadataList.assignValue(
2359           GET_OR_DISTINCT(
2360               DIDerivedType,
2361               (Context, Record[1], getMDString(Record[2]),
2362                getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]),
2363                getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9],
2364                Record[10], getDITypeRefOrNull(Record[11]))),
2365           NextMetadataNo++);
2366       break;
2367     }
2368     case bitc::METADATA_COMPOSITE_TYPE: {
2369       if (Record.size() != 16)
2370         return error("Invalid record");
2371 
2372       // If we have a UUID and this is not a forward declaration, lookup the
2373       // mapping.
2374       IsDistinct = Record[0] & 0x1;
2375       bool IsNotUsedInTypeRef = Record[0] >= 2;
2376       unsigned Tag = Record[1];
2377       MDString *Name = getMDString(Record[2]);
2378       Metadata *File = getMDOrNull(Record[3]);
2379       unsigned Line = Record[4];
2380       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2381       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2382       uint64_t SizeInBits = Record[7];
2383       uint64_t AlignInBits = Record[8];
2384       uint64_t OffsetInBits = Record[9];
2385       unsigned Flags = Record[10];
2386       Metadata *Elements = getMDOrNull(Record[11]);
2387       unsigned RuntimeLang = Record[12];
2388       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2389       Metadata *TemplateParams = getMDOrNull(Record[14]);
2390       auto *Identifier = getMDString(Record[15]);
2391       DICompositeType *CT = nullptr;
2392       if (Identifier)
2393         CT = DICompositeType::buildODRType(
2394             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2395             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2396             VTableHolder, TemplateParams);
2397 
2398       // Create a node if we didn't get a lazy ODR type.
2399       if (!CT)
2400         CT = GET_OR_DISTINCT(DICompositeType,
2401                              (Context, Tag, Name, File, Line, Scope, BaseType,
2402                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2403                               Elements, RuntimeLang, VTableHolder,
2404                               TemplateParams, Identifier));
2405       if (!IsNotUsedInTypeRef && Identifier)
2406         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2407 
2408       MetadataList.assignValue(CT, NextMetadataNo++);
2409       break;
2410     }
2411     case bitc::METADATA_SUBROUTINE_TYPE: {
2412       if (Record.size() < 3 || Record.size() > 4)
2413         return error("Invalid record");
2414       bool IsOldTypeRefArray = Record[0] < 2;
2415       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2416 
2417       IsDistinct = Record[0] & 0x1;
2418       Metadata *Types = getMDOrNull(Record[2]);
2419       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2420         Types = MetadataList.upgradeTypeRefArray(Types);
2421 
2422       MetadataList.assignValue(
2423           GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)),
2424           NextMetadataNo++);
2425       break;
2426     }
2427 
2428     case bitc::METADATA_MODULE: {
2429       if (Record.size() != 6)
2430         return error("Invalid record");
2431 
2432       IsDistinct = Record[0];
2433       MetadataList.assignValue(
2434           GET_OR_DISTINCT(DIModule,
2435                           (Context, getMDOrNull(Record[1]),
2436                            getMDString(Record[2]), getMDString(Record[3]),
2437                            getMDString(Record[4]), getMDString(Record[5]))),
2438           NextMetadataNo++);
2439       break;
2440     }
2441 
2442     case bitc::METADATA_FILE: {
2443       if (Record.size() != 3)
2444         return error("Invalid record");
2445 
2446       IsDistinct = Record[0];
2447       MetadataList.assignValue(
2448           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2449                                    getMDString(Record[2]))),
2450           NextMetadataNo++);
2451       break;
2452     }
2453     case bitc::METADATA_COMPILE_UNIT: {
2454       if (Record.size() < 14 || Record.size() > 16)
2455         return error("Invalid record");
2456 
2457       // Ignore Record[0], which indicates whether this compile unit is
2458       // distinct.  It's always distinct.
2459       IsDistinct = true;
2460       auto *CU = DICompileUnit::getDistinct(
2461           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2462           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2463           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2464           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2465           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2466           Record.size() <= 14 ? 0 : Record[14]);
2467 
2468       MetadataList.assignValue(CU, NextMetadataNo++);
2469 
2470       // Move the Upgrade the list of subprograms.
2471       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2472         CUSubprograms.push_back({CU, SPs});
2473       break;
2474     }
2475     case bitc::METADATA_SUBPROGRAM: {
2476       if (Record.size() < 18 || Record.size() > 20)
2477         return error("Invalid record");
2478 
2479       IsDistinct =
2480           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2481       // Version 1 has a Function as Record[15].
2482       // Version 2 has removed Record[15].
2483       // Version 3 has the Unit as Record[15].
2484       // Version 4 added thisAdjustment.
2485       bool HasUnit = Record[0] >= 2;
2486       if (HasUnit && Record.size() < 19)
2487         return error("Invalid record");
2488       Metadata *CUorFn = getMDOrNull(Record[15]);
2489       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2490       bool HasFn = Offset && !HasUnit;
2491       bool HasThisAdj = Record.size() >= 20;
2492       DISubprogram *SP = GET_OR_DISTINCT(
2493           DISubprogram, (Context,
2494                          getDITypeRefOrNull(Record[1]),    // scope
2495                          getMDString(Record[2]),           // name
2496                          getMDString(Record[3]),           // linkageName
2497                          getMDOrNull(Record[4]),           // file
2498                          Record[5],                        // line
2499                          getMDOrNull(Record[6]),           // type
2500                          Record[7],                        // isLocal
2501                          Record[8],                        // isDefinition
2502                          Record[9],                        // scopeLine
2503                          getDITypeRefOrNull(Record[10]),   // containingType
2504                          Record[11],                       // virtuality
2505                          Record[12],                       // virtualIndex
2506                          HasThisAdj ? Record[19] : 0,      // thisAdjustment
2507                          Record[13],                       // flags
2508                          Record[14],                       // isOptimized
2509                          HasUnit ? CUorFn : nullptr,       // unit
2510                          getMDOrNull(Record[15 + Offset]), // templateParams
2511                          getMDOrNull(Record[16 + Offset]), // declaration
2512                          getMDOrNull(Record[17 + Offset])  // variables
2513                          ));
2514       MetadataList.assignValue(SP, NextMetadataNo++);
2515 
2516       // Upgrade sp->function mapping to function->sp mapping.
2517       if (HasFn) {
2518         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2519           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2520             if (F->isMaterializable())
2521               // Defer until materialized; unmaterialized functions may not have
2522               // metadata.
2523               FunctionsWithSPs[F] = SP;
2524             else if (!F->empty())
2525               F->setSubprogram(SP);
2526           }
2527       }
2528       break;
2529     }
2530     case bitc::METADATA_LEXICAL_BLOCK: {
2531       if (Record.size() != 5)
2532         return error("Invalid record");
2533 
2534       IsDistinct = Record[0];
2535       MetadataList.assignValue(
2536           GET_OR_DISTINCT(DILexicalBlock,
2537                           (Context, getMDOrNull(Record[1]),
2538                            getMDOrNull(Record[2]), Record[3], Record[4])),
2539           NextMetadataNo++);
2540       break;
2541     }
2542     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2543       if (Record.size() != 4)
2544         return error("Invalid record");
2545 
2546       IsDistinct = Record[0];
2547       MetadataList.assignValue(
2548           GET_OR_DISTINCT(DILexicalBlockFile,
2549                           (Context, getMDOrNull(Record[1]),
2550                            getMDOrNull(Record[2]), Record[3])),
2551           NextMetadataNo++);
2552       break;
2553     }
2554     case bitc::METADATA_NAMESPACE: {
2555       if (Record.size() != 5)
2556         return error("Invalid record");
2557 
2558       IsDistinct = Record[0];
2559       MetadataList.assignValue(
2560           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2561                                         getMDOrNull(Record[2]),
2562                                         getMDString(Record[3]), Record[4])),
2563           NextMetadataNo++);
2564       break;
2565     }
2566     case bitc::METADATA_MACRO: {
2567       if (Record.size() != 5)
2568         return error("Invalid record");
2569 
2570       IsDistinct = Record[0];
2571       MetadataList.assignValue(
2572           GET_OR_DISTINCT(DIMacro,
2573                           (Context, Record[1], Record[2],
2574                            getMDString(Record[3]), getMDString(Record[4]))),
2575           NextMetadataNo++);
2576       break;
2577     }
2578     case bitc::METADATA_MACRO_FILE: {
2579       if (Record.size() != 5)
2580         return error("Invalid record");
2581 
2582       IsDistinct = Record[0];
2583       MetadataList.assignValue(
2584           GET_OR_DISTINCT(DIMacroFile,
2585                           (Context, Record[1], Record[2],
2586                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2587           NextMetadataNo++);
2588       break;
2589     }
2590     case bitc::METADATA_TEMPLATE_TYPE: {
2591       if (Record.size() != 3)
2592         return error("Invalid record");
2593 
2594       IsDistinct = Record[0];
2595       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2596                                                (Context, getMDString(Record[1]),
2597                                                 getDITypeRefOrNull(Record[2]))),
2598                                NextMetadataNo++);
2599       break;
2600     }
2601     case bitc::METADATA_TEMPLATE_VALUE: {
2602       if (Record.size() != 5)
2603         return error("Invalid record");
2604 
2605       IsDistinct = Record[0];
2606       MetadataList.assignValue(
2607           GET_OR_DISTINCT(DITemplateValueParameter,
2608                           (Context, Record[1], getMDString(Record[2]),
2609                            getDITypeRefOrNull(Record[3]),
2610                            getMDOrNull(Record[4]))),
2611           NextMetadataNo++);
2612       break;
2613     }
2614     case bitc::METADATA_GLOBAL_VAR: {
2615       if (Record.size() != 11)
2616         return error("Invalid record");
2617 
2618       IsDistinct = Record[0];
2619       MetadataList.assignValue(
2620           GET_OR_DISTINCT(DIGlobalVariable,
2621                           (Context, getMDOrNull(Record[1]),
2622                            getMDString(Record[2]), getMDString(Record[3]),
2623                            getMDOrNull(Record[4]), Record[5],
2624                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2625                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2626           NextMetadataNo++);
2627       break;
2628     }
2629     case bitc::METADATA_LOCAL_VAR: {
2630       // 10th field is for the obseleted 'inlinedAt:' field.
2631       if (Record.size() < 8 || Record.size() > 10)
2632         return error("Invalid record");
2633 
2634       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2635       // DW_TAG_arg_variable.
2636       IsDistinct = Record[0];
2637       bool HasTag = Record.size() > 8;
2638       MetadataList.assignValue(
2639           GET_OR_DISTINCT(DILocalVariable,
2640                           (Context, getMDOrNull(Record[1 + HasTag]),
2641                            getMDString(Record[2 + HasTag]),
2642                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2643                            getDITypeRefOrNull(Record[5 + HasTag]),
2644                            Record[6 + HasTag], Record[7 + HasTag])),
2645           NextMetadataNo++);
2646       break;
2647     }
2648     case bitc::METADATA_EXPRESSION: {
2649       if (Record.size() < 1)
2650         return error("Invalid record");
2651 
2652       IsDistinct = Record[0];
2653       MetadataList.assignValue(
2654           GET_OR_DISTINCT(DIExpression,
2655                           (Context, makeArrayRef(Record).slice(1))),
2656           NextMetadataNo++);
2657       break;
2658     }
2659     case bitc::METADATA_OBJC_PROPERTY: {
2660       if (Record.size() != 8)
2661         return error("Invalid record");
2662 
2663       IsDistinct = Record[0];
2664       MetadataList.assignValue(
2665           GET_OR_DISTINCT(DIObjCProperty,
2666                           (Context, getMDString(Record[1]),
2667                            getMDOrNull(Record[2]), Record[3],
2668                            getMDString(Record[4]), getMDString(Record[5]),
2669                            Record[6], getDITypeRefOrNull(Record[7]))),
2670           NextMetadataNo++);
2671       break;
2672     }
2673     case bitc::METADATA_IMPORTED_ENTITY: {
2674       if (Record.size() != 6)
2675         return error("Invalid record");
2676 
2677       IsDistinct = Record[0];
2678       MetadataList.assignValue(
2679           GET_OR_DISTINCT(DIImportedEntity,
2680                           (Context, Record[1], getMDOrNull(Record[2]),
2681                            getDITypeRefOrNull(Record[3]), Record[4],
2682                            getMDString(Record[5]))),
2683           NextMetadataNo++);
2684       break;
2685     }
2686     case bitc::METADATA_STRING_OLD: {
2687       std::string String(Record.begin(), Record.end());
2688 
2689       // Test for upgrading !llvm.loop.
2690       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2691 
2692       Metadata *MD = MDString::get(Context, String);
2693       MetadataList.assignValue(MD, NextMetadataNo++);
2694       break;
2695     }
2696     case bitc::METADATA_STRINGS:
2697       if (std::error_code EC =
2698               parseMetadataStrings(Record, Blob, NextMetadataNo))
2699         return EC;
2700       break;
2701     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2702       if (Record.size() % 2 == 0)
2703         return error("Invalid record");
2704       unsigned ValueID = Record[0];
2705       if (ValueID >= ValueList.size())
2706         return error("Invalid record");
2707       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2708         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2709       break;
2710     }
2711     case bitc::METADATA_KIND: {
2712       // Support older bitcode files that had METADATA_KIND records in a
2713       // block with METADATA_BLOCK_ID.
2714       if (std::error_code EC = parseMetadataKindRecord(Record))
2715         return EC;
2716       break;
2717     }
2718     }
2719   }
2720 #undef GET_OR_DISTINCT
2721 }
2722 
2723 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
parseMetadataKinds()2724 std::error_code BitcodeReader::parseMetadataKinds() {
2725   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2726     return error("Invalid record");
2727 
2728   SmallVector<uint64_t, 64> Record;
2729 
2730   // Read all the records.
2731   while (1) {
2732     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2733 
2734     switch (Entry.Kind) {
2735     case BitstreamEntry::SubBlock: // Handled for us already.
2736     case BitstreamEntry::Error:
2737       return error("Malformed block");
2738     case BitstreamEntry::EndBlock:
2739       return std::error_code();
2740     case BitstreamEntry::Record:
2741       // The interesting case.
2742       break;
2743     }
2744 
2745     // Read a record.
2746     Record.clear();
2747     unsigned Code = Stream.readRecord(Entry.ID, Record);
2748     switch (Code) {
2749     default: // Default behavior: ignore.
2750       break;
2751     case bitc::METADATA_KIND: {
2752       if (std::error_code EC = parseMetadataKindRecord(Record))
2753         return EC;
2754       break;
2755     }
2756     }
2757   }
2758 }
2759 
2760 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2761 /// encoding.
decodeSignRotatedValue(uint64_t V)2762 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2763   if ((V & 1) == 0)
2764     return V >> 1;
2765   if (V != 1)
2766     return -(V >> 1);
2767   // There is no such thing as -0 with integers.  "-0" really means MININT.
2768   return 1ULL << 63;
2769 }
2770 
2771 /// Resolve all of the initializers for global values and aliases that we can.
resolveGlobalAndIndirectSymbolInits()2772 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2773   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2774   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2775       IndirectSymbolInitWorklist;
2776   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2777   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2778   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2779 
2780   GlobalInitWorklist.swap(GlobalInits);
2781   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2782   FunctionPrefixWorklist.swap(FunctionPrefixes);
2783   FunctionPrologueWorklist.swap(FunctionPrologues);
2784   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2785 
2786   while (!GlobalInitWorklist.empty()) {
2787     unsigned ValID = GlobalInitWorklist.back().second;
2788     if (ValID >= ValueList.size()) {
2789       // Not ready to resolve this yet, it requires something later in the file.
2790       GlobalInits.push_back(GlobalInitWorklist.back());
2791     } else {
2792       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2793         GlobalInitWorklist.back().first->setInitializer(C);
2794       else
2795         return error("Expected a constant");
2796     }
2797     GlobalInitWorklist.pop_back();
2798   }
2799 
2800   while (!IndirectSymbolInitWorklist.empty()) {
2801     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2802     if (ValID >= ValueList.size()) {
2803       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2804     } else {
2805       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2806       if (!C)
2807         return error("Expected a constant");
2808       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2809       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2810         return error("Alias and aliasee types don't match");
2811       GIS->setIndirectSymbol(C);
2812     }
2813     IndirectSymbolInitWorklist.pop_back();
2814   }
2815 
2816   while (!FunctionPrefixWorklist.empty()) {
2817     unsigned ValID = FunctionPrefixWorklist.back().second;
2818     if (ValID >= ValueList.size()) {
2819       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2820     } else {
2821       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2822         FunctionPrefixWorklist.back().first->setPrefixData(C);
2823       else
2824         return error("Expected a constant");
2825     }
2826     FunctionPrefixWorklist.pop_back();
2827   }
2828 
2829   while (!FunctionPrologueWorklist.empty()) {
2830     unsigned ValID = FunctionPrologueWorklist.back().second;
2831     if (ValID >= ValueList.size()) {
2832       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2833     } else {
2834       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2835         FunctionPrologueWorklist.back().first->setPrologueData(C);
2836       else
2837         return error("Expected a constant");
2838     }
2839     FunctionPrologueWorklist.pop_back();
2840   }
2841 
2842   while (!FunctionPersonalityFnWorklist.empty()) {
2843     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2844     if (ValID >= ValueList.size()) {
2845       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2846     } else {
2847       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2848         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2849       else
2850         return error("Expected a constant");
2851     }
2852     FunctionPersonalityFnWorklist.pop_back();
2853   }
2854 
2855   return std::error_code();
2856 }
2857 
readWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)2858 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2859   SmallVector<uint64_t, 8> Words(Vals.size());
2860   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2861                  BitcodeReader::decodeSignRotatedValue);
2862 
2863   return APInt(TypeBits, Words);
2864 }
2865 
parseConstants()2866 std::error_code BitcodeReader::parseConstants() {
2867   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2868     return error("Invalid record");
2869 
2870   SmallVector<uint64_t, 64> Record;
2871 
2872   // Read all the records for this value table.
