1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Object/COFF.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/Support/COFF.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <cctype>
23 #include <limits>
24
25 using namespace llvm;
26 using namespace object;
27
28 using support::ulittle16_t;
29 using support::ulittle32_t;
30 using support::ulittle64_t;
31 using support::little16_t;
32
33 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
35 if (M.getBufferSize() < Size) {
36 EC = object_error::unexpected_eof;
37 return false;
38 }
39 return true;
40 }
41
checkOffset(MemoryBufferRef M,uintptr_t Addr,const uint64_t Size)42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
43 const uint64_t Size) {
44 if (Addr + Size < Addr || Addr + Size < Size ||
45 Addr + Size > uintptr_t(M.getBufferEnd()) ||
46 Addr < uintptr_t(M.getBufferStart())) {
47 return object_error::unexpected_eof;
48 }
49 return std::error_code();
50 }
51
52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
53 // Returns unexpected_eof if error.
54 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
56 const void *Ptr,
57 const uint64_t Size = sizeof(T)) {
58 uintptr_t Addr = uintptr_t(Ptr);
59 if (std::error_code EC = checkOffset(M, Addr, Size))
60 return EC;
61 Obj = reinterpret_cast<const T *>(Addr);
62 return std::error_code();
63 }
64
65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
66 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
68 assert(Str.size() <= 6 && "String too long, possible overflow.");
69 if (Str.size() > 6)
70 return true;
71
72 uint64_t Value = 0;
73 while (!Str.empty()) {
74 unsigned CharVal;
75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
76 CharVal = Str[0] - 'A';
77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
78 CharVal = Str[0] - 'a' + 26;
79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
80 CharVal = Str[0] - '0' + 52;
81 else if (Str[0] == '+') // 62
82 CharVal = 62;
83 else if (Str[0] == '/') // 63
84 CharVal = 63;
85 else
86 return true;
87
88 Value = (Value * 64) + CharVal;
89 Str = Str.substr(1);
90 }
91
92 if (Value > std::numeric_limits<uint32_t>::max())
93 return true;
94
95 Result = static_cast<uint32_t>(Value);
96 return false;
97 }
98
99 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
101 const coff_symbol_type *Addr =
102 reinterpret_cast<const coff_symbol_type *>(Ref.p);
103
104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
105 #ifndef NDEBUG
106 // Verify that the symbol points to a valid entry in the symbol table.
107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
108
109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
110 "Symbol did not point to the beginning of a symbol");
111 #endif
112
113 return Addr;
114 }
115
toSec(DataRefImpl Ref) const116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
118
119 # ifndef NDEBUG
120 // Verify that the section points to a valid entry in the section table.
121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
122 report_fatal_error("Section was outside of section table.");
123
124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
125 assert(Offset % sizeof(coff_section) == 0 &&
126 "Section did not point to the beginning of a section");
127 # endif
128
129 return Addr;
130 }
131
moveSymbolNext(DataRefImpl & Ref) const132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
133 auto End = reinterpret_cast<uintptr_t>(StringTable);
134 if (SymbolTable16) {
135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
136 Symb += 1 + Symb->NumberOfAuxSymbols;
137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
138 } else if (SymbolTable32) {
139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
140 Symb += 1 + Symb->NumberOfAuxSymbols;
141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
142 } else {
143 llvm_unreachable("no symbol table pointer!");
144 }
145 }
146
getSymbolName(DataRefImpl Ref) const147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
148 COFFSymbolRef Symb = getCOFFSymbol(Ref);
149 StringRef Result;
150 std::error_code EC = getSymbolName(Symb, Result);
151 if (EC)
152 return errorCodeToError(EC);
153 return Result;
154 }
155
getSymbolValueImpl(DataRefImpl Ref) const156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
157 return getCOFFSymbol(Ref).getValue();
158 }
159
getSymbolAddress(DataRefImpl Ref) const160 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
161 uint64_t Result = getSymbolValue(Ref);
162 COFFSymbolRef Symb = getCOFFSymbol(Ref);
163 int32_t SectionNumber = Symb.getSectionNumber();
164
165 if (Symb.isAnyUndefined() || Symb.isCommon() ||
166 COFF::isReservedSectionNumber(SectionNumber))
167 return Result;
168
169 const coff_section *Section = nullptr;
170 if (std::error_code EC = getSection(SectionNumber, Section))
171 return errorCodeToError(EC);
172 Result += Section->VirtualAddress;
173
174 // The section VirtualAddress does not include ImageBase, and we want to
175 // return virtual addresses.
