• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/TargetSchedule.h - Sched Machine Model -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a wrapper around MCSchedModel that allows the interface to
11 // benefit from information currently only available in TargetInstrInfo.
12 // Ideally, the scheduling interface would be fully defined in the MC layer.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
17 #define LLVM_CODEGEN_TARGETSCHEDULE_H
18 
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/Target/TargetSubtargetInfo.h"
23 
24 namespace llvm {
25 
26 class TargetRegisterInfo;
27 class TargetSubtargetInfo;
28 class TargetInstrInfo;
29 class MachineInstr;
30 
31 /// Provide an instruction scheduling machine model to CodeGen passes.
32 class TargetSchedModel {
33   // For efficiency, hold a copy of the statically defined MCSchedModel for this
34   // processor.
35   MCSchedModel SchedModel;
36   InstrItineraryData InstrItins;
37   const TargetSubtargetInfo *STI;
38   const TargetInstrInfo *TII;
39 
40   SmallVector<unsigned, 16> ResourceFactors;
41   unsigned MicroOpFactor; // Multiply to normalize microops to resource units.
42   unsigned ResourceLCM;   // Resource units per cycle. Latency normalization factor.
43 
44   unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
45 
46 public:
TargetSchedModel()47   TargetSchedModel(): SchedModel(MCSchedModel::GetDefaultSchedModel()), STI(nullptr), TII(nullptr) {}
48 
49   /// \brief Initialize the machine model for instruction scheduling.
50   ///
51   /// The machine model API keeps a copy of the top-level MCSchedModel table
52   /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
53   /// dynamic properties.
54   void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti,
55             const TargetInstrInfo *tii);
56 
57   /// Return the MCSchedClassDesc for this instruction.
58   const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
59 
60   /// \brief TargetInstrInfo getter.
getInstrInfo()61   const TargetInstrInfo *getInstrInfo() const { return TII; }
62 
63   /// \brief Return true if this machine model includes an instruction-level
64   /// scheduling model.
65   ///
66   /// This is more detailed than the course grain IssueWidth and default
67   /// latency properties, but separate from the per-cycle itinerary data.
68   bool hasInstrSchedModel() const;
69 
getMCSchedModel()70   const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
71 
72   /// \brief Return true if this machine model includes cycle-to-cycle itinerary
73   /// data.
74   ///
75   /// This models scheduling at each stage in the processor pipeline.
76   bool hasInstrItineraries() const;
77 
getInstrItineraries()78   const InstrItineraryData *getInstrItineraries() const {
79     if (hasInstrItineraries())
80       return &InstrItins;
81     return nullptr;
82   }
83 
84   /// \brief Return true if this machine model includes an instruction-level
85   /// scheduling model or cycle-to-cycle itinerary data.
hasInstrSchedModelOrItineraries()86   bool hasInstrSchedModelOrItineraries() const {
87     return hasInstrSchedModel() || hasInstrItineraries();
88   }
89 
90   /// \brief Identify the processor corresponding to the current subtarget.
getProcessorID()91   unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
92 
93   /// \brief Maximum number of micro-ops that may be scheduled per cycle.
getIssueWidth()94   unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
95 
96   /// \brief Return the number of issue slots required for this MI.
97   unsigned getNumMicroOps(const MachineInstr *MI,
98                           const MCSchedClassDesc *SC = nullptr) const;
99 
100   /// \brief Get the number of kinds of resources for this target.
getNumProcResourceKinds()101   unsigned getNumProcResourceKinds() const {
102     return SchedModel.getNumProcResourceKinds();
103   }
104 
105   /// \brief Get a processor resource by ID for convenience.
getProcResource(unsigned PIdx)106   const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
107     return SchedModel.getProcResource(PIdx);
108   }
109 
110 #ifndef NDEBUG
getResourceName(unsigned PIdx)111   const char *getResourceName(unsigned PIdx) const {
112     if (!PIdx)
113       return "MOps";
114     return SchedModel.getProcResource(PIdx)->Name;
115   }
116 #endif
117 
118   typedef const MCWriteProcResEntry *ProcResIter;
119 
120   // \brief Get an iterator into the processor resources consumed by this
121   // scheduling class.
getWriteProcResBegin(const MCSchedClassDesc * SC)122   ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
123     // The subtarget holds a single resource table for all processors.
124     return STI->getWriteProcResBegin(SC);
125   }
getWriteProcResEnd(const MCSchedClassDesc * SC)126   ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
127     return STI->getWriteProcResEnd(SC);
128   }
129 
130   /// \brief Multiply the number of units consumed for a resource by this factor
131   /// to normalize it relative to other resources.
getResourceFactor(unsigned ResIdx)132   unsigned getResourceFactor(unsigned ResIdx) const {
133     return ResourceFactors[ResIdx];
134   }
135 
136   /// \brief Multiply number of micro-ops by this factor to normalize it
137   /// relative to other resources.
getMicroOpFactor()138   unsigned getMicroOpFactor() const {
139     return MicroOpFactor;
140   }
141 
142   /// \brief Multiply cycle count by this factor to normalize it relative to
143   /// other resources. This is the number of resource units per cycle.
getLatencyFactor()144   unsigned getLatencyFactor() const {
145     return ResourceLCM;
146   }
147 
148   /// \brief Number of micro-ops that may be buffered for OOO execution.
getMicroOpBufferSize()149   unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
150 
151   /// \brief Number of resource units that may be buffered for OOO execution.
152   /// \return The buffer size in resource units or -1 for unlimited.
getResourceBufferSize(unsigned PIdx)153   int getResourceBufferSize(unsigned PIdx) const {
154     return SchedModel.getProcResource(PIdx)->BufferSize;
155   }
156 
157   /// \brief Compute operand latency based on the available machine model.
158   ///
159   /// Compute and return the latency of the given data dependent def and use
160   /// when the operand indices are already known. UseMI may be NULL for an
161   /// unknown user.
162   unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
163                                  const MachineInstr *UseMI, unsigned UseOperIdx)
164     const;
165 
166   /// \brief Compute the instruction latency based on the available machine
167   /// model.
168   ///
169   /// Compute and return the expected latency of this instruction independent of
170   /// a particular use. computeOperandLatency is the preferred API, but this is
171   /// occasionally useful to help estimate instruction cost.
172   ///
173   /// If UseDefaultDefLatency is false and no new machine sched model is
174   /// present this method falls back to TII->getInstrLatency with an empty
175   /// instruction itinerary (this is so we preserve the previous behavior of the
176   /// if converter after moving it to TargetSchedModel).
177   unsigned computeInstrLatency(const MachineInstr *MI,
178                                bool UseDefaultDefLatency = true) const;
179   unsigned computeInstrLatency(unsigned Opcode) const;
180 
181   /// \brief Output dependency latency of a pair of defs of the same register.
182   ///
183   /// This is typically one cycle.
184   unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx,
185                                 const MachineInstr *DepMI) const;
186 };
187 
188 } // namespace llvm
189 
190 #endif
191