2873   Type *CurTy = Type::getInt32Ty(Context);
2874   unsigned NextCstNo = ValueList.size();
2875   while (1) {
2876     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2877 
2878     switch (Entry.Kind) {
2879     case BitstreamEntry::SubBlock: // Handled for us already.
2880     case BitstreamEntry::Error:
2881       return error("Malformed block");
2882     case BitstreamEntry::EndBlock:
2883       if (NextCstNo != ValueList.size())
2884         return error("Invalid constant reference");
2885 
2886       // Once all the constants have been read, go through and resolve forward
2887       // references.
2888       ValueList.resolveConstantForwardRefs();
2889       return std::error_code();
2890     case BitstreamEntry::Record:
2891       // The interesting case.
2892       break;
2893     }
2894 
2895     // Read a record.
2896     Record.clear();
2897     Type *VoidType = Type::getVoidTy(Context);
2898     Value *V = nullptr;
2899     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2900     switch (BitCode) {
2901     default:  // Default behavior: unknown constant
2902     case bitc::CST_CODE_UNDEF:     // UNDEF
2903       V = UndefValue::get(CurTy);
2904       break;
2905     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2906       if (Record.empty())
2907         return error("Invalid record");
2908       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2909         return error("Invalid record");
2910       if (TypeList[Record[0]] == VoidType)
2911         return error("Invalid constant type");
2912       CurTy = TypeList[Record[0]];
2913       continue;  // Skip the ValueList manipulation.
2914     case bitc::CST_CODE_NULL:      // NULL
2915       V = Constant::getNullValue(CurTy);
2916       break;
2917     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2918       if (!CurTy->isIntegerTy() || Record.empty())
2919         return error("Invalid record");
2920       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2921       break;
2922     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2923       if (!CurTy->isIntegerTy() || Record.empty())
2924         return error("Invalid record");
2925 
2926       APInt VInt =
2927           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2928       V = ConstantInt::get(Context, VInt);
2929 
2930       break;
2931     }
2932     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2933       if (Record.empty())
2934         return error("Invalid record");
2935       if (CurTy->isHalfTy())
2936         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2937                                              APInt(16, (uint16_t)Record[0])));
2938       else if (CurTy->isFloatTy())
2939         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2940                                              APInt(32, (uint32_t)Record[0])));
2941       else if (CurTy->isDoubleTy())
2942         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2943                                              APInt(64, Record[0])));
2944       else if (CurTy->isX86_FP80Ty()) {
2945         // Bits are not stored the same way as a normal i80 APInt, compensate.
2946         uint64_t Rearrange[2];
2947         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2948         Rearrange[1] = Record[0] >> 48;
2949         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2950                                              APInt(80, Rearrange)));
2951       } else if (CurTy->isFP128Ty())
2952         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2953                                              APInt(128, Record)));
2954       else if (CurTy->isPPC_FP128Ty())
2955         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2956                                              APInt(128, Record)));
2957       else
2958         V = UndefValue::get(CurTy);
2959       break;
2960     }
2961 
2962     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2963       if (Record.empty())
2964         return error("Invalid record");
2965 
2966       unsigned Size = Record.size();
2967       SmallVector<Constant*, 16> Elts;
2968 
2969       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2970         for (unsigned i = 0; i != Size; ++i)
2971           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2972                                                      STy->getElementType(i)));
2973         V = ConstantStruct::get(STy, Elts);
2974       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2975         Type *EltTy = ATy->getElementType();
2976         for (unsigned i = 0; i != Size; ++i)
2977           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2978         V = ConstantArray::get(ATy, Elts);
2979       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2980         Type *EltTy = VTy->getElementType();
2981         for (unsigned i = 0; i != Size; ++i)
2982           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2983         V = ConstantVector::get(Elts);
2984       } else {
2985         V = UndefValue::get(CurTy);
2986       }
2987       break;
2988     }
2989     case bitc::CST_CODE_STRING:    // STRING: [values]
2990     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2991       if (Record.empty())
2992         return error("Invalid record");
2993 
2994       SmallString<16> Elts(Record.begin(), Record.end());
2995       V = ConstantDataArray::getString(Context, Elts,
2996                                        BitCode == bitc::CST_CODE_CSTRING);
2997       break;
2998     }
2999     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3000       if (Record.empty())
3001         return error("Invalid record");
3002 
3003       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3004       if (EltTy->isIntegerTy(8)) {
3005         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3006         if (isa<VectorType>(CurTy))
3007           V = ConstantDataVector::get(Context, Elts);
3008         else
3009           V = ConstantDataArray::get(Context, Elts);
3010       } else if (EltTy->isIntegerTy(16)) {
3011         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3012         if (isa<VectorType>(CurTy))
3013           V = ConstantDataVector::get(Context, Elts);
3014         else
3015           V = ConstantDataArray::get(Context, Elts);
3016       } else if (EltTy->isIntegerTy(32)) {
3017         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3018         if (isa<VectorType>(CurTy))
3019           V = ConstantDataVector::get(Context, Elts);
3020         else
3021           V = ConstantDataArray::get(Context, Elts);
3022       } else if (EltTy->isIntegerTy(64)) {
3023         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3024         if (isa<VectorType>(CurTy))
3025           V = ConstantDataVector::get(Context, Elts);
3026         else
3027           V = ConstantDataArray::get(Context, Elts);
3028       } else if (EltTy->isHalfTy()) {
3029         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3030         if (isa<VectorType>(CurTy))
3031           V = ConstantDataVector::getFP(Context, Elts);
3032         else
3033           V = ConstantDataArray::getFP(Context, Elts);
3034       } else if (EltTy->isFloatTy()) {
3035         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3036         if (isa<VectorType>(CurTy))
3037           V = ConstantDataVector::getFP(Context, Elts);
3038         else
3039           V = ConstantDataArray::getFP(Context, Elts);
3040       } else if (EltTy->isDoubleTy()) {
3041         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3042         if (isa<VectorType>(CurTy))
3043           V = ConstantDataVector::getFP(Context, Elts);
3044         else
3045           V = ConstantDataArray::getFP(Context, Elts);
3046       } else {
3047         return error("Invalid type for value");
3048       }
3049       break;
3050     }
3051     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3052       if (Record.size() < 3)
3053         return error("Invalid record");
3054       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3055       if (Opc < 0) {
3056         V = UndefValue::get(CurTy);  // Unknown binop.
3057       } else {
3058         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3059         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3060         unsigned Flags = 0;
3061         if (Record.size() >= 4) {
3062           if (Opc == Instruction::Add ||
3063               Opc == Instruction::Sub ||
3064               Opc == Instruction::Mul ||
3065               Opc == Instruction::Shl) {
3066             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3067               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3068             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3069               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3070           } else if (Opc == Instruction::SDiv ||
3071                      Opc == Instruction::UDiv ||
3072                      Opc == Instruction::LShr ||
3073                      Opc == Instruction::AShr) {
3074             if (Record[3] & (1 << bitc::PEO_EXACT))
3075               Flags |= SDivOperator::IsExact;
3076           }
3077         }
3078         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3079       }
3080       break;
3081     }
3082     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3083       if (Record.size() < 3)
3084         return error("Invalid record");
3085       int Opc = getDecodedCastOpcode(Record[0]);
3086       if (Opc < 0) {
3087         V = UndefValue::get(CurTy);  // Unknown cast.
3088       } else {
3089         Type *OpTy = getTypeByID(Record[1]);
3090         if (!OpTy)
3091           return error("Invalid record");
3092         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3093         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3094         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3095       }
3096       break;
3097     }
3098     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3099     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3100       unsigned OpNum = 0;
3101       Type *PointeeType = nullptr;
3102       if (Record.size() % 2)
3103         PointeeType = getTypeByID(Record[OpNum++]);
3104       SmallVector<Constant*, 16> Elts;
3105       while (OpNum != Record.size()) {
3106         Type *ElTy = getTypeByID(Record[OpNum++]);
3107         if (!ElTy)
3108           return error("Invalid record");
3109         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3110       }
3111 
3112       if (PointeeType &&
3113           PointeeType !=
3114               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3115                   ->getElementType())
3116         return error("Explicit gep operator type does not match pointee type "
3117                      "of pointer operand");
3118 
3119       if (Elts.size() < 1)
3120         return error("Invalid gep with no operands");
3121 
3122       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3123       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3124                                          BitCode ==
3125                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3126       break;
3127     }
3128     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3129       if (Record.size() < 3)
3130         return error("Invalid record");
3131 
3132       Type *SelectorTy = Type::getInt1Ty(Context);
3133 
3134       // The selector might be an i1 or an <n x i1>
3135       // Get the type from the ValueList before getting a forward ref.
3136       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3137         if (Value *V = ValueList[Record[0]])
3138           if (SelectorTy != V->getType())
3139             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3140 
3141       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3142                                                               SelectorTy),
3143                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3144                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3145       break;
3146     }
3147     case bitc::CST_CODE_CE_EXTRACTELT
3148         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3149       if (Record.size() < 3)
3150         return error("Invalid record");
3151       VectorType *OpTy =
3152         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3153       if (!OpTy)
3154         return error("Invalid record");
3155       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3156       Constant *Op1 = nullptr;
3157       if (Record.size() == 4) {
3158         Type *IdxTy = getTypeByID(Record[2]);
3159         if (!IdxTy)
3160           return error("Invalid record");
3161         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3162       } else // TODO: Remove with llvm 4.0
3163         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3164       if (!Op1)
3165         return error("Invalid record");
3166       V = ConstantExpr::getExtractElement(Op0, Op1);
3167       break;
3168     }
3169     case bitc::CST_CODE_CE_INSERTELT
3170         : { // CE_INSERTELT: [opval, opval, opty, opval]
3171       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3172       if (Record.size() < 3 || !OpTy)
3173         return error("Invalid record");
3174       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3175       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3176                                                   OpTy->getElementType());
3177       Constant *Op2 = nullptr;
3178       if (Record.size() == 4) {
3179         Type *IdxTy = getTypeByID(Record[2]);
3180         if (!IdxTy)
3181           return error("Invalid record");
3182         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3183       } else // TODO: Remove with llvm 4.0
3184         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3185       if (!Op2)
3186         return error("Invalid record");
3187       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3188       break;
3189     }
3190     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3191       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3192       if (Record.size() < 3 || !OpTy)
3193         return error("Invalid record");
3194       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3195       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3196       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3197                                                  OpTy->getNumElements());
3198       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3199       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3200       break;
3201     }
3202     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3203       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3204       VectorType *OpTy =
3205         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3206       if (Record.size() < 4 || !RTy || !OpTy)
3207         return error("Invalid record");
3208       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3209       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3210       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3211                                                  RTy->getNumElements());
3212       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3213       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3214       break;
3215     }
3216     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3217       if (Record.size() < 4)
3218         return error("Invalid record");
3219       Type *OpTy = getTypeByID(Record[0]);
3220       if (!OpTy)
3221         return error("Invalid record");
3222       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3223       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3224 
3225       if (OpTy->isFPOrFPVectorTy())
3226         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3227       else
3228         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3229       break;
3230     }
3231     // This maintains backward compatibility, pre-asm dialect keywords.
3232     // FIXME: Remove with the 4.0 release.
3233     case bitc::CST_CODE_INLINEASM_OLD: {
3234       if (Record.size() < 2)
3235         return error("Invalid record");
3236       std::string AsmStr, ConstrStr;
3237       bool HasSideEffects = Record[0] & 1;
3238       bool IsAlignStack = Record[0] >> 1;
3239       unsigned AsmStrSize = Record[1];
3240       if (2+AsmStrSize >= Record.size())
3241         return error("Invalid record");
3242       unsigned ConstStrSize = Record[2+AsmStrSize];
3243       if (3+AsmStrSize+ConstStrSize > Record.size())
3244         return error("Invalid record");
3245 
3246       for (unsigned i = 0; i != AsmStrSize; ++i)
3247         AsmStr += (char)Record[2+i];
3248       for (unsigned i = 0; i != ConstStrSize; ++i)
3249         ConstrStr += (char)Record[3+AsmStrSize+i];
3250       PointerType *PTy = cast<PointerType>(CurTy);
3251       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3252                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3253       break;
3254     }
3255     // This version adds support for the asm dialect keywords (e.g.,
3256     // inteldialect).
3257     case bitc::CST_CODE_INLINEASM: {
3258       if (Record.size() < 2)
3259         return error("Invalid record");
3260       std::string AsmStr, ConstrStr;
3261       bool HasSideEffects = Record[0] & 1;
3262       bool IsAlignStack = (Record[0] >> 1) & 1;
3263       unsigned AsmDialect = Record[0] >> 2;
3264       unsigned AsmStrSize = Record[1];
3265       if (2+AsmStrSize >= Record.size())
3266         return error("Invalid record");
3267       unsigned ConstStrSize = Record[2+AsmStrSize];
3268       if (3+AsmStrSize+ConstStrSize > Record.size())
3269         return error("Invalid record");
3270 
3271       for (unsigned i = 0; i != AsmStrSize; ++i)
3272         AsmStr += (char)Record[2+i];
3273       for (unsigned i = 0; i != ConstStrSize; ++i)
3274         ConstrStr += (char)Record[3+AsmStrSize+i];
3275       PointerType *PTy = cast<PointerType>(CurTy);
3276       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3277                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3278                          InlineAsm::AsmDialect(AsmDialect));
3279       break;
3280     }
3281     case bitc::CST_CODE_BLOCKADDRESS:{
3282       if (Record.size() < 3)
3283         return error("Invalid record");
3284       Type *FnTy = getTypeByID(Record[0]);
3285       if (!FnTy)
3286         return error("Invalid record");
3287       Function *Fn =
3288         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3289       if (!Fn)
3290         return error("Invalid record");
3291 
3292       // If the function is already parsed we can insert the block address right
3293       // away.
3294       BasicBlock *BB;
3295       unsigned BBID = Record[2];
3296       if (!BBID)
3297         // Invalid reference to entry block.
3298         return error("Invalid ID");
3299       if (!Fn->empty()) {
3300         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3301         for (size_t I = 0, E = BBID; I != E; ++I) {
3302           if (BBI == BBE)
3303             return error("Invalid ID");
3304           ++BBI;
3305         }
3306         BB = &*BBI;
3307       } else {
3308         // Otherwise insert a placeholder and remember it so it can be inserted
3309         // when the function is parsed.
3310         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3311         if (FwdBBs.empty())
3312           BasicBlockFwdRefQueue.push_back(Fn);
3313         if (FwdBBs.size() < BBID + 1)
3314           FwdBBs.resize(BBID + 1);
3315         if (!FwdBBs[BBID])
3316           FwdBBs[BBID] = BasicBlock::Create(Context);
3317         BB = FwdBBs[BBID];
3318       }
3319       V = BlockAddress::get(Fn, BB);
3320       break;
3321     }
3322     }
3323 
3324     ValueList.assignValue(V, NextCstNo);
3325     ++NextCstNo;
3326   }
3327 }
3328 
parseUseLists()3329 std::error_code BitcodeReader::parseUseLists() {
3330   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3331     return error("Invalid record");
3332 
3333   // Read all the records.
3334   SmallVector<uint64_t, 64> Record;
3335   while (1) {
3336     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3337 
3338     switch (Entry.Kind) {
3339     case BitstreamEntry::SubBlock: // Handled for us already.
3340     case BitstreamEntry::Error:
3341       return error("Malformed block");
3342     case BitstreamEntry::EndBlock:
3343       return std::error_code();
3344     case BitstreamEntry::Record:
3345       // The interesting case.
3346       break;
3347     }
3348 
3349     // Read a use list record.
3350     Record.clear();
3351     bool IsBB = false;
3352     switch (Stream.readRecord(Entry.ID, Record)) {
3353     default:  // Default behavior: unknown type.
3354       break;
3355     case bitc::USELIST_CODE_BB:
3356       IsBB = true;
3357       // fallthrough
3358     case bitc::USELIST_CODE_DEFAULT: {
3359       unsigned RecordLength = Record.size();
3360       if (RecordLength < 3)
3361         // Records should have at least an ID and two indexes.
3362         return error("Invalid record");
3363       unsigned ID = Record.back();
3364       Record.pop_back();
3365 
3366       Value *V;
3367       if (IsBB) {
3368         assert(ID < FunctionBBs.size() && "Basic block not found");
3369         V = FunctionBBs[ID];
3370       } else
3371         V = ValueList[ID];
3372       unsigned NumUses = 0;
3373       SmallDenseMap<const Use *, unsigned, 16> Order;
3374       for (const Use &U : V->materialized_uses()) {
3375         if (++NumUses > Record.size())
3376           break;
3377         Order[&U] = Record[NumUses - 1];
3378       }
3379       if (Order.size() != Record.size() || NumUses > Record.size())
3380         // Mismatches can happen if the functions are being materialized lazily
3381         // (out-of-order), or a value has been upgraded.
3382         break;
3383 
3384       V->sortUseList([&](const Use &L, const Use &R) {
3385         return Order.lookup(&L) < Order.lookup(&R);
3386       });
3387       break;
3388     }
3389     }
3390   }
3391 }
3392 
3393 /// When we see the block for metadata, remember where it is and then skip it.
3394 /// This lets us lazily deserialize the metadata.
rememberAndSkipMetadata()3395 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3396   // Save the current stream state.
3397   uint64_t CurBit = Stream.GetCurrentBitNo();
3398   DeferredMetadataInfo.push_back(CurBit);
3399 
3400   // Skip over the block for now.