176 Result += getImageBase();
177
178 return Result;
179 }
180
getSymbolType(DataRefImpl Ref) const181 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
182 COFFSymbolRef Symb = getCOFFSymbol(Ref);
183 int32_t SectionNumber = Symb.getSectionNumber();
184
185 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
186 return SymbolRef::ST_Function;
187 if (Symb.isAnyUndefined())
188 return SymbolRef::ST_Unknown;
189 if (Symb.isCommon())
190 return SymbolRef::ST_Data;
191 if (Symb.isFileRecord())
192 return SymbolRef::ST_File;
193
194 // TODO: perhaps we need a new symbol type ST_Section.
195 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
196 return SymbolRef::ST_Debug;
197
198 if (!COFF::isReservedSectionNumber(SectionNumber))
199 return SymbolRef::ST_Data;
200
201 return SymbolRef::ST_Other;
202 }
203
getSymbolFlags(DataRefImpl Ref) const204 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
205 COFFSymbolRef Symb = getCOFFSymbol(Ref);
206 uint32_t Result = SymbolRef::SF_None;
207
208 if (Symb.isExternal() || Symb.isWeakExternal())
209 Result |= SymbolRef::SF_Global;
210
211 if (Symb.isWeakExternal())
212 Result |= SymbolRef::SF_Weak;
213
214 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
215 Result |= SymbolRef::SF_Absolute;
216
217 if (Symb.isFileRecord())
218 Result |= SymbolRef::SF_FormatSpecific;
219
220 if (Symb.isSectionDefinition())
221 Result |= SymbolRef::SF_FormatSpecific;
222
223 if (Symb.isCommon())
224 Result |= SymbolRef::SF_Common;
225
226 if (Symb.isAnyUndefined())
227 Result |= SymbolRef::SF_Undefined;
228
229 return Result;
230 }
231
getCommonSymbolSizeImpl(DataRefImpl Ref) const232 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
233 COFFSymbolRef Symb = getCOFFSymbol(Ref);
234 return Symb.getValue();
235 }
236
237 Expected<section_iterator>
getSymbolSection(DataRefImpl Ref) const238 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
239 COFFSymbolRef Symb = getCOFFSymbol(Ref);
240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
241 return section_end();
242 const coff_section *Sec = nullptr;
243 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
244 return errorCodeToError(EC);
245 DataRefImpl Ret;
246 Ret.p = reinterpret_cast<uintptr_t>(Sec);
247 return section_iterator(SectionRef(Ret, this));
248 }
249
getSymbolSectionID(SymbolRef Sym) const250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
252 return Symb.getSectionNumber();
253 }
254
moveSectionNext(DataRefImpl & Ref) const255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
256 const coff_section *Sec = toSec(Ref);
257 Sec += 1;
258 Ref.p = reinterpret_cast<uintptr_t>(Sec);
259 }
260
getSectionName(DataRefImpl Ref,StringRef & Result) const261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
262 StringRef &Result) const {
263 const coff_section *Sec = toSec(Ref);
264 return getSectionName(Sec, Result);
265 }
266
getSectionAddress(DataRefImpl Ref) const267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
268 const coff_section *Sec = toSec(Ref);
269 uint64_t Result = Sec->VirtualAddress;
270
271 // The section VirtualAddress does not include ImageBase, and we want to
272 // return virtual addresses.
273 Result += getImageBase();
274 return Result;
275 }
276
getSectionSize(DataRefImpl Ref) const277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
278 return getSectionSize(toSec(Ref));
279 }
280
getSectionContents(DataRefImpl Ref,StringRef & Result) const281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
282 StringRef &Result) const {
283 const coff_section *Sec = toSec(Ref);
284 ArrayRef<uint8_t> Res;
285 std::error_code EC = getSectionContents(Sec, Res);
286 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
287 return EC;
288 }
289
getSectionAlignment(DataRefImpl Ref) const290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
291 const coff_section *Sec = toSec(Ref);
292 return Sec->getAlignment();
293 }
294
isSectionCompressed(DataRefImpl Sec) const295 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
296 return false;
297 }
298
isSectionText(DataRefImpl Ref) const299 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
300 const coff_section *Sec = toSec(Ref);
301 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
302 }
303
isSectionData(DataRefImpl Ref) const304 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
305 const coff_section *Sec = toSec(Ref);
306 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
307 }
308
isSectionBSS(DataRefImpl Ref) const309 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
310 const coff_section *Sec = toSec(Ref);
311 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
312 COFF::IMAGE_SCN_MEM_READ |
313 COFF::IMAGE_SCN_MEM_WRITE;
314 return (Sec->Characteristics & BssFlags) == BssFlags;
315 }
316
getSectionID(SectionRef Sec) const317 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
318 uintptr_t Offset =
319 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
320 assert((Offset % sizeof(coff_section)) == 0);
321 return (Offset / sizeof(coff_section)) + 1;
322 }
323
isSectionVirtual(DataRefImpl Ref) const324 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
325 const coff_section *Sec = toSec(Ref);
326 // In COFF, a virtual section won't have any in-file
327 // content, so the file pointer to the content will be zero.
328 return Sec->PointerToRawData == 0;
329 }
330
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)331 static uint32_t getNumberOfRelocations(const coff_section *Sec,
332 MemoryBufferRef M, const uint8_t *base) {
333 // The field for the number of relocations in COFF section table is only
334 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
335 // NumberOfRelocations field, and the actual relocation count is stored in the
336 // VirtualAddress field in the first relocation entry.
337 if (Sec->hasExtendedRelocations()) {
338 const coff_relocation *FirstReloc;
339 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
340 base + Sec->PointerToRelocations)))
341 return 0;
342 // -1 to exclude this first relocation entry.
343 return FirstReloc->VirtualAddress - 1;
344 }
345 return Sec->NumberOfRelocations;
346 }
347
348 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)349 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
350 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
351 if (!NumRelocs)
352 return nullptr;
353 auto begin = reinterpret_cast<const coff_relocation *>(
354 Base + Sec->PointerToRelocations);
355 if (Sec->hasExtendedRelocations()) {
356 // Skip the first relocation entry repurposed to store the number of
357 // relocations.
358 begin++;
359 }
360 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
361 return nullptr;
362 return begin;
363 }
364
section_rel_begin(DataRefImpl Ref) const365 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
366 const coff_section *Sec = toSec(Ref);
367 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
368 if (begin && Sec->VirtualAddress != 0)
369 report_fatal_error("Sections with relocations should have an address of 0");
370 DataRefImpl Ret;
371 Ret.p = reinterpret_cast<uintptr_t>(begin);
372 return relocation_iterator(RelocationRef(Ret, this));
373 }
374
section_rel_end(DataRefImpl Ref) const375 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
376 const coff_section *Sec = toSec(Ref);
377 const coff_relocation *I = getFirstReloc(Sec, Data, base());
378 if (I)
379 I += getNumberOfRelocations(Sec, Data, base());
380 DataRefImpl Ret;
381 Ret.p = reinterpret_cast<uintptr_t>(I);
382 return relocation_iterator(RelocationRef(Ret, this));
383 }
384
385 // Initialize the pointer to the symbol table.
initSymbolTablePtr()386 std::error_code COFFObjectFile::initSymbolTablePtr() {
387 if (COFFHeader)
388 if (std::error_code EC = getObject(
389 SymbolTable16, Data, base() + getPointerToSymbolTable(),
390 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
391 return EC;
392
393 if (COFFBigObjHeader)
394 if (std::error_code EC = getObject(
395 SymbolTable32, Data, base() + getPointerToSymbolTable(),
396 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
397 return EC;
398
399 // Find string table. The first four byte of the string table contains the
400 // total size of the string table, including the size field itself. If the
401 // string table is empty, the value of the first four byte would be 4.