3401   if (Stream.SkipBlock())
3402     return error("Invalid record");
3403   return std::error_code();
3404 }
3405 
materializeMetadata()3406 std::error_code BitcodeReader::materializeMetadata() {
3407   for (uint64_t BitPos : DeferredMetadataInfo) {
3408     // Move the bit stream to the saved position.
3409     Stream.JumpToBit(BitPos);
3410     if (std::error_code EC = parseMetadata(true))
3411       return EC;
3412   }
3413   DeferredMetadataInfo.clear();
3414   return std::error_code();
3415 }
3416 
setStripDebugInfo()3417 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3418 
3419 /// When we see the block for a function body, remember where it is and then
3420 /// skip it.  This lets us lazily deserialize the functions.
rememberAndSkipFunctionBody()3421 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3422   // Get the function we are talking about.
3423   if (FunctionsWithBodies.empty())
3424     return error("Insufficient function protos");
3425 
3426   Function *Fn = FunctionsWithBodies.back();
3427   FunctionsWithBodies.pop_back();
3428 
3429   // Save the current stream state.
3430   uint64_t CurBit = Stream.GetCurrentBitNo();
3431   assert(
3432       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3433       "Mismatch between VST and scanned function offsets");
3434   DeferredFunctionInfo[Fn] = CurBit;
3435 
3436   // Skip over the function block for now.
3437   if (Stream.SkipBlock())
3438     return error("Invalid record");
3439   return std::error_code();
3440 }
3441 
globalCleanup()3442 std::error_code BitcodeReader::globalCleanup() {
3443   // Patch the initializers for globals and aliases up.
3444   resolveGlobalAndIndirectSymbolInits();
3445   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3446     return error("Malformed global initializer set");
3447 
3448   // Look for intrinsic functions which need to be upgraded at some point
3449   for (Function &F : *TheModule) {
3450     Function *NewFn;
3451     if (UpgradeIntrinsicFunction(&F, NewFn))
3452       UpgradedIntrinsics[&F] = NewFn;
3453     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3454       // Some types could be renamed during loading if several modules are
3455       // loaded in the same LLVMContext (LTO scenario). In this case we should
3456       // remangle intrinsics names as well.
3457       RemangledIntrinsics[&F] = Remangled.getValue();
3458   }
3459 
3460   // Look for global variables which need to be renamed.
3461   for (GlobalVariable &GV : TheModule->globals())
3462     UpgradeGlobalVariable(&GV);
3463 
3464   // Force deallocation of memory for these vectors to favor the client that
3465   // want lazy deserialization.
3466   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3467   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3468       IndirectSymbolInits);
3469   return std::error_code();
3470 }
3471 
3472 /// Support for lazy parsing of function bodies. This is required if we
3473 /// either have an old bitcode file without a VST forward declaration record,
3474 /// or if we have an anonymous function being materialized, since anonymous
3475 /// functions do not have a name and are therefore not in the VST.
rememberAndSkipFunctionBodies()3476 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3477   Stream.JumpToBit(NextUnreadBit);
3478 
3479   if (Stream.AtEndOfStream())
3480     return error("Could not find function in stream");
3481 
3482   if (!SeenFirstFunctionBody)
3483     return error("Trying to materialize functions before seeing function blocks");
3484 
3485   // An old bitcode file with the symbol table at the end would have
3486   // finished the parse greedily.
3487   assert(SeenValueSymbolTable);
3488 
3489   SmallVector<uint64_t, 64> Record;
3490 
3491   while (1) {
3492     BitstreamEntry Entry = Stream.advance();
3493     switch (Entry.Kind) {
3494     default:
3495       return error("Expect SubBlock");
3496     case BitstreamEntry::SubBlock:
3497       switch (Entry.ID) {
3498       default:
3499         return error("Expect function block");
3500       case bitc::FUNCTION_BLOCK_ID:
3501         if (std::error_code EC = rememberAndSkipFunctionBody())
3502           return EC;
3503         NextUnreadBit = Stream.GetCurrentBitNo();
3504         return std::error_code();
3505       }
3506     }
3507   }
3508 }
3509 
parseBitcodeVersion()3510 std::error_code BitcodeReader::parseBitcodeVersion() {
3511   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3512     return error("Invalid record");
3513 
3514   // Read all the records.
3515   SmallVector<uint64_t, 64> Record;
3516   while (1) {
3517     BitstreamEntry Entry = Stream.advance();
3518 
3519     switch (Entry.Kind) {
3520     default:
3521     case BitstreamEntry::Error:
3522       return error("Malformed block");
3523     case BitstreamEntry::EndBlock:
3524       return std::error_code();
3525     case BitstreamEntry::Record:
3526       // The interesting case.
3527       break;
3528     }
3529 
3530     // Read a record.
3531     Record.clear();
3532     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3533     switch (BitCode) {
3534     default: // Default behavior: reject
3535       return error("Invalid value");
3536     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3537                                              // N]
3538       convertToString(Record, 0, ProducerIdentification);
3539       break;
3540     }
3541     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3542       unsigned epoch = (unsigned)Record[0];
3543       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3544         return error(
3545           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3546           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3547       }
3548     }
3549     }
3550   }
3551 }
3552 
parseModule(uint64_t ResumeBit,bool ShouldLazyLoadMetadata)3553 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3554                                            bool ShouldLazyLoadMetadata) {
3555   if (ResumeBit)
3556     Stream.JumpToBit(ResumeBit);
3557   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3558     return error("Invalid record");
3559 
3560   SmallVector<uint64_t, 64> Record;
3561   std::vector<std::string> SectionTable;
3562   std::vector<std::string> GCTable;
3563 
3564   // Read all the records for this module.
3565   while (1) {
3566     BitstreamEntry Entry = Stream.advance();
3567 
3568     switch (Entry.Kind) {
3569     case BitstreamEntry::Error:
3570       return error("Malformed block");
3571     case BitstreamEntry::EndBlock:
3572       return globalCleanup();
3573 
3574     case BitstreamEntry::SubBlock:
3575       switch (Entry.ID) {
3576       default:  // Skip unknown content.
3577         if (Stream.SkipBlock())
3578           return error("Invalid record");
3579         break;
3580       case bitc::BLOCKINFO_BLOCK_ID:
3581         if (Stream.ReadBlockInfoBlock())
3582           return error("Malformed block");
3583         break;
3584       case bitc::PARAMATTR_BLOCK_ID:
3585         if (std::error_code EC = parseAttributeBlock())
3586           return EC;
3587         break;
3588       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3589         if (std::error_code EC = parseAttributeGroupBlock())
3590           return EC;
3591         break;
3592       case bitc::TYPE_BLOCK_ID_NEW:
3593         if (std::error_code EC = parseTypeTable())
3594           return EC;
3595         break;
3596       case bitc::VALUE_SYMTAB_BLOCK_ID:
3597         if (!SeenValueSymbolTable) {
3598           // Either this is an old form VST without function index and an
3599           // associated VST forward declaration record (which would have caused
3600           // the VST to be jumped to and parsed before it was encountered
3601           // normally in the stream), or there were no function blocks to
3602           // trigger an earlier parsing of the VST.
3603           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3604           if (std::error_code EC = parseValueSymbolTable())
3605             return EC;
3606           SeenValueSymbolTable = true;
3607         } else {
3608           // We must have had a VST forward declaration record, which caused
3609           // the parser to jump to and parse the VST earlier.
3610           assert(VSTOffset > 0);
3611           if (Stream.SkipBlock())
3612             return error("Invalid record");
3613         }
3614         break;
3615       case bitc::CONSTANTS_BLOCK_ID:
3616         if (std::error_code EC = parseConstants())
3617           return EC;
3618         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3619           return EC;
3620         break;
3621       case bitc::METADATA_BLOCK_ID:
3622         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3623           if (std::error_code EC = rememberAndSkipMetadata())
3624             return EC;
3625           break;
3626         }
3627         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3628         if (std::error_code EC = parseMetadata(true))
3629           return EC;
3630         break;
3631       case bitc::METADATA_KIND_BLOCK_ID:
3632         if (std::error_code EC = parseMetadataKinds())
3633           return EC;
3634         break;
3635       case bitc::FUNCTION_BLOCK_ID:
3636         // If this is the first function body we've seen, reverse the
3637         // FunctionsWithBodies list.
3638         if (!SeenFirstFunctionBody) {
3639           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3640           if (std::error_code EC = globalCleanup())
3641             return EC;
3642           SeenFirstFunctionBody = true;
3643         }
3644 
3645         if (VSTOffset > 0) {
3646           // If we have a VST forward declaration record, make sure we
3647           // parse the VST now if we haven't already. It is needed to
3648           // set up the DeferredFunctionInfo vector for lazy reading.
3649           if (!SeenValueSymbolTable) {
3650             if (std::error_code EC =
3651                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3652               return EC;
3653             SeenValueSymbolTable = true;
3654             // Fall through so that we record the NextUnreadBit below.
3655             // This is necessary in case we have an anonymous function that
3656             // is later materialized. Since it will not have a VST entry we
3657             // need to fall back to the lazy parse to find its offset.
3658           } else {
3659             // If we have a VST forward declaration record, but have already
3660             // parsed the VST (just above, when the first function body was
3661             // encountered here), then we are resuming the parse after
3662             // materializing functions. The ResumeBit points to the
3663             // start of the last function block recorded in the
3664             // DeferredFunctionInfo map. Skip it.
3665             if (Stream.SkipBlock())
3666               return error("Invalid record");
3667             continue;
3668           }
3669         }
3670 
3671         // Support older bitcode files that did not have the function
3672         // index in the VST, nor a VST forward declaration record, as
3673         // well as anonymous functions that do not have VST entries.
3674         // Build the DeferredFunctionInfo vector on the fly.
3675         if (std::error_code EC = rememberAndSkipFunctionBody())
3676           return EC;
3677 
3678         // Suspend parsing when we reach the function bodies. Subsequent
3679         // materialization calls will resume it when necessary. If the bitcode
3680         // file is old, the symbol table will be at the end instead and will not
3681         // have been seen yet. In this case, just finish the parse now.
3682         if (SeenValueSymbolTable) {
3683           NextUnreadBit = Stream.GetCurrentBitNo();
3684           return std::error_code();
3685         }
3686         break;
3687       case bitc::USELIST_BLOCK_ID:
3688         if (std::error_code EC = parseUseLists())
3689           return EC;
3690         break;
3691       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3692         if (std::error_code EC = parseOperandBundleTags())
3693           return EC;
3694         break;
3695       }
3696       continue;
3697 
3698     case BitstreamEntry::Record:
3699       // The interesting case.
3700       break;
3701     }
3702 
3703     // Read a record.
3704     auto BitCode = Stream.readRecord(Entry.ID, Record);
3705     switch (BitCode) {
3706     default: break;  // Default behavior, ignore unknown content.
3707     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3708       if (Record.size() < 1)
3709         return error("Invalid record");
3710       // Only version #0 and #1 are supported so far.
3711       unsigned module_version = Record[0];
3712       switch (module_version) {
3713         default:
3714           return error("Invalid value");
3715         case 0:
3716           UseRelativeIDs = false;
3717           break;
3718         case 1:
3719           UseRelativeIDs = true;
3720           break;
3721       }
3722       break;
3723     }
3724     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3725       std::string S;
3726       if (convertToString(Record, 0, S))
3727         return error("Invalid record");
3728       TheModule->setTargetTriple(S);
3729       break;
3730     }
3731     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3732       std::string S;
3733       if (convertToString(Record, 0, S))
3734         return error("Invalid record");
3735       TheModule->setDataLayout(S);
3736       break;
3737     }
3738     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3739       std::string S;
3740       if (convertToString(Record, 0, S))
3741         return error("Invalid record");
3742       TheModule->setModuleInlineAsm(S);
3743       break;
3744     }
3745     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3746       // FIXME: Remove in 4.0.
3747       std::string S;
3748       if (convertToString(Record, 0, S))
3749         return error("Invalid record");
3750       // Ignore value.
3751       break;
3752     }
3753     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3754       std::string S;
3755       if (convertToString(Record, 0, S))
3756         return error("Invalid record");
3757       SectionTable.push_back(S);
3758       break;
3759     }
3760     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3761       std::string S;
3762       if (convertToString(Record, 0, S))
3763         return error("Invalid record");
3764       GCTable.push_back(S);
3765       break;
3766     }
3767     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3768       if (Record.size() < 2)
3769         return error("Invalid record");
3770       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3771       unsigned ComdatNameSize = Record[1];
3772       std::string ComdatName;
3773       ComdatName.reserve(ComdatNameSize);
3774       for (unsigned i = 0; i != ComdatNameSize; ++i)
3775         ComdatName += (char)Record[2 + i];
3776       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3777       C->setSelectionKind(SK);
3778       ComdatList.push_back(C);
3779       break;
3780     }
3781     // GLOBALVAR: [pointer type, isconst, initid,
3782     //             linkage, alignment, section, visibility, threadlocal,
3783     //             unnamed_addr, externally_initialized, dllstorageclass,
3784     //             comdat]
3785     case bitc::MODULE_CODE_GLOBALVAR: {
3786       if (Record.size() < 6)
3787         return error("Invalid record");
3788       Type *Ty = getTypeByID(Record[0]);
3789       if (!Ty)
3790         return error("Invalid record");
3791       bool isConstant = Record[1] & 1;
3792       bool explicitType = Record[1] & 2;
3793       unsigned AddressSpace;
3794       if (explicitType) {
3795         AddressSpace = Record[1] >> 2;
3796       } else {
3797         if (!Ty->isPointerTy())
3798           return error("Invalid type for value");
3799         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3800         Ty = cast<PointerType>(Ty)->getElementType();
3801       }
3802 
3803       uint64_t RawLinkage = Record[3];
3804       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3805       unsigned Alignment;
3806       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3807         return EC;
3808       std::string Section;
3809       if (Record[5]) {
3810         if (Record[5]-1 >= SectionTable.size())
3811           return error("Invalid ID");
3812         Section = SectionTable[Record[5]-1];
3813       }
3814       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3815       // Local linkage must have default visibility.
3816       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3817         // FIXME: Change to an error if non-default in 4.0.
3818         Visibility = getDecodedVisibility(Record[6]);
3819 
3820       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3821       if (Record.size() > 7)
3822         TLM = getDecodedThreadLocalMode(Record[7]);
3823 
3824       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3825       if (Record.size() > 8)
3826         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3827 
3828       bool ExternallyInitialized = false;
3829       if (Record.size() > 9)
3830         ExternallyInitialized = Record[9];
3831 
3832       GlobalVariable *NewGV =
3833         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3834                            TLM, AddressSpace, ExternallyInitialized);
3835       NewGV->setAlignment(Alignment);
3836       if (!Section.empty())
3837         NewGV->setSection(Section);
3838       NewGV->setVisibility(Visibility);
3839       NewGV->setUnnamedAddr(UnnamedAddr);
3840 
3841       if (Record.size() > 10)
3842         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3843       else
3844         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3845 
3846       ValueList.push_back(NewGV);
3847 
3848       // Remember which value to use for the global initializer.
3849       if (unsigned InitID = Record[2])
3850         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3851 
3852       if (Record.size() > 11) {
3853         if (unsigned ComdatID = Record[11]) {
3854           if (ComdatID > ComdatList.size())
3855             return error("Invalid global variable comdat ID");
3856           NewGV->setComdat(ComdatList[ComdatID - 1]);
3857         }
3858       } else if (hasImplicitComdat(RawLinkage)) {
3859         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3860       }
3861 
3862       break;
3863     }
3864     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3865     //             alignment, section, visibility, gc, unnamed_addr,
3866     //             prologuedata, dllstorageclass, comdat, prefixdata]
3867     case bitc::MODULE_CODE_FUNCTION: {
3868       if (Record.size() < 8)
3869         return error("Invalid record");
3870       Type *Ty = getTypeByID(Record[0]);
3871       if (!Ty)
3872         return error("Invalid record");
3873       if (auto *PTy = dyn_cast<PointerType>(Ty))
3874         Ty = PTy->getElementType();
3875       auto *FTy = dyn_cast<FunctionType>(Ty);
3876       if (!FTy)
3877         return error("Invalid type for value");
3878       auto CC = static_cast<CallingConv::ID>(Record[1]);
3879       if (CC & ~CallingConv::MaxID)
3880         return error("Invalid calling convention ID");
3881 
3882       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3883                                         "", TheModule);
3884 
3885       Func->setCallingConv(CC);
3886       bool isProto = Record[2];
3887       uint64_t RawLinkage = Record[3];
3888       Func->setLinkage(getDecodedLinkage(RawLinkage));
3889       Func->setAttributes(getAttributes(Record[4]));
3890 
3891       unsigned Alignment;
3892       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3893         return EC;
3894       Func->setAlignment(Alignment);
3895       if (Record[6]) {
3896         if (Record[6]-1 >= SectionTable.size())
3897           return error("Invalid ID");
3898         Func->setSection(SectionTable[Record[6]-1]);
3899       }
3900       // Local linkage must have default visibility.
3901       if (!Func->hasLocalLinkage())
3902         // FIXME: Change to an error if non-default in 4.0.