402 uint32_t StringTableOffset = getPointerToSymbolTable() +
403 getNumberOfSymbols() * getSymbolTableEntrySize();
404 const uint8_t *StringTableAddr = base() + StringTableOffset;
405 const ulittle32_t *StringTableSizePtr;
406 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
407 return EC;
408 StringTableSize = *StringTableSizePtr;
409 if (std::error_code EC =
410 getObject(StringTable, Data, StringTableAddr, StringTableSize))
411 return EC;
412
413 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
414 // tools like cvtres write a size of 0 for an empty table instead of 4.
415 if (StringTableSize < 4)
416 StringTableSize = 4;
417
418 // Check that the string table is null terminated if has any in it.
419 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
420 return object_error::parse_failed;
421 return std::error_code();
422 }
423
getImageBase() const424 uint64_t COFFObjectFile::getImageBase() const {
425 if (PE32Header)
426 return PE32Header->ImageBase;
427 else if (PE32PlusHeader)
428 return PE32PlusHeader->ImageBase;
429 // This actually comes up in practice.
430 return 0;
431 }
432
433 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const434 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
435 uint64_t ImageBase = getImageBase();
436 uint64_t Rva = Addr - ImageBase;
437 assert(Rva <= UINT32_MAX);
438 return getRvaPtr((uint32_t)Rva, Res);
439 }
440
441 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res) const442 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
443 for (const SectionRef &S : sections()) {
444 const coff_section *Section = getCOFFSection(S);
445 uint32_t SectionStart = Section->VirtualAddress;
446 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
447 if (SectionStart <= Addr && Addr < SectionEnd) {
448 uint32_t Offset = Addr - SectionStart;
449 Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
450 return std::error_code();
451 }
452 }
453 return object_error::parse_failed;
454 }
455
456 std::error_code
getRvaAndSizeAsBytes(uint32_t RVA,uint32_t Size,ArrayRef<uint8_t> & Contents) const457 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
458 ArrayRef<uint8_t> &Contents) const {
459 for (const SectionRef &S : sections()) {
460 const coff_section *Section = getCOFFSection(S);
461 uint32_t SectionStart = Section->VirtualAddress;
462 // Check if this RVA is within the section bounds. Be careful about integer
463 // overflow.
464 uint32_t OffsetIntoSection = RVA - SectionStart;
465 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
466 Size <= Section->VirtualSize - OffsetIntoSection) {
467 uintptr_t Begin =
468 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
469 Contents =
470 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
471 return std::error_code();
472 }
473 }
474 return object_error::parse_failed;
475 }
476
477 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
478 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const479 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
480 StringRef &Name) const {
481 uintptr_t IntPtr = 0;
482 if (std::error_code EC = getRvaPtr(Rva, IntPtr))
483 return EC;
484 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
485 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
486 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
487 return std::error_code();
488 }
489
getDebugPDBInfo(const debug_directory * DebugDir,const debug_pdb_info * & PDBInfo,StringRef & PDBFileName) const490 std::error_code COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
491 const debug_pdb_info *&PDBInfo,
492 StringRef &PDBFileName) const {
493 ArrayRef<uint8_t> InfoBytes;
494 if (std::error_code EC = getRvaAndSizeAsBytes(
495 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
496 return EC;
497 if (InfoBytes.size() < sizeof(debug_pdb_info) + 1)
498 return object_error::parse_failed;
499 PDBInfo = reinterpret_cast<const debug_pdb_info *>(InfoBytes.data());
500 InfoBytes = InfoBytes.drop_front(sizeof(debug_pdb_info));
501 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
502 InfoBytes.size());
503 // Truncate the name at the first null byte. Ignore any padding.
504 PDBFileName = PDBFileName.split('\0').first;
505 return std::error_code();
506 }
507
getDebugPDBInfo(const debug_pdb_info * & PDBInfo,StringRef & PDBFileName) const508 std::error_code COFFObjectFile::getDebugPDBInfo(const debug_pdb_info *&PDBInfo,
509 StringRef &PDBFileName) const {
510 for (const debug_directory &D : debug_directories())
511 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
512 return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
513 // If we get here, there is no PDB info to return.
514 PDBInfo = nullptr;
515 PDBFileName = StringRef();
516 return std::error_code();
517 }
518
519 // Find the import table.
initImportTablePtr()520 std::error_code COFFObjectFile::initImportTablePtr() {
521 // First, we get the RVA of the import table. If the file lacks a pointer to
522 // the import table, do nothing.