3903         Func->setVisibility(getDecodedVisibility(Record[7]));
3904       if (Record.size() > 8 && Record[8]) {
3905         if (Record[8]-1 >= GCTable.size())
3906           return error("Invalid ID");
3907         Func->setGC(GCTable[Record[8] - 1]);
3908       }
3909       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3910       if (Record.size() > 9)
3911         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3912       Func->setUnnamedAddr(UnnamedAddr);
3913       if (Record.size() > 10 && Record[10] != 0)
3914         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3915 
3916       if (Record.size() > 11)
3917         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3918       else
3919         upgradeDLLImportExportLinkage(Func, RawLinkage);
3920 
3921       if (Record.size() > 12) {
3922         if (unsigned ComdatID = Record[12]) {
3923           if (ComdatID > ComdatList.size())
3924             return error("Invalid function comdat ID");
3925           Func->setComdat(ComdatList[ComdatID - 1]);
3926         }
3927       } else if (hasImplicitComdat(RawLinkage)) {
3928         Func->setComdat(reinterpret_cast<Comdat *>(1));
3929       }
3930 
3931       if (Record.size() > 13 && Record[13] != 0)
3932         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3933 
3934       if (Record.size() > 14 && Record[14] != 0)
3935         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3936 
3937       ValueList.push_back(Func);
3938 
3939       // If this is a function with a body, remember the prototype we are
3940       // creating now, so that we can match up the body with them later.
3941       if (!isProto) {
3942         Func->setIsMaterializable(true);
3943         FunctionsWithBodies.push_back(Func);
3944         DeferredFunctionInfo[Func] = 0;
3945       }
3946       break;
3947     }
3948     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3949     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3950     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3951     case bitc::MODULE_CODE_IFUNC:
3952     case bitc::MODULE_CODE_ALIAS:
3953     case bitc::MODULE_CODE_ALIAS_OLD: {
3954       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3955       if (Record.size() < (3 + (unsigned)NewRecord))
3956         return error("Invalid record");
3957       unsigned OpNum = 0;
3958       Type *Ty = getTypeByID(Record[OpNum++]);
3959       if (!Ty)
3960         return error("Invalid record");
3961 
3962       unsigned AddrSpace;
3963       if (!NewRecord) {
3964         auto *PTy = dyn_cast<PointerType>(Ty);
3965         if (!PTy)
3966           return error("Invalid type for value");
3967         Ty = PTy->getElementType();
3968         AddrSpace = PTy->getAddressSpace();
3969       } else {
3970         AddrSpace = Record[OpNum++];
3971       }
3972 
3973       auto Val = Record[OpNum++];
3974       auto Linkage = Record[OpNum++];
3975       GlobalIndirectSymbol *NewGA;
3976       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3977           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3978         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3979                                     "", TheModule);
3980       else
3981         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3982                                     "", nullptr, TheModule);
3983       // Old bitcode files didn't have visibility field.
3984       // Local linkage must have default visibility.
3985       if (OpNum != Record.size()) {
3986         auto VisInd = OpNum++;
3987         if (!NewGA->hasLocalLinkage())
3988           // FIXME: Change to an error if non-default in 4.0.
3989           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3990       }
3991       if (OpNum != Record.size())
3992         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3993       else
3994         upgradeDLLImportExportLinkage(NewGA, Linkage);
3995       if (OpNum != Record.size())
3996         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3997       if (OpNum != Record.size())
3998         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3999       ValueList.push_back(NewGA);
4000       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4001       break;
4002     }
4003     /// MODULE_CODE_PURGEVALS: [numvals]
4004     case bitc::MODULE_CODE_PURGEVALS:
4005       // Trim down the value list to the specified size.
4006       if (Record.size() < 1 || Record[0] > ValueList.size())
4007         return error("Invalid record");
4008       ValueList.shrinkTo(Record[0]);
4009       break;
4010     /// MODULE_CODE_VSTOFFSET: [offset]
4011     case bitc::MODULE_CODE_VSTOFFSET:
4012       if (Record.size() < 1)
4013         return error("Invalid record");
4014       VSTOffset = Record[0];
4015       break;
4016     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4017     case bitc::MODULE_CODE_SOURCE_FILENAME:
4018       SmallString<128> ValueName;
4019       if (convertToString(Record, 0, ValueName))
4020         return error("Invalid record");
4021       TheModule->setSourceFileName(ValueName);
4022       break;
4023     }
4024     Record.clear();
4025   }
4026 }
4027 
4028 /// Helper to read the header common to all bitcode files.
hasValidBitcodeHeader(BitstreamCursor & Stream)4029 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4030   // Sniff for the signature.
4031   if (Stream.Read(8) != 'B' ||
4032       Stream.Read(8) != 'C' ||
4033       Stream.Read(4) != 0x0 ||
4034       Stream.Read(4) != 0xC ||
4035       Stream.Read(4) != 0xE ||
4036       Stream.Read(4) != 0xD)
4037     return false;
4038   return true;
4039 }
4040 
4041 std::error_code
parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,Module * M,bool ShouldLazyLoadMetadata)4042 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4043                                 Module *M, bool ShouldLazyLoadMetadata) {
4044   TheModule = M;
4045 
4046   if (std::error_code EC = initStream(std::move(Streamer)))
4047     return EC;
4048 
4049   // Sniff for the signature.
4050   if (!hasValidBitcodeHeader(Stream))
4051     return error("Invalid bitcode signature");
4052 
4053   // We expect a number of well-defined blocks, though we don't necessarily
4054   // need to understand them all.
4055   while (1) {
4056     if (Stream.AtEndOfStream()) {
4057       // We didn't really read a proper Module.
4058       return error("Malformed IR file");
4059     }
4060 
4061     BitstreamEntry Entry =
4062       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4063 
4064     if (Entry.Kind != BitstreamEntry::SubBlock)
4065       return error("Malformed block");
4066 
4067     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4068       parseBitcodeVersion();
4069       continue;
4070     }
4071 
4072     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4073       return parseModule(0, ShouldLazyLoadMetadata);
4074 
4075     if (Stream.SkipBlock())
4076       return error("Invalid record");
4077   }
4078 }
4079 
parseModuleTriple()4080 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4081   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4082     return error("Invalid record");
4083 
4084   SmallVector<uint64_t, 64> Record;
4085 
4086   std::string Triple;
4087   // Read all the records for this module.
4088   while (1) {
4089     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4090 
4091     switch (Entry.Kind) {
4092     case BitstreamEntry::SubBlock: // Handled for us already.
4093     case BitstreamEntry::Error:
4094       return error("Malformed block");
4095     case BitstreamEntry::EndBlock:
4096       return Triple;
4097     case BitstreamEntry::Record:
4098       // The interesting case.
4099       break;
4100     }
4101 
4102     // Read a record.
4103     switch (Stream.readRecord(Entry.ID, Record)) {
4104     default: break;  // Default behavior, ignore unknown content.
4105     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4106       std::string S;
4107       if (convertToString(Record, 0, S))
4108         return error("Invalid record");
4109       Triple = S;
4110       break;
4111     }
4112     }
4113     Record.clear();
4114   }
4115   llvm_unreachable("Exit infinite loop");
4116 }
4117 
parseTriple()4118 ErrorOr<std::string> BitcodeReader::parseTriple() {
4119   if (std::error_code EC = initStream(nullptr))
4120     return EC;
4121 
4122   // Sniff for the signature.
4123   if (!hasValidBitcodeHeader(Stream))
4124     return error("Invalid bitcode signature");
4125 
4126   // We expect a number of well-defined blocks, though we don't necessarily
4127   // need to understand them all.
4128   while (1) {
4129     BitstreamEntry Entry = Stream.advance();
4130 
4131     switch (Entry.Kind) {
4132     case BitstreamEntry::Error:
4133       return error("Malformed block");
4134     case BitstreamEntry::EndBlock:
4135       return std::error_code();
4136 
4137     case BitstreamEntry::SubBlock:
4138       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4139         return parseModuleTriple();
4140 
4141       // Ignore other sub-blocks.
4142       if (Stream.SkipBlock())
4143         return error("Malformed block");
4144       continue;
4145 
4146     case BitstreamEntry::Record:
4147       Stream.skipRecord(Entry.ID);
4148       continue;
4149     }
4150   }
4151 }
4152 
parseIdentificationBlock()4153 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4154   if (std::error_code EC = initStream(nullptr))
4155     return EC;
4156 
4157   // Sniff for the signature.
4158   if (!hasValidBitcodeHeader(Stream))
4159     return error("Invalid bitcode signature");
4160 
4161   // We expect a number of well-defined blocks, though we don't necessarily
4162   // need to understand them all.
4163   while (1) {
4164     BitstreamEntry Entry = Stream.advance();
4165     switch (Entry.Kind) {
4166     case BitstreamEntry::Error:
4167       return error("Malformed block");
4168     case BitstreamEntry::EndBlock:
4169       return std::error_code();
4170 
4171     case BitstreamEntry::SubBlock:
4172       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4173         if (std::error_code EC = parseBitcodeVersion())
4174           return EC;
4175         return ProducerIdentification;
4176       }
4177       // Ignore other sub-blocks.
4178       if (Stream.SkipBlock())
4179         return error("Malformed block");
4180       continue;
4181     case BitstreamEntry::Record:
4182       Stream.skipRecord(Entry.ID);
4183       continue;
4184     }
4185   }
4186 }
4187 
parseGlobalObjectAttachment(GlobalObject & GO,ArrayRef<uint64_t> Record)4188 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4189     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4190   assert(Record.size() % 2 == 0);
4191   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4192     auto K = MDKindMap.find(Record[I]);
4193     if (K == MDKindMap.end())
4194       return error("Invalid ID");
4195     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4196     if (!MD)
4197       return error("Invalid metadata attachment");
4198     GO.addMetadata(K->second, *MD);
4199   }
4200   return std::error_code();
4201 }
4202 
hasObjCCategory()4203 ErrorOr<bool> BitcodeReader::hasObjCCategory() {
4204   if (std::error_code EC = initStream(nullptr))
4205     return EC;
4206 
4207   // Sniff for the signature.
4208   if (!hasValidBitcodeHeader(Stream))
4209     return error("Invalid bitcode signature");
4210 
4211   // We expect a number of well-defined blocks, though we don't necessarily
4212   // need to understand them all.
4213   while (1) {
4214     BitstreamEntry Entry = Stream.advance();
4215 
4216     switch (Entry.Kind) {
4217     case BitstreamEntry::Error:
4218       return error("Malformed block");
4219     case BitstreamEntry::EndBlock:
4220       return std::error_code();
4221 
4222     case BitstreamEntry::SubBlock:
4223       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4224         return hasObjCCategoryInModule();
4225 
4226       // Ignore other sub-blocks.
4227       if (Stream.SkipBlock())
4228         return error("Malformed block");
4229       continue;
4230 
4231     case BitstreamEntry::Record:
4232       Stream.skipRecord(Entry.ID);
4233       continue;
4234     }
4235   }
4236 }
4237 
hasObjCCategoryInModule()4238 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() {
4239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4240     return error("Invalid record");
4241 
4242   SmallVector<uint64_t, 64> Record;
4243   // Read all the records for this module.
4244   while (1) {
4245     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4246 
4247     switch (Entry.Kind) {
4248     case BitstreamEntry::SubBlock: // Handled for us already.
4249     case BitstreamEntry::Error:
4250       return error("Malformed block");
4251     case BitstreamEntry::EndBlock:
4252       return false;
4253     case BitstreamEntry::Record:
4254       // The interesting case.
4255       break;
4256     }
4257 
4258     // Read a record.
4259     switch (Stream.readRecord(Entry.ID, Record)) {
4260     default:
4261       break; // Default behavior, ignore unknown content.
4262     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4263       std::string S;
4264       if (convertToString(Record, 0, S))
4265         return error("Invalid record");
4266       // Check for the i386 and other (x86_64, ARM) conventions
4267       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
4268           S.find("__OBJC,__category") != std::string::npos)
4269         return true;
4270       break;
4271     }
4272     }
4273     Record.clear();
4274   }
4275   llvm_unreachable("Exit infinite loop");
4276 }
4277 
4278 /// Parse metadata attachments.
parseMetadataAttachment(Function & F)4279 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4280   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4281     return error("Invalid record");
4282 
4283   SmallVector<uint64_t, 64> Record;
4284   while (1) {
4285     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4286 
4287     switch (Entry.Kind) {
4288     case BitstreamEntry::SubBlock: // Handled for us already.
4289     case BitstreamEntry::Error:
4290       return error("Malformed block");
4291     case BitstreamEntry::EndBlock:
4292       return std::error_code();
4293     case BitstreamEntry::Record:
4294       // The interesting case.
4295       break;
4296     }
4297 
4298     // Read a metadata attachment record.
4299     Record.clear();
4300     switch (Stream.readRecord(Entry.ID, Record)) {
4301     default:  // Default behavior: ignore.
4302       break;
4303     case bitc::METADATA_ATTACHMENT: {
4304       unsigned RecordLength = Record.size();
4305       if (Record.empty())
4306         return error("Invalid record");
4307       if (RecordLength % 2 == 0) {
4308         // A function attachment.
4309         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4310           return EC;
4311         continue;
4312       }
4313 
4314       // An instruction attachment.
4315       Instruction *Inst = InstructionList[Record[0]];
4316       for (unsigned i = 1; i != RecordLength; i = i+2) {
4317         unsigned Kind = Record[i];
4318         DenseMap<unsigned, unsigned>::iterator I =
4319           MDKindMap.find(Kind);
4320         if (I == MDKindMap.end())
4321           return error("Invalid ID");
4322         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4323         if (isa<LocalAsMetadata>(Node))
4324           // Drop the attachment.  This used to be legal, but there's no
4325           // upgrade path.
4326           break;
4327         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4328         if (!MD)
4329           return error("Invalid metadata attachment");
4330 
4331         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4332           MD = upgradeInstructionLoopAttachment(*MD);
4333 
4334         Inst->setMetadata(I->second, MD);
4335         if (I->second == LLVMContext::MD_tbaa) {
4336           InstsWithTBAATag.push_back(Inst);
4337           continue;
4338         }
4339       }
4340       break;
4341     }
4342     }
4343   }
4344 }
4345 
typeCheckLoadStoreInst(Type * ValType,Type * PtrType)4346 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4347   LLVMContext &Context = PtrType->getContext();
4348   if (!isa<PointerType>(PtrType))
4349     return error(Context, "Load/Store operand is not a pointer type");
4350   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4351 
4352   if (ValType && ValType != ElemType)
4353     return error(Context, "Explicit load/store type does not match pointee "
4354                           "type of pointer operand");
4355   if (!PointerType::isLoadableOrStorableType(ElemType))
4356     return error(Context, "Cannot load/store from pointer");
4357   return std::error_code();
4358 }
4359 
4360 /// Lazily parse the specified function body block.
parseFunctionBody(Function * F)4361 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4362   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4363     return error("Invalid record");
4364 
4365   // Unexpected unresolved metadata when parsing function.
4366   if (MetadataList.hasFwdRefs())
4367     return error("Invalid function metadata: incoming forward references");
4368 
4369   InstructionList.clear();
4370   unsigned ModuleValueListSize = ValueList.size();
4371   unsigned ModuleMetadataListSize = MetadataList.size();
4372 
4373   // Add all the function arguments to the value table.
4374   for (Argument &I : F->args())
4375     ValueList.push_back(&I);
4376 
4377   unsigned NextValueNo = ValueList.size();
4378   BasicBlock *CurBB = nullptr;
4379   unsigned CurBBNo = 0;
4380 
4381   DebugLoc LastLoc;
4382   auto getLastInstruction = [&]() -> Instruction * {
4383     if (CurBB && !CurBB->empty())
4384       return &CurBB->back();
4385     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4386              !FunctionBBs[CurBBNo - 1]->empty())
4387       return &FunctionBBs[CurBBNo - 1]->back();
4388     return nullptr;
4389   };
4390 
4391   std::vector<OperandBundleDef> OperandBundles;
4392 
4393   // Read all the records.
4394   SmallVector<uint64_t, 64> Record;
4395   while (1) {
4396     BitstreamEntry Entry = Stream.advance();
4397 
4398     switch (Entry.Kind) {
4399     case BitstreamEntry::Error:
4400       return error("Malformed block");
4401     case BitstreamEntry::EndBlock:
4402       goto OutOfRecordLoop;
4403 
4404     case BitstreamEntry::SubBlock:
4405       switch (Entry.ID) {
4406       default:  // Skip unknown content.
4407         if (Stream.SkipBlock())
4408           return error("Invalid record");
4409         break;
4410       case bitc::CONSTANTS_BLOCK_ID:
4411         if (std::error_code EC = parseConstants())
4412           return EC;
4413         NextValueNo = ValueList.size();
4414         break;
4415       case bitc::VALUE_SYMTAB_BLOCK_ID:
4416         if (std::error_code EC = parseValueSymbolTable())
4417           return EC;
4418         break;
4419       case bitc::METADATA_ATTACHMENT_ID:
4420         if (std::error_code EC = parseMetadataAttachment(*F))
4421           return EC;
4422         break;
4423       case bitc::METADATA_BLOCK_ID:
4424         if (std::error_code EC = parseMetadata())
4425           return EC;
4426         break;
4427       case bitc::USELIST_BLOCK_ID:
4428         if (std::error_code EC = parseUseLists())
4429           return EC;
4430         break;
4431       }
4432       continue;
4433 
4434     case BitstreamEntry::Record:
4435       // The interesting case.
4436       break;
4437     }
4438 
4439     // Read a record.
4440     Record.clear();
4441     Instruction *I = nullptr;
4442     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4443     switch (BitCode) {
4444     default: // Default behavior: reject
4445       return error("Invalid value");
4446     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4447       if (Record.size() < 1 || Record[0] == 0)
4448         return error("Invalid record");
4449       // Create all the basic blocks for the function.
4450       FunctionBBs.resize(Record[0]);
4451 
4452       // See if anything took the address of blocks in this function.
4453       auto BBFRI = BasicBlockFwdRefs.find(F);
4454       if (BBFRI == BasicBlockFwdRefs.end()) {
4455         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4456           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4457       } else {
4458         auto &BBRefs = BBFRI->second;
4459         // Check for invalid basic block references.
4460         if (BBRefs.size() > FunctionBBs.size())
4461           return error("Invalid ID");
4462         assert(!BBRefs.empty() && "Unexpected empty array");
4463         assert(!BBRefs.front() && "Invalid reference to entry block");
4464         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4465              ++I)
4466           if (I < RE && BBRefs[I]) {
4467             BBRefs[I]->insertInto(F);
4468             FunctionBBs[I] = BBRefs[I];
4469           } else {
4470             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4471           }
4472 
4473         // Erase from the table.
4474         BasicBlockFwdRefs.erase(BBFRI);
4475       }
4476 
4477       CurBB = FunctionBBs[0];
4478       continue;
4479     }
4480 
4481     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4482       // This record indicates that the last instruction is at the same
4483       // location as the previous instruction with a location.
4484       I = getLastInstruction();
4485 
4486       if (!I)
4487         return error("Invalid record");
4488       I->setDebugLoc(LastLoc);
4489       I = nullptr;
4490       continue;
4491 
4492     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4493       I = getLastInstruction();
4494       if (!I || Record.size() < 4)
4495         return error("Invalid record");
4496 
4497       unsigned Line = Record[0], Col = Record[1];
4498       unsigned ScopeID = Record[2], IAID = Record[3];
4499 
4500       MDNode *Scope = nullptr, *IA = nullptr;
4501       if (ScopeID) {
4502         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4503         if (!Scope)
4504           return error("Invalid record");
4505       }
4506       if (IAID) {
4507         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4508         if (!IA)
4509           return error("Invalid record");
4510       }
4511       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4512       I->setDebugLoc(LastLoc);
4513       I = nullptr;
4514       continue;
4515     }
4516 
4517     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4518       unsigned OpNum = 0;
4519       Value *LHS, *RHS;
4520       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4521           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4522           OpNum+1 > Record.size())
4523         return error("Invalid record");
4524 
4525       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4526       if (Opc == -1)
4527         return error("Invalid record");
4528       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4529       InstructionList.push_back(I);
4530       if (OpNum < Record.size()) {
4531         if (Opc == Instruction::Add ||
4532             Opc == Instruction::Sub ||
4533             Opc == Instruction::Mul ||
4534             Opc == Instruction::Shl) {
4535           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4536             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4537           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4538             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4539         } else if (Opc == Instruction::SDiv ||
4540                    Opc == Instruction::UDiv ||
4541                    Opc == Instruction::LShr ||
4542                    Opc == Instruction::AShr) {
4543           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4544             cast<BinaryOperator>(I)->setIsExact(true);
4545         } else if (isa<FPMathOperator>(I)) {
4546           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4547           if (FMF.any())
4548             I->setFastMathFlags(FMF);
4549         }
4550 
4551       }
4552       break;
4553     }
4554     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4555       unsigned OpNum = 0;
4556       Value *Op;
4557       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4558           OpNum+2 != Record.size())
4559         return error("Invalid record");
4560 
4561       Type *ResTy = getTypeByID(Record[OpNum]);
4562       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4563       if (Opc == -1 || !ResTy)
4564         return error("Invalid record");
4565       Instruction *Temp = nullptr;
4566       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4567         if (Temp) {
4568           InstructionList.push_back(Temp);
4569           CurBB->getInstList().push_back(Temp);
4570         }
4571       } else {
4572         auto CastOp = (Instruction::CastOps)Opc;
4573         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4574           return error("Invalid cast");
4575         I = CastInst::Create(CastOp, Op, ResTy);
4576       }
4577       InstructionList.push_back(I);
4578       break;
4579     }
4580     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4581     case bitc::FUNC_CODE_INST_GEP_OLD:
4582     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4583       unsigned OpNum = 0;
4584 
4585       Type *Ty;
4586       bool InBounds;
4587 
4588       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4589         InBounds = Record[OpNum++];
4590         Ty = getTypeByID(Record[OpNum++]);
4591       } else {
4592         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4593         Ty = nullptr;
4594       }
4595 
4596       Value *BasePtr;
4597       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4598         return error("Invalid record");
4599 
4600       if (!Ty)
4601         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4602                  ->getElementType();
4603       else if (Ty !=
4604                cast<SequentialType>(BasePtr->getType()->getScalarType())
4605                    ->getElementType())
4606         return error(
4607             "Explicit gep type does not match pointee type of pointer operand");
4608 
4609       SmallVector<Value*, 16> GEPIdx;
4610       while (OpNum != Record.size()) {
4611         Value *Op;
4612         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4613           return error("Invalid record");
4614         GEPIdx.push_back(Op);
4615       }
4616 
4617       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4618 
4619       InstructionList.push_back(I);
4620       if (InBounds)
4621         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4622       break;
4623     }
4624 
4625     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4626                                        // EXTRACTVAL: [opty, opval, n x indices]
4627       unsigned OpNum = 0;
4628       Value *Agg;
4629       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4630         return error("Invalid record");
4631 
4632       unsigned RecSize = Record.size();
4633       if (OpNum == RecSize)
4634         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4635 
4636       SmallVector<unsigned, 4> EXTRACTVALIdx;
4637       Type *CurTy = Agg->getType();
4638       for (; OpNum != RecSize; ++OpNum) {
4639         bool IsArray = CurTy->isArrayTy();
4640         bool IsStruct = CurTy->isStructTy();
4641         uint64_t Index = Record[OpNum];
4642 
4643         if (!IsStruct && !IsArray)
4644           return error("EXTRACTVAL: Invalid type");
4645         if ((unsigned)Index != Index)
4646           return error("Invalid value");
4647         if (IsStruct && Index >= CurTy->subtypes().size())
4648           return error("EXTRACTVAL: Invalid struct index");
4649         if (IsArray && Index >= CurTy->getArrayNumElements())
4650           return error("EXTRACTVAL: Invalid array index");
4651         EXTRACTVALIdx.push_back((unsigned)Index);
4652 
4653         if (IsStruct)
4654           CurTy = CurTy->subtypes()[Index];
4655         else
4656           CurTy = CurTy->subtypes()[0];
4657       }
4658 
4659       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4660       InstructionList.push_back(I);
4661       break;
4662     }
4663 
4664     case bitc::FUNC_CODE_INST_INSERTVAL: {
4665                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4666       unsigned OpNum = 0;
4667       Value *Agg;
4668       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4669         return error("Invalid record");
4670       Value *Val;
4671       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4672         return error("Invalid record");
4673 
4674       unsigned RecSize = Record.size();
4675       if (OpNum == RecSize)
4676         return error("INSERTVAL: Invalid instruction with 0 indices");
4677 
4678       SmallVector<unsigned, 4> INSERTVALIdx;
4679       Type *CurTy = Agg->getType();
4680       for (; OpNum != RecSize; ++OpNum) {
4681         bool IsArray = CurTy->isArrayTy();
4682         bool IsStruct = CurTy->isStructTy();
4683         uint64_t Index = Record[OpNum];
4684 
4685         if (!IsStruct && !IsArray)
4686           return error("INSERTVAL: Invalid type");
4687         if ((unsigned)Index != Index)
4688           return error("Invalid value");
4689         if (IsStruct && Index >= CurTy->subtypes().size())
4690           return error("INSERTVAL: Invalid struct index");
4691         if (IsArray && Index >= CurTy->getArrayNumElements())
4692           return error("INSERTVAL: Invalid array index");
4693 
4694         INSERTVALIdx.push_back((unsigned)Index);
4695         if (IsStruct)
4696           CurTy = CurTy->subtypes()[Index];
4697         else
4698           CurTy = CurTy->subtypes()[0];
4699       }
4700 
4701       if (CurTy != Val->getType())
4702         return error("Inserted value type doesn't match aggregate type");
4703 
4704       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4705       InstructionList.push_back(I);
4706       break;
4707     }
4708 
4709     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4710       // obsolete form of select
4711       // handles select i1 ... in old bitcode
4712       unsigned OpNum = 0;
4713       Value *TrueVal, *FalseVal, *Cond;
4714       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4715           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4716           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4717         return error("Invalid record");
4718 
4719       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4720       InstructionList.push_back(I);
4721       break;
4722     }
4723 
4724     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4725       // new form of select
4726       // handles select i1 or select [N x i1]
4727       unsigned OpNum = 0;
4728       Value *TrueVal, *FalseVal, *Cond;
4729       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4730           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4731           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4732         return error("Invalid record");
4733 
4734       // select condition can be either i1 or [N x i1]
4735       if (VectorType* vector_type =
4736           dyn_cast<VectorType>(Cond->getType())) {
4737         // expect <n x i1>
4738         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4739           return error("Invalid type for value");
4740       } else {
4741         // expect i1
4742         if (Cond->getType() != Type::getInt1Ty(Context))
4743           return error("Invalid type for value");
4744       }
4745 
4746       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4747       InstructionList.push_back(I);
4748       break;
4749     }
4750 
4751     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4752       unsigned OpNum = 0;
4753       Value *Vec, *Idx;
4754       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4755           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4756         return error("Invalid record");
4757       if (!Vec->getType()->isVectorTy())
4758         return error("Invalid type for value");
4759       I = ExtractElementInst::Create(Vec, Idx);
4760       InstructionList.push_back(I);
4761       break;
4762     }
4763 
4764     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4765       unsigned OpNum = 0;
4766       Value *Vec, *Elt, *Idx;
4767       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4768         return error("Invalid record");
4769       if (!Vec->getType()->isVectorTy())
4770         return error("Invalid type for value");
4771       if (popValue(Record, OpNum, NextValueNo,
4772                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4773           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4774         return error("Invalid record");
4775       I = InsertElementInst::Create(Vec, Elt, Idx);
4776       InstructionList.push_back(I);
4777       break;
4778     }
4779 
4780     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4781       unsigned OpNum = 0;
4782       Value *Vec1, *Vec2, *Mask;
4783       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4784           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4785         return error("Invalid record");
4786 
4787       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4788         return error("Invalid record");
4789       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4790         return error("Invalid type for value");
4791       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4792       InstructionList.push_back(I);
4793       break;
4794     }
4795 
4796     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4797       // Old form of ICmp/FCmp returning bool
4798       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4799       // both legal on vectors but had different behaviour.
4800     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4801       // FCmp/ICmp returning bool or vector of bool
4802 
4803       unsigned OpNum = 0;
4804       Value *LHS, *RHS;
4805       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4806           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4807         return error("Invalid record");
4808 
4809       unsigned PredVal = Record[OpNum];
4810       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4811       FastMathFlags FMF;
4812       if (IsFP && Record.size() > OpNum+1)
4813         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4814 
4815       if (OpNum+1 != Record.size())
4816         return error("Invalid record");
4817 
4818       if (LHS->getType()->isFPOrFPVectorTy())
4819         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4820       else
4821         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4822 
4823       if (FMF.any())
4824         I->setFastMathFlags(FMF);
4825       InstructionList.push_back(I);
4826       break;
4827     }
4828 
4829     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4830       {
4831         unsigned Size = Record.size();
4832         if (Size == 0) {
4833           I = ReturnInst::Create(Context);
4834           InstructionList.push_back(I);
4835           break;
4836         }
4837 
4838         unsigned OpNum = 0;
4839         Value *Op = nullptr;
4840         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4841           return error("Invalid record");
4842         if (OpNum != Record.size())
4843           return error("Invalid record");
4844 
4845         I = ReturnInst::Create(Context, Op);
4846         InstructionList.push_back(I);
4847         break;
4848       }
4849     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4850       if (Record.size() != 1 && Record.size() != 3)
4851         return error("Invalid record");
4852       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4853       if (!TrueDest)
4854         return error("Invalid record");
4855 
4856       if (Record.size() == 1) {
4857         I = BranchInst::Create(TrueDest);
4858         InstructionList.push_back(I);
4859       }
4860       else {
4861         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4862         Value *Cond = getValue(Record, 2, NextValueNo,
4863                                Type::getInt1Ty(Context));
4864         if (!FalseDest || !Cond)
4865           return error("Invalid record");
4866         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4867         InstructionList.push_back(I);
4868       }
4869       break;
4870     }
4871     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4872       if (Record.size() != 1 && Record.size() != 2)
4873         return error("Invalid record");
4874       unsigned Idx = 0;
4875       Value *CleanupPad =
4876           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4877       if (!CleanupPad)
4878         return error("Invalid record");
4879       BasicBlock *UnwindDest = nullptr;
4880       if (Record.size() == 2) {
4881         UnwindDest = getBasicBlock(Record[Idx++]);
4882         if (!UnwindDest)
4883           return error("Invalid record");
4884       }
4885 
4886       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4887       InstructionList.push_back(I);
4888       break;
4889     }
4890     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4891       if (Record.size() != 2)
4892         return error("Invalid record");
4893       unsigned Idx = 0;
4894       Value *CatchPad =
4895           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4896       if (!CatchPad)
4897         return error("Invalid record");
4898       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4899       if (!BB)
4900         return error("Invalid record");
4901 
4902       I = CatchReturnInst::Create(CatchPad, BB);
4903       InstructionList.push_back(I);
4904       break;
4905     }
4906     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4907       // We must have, at minimum, the outer scope and the number of arguments.
4908       if (Record.size() < 2)
4909         return error("Invalid record");
4910 
4911       unsigned Idx = 0;
4912 
4913       Value *ParentPad =
4914           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4915 
4916       unsigned NumHandlers = Record[Idx++];
4917 
4918       SmallVector<BasicBlock *, 2> Handlers;
4919       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4920         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4921         if (!BB)
4922           return error("Invalid record");
4923         Handlers.push_back(BB);
4924       }
4925 
4926       BasicBlock *UnwindDest = nullptr;
4927       if (Idx + 1 == Record.size()) {
4928         UnwindDest = getBasicBlock(Record[Idx++]);
4929         if (!UnwindDest)
4930           return error("Invalid record");
4931       }
4932 
4933       if (Record.size() != Idx)
4934         return error("Invalid record");
4935 
4936       auto *CatchSwitch =
4937           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4938       for (BasicBlock *Handler : Handlers)
4939         CatchSwitch->addHandler(Handler);
4940       I = CatchSwitch;
4941       InstructionList.push_back(I);
4942       break;
4943     }
4944     case bitc::FUNC_CODE_INST_CATCHPAD:
4945     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4946       // We must have, at minimum, the outer scope and the number of arguments.
4947       if (Record.size() < 2)
4948         return error("Invalid record");
4949 
4950       unsigned Idx = 0;
4951 
4952       Value *ParentPad =
4953           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4954 
4955       unsigned NumArgOperands = Record[Idx++];
4956 
4957       SmallVector<Value *, 2> Args;
4958       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4959         Value *Val;
4960         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4961           return error("Invalid record");
4962         Args.push_back(Val);
4963       }
4964 
4965       if (Record.size() != Idx)
4966         return error("Invalid record");
4967 
4968       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4969         I = CleanupPadInst::Create(ParentPad, Args);
4970       else
4971         I = CatchPadInst::Create(ParentPad, Args);
4972       InstructionList.push_back(I);
4973       break;
4974     }
4975     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4976       // Check magic
4977       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4978         // "New" SwitchInst format with case ranges. The changes to write this
4979         // format were reverted but we still recognize bitcode that uses it.
4980         // Hopefully someday we will have support for case ranges and can use
4981         // this format again.
4982 
4983         Type *OpTy = getTypeByID(Record[1]);
4984         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4985 
4986         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4987         BasicBlock *Default = getBasicBlock(Record[3]);
4988         if (!OpTy || !Cond || !Default)
4989           return error("Invalid record");
4990 
4991         unsigned NumCases = Record[4];
4992 
4993         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4994         InstructionList.push_back(SI);
4995 
4996         unsigned CurIdx = 5;
4997         for (unsigned i = 0; i != NumCases; ++i) {
4998           SmallVector<ConstantInt*, 1> CaseVals;
4999           unsigned NumItems = Record[CurIdx++];
5000           for (unsigned ci = 0; ci != NumItems; ++ci) {
5001             bool isSingleNumber = Record[CurIdx++];
5002 
5003             APInt Low;
5004             unsigned ActiveWords = 1;
5005             if (ValueBitWidth > 64)
5006               ActiveWords = Record[CurIdx++];
5007             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5008                                 ValueBitWidth);
5009             CurIdx += ActiveWords;
5010 
5011             if (!isSingleNumber) {
5012               ActiveWords = 1;
5013               if (ValueBitWidth > 64)
5014                 ActiveWords = Record[CurIdx++];
5015               APInt High = readWideAPInt(
5016                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5017               CurIdx += ActiveWords;
5018 
5019               // FIXME: It is not clear whether values in the range should be
5020               // compared as signed or unsigned values. The partially
5021               // implemented changes that used this format in the past used
5022               // unsigned comparisons.
5023               for ( ; Low.ule(High); ++Low)
5024                 CaseVals.push_back(ConstantInt::get(Context, Low));
5025             } else
5026               CaseVals.push_back(ConstantInt::get(Context, Low));
5027           }
5028           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5029           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5030                  cve = CaseVals.end(); cvi != cve; ++cvi)
5031             SI->addCase(*cvi, DestBB);
5032         }
5033         I = SI;
5034         break;
5035       }
5036 
5037       // Old SwitchInst format without case ranges.