523 const data_directory *DataEntry;
524 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
525 return std::error_code();
526
527 // Do nothing if the pointer to import table is NULL.
528 if (DataEntry->RelativeVirtualAddress == 0)
529 return std::error_code();
530
531 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
532
533 // Find the section that contains the RVA. This is needed because the RVA is
534 // the import table's memory address which is different from its file offset.
535 uintptr_t IntPtr = 0;
536 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
537 return EC;
538 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
539 return EC;
540 ImportDirectory = reinterpret_cast<
541 const import_directory_table_entry *>(IntPtr);
542 return std::error_code();
543 }
544
545 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()546 std::error_code COFFObjectFile::initDelayImportTablePtr() {
547 const data_directory *DataEntry;
548 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
549 return std::error_code();
550 if (DataEntry->RelativeVirtualAddress == 0)
551 return std::error_code();
552
553 uint32_t RVA = DataEntry->RelativeVirtualAddress;
554 NumberOfDelayImportDirectory = DataEntry->Size /
555 sizeof(delay_import_directory_table_entry) - 1;
556
557 uintptr_t IntPtr = 0;
558 if (std::error_code EC = getRvaPtr(RVA, IntPtr))
559 return EC;
560 DelayImportDirectory = reinterpret_cast<
561 const delay_import_directory_table_entry *>(IntPtr);
562 return std::error_code();
563 }
564
565 // Find the export table.
initExportTablePtr()566 std::error_code COFFObjectFile::initExportTablePtr() {
567 // First, we get the RVA of the export table. If the file lacks a pointer to
568 // the export table, do nothing.
569 const data_directory *DataEntry;
570 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
571 return std::error_code();
572
573 // Do nothing if the pointer to export table is NULL.
574 if (DataEntry->RelativeVirtualAddress == 0)
575 return std::error_code();
576
577 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
578 uintptr_t IntPtr = 0;
579 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
580 return EC;
581 ExportDirectory =
582 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
583 return std::error_code();
584 }
585
initBaseRelocPtr()586 std::error_code COFFObjectFile::initBaseRelocPtr() {
587 const data_directory *DataEntry;
588 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
589 return std::error_code();
590 if (DataEntry->RelativeVirtualAddress == 0)
591 return std::error_code();
592
593 uintptr_t IntPtr = 0;
594 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
595 return EC;
596 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
597 IntPtr);
598 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
599 IntPtr + DataEntry->Size);
600 return std::error_code();
601 }
602
initDebugDirectoryPtr()603 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
604 // Get the RVA of the debug directory. Do nothing if it does not exist.
605 const data_directory *DataEntry;
606 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
607 return std::error_code();
608
609 // Do nothing if the RVA is NULL.
610 if (DataEntry->RelativeVirtualAddress == 0)
611 return std::error_code();
612
613 // Check that the size is a multiple of the entry size.
614 if (DataEntry->Size % sizeof(debug_directory) != 0)
615 return object_error::parse_failed;
616
617 uintptr_t IntPtr = 0;
618 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
619 return EC;
620 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
621 if (std::error_code EC = getRvaPtr(
622 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr))
623 return EC;
624 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr);
625 return std::error_code();
626 }
627
COFFObjectFile(MemoryBufferRef Object,std::error_code & EC)628 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
629 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
630 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
631 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
632 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
633 ImportDirectory(nullptr),
634 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
635 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
636 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
637 // Check that we at least have enough room for a header.
638 if (!checkSize(Data, EC, sizeof(coff_file_header)))
639 return;
640
641 // The current location in the file where we are looking at.
642 uint64_t CurPtr = 0;
643
644 // PE header is optional and is present only in executables. If it exists,
645 // it is placed right after COFF header.
646 bool HasPEHeader = false;
647
648 // Check if this is a PE/COFF file.
649 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
650 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
651 // PE signature to find 'normal' COFF header.