5038 
5039       if (Record.size() < 3 || (Record.size() & 1) == 0)
5040         return error("Invalid record");
5041       Type *OpTy = getTypeByID(Record[0]);
5042       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5043       BasicBlock *Default = getBasicBlock(Record[2]);
5044       if (!OpTy || !Cond || !Default)
5045         return error("Invalid record");
5046       unsigned NumCases = (Record.size()-3)/2;
5047       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5048       InstructionList.push_back(SI);
5049       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5050         ConstantInt *CaseVal =
5051           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5052         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5053         if (!CaseVal || !DestBB) {
5054           delete SI;
5055           return error("Invalid record");
5056         }
5057         SI->addCase(CaseVal, DestBB);
5058       }
5059       I = SI;
5060       break;
5061     }
5062     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5063       if (Record.size() < 2)
5064         return error("Invalid record");
5065       Type *OpTy = getTypeByID(Record[0]);
5066       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5067       if (!OpTy || !Address)
5068         return error("Invalid record");
5069       unsigned NumDests = Record.size()-2;
5070       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5071       InstructionList.push_back(IBI);
5072       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5073         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5074           IBI->addDestination(DestBB);
5075         } else {
5076           delete IBI;
5077           return error("Invalid record");
5078         }
5079       }
5080       I = IBI;
5081       break;
5082     }
5083 
5084     case bitc::FUNC_CODE_INST_INVOKE: {
5085       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5086       if (Record.size() < 4)
5087         return error("Invalid record");
5088       unsigned OpNum = 0;
5089       AttributeSet PAL = getAttributes(Record[OpNum++]);
5090       unsigned CCInfo = Record[OpNum++];
5091       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5092       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5093 
5094       FunctionType *FTy = nullptr;
5095       if (CCInfo >> 13 & 1 &&
5096           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5097         return error("Explicit invoke type is not a function type");
5098 
5099       Value *Callee;
5100       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5101         return error("Invalid record");
5102 
5103       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5104       if (!CalleeTy)
5105         return error("Callee is not a pointer");
5106       if (!FTy) {
5107         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5108         if (!FTy)
5109           return error("Callee is not of pointer to function type");
5110       } else if (CalleeTy->getElementType() != FTy)
5111         return error("Explicit invoke type does not match pointee type of "
5112                      "callee operand");
5113       if (Record.size() < FTy->getNumParams() + OpNum)
5114         return error("Insufficient operands to call");
5115 
5116       SmallVector<Value*, 16> Ops;
5117       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5118         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5119                                FTy->getParamType(i)));
5120         if (!Ops.back())
5121           return error("Invalid record");
5122       }
5123 
5124       if (!FTy->isVarArg()) {
5125         if (Record.size() != OpNum)
5126           return error("Invalid record");
5127       } else {
5128         // Read type/value pairs for varargs params.
5129         while (OpNum != Record.size()) {
5130           Value *Op;
5131           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5132             return error("Invalid record");
5133           Ops.push_back(Op);
5134         }
5135       }
5136 
5137       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5138       OperandBundles.clear();
5139       InstructionList.push_back(I);
5140       cast<InvokeInst>(I)->setCallingConv(
5141           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5142       cast<InvokeInst>(I)->setAttributes(PAL);
5143       break;
5144     }
5145     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5146       unsigned Idx = 0;
5147       Value *Val = nullptr;
5148       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5149         return error("Invalid record");
5150       I = ResumeInst::Create(Val);
5151       InstructionList.push_back(I);
5152       break;
5153     }
5154     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5155       I = new UnreachableInst(Context);
5156       InstructionList.push_back(I);
5157       break;
5158     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5159       if (Record.size() < 1 || ((Record.size()-1)&1))
5160         return error("Invalid record");
5161       Type *Ty = getTypeByID(Record[0]);
5162       if (!Ty)
5163         return error("Invalid record");
5164 
5165       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5166       InstructionList.push_back(PN);
5167 
5168       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5169         Value *V;
5170         // With the new function encoding, it is possible that operands have
5171         // negative IDs (for forward references).  Use a signed VBR
5172         // representation to keep the encoding small.
5173         if (UseRelativeIDs)
5174           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5175         else
5176           V = getValue(Record, 1+i, NextValueNo, Ty);
5177         BasicBlock *BB = getBasicBlock(Record[2+i]);
5178         if (!V || !BB)
5179           return error("Invalid record");
5180         PN->addIncoming(V, BB);
5181       }
5182       I = PN;
5183       break;
5184     }
5185 
5186     case bitc::FUNC_CODE_INST_LANDINGPAD:
5187     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5188       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5189       unsigned Idx = 0;
5190       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5191         if (Record.size() < 3)
5192           return error("Invalid record");
5193       } else {
5194         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5195         if (Record.size() < 4)
5196           return error("Invalid record");
5197       }
5198       Type *Ty = getTypeByID(Record[Idx++]);
5199       if (!Ty)
5200         return error("Invalid record");
5201       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5202         Value *PersFn = nullptr;
5203         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5204           return error("Invalid record");
5205 
5206         if (!F->hasPersonalityFn())
5207           F->setPersonalityFn(cast<Constant>(PersFn));
5208         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5209           return error("Personality function mismatch");
5210       }
5211 
5212       bool IsCleanup = !!Record[Idx++];
5213       unsigned NumClauses = Record[Idx++];
5214       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5215       LP->setCleanup(IsCleanup);
5216       for (unsigned J = 0; J != NumClauses; ++J) {
5217         LandingPadInst::ClauseType CT =
5218           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5219         Value *Val;
5220 
5221         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5222           delete LP;
5223           return error("Invalid record");
5224         }
5225 
5226         assert((CT != LandingPadInst::Catch ||
5227                 !isa<ArrayType>(Val->getType())) &&
5228                "Catch clause has a invalid type!");
5229         assert((CT != LandingPadInst::Filter ||
5230                 isa<ArrayType>(Val->getType())) &&
5231                "Filter clause has invalid type!");
5232         LP->addClause(cast<Constant>(Val));
5233       }
5234 
5235       I = LP;
5236       InstructionList.push_back(I);
5237       break;
5238     }
5239 
5240     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5241       if (Record.size() != 4)
5242         return error("Invalid record");
5243       uint64_t AlignRecord = Record[3];
5244       const uint64_t InAllocaMask = uint64_t(1) << 5;
5245       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5246       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5247       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5248                                 SwiftErrorMask;
5249       bool InAlloca = AlignRecord & InAllocaMask;
5250       bool SwiftError = AlignRecord & SwiftErrorMask;
5251       Type *Ty = getTypeByID(Record[0]);
5252       if ((AlignRecord & ExplicitTypeMask) == 0) {
5253         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5254         if (!PTy)
5255           return error("Old-style alloca with a non-pointer type");
5256         Ty = PTy->getElementType();
5257       }
5258       Type *OpTy = getTypeByID(Record[1]);
5259       Value *Size = getFnValueByID(Record[2], OpTy);
5260       unsigned Align;
5261       if (std::error_code EC =
5262               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5263         return EC;
5264       }
5265       if (!Ty || !Size)
5266         return error("Invalid record");
5267       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5268       AI->setUsedWithInAlloca(InAlloca);
5269       AI->setSwiftError(SwiftError);
5270       I = AI;
5271       InstructionList.push_back(I);
5272       break;
5273     }
5274     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5275       unsigned OpNum = 0;
5276       Value *Op;
5277       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5278           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5279         return error("Invalid record");
5280 
5281       Type *Ty = nullptr;
5282       if (OpNum + 3 == Record.size())
5283         Ty = getTypeByID(Record[OpNum++]);
5284       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5285         return EC;
5286       if (!Ty)
5287         Ty = cast<PointerType>(Op->getType())->getElementType();
5288 
5289       unsigned Align;
5290       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5291         return EC;
5292       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5293 
5294       InstructionList.push_back(I);
5295       break;
5296     }
5297     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5298        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5299       unsigned OpNum = 0;
5300       Value *Op;
5301       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5302           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5303         return error("Invalid record");
5304 
5305       Type *Ty = nullptr;
5306       if (OpNum + 5 == Record.size())
5307         Ty = getTypeByID(Record[OpNum++]);
5308       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5309         return EC;
5310       if (!Ty)
5311         Ty = cast<PointerType>(Op->getType())->getElementType();
5312 
5313       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5314       if (Ordering == AtomicOrdering::NotAtomic ||
5315           Ordering == AtomicOrdering::Release ||
5316           Ordering == AtomicOrdering::AcquireRelease)
5317         return error("Invalid record");
5318       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5319         return error("Invalid record");
5320       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5321 
5322       unsigned Align;
5323       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5324         return EC;
5325       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5326 
5327       InstructionList.push_back(I);
5328       break;
5329     }
5330     case bitc::FUNC_CODE_INST_STORE:
5331     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5332       unsigned OpNum = 0;
5333       Value *Val, *Ptr;
5334       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5335           (BitCode == bitc::FUNC_CODE_INST_STORE
5336                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5337                : popValue(Record, OpNum, NextValueNo,
5338                           cast<PointerType>(Ptr->getType())->getElementType(),
5339                           Val)) ||
5340           OpNum + 2 != Record.size())
5341         return error("Invalid record");
5342 
5343       if (std::error_code EC =
5344               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5345         return EC;
5346       unsigned Align;
5347       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5348         return EC;
5349       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5350       InstructionList.push_back(I);
5351       break;
5352     }
5353     case bitc::FUNC_CODE_INST_STOREATOMIC:
5354     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5355       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5356       unsigned OpNum = 0;
5357       Value *Val, *Ptr;
5358       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5359           !isa<PointerType>(Ptr->getType()) ||
5360           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5361                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5362                : popValue(Record, OpNum, NextValueNo,
5363                           cast<PointerType>(Ptr->getType())->getElementType(),
5364                           Val)) ||
5365           OpNum + 4 != Record.size())
5366         return error("Invalid record");
5367 
5368       if (std::error_code EC =
5369               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5370         return EC;
5371       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5372       if (Ordering == AtomicOrdering::NotAtomic ||
5373           Ordering == AtomicOrdering::Acquire ||
5374           Ordering == AtomicOrdering::AcquireRelease)
5375         return error("Invalid record");
5376       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5377       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5378         return error("Invalid record");
5379 
5380       unsigned Align;
5381       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5382         return EC;
5383       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5384       InstructionList.push_back(I);
5385       break;
5386     }
5387     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5388     case bitc::FUNC_CODE_INST_CMPXCHG: {
5389       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5390       //          failureordering?, isweak?]
5391       unsigned OpNum = 0;
5392       Value *Ptr, *Cmp, *New;
5393       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5394           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5395                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5396                : popValue(Record, OpNum, NextValueNo,
5397                           cast<PointerType>(Ptr->getType())->getElementType(),
5398                           Cmp)) ||
5399           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5400           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5401         return error("Invalid record");
5402       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5403       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5404           SuccessOrdering == AtomicOrdering::Unordered)
5405         return error("Invalid record");
5406       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5407 
5408       if (std::error_code EC =
5409               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5410         return EC;
5411       AtomicOrdering FailureOrdering;
5412       if (Record.size() < 7)
5413         FailureOrdering =
5414             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5415       else
5416         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5417 
5418       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5419                                 SynchScope);
5420       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5421 
5422       if (Record.size() < 8) {
5423         // Before weak cmpxchgs existed, the instruction simply returned the
5424         // value loaded from memory, so bitcode files from that era will be
5425         // expecting the first component of a modern cmpxchg.
5426         CurBB->getInstList().push_back(I);
5427         I = ExtractValueInst::Create(I, 0);
5428       } else {
5429         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5430       }
5431 
5432       InstructionList.push_back(I);
5433       break;
5434     }
5435     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5436       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5437       unsigned OpNum = 0;
5438       Value *Ptr, *Val;
5439       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5440           !isa<PointerType>(Ptr->getType()) ||
5441           popValue(Record, OpNum, NextValueNo,
5442                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5443           OpNum+4 != Record.size())
5444         return error("Invalid record");
5445       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5446       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5447           Operation > AtomicRMWInst::LAST_BINOP)
5448         return error("Invalid record");
5449       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5450       if (Ordering == AtomicOrdering::NotAtomic ||
5451           Ordering == AtomicOrdering::Unordered)
5452         return error("Invalid record");
5453       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5454       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5455       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5456       InstructionList.push_back(I);
5457       break;
5458     }
5459     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5460       if (2 != Record.size())
5461         return error("Invalid record");
5462       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5463       if (Ordering == AtomicOrdering::NotAtomic ||
5464           Ordering == AtomicOrdering::Unordered ||
5465           Ordering == AtomicOrdering::Monotonic)
5466         return error("Invalid record");
5467       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5468       I = new FenceInst(Context, Ordering, SynchScope);
5469       InstructionList.push_back(I);
5470       break;
5471     }
5472     case bitc::FUNC_CODE_INST_CALL: {
5473       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5474       if (Record.size() < 3)
5475         return error("Invalid record");
5476 
5477       unsigned OpNum = 0;
5478       AttributeSet PAL = getAttributes(Record[OpNum++]);
5479       unsigned CCInfo = Record[OpNum++];
5480 
5481       FastMathFlags FMF;
5482       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5483         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5484         if (!FMF.any())
5485           return error("Fast math flags indicator set for call with no FMF");
5486       }
5487 
5488       FunctionType *FTy = nullptr;
5489       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5490           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5491         return error("Explicit call type is not a function type");
5492 
5493       Value *Callee;
5494       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5495         return error("Invalid record");
5496 
5497       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5498       if (!OpTy)
5499         return error("Callee is not a pointer type");
5500       if (!FTy) {
5501         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5502         if (!FTy)
5503           return error("Callee is not of pointer to function type");
5504       } else if (OpTy->getElementType() != FTy)
5505         return error("Explicit call type does not match pointee type of "
5506                      "callee operand");
5507       if (Record.size() < FTy->getNumParams() + OpNum)
5508         return error("Insufficient operands to call");
5509 
5510       SmallVector<Value*, 16> Args;
5511       // Read the fixed params.
5512       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5513         if (FTy->getParamType(i)->isLabelTy())
5514           Args.push_back(getBasicBlock(Record[OpNum]));
5515         else
5516           Args.push_back(getValue(Record, OpNum, NextValueNo,
5517                                   FTy->getParamType(i)));
5518         if (!Args.back())
5519           return error("Invalid record");
5520       }
5521 
5522       // Read type/value pairs for varargs params.
5523       if (!FTy->isVarArg()) {
5524         if (OpNum != Record.size())
5525           return error("Invalid record");
5526       } else {
5527         while (OpNum != Record.size()) {
5528           Value *Op;
5529           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5530             return error("Invalid record");
5531           Args.push_back(Op);
5532         }
5533       }
5534 
5535       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5536       OperandBundles.clear();
5537       InstructionList.push_back(I);
5538       cast<CallInst>(I)->setCallingConv(
5539           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5540       CallInst::TailCallKind TCK = CallInst::TCK_None;
5541       if (CCInfo & 1 << bitc::CALL_TAIL)
5542         TCK = CallInst::TCK_Tail;
5543       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5544         TCK = CallInst::TCK_MustTail;
5545       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5546         TCK = CallInst::TCK_NoTail;
5547       cast<CallInst>(I)->setTailCallKind(TCK);
5548       cast<CallInst>(I)->setAttributes(PAL);
5549       if (FMF.any()) {
5550         if (!isa<FPMathOperator>(I))
5551           return error("Fast-math-flags specified for call without "
5552                        "floating-point scalar or vector return type");
5553         I->setFastMathFlags(FMF);
5554       }
5555       break;
5556     }
5557     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5558       if (Record.size() < 3)
5559         return error("Invalid record");
5560       Type *OpTy = getTypeByID(Record[0]);
5561       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5562       Type *ResTy = getTypeByID(Record[2]);
5563       if (!OpTy || !Op || !ResTy)
5564         return error("Invalid record");
5565       I = new VAArgInst(Op, ResTy);
5566       InstructionList.push_back(I);
5567       break;
5568     }
5569 
5570     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5571       // A call or an invoke can be optionally prefixed with some variable
5572       // number of operand bundle blocks.  These blocks are read into
5573       // OperandBundles and consumed at the next call or invoke instruction.
5574 
5575       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5576         return error("Invalid record");
5577 
5578       std::vector<Value *> Inputs;
5579 
5580       unsigned OpNum = 1;
5581       while (OpNum != Record.size()) {
5582         Value *Op;
5583         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5584           return error("Invalid record");
5585         Inputs.push_back(Op);
5586       }
5587 
5588       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5589       continue;
5590     }
5591     }
5592 
5593     // Add instruction to end of current BB.  If there is no current BB, reject
5594     // this file.
5595     if (!CurBB) {
5596       delete I;
5597       return error("Invalid instruction with no BB");
5598     }
5599     if (!OperandBundles.empty()) {
5600       delete I;
5601       return error("Operand bundles found with no consumer");
5602     }
5603     CurBB->getInstList().push_back(I);
5604 
5605     // If this was a terminator instruction, move to the next block.
5606     if (isa<TerminatorInst>(I)) {
5607       ++CurBBNo;
5608       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5609     }
5610 
5611     // Non-void values get registered in the value table for future use.
5612     if (I && !I->getType()->isVoidTy())
5613       ValueList.assignValue(I, NextValueNo++);
5614   }
5615 
5616 OutOfRecordLoop:
5617 
5618   if (!OperandBundles.empty())
5619     return error("Operand bundles found with no consumer");
5620 
5621   // Check the function list for unresolved values.
5622   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5623     if (!A->getParent()) {
5624       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5625       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5626         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5627           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5628           delete A;
5629         }
5630       }
5631       return error("Never resolved value found in function");
5632     }
5633   }
5634 
5635   // Unexpected unresolved metadata about to be dropped.
5636   if (MetadataList.hasFwdRefs())
5637     return error("Invalid function metadata: outgoing forward refs");
5638 
5639   // Trim the value list down to the size it was before we parsed this function.
5640   ValueList.shrinkTo(ModuleValueListSize);
5641   MetadataList.shrinkTo(ModuleMetadataListSize);
5642   std::vector<BasicBlock*>().swap(FunctionBBs);
5643   return std::error_code();
5644 }
5645 
5646 /// Find the function body in the bitcode stream
findFunctionInStream(Function * F,DenseMap<Function *,uint64_t>::iterator DeferredFunctionInfoIterator)5647 std::error_code BitcodeReader::findFunctionInStream(
5648     Function *F,
5649     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5650   while (DeferredFunctionInfoIterator->second == 0) {
5651     // This is the fallback handling for the old format bitcode that
5652     // didn't contain the function index in the VST, or when we have
5653     // an anonymous function which would not have a VST entry.