652 const auto *DH = reinterpret_cast<const dos_header *>(base());
653 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
654 CurPtr = DH->AddressOfNewExeHeader;
655 // Check the PE magic bytes. ("PE\0\0")
656 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
657 EC = object_error::parse_failed;
658 return;
659 }
660 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
661 HasPEHeader = true;
662 }
663 }
664
665 if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
666 return;
667
668 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
669 // import libraries share a common prefix but bigobj is more restrictive.
670 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
671 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
672 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
673 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
674 return;
675
676 // Verify that we are dealing with bigobj.
677 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
678 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
679 sizeof(COFF::BigObjMagic)) == 0) {
680 COFFHeader = nullptr;
681 CurPtr += sizeof(coff_bigobj_file_header);
682 } else {
683 // It's not a bigobj.
684 COFFBigObjHeader = nullptr;
685 }
686 }
687 if (COFFHeader) {
688 // The prior checkSize call may have failed. This isn't a hard error
689 // because we were just trying to sniff out bigobj.
690 EC = std::error_code();
691 CurPtr += sizeof(coff_file_header);
692
693 if (COFFHeader->isImportLibrary())
694 return;
695 }
696
697 if (HasPEHeader) {
698 const pe32_header *Header;
699 if ((EC = getObject(Header, Data, base() + CurPtr)))
700 return;
701
702 const uint8_t *DataDirAddr;
703 uint64_t DataDirSize;
704 if (Header->Magic == COFF::PE32Header::PE32) {
705 PE32Header = Header;
706 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
707 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
708 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
709 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
710 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
711 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
712 } else {
713 // It's neither PE32 nor PE32+.
714 EC = object_error::parse_failed;
715 return;
716 }
717 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
718 return;
719 CurPtr += COFFHeader->SizeOfOptionalHeader;
720 }
721
722 if ((EC = getObject(SectionTable, Data, base() + CurPtr,
723 (uint64_t)getNumberOfSections() * sizeof(coff_section))))
724 return;
725
726 // Initialize the pointer to the symbol table.
727 if (getPointerToSymbolTable() != 0) {
728 if ((EC = initSymbolTablePtr()))
729 return;
730 } else {
731 // We had better not have any symbols if we don't have a symbol table.
732 if (getNumberOfSymbols() != 0) {
733 EC = object_error::parse_failed;
734 return;
735 }
736 }
737
738 // Initialize the pointer to the beginning of the import table.
739 if ((EC = initImportTablePtr()))
740 return;
741 if ((EC = initDelayImportTablePtr()))
742 return;
743
744 // Initialize the pointer to the export table.
745 if ((EC = initExportTablePtr()))
746 return;
747
748 // Initialize the pointer to the base relocation table.
749 if ((EC = initBaseRelocPtr()))
750 return;
751
752 // Initialize the pointer to the export table.
753 if ((EC = initDebugDirectoryPtr()))
754 return;
755
756 EC = std::error_code();
757 }
758
symbol_begin_impl() const759 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
760 DataRefImpl Ret;
761 Ret.p = getSymbolTable();
762 return basic_symbol_iterator(SymbolRef(Ret, this));
763 }
764
symbol_end_impl() const765 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
766 // The symbol table ends where the string table begins.