5654     // Assert that we have one of those two cases.
5655     assert(VSTOffset == 0 || !F->hasName());
5656     // Parse the next body in the stream and set its position in the
5657     // DeferredFunctionInfo map.
5658     if (std::error_code EC = rememberAndSkipFunctionBodies())
5659       return EC;
5660   }
5661   return std::error_code();
5662 }
5663 
5664 //===----------------------------------------------------------------------===//
5665 // GVMaterializer implementation
5666 //===----------------------------------------------------------------------===//
5667 
releaseBuffer()5668 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5669 
materialize(GlobalValue * GV)5670 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5671   Function *F = dyn_cast<Function>(GV);
5672   // If it's not a function or is already material, ignore the request.
5673   if (!F || !F->isMaterializable())
5674     return std::error_code();
5675 
5676   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5677   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5678   // If its position is recorded as 0, its body is somewhere in the stream
5679   // but we haven't seen it yet.
5680   if (DFII->second == 0)
5681     if (std::error_code EC = findFunctionInStream(F, DFII))
5682       return EC;
5683 
5684   // Materialize metadata before parsing any function bodies.
5685   if (std::error_code EC = materializeMetadata())
5686     return EC;
5687 
5688   // Move the bit stream to the saved position of the deferred function body.
5689   Stream.JumpToBit(DFII->second);
5690 
5691   if (std::error_code EC = parseFunctionBody(F))
5692     return EC;
5693   F->setIsMaterializable(false);
5694 
5695   if (StripDebugInfo)
5696     stripDebugInfo(*F);
5697 
5698   // Upgrade any old intrinsic calls in the function.
5699   for (auto &I : UpgradedIntrinsics) {
5700     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5701          UI != UE;) {
5702       User *U = *UI;
5703       ++UI;
5704       if (CallInst *CI = dyn_cast<CallInst>(U))
5705         UpgradeIntrinsicCall(CI, I.second);
5706     }
5707   }
5708 
5709   // Update calls to the remangled intrinsics
5710   for (auto &I : RemangledIntrinsics)
5711     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5712          UI != UE;)
5713       // Don't expect any other users than call sites
5714       CallSite(*UI++).setCalledFunction(I.second);
5715 
5716   // Finish fn->subprogram upgrade for materialized functions.
5717   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5718     F->setSubprogram(SP);
5719 
5720   // Bring in any functions that this function forward-referenced via
5721   // blockaddresses.
5722   return materializeForwardReferencedFunctions();
5723 }
5724 
materializeModule()5725 std::error_code BitcodeReader::materializeModule() {
5726   if (std::error_code EC = materializeMetadata())
5727     return EC;
5728 
5729   // Promise to materialize all forward references.
5730   WillMaterializeAllForwardRefs = true;
5731 
5732   // Iterate over the module, deserializing any functions that are still on
5733   // disk.
5734   for (Function &F : *TheModule) {
5735     if (std::error_code EC = materialize(&F))
5736       return EC;
5737   }
5738   // At this point, if there are any function bodies, parse the rest of
5739   // the bits in the module past the last function block we have recorded
5740   // through either lazy scanning or the VST.
5741   if (LastFunctionBlockBit || NextUnreadBit)
5742     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5743                                                      : NextUnreadBit);
5744 
5745   // Check that all block address forward references got resolved (as we
5746   // promised above).
5747   if (!BasicBlockFwdRefs.empty())
5748     return error("Never resolved function from blockaddress");
5749 
5750   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5751   // to prevent this instructions with TBAA tags should be upgraded first.
5752   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5753     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5754 
5755   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5756   // delete the old functions to clean up. We can't do this unless the entire
5757   // module is materialized because there could always be another function body
5758   // with calls to the old function.
5759   for (auto &I : UpgradedIntrinsics) {
5760     for (auto *U : I.first->users()) {
5761       if (CallInst *CI = dyn_cast<CallInst>(U))
5762         UpgradeIntrinsicCall(CI, I.second);
5763     }
5764     if (!I.first->use_empty())
5765       I.first->replaceAllUsesWith(I.second);
5766     I.first->eraseFromParent();
5767   }
5768   UpgradedIntrinsics.clear();
5769   // Do the same for remangled intrinsics
5770   for (auto &I : RemangledIntrinsics) {
5771     I.first->replaceAllUsesWith(I.second);
5772     I.first->eraseFromParent();
5773   }
5774   RemangledIntrinsics.clear();
5775 
5776   UpgradeDebugInfo(*TheModule);
5777 
5778   UpgradeModuleFlags(*TheModule);
5779   return std::error_code();
5780 }
5781 
getIdentifiedStructTypes() const5782 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5783   return IdentifiedStructTypes;
5784 }
5785 
5786 std::error_code
initStream(std::unique_ptr<DataStreamer> Streamer)5787 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5788   if (Streamer)
5789     return initLazyStream(std::move(Streamer));
5790   return initStreamFromBuffer();
5791 }
5792 
initStreamFromBuffer()5793 std::error_code BitcodeReader::initStreamFromBuffer() {
5794   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5795   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5796 
5797   if (Buffer->getBufferSize() & 3)
5798     return error("Invalid bitcode signature");
5799 
5800   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5801   // The magic number is 0x0B17C0DE stored in little endian.
5802   if (isBitcodeWrapper(BufPtr, BufEnd))
5803     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5804       return error("Invalid bitcode wrapper header");
5805 
5806   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5807   Stream.init(&*StreamFile);
5808 
5809   return std::error_code();
5810 }
5811 
5812 std::error_code
initLazyStream(std::unique_ptr<DataStreamer> Streamer)5813 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5814   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5815   // see it.
5816   auto OwnedBytes =
5817       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5818   StreamingMemoryObject &Bytes = *OwnedBytes;
5819   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5820   Stream.init(&*StreamFile);
5821 
5822   unsigned char buf[16];
5823   if (Bytes.readBytes(buf, 16, 0) != 16)
5824     return error("Invalid bitcode signature");
5825 
5826   if (!isBitcode(buf, buf + 16))
5827     return error("Invalid bitcode signature");
5828 
5829   if (isBitcodeWrapper(buf, buf + 4)) {
5830     const unsigned char *bitcodeStart = buf;
5831     const unsigned char *bitcodeEnd = buf + 16;
5832     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5833     Bytes.dropLeadingBytes(bitcodeStart - buf);
5834     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5835   }
5836   return std::error_code();
5837 }
5838 
error(const Twine & Message)5839 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5840   return ::error(DiagnosticHandler,
5841                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5842 }
5843 
ModuleSummaryIndexBitcodeReader(MemoryBuffer * Buffer,DiagnosticHandlerFunction DiagnosticHandler,bool CheckGlobalValSummaryPresenceOnly)5844 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5845     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5846     bool CheckGlobalValSummaryPresenceOnly)
5847     : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer),
5848       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5849 
freeState()5850 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5851 
releaseBuffer()5852 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5853 
5854 std::pair<GlobalValue::GUID, GlobalValue::GUID>
getGUIDFromValueId(unsigned ValueId)5855 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5856   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5857   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5858   return VGI->second;
5859 }
5860 
5861 // Specialized value symbol table parser used when reading module index
5862 // blocks where we don't actually create global values. The parsed information
5863 // is saved in the bitcode reader for use when later parsing summaries.
parseValueSymbolTable(uint64_t Offset,DenseMap<unsigned,GlobalValue::LinkageTypes> & ValueIdToLinkageMap)5864 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5865     uint64_t Offset,
5866     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5867   assert(Offset > 0 && "Expected non-zero VST offset");
5868   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5869 
5870   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5871     return error("Invalid record");
5872 
5873   SmallVector<uint64_t, 64> Record;
5874 
5875   // Read all the records for this value table.
5876   SmallString<128> ValueName;
5877   while (1) {
5878     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5879 
5880     switch (Entry.Kind) {
5881     case BitstreamEntry::SubBlock: // Handled for us already.
5882     case BitstreamEntry::Error:
5883       return error("Malformed block");
5884     case BitstreamEntry::EndBlock:
5885       // Done parsing VST, jump back to wherever we came from.
5886       Stream.JumpToBit(CurrentBit);
5887       return std::error_code();
5888     case BitstreamEntry::Record:
5889       // The interesting case.
5890       break;
5891     }
5892 
5893     // Read a record.
5894     Record.clear();
5895     switch (Stream.readRecord(Entry.ID, Record)) {
5896     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5897       break;
5898     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5899       if (convertToString(Record, 1, ValueName))
5900         return error("Invalid record");
5901       unsigned ValueID = Record[0];
5902       assert(!SourceFileName.empty());
5903       auto VLI = ValueIdToLinkageMap.find(ValueID);
5904       assert(VLI != ValueIdToLinkageMap.end() &&
5905              "No linkage found for VST entry?");
5906       auto Linkage = VLI->second;
5907       std::string GlobalId =
5908           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5909       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5910       auto OriginalNameID = ValueGUID;
5911       if (GlobalValue::isLocalLinkage(Linkage))
5912         OriginalNameID = GlobalValue::getGUID(ValueName);
5913       if (PrintSummaryGUIDs)
5914         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5915                << ValueName << "\n";
5916       ValueIdToCallGraphGUIDMap[ValueID] =
5917           std::make_pair(ValueGUID, OriginalNameID);
5918       ValueName.clear();
5919       break;
5920     }
5921     case bitc::VST_CODE_FNENTRY: {
5922       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5923       if (convertToString(Record, 2, ValueName))
5924         return error("Invalid record");
5925       unsigned ValueID = Record[0];
5926       assert(!SourceFileName.empty());
5927       auto VLI = ValueIdToLinkageMap.find(ValueID);
5928       assert(VLI != ValueIdToLinkageMap.end() &&
5929              "No linkage found for VST entry?");
5930       auto Linkage = VLI->second;
5931       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5932           ValueName, VLI->second, SourceFileName);
5933       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5934       auto OriginalNameID = FunctionGUID;
5935       if (GlobalValue::isLocalLinkage(Linkage))
5936         OriginalNameID = GlobalValue::getGUID(ValueName);
5937       if (PrintSummaryGUIDs)
5938         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5939                << ValueName << "\n";
5940       ValueIdToCallGraphGUIDMap[ValueID] =
5941           std::make_pair(FunctionGUID, OriginalNameID);
5942 
5943       ValueName.clear();
5944       break;
5945     }
5946     case bitc::VST_CODE_COMBINED_ENTRY: {
5947       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5948       unsigned ValueID = Record[0];
5949       GlobalValue::GUID RefGUID = Record[1];
5950       // The "original name", which is the second value of the pair will be
5951       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5952       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5953       break;
5954     }
5955     }
5956   }
5957 }
5958 
5959 // Parse just the blocks needed for building the index out of the module.
5960 // At the end of this routine the module Index is populated with a map
5961 // from global value id to GlobalValueSummary objects.
parseModule()5962 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5963   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5964     return error("Invalid record");
5965 
5966   SmallVector<uint64_t, 64> Record;
5967   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5968   unsigned ValueId = 0;
5969 
5970   // Read the index for this module.
5971   while (1) {
5972     BitstreamEntry Entry = Stream.advance();
5973 
5974     switch (Entry.Kind) {
5975     case BitstreamEntry::Error:
5976       return error("Malformed block");
5977     case BitstreamEntry::EndBlock:
5978       return std::error_code();
5979 
5980     case BitstreamEntry::SubBlock:
5981       if (CheckGlobalValSummaryPresenceOnly) {
5982         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5983           SeenGlobalValSummary = true;
5984           // No need to parse the rest since we found the summary.
5985           return std::error_code();
5986         }
5987         if (Stream.SkipBlock())
5988           return error("Invalid record");
5989         continue;
5990       }
5991       switch (Entry.ID) {
5992       default: // Skip unknown content.
5993         if (Stream.SkipBlock())
5994           return error("Invalid record");
5995         break;
5996       case bitc::BLOCKINFO_BLOCK_ID:
5997         // Need to parse these to get abbrev ids (e.g. for VST)
5998         if (Stream.ReadBlockInfoBlock())
5999           return error("Malformed block");
6000         break;
6001       case bitc::VALUE_SYMTAB_BLOCK_ID:
6002         // Should have been parsed earlier via VSTOffset, unless there
6003         // is no summary section.
6004         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6005                 !SeenGlobalValSummary) &&
6006                "Expected early VST parse via VSTOffset record");
6007         if (Stream.SkipBlock())
6008           return error("Invalid record");
6009         break;
6010       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6011         assert(VSTOffset > 0 && "Expected non-zero VST offset");
6012         assert(!SeenValueSymbolTable &&
6013                "Already read VST when parsing summary block?");
6014         if (std::error_code EC =
6015                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6016           return EC;
6017         SeenValueSymbolTable = true;
6018         SeenGlobalValSummary = true;
6019         if (std::error_code EC = parseEntireSummary())
6020           return EC;
6021         break;
6022       case bitc::MODULE_STRTAB_BLOCK_ID:
6023         if (std::error_code EC = parseModuleStringTable())
6024           return EC;
6025         break;
6026       }
6027       continue;
6028 
6029     case BitstreamEntry::Record: {
6030         Record.clear();
6031         auto BitCode = Stream.readRecord(Entry.ID, Record);
6032         switch (BitCode) {
6033         default:
6034           break; // Default behavior, ignore unknown content.
6035         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6036         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6037           SmallString<128> ValueName;
6038           if (convertToString(Record, 0, ValueName))
6039             return error("Invalid record");
6040           SourceFileName = ValueName.c_str();
6041           break;
6042         }
6043         /// MODULE_CODE_HASH: [5*i32]
6044         case bitc::MODULE_CODE_HASH: {
6045           if (Record.size() != 5)
6046             return error("Invalid hash length " + Twine(Record.size()).str());
6047           if (!TheIndex)
6048             break;
6049           if (TheIndex->modulePaths().empty())
6050             // Does not have any summary emitted.
6051             break;
6052           if (TheIndex->modulePaths().size() != 1)
6053             return error("Don't expect multiple modules defined?");
6054           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6055           int Pos = 0;
6056           for (auto &Val : Record) {
6057             assert(!(Val >> 32) && "Unexpected high bits set");
6058             Hash[Pos++] = Val;
6059           }
6060           break;
6061         }
6062         /// MODULE_CODE_VSTOFFSET: [offset]
6063         case bitc::MODULE_CODE_VSTOFFSET:
6064           if (Record.size() < 1)
6065             return error("Invalid record");
6066           VSTOffset = Record[0];
6067           break;
6068         // GLOBALVAR: [pointer type, isconst, initid,
6069         //             linkage, alignment, section, visibility, threadlocal,
6070         //             unnamed_addr, externally_initialized, dllstorageclass,
6071         //             comdat]
6072         case bitc::MODULE_CODE_GLOBALVAR: {
6073           if (Record.size() < 6)
6074             return error("Invalid record");
6075           uint64_t RawLinkage = Record[3];
6076           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6077           ValueIdToLinkageMap[ValueId++] = Linkage;
6078           break;
6079         }
6080         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6081         //             alignment, section, visibility, gc, unnamed_addr,
6082         //             prologuedata, dllstorageclass, comdat, prefixdata]
6083         case bitc::MODULE_CODE_FUNCTION: {
6084           if (Record.size() < 8)
6085             return error("Invalid record");
6086           uint64_t RawLinkage = Record[3];
6087           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6088           ValueIdToLinkageMap[ValueId++] = Linkage;
6089           break;
6090         }
6091         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6092         // dllstorageclass]
6093         case bitc::MODULE_CODE_ALIAS: {
6094           if (Record.size() < 6)
6095             return error("Invalid record");
6096           uint64_t RawLinkage = Record[3];
6097           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6098           ValueIdToLinkageMap[ValueId++] = Linkage;
6099           break;
6100         }
6101         }
6102       }
6103       continue;
6104     }
6105   }
6106 }
6107 
6108 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6109 // objects in the index.
parseEntireSummary()6110 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6111   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6112     return error("Invalid record");
6113   SmallVector<uint64_t, 64> Record;
6114 
6115   // Parse version
6116   {
6117     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6118     if (Entry.Kind != BitstreamEntry::Record)
6119       return error("Invalid Summary Block: record for version expected");
6120     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6121       return error("Invalid Summary Block: version expected");
6122   }
6123   const uint64_t Version = Record[0];
6124   if (Version != 1)
6125     return error("Invalid summary version " + Twine(Version) + ", 1 expected");
6126   Record.clear();
6127 
6128   // Keep around the last seen summary to be used when we see an optional
6129   // "OriginalName" attachement.
6130   GlobalValueSummary *LastSeenSummary = nullptr;
6131   bool Combined = false;
6132   while (1) {
6133     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6134 
6135     switch (Entry.Kind) {
6136     case BitstreamEntry::SubBlock: // Handled for us already.
6137     case BitstreamEntry::Error:
6138       return error("Malformed block");
6139     case BitstreamEntry::EndBlock:
6140       // For a per-module index, remove any entries that still have empty
6141       // summaries. The VST parsing creates entries eagerly for all symbols,
6142       // but not all have associated summaries (e.g. it doesn't know how to
6143       // distinguish between VST_CODE_ENTRY for function declarations vs global
6144       // variables with initializers that end up with a summary). Remove those
6145       // entries now so that we don't need to rely on the combined index merger
6146       // to clean them up (especially since that may not run for the first
6147       // module's index if we merge into that).
6148       if (!Combined)
6149         TheIndex->removeEmptySummaryEntries();
6150       return std::error_code();
6151     case BitstreamEntry::Record:
6152       // The interesting case.
6153       break;
6154     }
6155 
6156     // Read a record. The record format depends on whether this
6157     // is a per-module index or a combined index file. In the per-module
6158     // case the records contain the associated value's ID for correlation
6159     // with VST entries. In the combined index the correlation is done
6160     // via the bitcode offset of the summary records (which were saved
6161     // in the combined index VST entries). The records also contain
6162     // information used for ThinLTO renaming and importing.
6163     Record.clear();
6164     auto BitCode = Stream.readRecord(Entry.ID, Record);
6165     switch (BitCode) {
6166     default: // Default behavior: ignore.
6167       break;
6168     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6169     //                n x (valueid, callsitecount)]
6170     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6171     //                        numrefs x valueid,
6172     //                        n x (valueid, callsitecount, profilecount)]
6173     case bitc::FS_PERMODULE:
6174     case bitc::FS_PERMODULE_PROFILE: {
6175       unsigned ValueID = Record[0];
6176       uint64_t RawFlags = Record[1];
6177       unsigned InstCount = Record[2];
6178       unsigned NumRefs = Record[3];
6179       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6180       std::unique_ptr<FunctionSummary> FS =
6181           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6182       // The module path string ref set in the summary must be owned by the
6183       // index's module string table. Since we don't have a module path
6184       // string table section in the per-module index, we create a single
6185       // module path string table entry with an empty (0) ID to take
6186       // ownership.
6187       FS->setModulePath(
6188           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6189       static int RefListStartIndex = 4;
6190       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6191       assert(Record.size() >= RefListStartIndex + NumRefs &&
6192              "Record size inconsistent with number of references");
6193       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6194         unsigned RefValueId = Record[I];
6195         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6196         FS->addRefEdge(RefGUID);
6197       }
6198       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6199       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6200            ++I) {
6201         unsigned CalleeValueId = Record[I];
6202         unsigned CallsiteCount = Record[++I];
6203         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6204         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6205         FS->addCallGraphEdge(CalleeGUID,
6206                              CalleeInfo(CallsiteCount, ProfileCount));
6207       }
6208       auto GUID = getGUIDFromValueId(ValueID);
6209       FS->setOriginalName(GUID.second);
6210       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6211       break;
6212     }
6213     // FS_ALIAS: [valueid, flags, valueid]
6214     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6215     // they expect all aliasee summaries to be available.
6216     case bitc::FS_ALIAS: {
6217       unsigned ValueID = Record[0];
6218       uint64_t RawFlags = Record[1];
6219       unsigned AliaseeID = Record[2];
6220       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6221       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6222       // The module path string ref set in the summary must be owned by the
6223       // index's module string table. Since we don't have a module path
6224       // string table section in the per-module index, we create a single
6225       // module path string table entry with an empty (0) ID to take
6226       // ownership.
6227       AS->setModulePath(
6228           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6229 
6230       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6231       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6232       if (!AliaseeSummary)
6233         return error("Alias expects aliasee summary to be parsed");
6234       AS->setAliasee(AliaseeSummary);
6235 
6236       auto GUID = getGUIDFromValueId(ValueID);
6237       AS->setOriginalName(GUID.second);
6238       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6239       break;
6240     }
6241     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6242     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6243       unsigned ValueID = Record[0];
6244       uint64_t RawFlags = Record[1];
6245       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6246       std::unique_ptr<GlobalVarSummary> FS =
6247           llvm::make_unique<GlobalVarSummary>(Flags);
6248       FS->setModulePath(
6249           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6250       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6251         unsigned RefValueId = Record[I];
6252         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6253         FS->addRefEdge(RefGUID);
6254       }
6255       auto GUID = getGUIDFromValueId(ValueID);
6256       FS->setOriginalName(GUID.second);
6257       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6258       break;
6259     }
6260     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6261     //               numrefs x valueid, n x (valueid, callsitecount)]
6262     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6263     //                       numrefs x valueid,
6264     //                       n x (valueid, callsitecount, profilecount)]
6265     case bitc::FS_COMBINED:
6266     case bitc::FS_COMBINED_PROFILE: {
6267       unsigned ValueID = Record[0];
6268       uint64_t ModuleId = Record[1];
6269       uint64_t RawFlags = Record[2];
6270       unsigned InstCount = Record[3];
6271       unsigned NumRefs = Record[4];
6272       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6273       std::unique_ptr<FunctionSummary> FS =
6274           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6275       LastSeenSummary = FS.get();
6276       FS->setModulePath(ModuleIdMap[ModuleId]);
6277       static int RefListStartIndex = 5;
6278       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6279       assert(Record.size() >= RefListStartIndex + NumRefs &&
6280              "Record size inconsistent with number of references");
6281       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6282            ++I) {
6283         unsigned RefValueId = Record[I];
6284         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6285         FS->addRefEdge(RefGUID);
6286       }
6287       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6288       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6289            ++I) {
6290         unsigned CalleeValueId = Record[I];
6291         unsigned CallsiteCount = Record[++I];
6292         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6293         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6294         FS->addCallGraphEdge(CalleeGUID,
6295                              CalleeInfo(CallsiteCount, ProfileCount));
6296       }
6297       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6298       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6299       Combined = true;
6300       break;
6301     }
6302     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6303     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6304     // they expect all aliasee summaries to be available.
6305     case bitc::FS_COMBINED_ALIAS: {
6306       unsigned ValueID = Record[0];
6307       uint64_t ModuleId = Record[1];
6308       uint64_t RawFlags = Record[2];
6309       unsigned AliaseeValueId = Record[3];
6310       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6311       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6312       LastSeenSummary = AS.get();
6313       AS->setModulePath(ModuleIdMap[ModuleId]);
6314 
6315       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6316       auto AliaseeInModule =
6317           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6318       if (!AliaseeInModule)
6319         return error("Alias expects aliasee summary to be parsed");
6320       AS->setAliasee(AliaseeInModule);
6321 
6322       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6323       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6324       Combined = true;
6325       break;
6326     }
6327     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6328     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6329       unsigned ValueID = Record[0];
6330       uint64_t ModuleId = Record[1];
6331       uint64_t RawFlags = Record[2];
6332       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6333       std::unique_ptr<GlobalVarSummary> FS =
6334           llvm::make_unique<GlobalVarSummary>(Flags);
6335       LastSeenSummary = FS.get();
6336       FS->setModulePath(ModuleIdMap[ModuleId]);
6337       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6338         unsigned RefValueId = Record[I];
6339         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6340         FS->addRefEdge(RefGUID);
6341       }
6342       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6343       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6344       Combined = true;
6345       break;
6346     }
6347     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6348     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6349       uint64_t OriginalName = Record[0];
6350       if (!LastSeenSummary)
6351         return error("Name attachment that does not follow a combined record");
6352       LastSeenSummary->setOriginalName(OriginalName);
6353       // Reset the LastSeenSummary
6354       LastSeenSummary = nullptr;
6355     }
6356     }
6357   }
6358   llvm_unreachable("Exit infinite loop");
6359 }
6360 
6361 // Parse the  module string table block into the Index.
6362 // This populates the ModulePathStringTable map in the index.
parseModuleStringTable()6363 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6364   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6365     return error("Invalid record");
6366 
6367   SmallVector<uint64_t, 64> Record;
6368 
6369   SmallString<128> ModulePath;
6370   ModulePathStringTableTy::iterator LastSeenModulePath;
6371   while (1) {
6372     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6373 
6374     switch (Entry.Kind) {
6375     case BitstreamEntry::SubBlock: // Handled for us already.
6376     case BitstreamEntry::Error:
6377       return error("Malformed block");
6378     case BitstreamEntry::EndBlock:
6379       return std::error_code();
6380     case BitstreamEntry::Record:
6381       // The interesting case.
6382       break;
6383     }
6384 
6385     Record.clear();
6386     switch (Stream.readRecord(Entry.ID, Record)) {
6387     default: // Default behavior: ignore.
6388       break;
6389     case bitc::MST_CODE_ENTRY: {
6390       // MST_ENTRY: [modid, namechar x N]
6391       uint64_t ModuleId = Record[0];
6392 
6393       if (convertToString(Record, 1, ModulePath))
6394         return error("Invalid record");
6395 
6396       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6397       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6398 
6399       ModulePath.clear();
6400       break;
6401     }
6402     /// MST_CODE_HASH: [5*i32]
6403     case bitc::MST_CODE_HASH: {
6404       if (Record.size() != 5)
6405         return error("Invalid hash length " + Twine(Record.size()).str());
6406       if (LastSeenModulePath == TheIndex->modulePaths().end())
6407         return error("Invalid hash that does not follow a module path");
6408       int Pos = 0;
6409       for (auto &Val : Record) {
6410         assert(!(Val >> 32) && "Unexpected high bits set");
6411         LastSeenModulePath->second.second[Pos++] = Val;
6412       }
6413       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6414       LastSeenModulePath = TheIndex->modulePaths().end();
6415       break;
6416     }
6417     }
6418   }
6419   llvm_unreachable("Exit infinite loop");
6420 }
6421 
6422 // Parse the function info index from the bitcode streamer into the given index.
parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,ModuleSummaryIndex * I)6423 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6424     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6425   TheIndex = I;
6426 
6427   if (std::error_code EC = initStream(std::move(Streamer)))
6428     return EC;
6429 
6430   // Sniff for the signature.
6431   if (!hasValidBitcodeHeader(Stream))
6432     return error("Invalid bitcode signature");
6433 
6434   // We expect a number of well-defined blocks, though we don't necessarily
6435   // need to understand them all.
6436   while (1) {
6437     if (Stream.AtEndOfStream()) {
6438       // We didn't really read a proper Module block.
6439       return error("Malformed block");
6440     }
6441 
6442     BitstreamEntry Entry =
6443         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6444 
6445     if (Entry.Kind != BitstreamEntry::SubBlock)
6446       return error("Malformed block");
6447 
6448     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6449     // building the function summary index.
6450     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6451       return parseModule();
6452 
6453     if (Stream.SkipBlock())
6454       return error("Invalid record");
6455   }
6456 }
6457 
initStream(std::unique_ptr<DataStreamer> Streamer)6458 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6459     std::unique_ptr<DataStreamer> Streamer) {
6460   if (Streamer)
6461     return initLazyStream(std::move(Streamer));
6462   return initStreamFromBuffer();
6463 }
6464 
initStreamFromBuffer()6465 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6466   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6467   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6468 
6469   if (Buffer->getBufferSize() & 3)
6470     return error("Invalid bitcode signature");
6471 
6472   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6473   // The magic number is 0x0B17C0DE stored in little endian.
6474   if (isBitcodeWrapper(BufPtr, BufEnd))
6475     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6476       return error("Invalid bitcode wrapper header");
6477 
6478   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6479   Stream.init(&*StreamFile);
6480 
6481   return std::error_code();
6482 }
6483 
initLazyStream(std::unique_ptr<DataStreamer> Streamer)6484 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6485     std::unique_ptr<DataStreamer> Streamer) {
6486   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6487   // see it.
6488   auto OwnedBytes =
6489       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6490   StreamingMemoryObject &Bytes = *OwnedBytes;
6491   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6492   Stream.init(&*StreamFile);
6493 
6494   unsigned char buf[16];
6495   if (Bytes.readBytes(buf, 16, 0) != 16)
6496     return error("Invalid bitcode signature");
6497 
6498   if (!isBitcode(buf, buf + 16))
6499     return error("Invalid bitcode signature");
6500 
6501   if (isBitcodeWrapper(buf, buf + 4)) {
6502     const unsigned char *bitcodeStart = buf;
6503     const unsigned char *bitcodeEnd = buf + 16;
6504     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6505     Bytes.dropLeadingBytes(bitcodeStart - buf);
6506     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6507   }
6508   return std::error_code();
6509 }
6510 
6511 namespace {
6512 // FIXME: This class is only here to support the transition to llvm::Error. It
6513 // will be removed once this transition is complete. Clients should prefer to
6514 // deal with the Error value directly, rather than converting to error_code.
6515 class BitcodeErrorCategoryType : public std::error_category {
name() const6516   const char *name() const LLVM_NOEXCEPT override {
6517     return "llvm.bitcode";
6518   }
message(int IE) const6519   std::string message(int IE) const override {
6520     BitcodeError E = static_cast<BitcodeError>(IE);
6521     switch (E) {
6522     case BitcodeError::InvalidBitcodeSignature:
6523       return "Invalid bitcode signature";
6524     case BitcodeError::CorruptedBitcode:
6525       return "Corrupted bitcode";
6526     }
6527     llvm_unreachable("Unknown error type!");
6528   }
6529 };
6530 } // end anonymous namespace
6531 
6532 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6533 
BitcodeErrorCategory()6534 const std::error_category &llvm::BitcodeErrorCategory() {
6535   return *ErrorCategory;
6536 }
6537 
6538 //===----------------------------------------------------------------------===//
6539 // External interface
6540 //===----------------------------------------------------------------------===//
6541 
6542 static ErrorOr<std::unique_ptr<Module>>
getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer,StringRef Name,BitcodeReader * R,LLVMContext & Context,bool MaterializeAll,bool ShouldLazyLoadMetadata)6543 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6544                      BitcodeReader *R, LLVMContext &Context,
6545                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6546   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6547   M->setMaterializer(R);
6548 
6549   auto cleanupOnError = [&](std::error_code EC) {
6550     R->releaseBuffer(); // Never take ownership on error.
6551     return EC;
6552   };
6553 
6554   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6555   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6556                                                ShouldLazyLoadMetadata))
6557     return cleanupOnError(EC);
6558 
6559   if (MaterializeAll) {
6560     // Read in the entire module, and destroy the BitcodeReader.
6561     if (std::error_code EC = M->materializeAll())
6562       return cleanupOnError(EC);
6563   } else {
6564     // Resolve forward references from blockaddresses.
6565     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6566       return cleanupOnError(EC);
6567   }
6568   return std::move(M);
6569 }
6570 
6571 /// \brief Get a lazy one-at-time loading module from bitcode.
6572 ///
6573 /// This isn't always used in a lazy context.  In particular, it's also used by
6574 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6575 /// in forward-referenced functions from block address references.
6576 ///
6577 /// \param[in] MaterializeAll Set to \c true if we should materialize
6578 /// everything.
6579 static ErrorOr<std::unique_ptr<Module>>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool MaterializeAll,bool ShouldLazyLoadMetadata=false)6580 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6581                          LLVMContext &Context, bool MaterializeAll,
6582                          bool ShouldLazyLoadMetadata = false) {
6583   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6584 
6585   ErrorOr<std::unique_ptr<Module>> Ret =
6586       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6587                            MaterializeAll, ShouldLazyLoadMetadata);
6588   if (!Ret)
6589     return Ret;
6590 
6591   Buffer.release(); // The BitcodeReader owns it now.
6592   return Ret;
6593 }
6594 
6595 ErrorOr<std::unique_ptr<Module>>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool ShouldLazyLoadMetadata)6596 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6597                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6598   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6599                                   ShouldLazyLoadMetadata);
6600 }
6601 
6602 ErrorOr<std::unique_ptr<Module>>
getStreamedBitcodeModule(StringRef Name,std::unique_ptr<DataStreamer> Streamer,LLVMContext & Context)6603 llvm::getStreamedBitcodeModule(StringRef Name,
6604                                std::unique_ptr<DataStreamer> Streamer,
6605                                LLVMContext &Context) {
6606   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6607   BitcodeReader *R = new BitcodeReader(Context);
6608 
6609   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6610                               false);
6611 }
6612 
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context)6613 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6614                                                         LLVMContext &Context) {
6615   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6616   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6617   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6618   // written.  We must defer until the Module has been fully materialized.
6619 }
6620 
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context)6621 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6622                                          LLVMContext &Context) {
6623   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6624   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6625   ErrorOr<std::string> Triple = R->parseTriple();
6626   if (Triple.getError())
6627     return "";
6628   return Triple.get();
6629 }
6630 
isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,LLVMContext & Context)6631 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
6632                                            LLVMContext &Context) {
6633   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6634   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6635   ErrorOr<bool> hasObjCCategory = R->hasObjCCategory();
6636   if (hasObjCCategory.getError())
6637     return false;
6638   return hasObjCCategory.get();
6639 }
6640 
getBitcodeProducerString(MemoryBufferRef Buffer,LLVMContext & Context)6641 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6642                                            LLVMContext &Context) {
6643   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6644   BitcodeReader R(Buf.release(), Context);
6645   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6646   if (ProducerString.getError())
6647     return "";
6648   return ProducerString.get();
6649 }
6650 
6651 // Parse the specified bitcode buffer, returning the function info index.
getModuleSummaryIndex(MemoryBufferRef Buffer,const DiagnosticHandlerFunction & DiagnosticHandler)6652 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6653     MemoryBufferRef Buffer,
6654     const DiagnosticHandlerFunction &DiagnosticHandler) {
6655   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6656   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6657 
6658   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6659 
6660   auto cleanupOnError = [&](std::error_code EC) {
6661     R.releaseBuffer(); // Never take ownership on error.
6662     return EC;
6663   };
6664 
6665   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6666     return cleanupOnError(EC);
6667 
6668   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6669   return std::move(Index);
6670 }
6671 
6672 // Check if the given bitcode buffer contains a global value summary block.
hasGlobalValueSummary(MemoryBufferRef Buffer,const DiagnosticHandlerFunction & DiagnosticHandler)6673 bool llvm::hasGlobalValueSummary(
6674     MemoryBufferRef Buffer,
6675     const DiagnosticHandlerFunction &DiagnosticHandler) {
6676   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6677   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6678 
6679   auto cleanupOnError = [&](std::error_code EC) {
6680     R.releaseBuffer(); // Never take ownership on error.
6681     return false;
6682   };
6683 
6684   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6685     return cleanupOnError(EC);
6686 
6687   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6688   return R.foundGlobalValSummary();
6689 }
6690