767 DataRefImpl Ret;
768 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
769 return basic_symbol_iterator(SymbolRef(Ret, this));
770 }
771
import_directory_begin() const772 import_directory_iterator COFFObjectFile::import_directory_begin() const {
773 if (!ImportDirectory)
774 return import_directory_end();
775 if (ImportDirectory[0].ImportLookupTableRVA == 0)
776 return import_directory_end();
777 return import_directory_iterator(
778 ImportDirectoryEntryRef(ImportDirectory, 0, this));
779 }
780
import_directory_end() const781 import_directory_iterator COFFObjectFile::import_directory_end() const {
782 return import_directory_iterator(
783 ImportDirectoryEntryRef(nullptr, -1, this));
784 }
785
786 delay_import_directory_iterator
delay_import_directory_begin() const787 COFFObjectFile::delay_import_directory_begin() const {
788 return delay_import_directory_iterator(
789 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
790 }
791
792 delay_import_directory_iterator
delay_import_directory_end() const793 COFFObjectFile::delay_import_directory_end() const {
794 return delay_import_directory_iterator(
795 DelayImportDirectoryEntryRef(
796 DelayImportDirectory, NumberOfDelayImportDirectory, this));
797 }
798
export_directory_begin() const799 export_directory_iterator COFFObjectFile::export_directory_begin() const {
800 return export_directory_iterator(
801 ExportDirectoryEntryRef(ExportDirectory, 0, this));
802 }
803
export_directory_end() const804 export_directory_iterator COFFObjectFile::export_directory_end() const {
805 if (!ExportDirectory)
806 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
807 ExportDirectoryEntryRef Ref(ExportDirectory,
808 ExportDirectory->AddressTableEntries, this);
809 return export_directory_iterator(Ref);
810 }
811
section_begin() const812 section_iterator COFFObjectFile::section_begin() const {
813 DataRefImpl Ret;
814 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
815 return section_iterator(SectionRef(Ret, this));
816 }
817
section_end() const818 section_iterator COFFObjectFile::section_end() const {
819 DataRefImpl Ret;
820 int NumSections =
821 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
822 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
823 return section_iterator(SectionRef(Ret, this));
824 }
825
base_reloc_begin() const826 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
827 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
828 }
829
base_reloc_end() const830 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
831 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
832 }
833
getBytesInAddress() const834 uint8_t COFFObjectFile::getBytesInAddress() const {
835 return getArch() == Triple::x86_64 ? 8 : 4;
836 }
837
getFileFormatName() const838 StringRef COFFObjectFile::getFileFormatName() const {
839 switch(getMachine()) {
840 case COFF::IMAGE_FILE_MACHINE_I386:
841 return "COFF-i386";
842 case COFF::IMAGE_FILE_MACHINE_AMD64:
843 return "COFF-x86-64";
844 case COFF::IMAGE_FILE_MACHINE_ARMNT:
845 return "COFF-ARM";
846 case COFF::IMAGE_FILE_MACHINE_ARM64:
847 return "COFF-ARM64";
848 default:
849 return "COFF-<unknown arch>";
850 }
851 }
852
getArch() const853 unsigned COFFObjectFile::getArch() const {
854 switch (getMachine()) {
855 case COFF::IMAGE_FILE_MACHINE_I386:
856 return Triple::x86;
857 case COFF::IMAGE_FILE_MACHINE_AMD64:
858 return Triple::x86_64;
859 case COFF::IMAGE_FILE_MACHINE_ARMNT:
860 return Triple::thumb;
861 case COFF::IMAGE_FILE_MACHINE_ARM64:
862 return Triple::aarch64;
863 default:
864 return Triple::UnknownArch;
865 }
866 }
867
868 iterator_range<import_directory_iterator>
import_directories() const869 COFFObjectFile::import_directories() const {
870 return make_range(import_directory_begin(), import_directory_end());
871 }
872
873 iterator_range<delay_import_directory_iterator>
delay_import_directories() const874 COFFObjectFile::delay_import_directories() const {
875 return make_range(delay_import_directory_begin(),
876 delay_import_directory_end());
877 }
878
879 iterator_range<export_directory_iterator>
export_directories() const880 COFFObjectFile::export_directories() const {
881 return make_range(export_directory_begin(), export_directory_end());
882 }
883
base_relocs() const884 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
885 return make_range(base_reloc_begin(), base_reloc_end());
886 }
887
getPE32Header(const pe32_header * & Res) const888 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
889 Res = PE32Header;
890 return std::error_code();
891 }
892
893 std::error_code
getPE32PlusHeader(const pe32plus_header * & Res) const894 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
895 Res = PE32PlusHeader;
896 return std::error_code();
897 }
898
899 std::error_code
getDataDirectory(uint32_t Index,const data_directory * & Res) const900 COFFObjectFile::getDataDirectory(uint32_t Index,
901 const data_directory *&Res) const {
902 // Error if if there's no data directory or the index is out of range.
903 if (!DataDirectory) {
904 Res = nullptr;
905 return object_error::parse_failed;
906 }
907 assert(PE32Header || PE32PlusHeader);
908 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
909 : PE32PlusHeader->NumberOfRvaAndSize;
910 if (Index >= NumEnt) {
911 Res = nullptr;
912 return object_error::parse_failed;
913 }
914 Res = &DataDirectory[Index];
915 return std::error_code();
916 }
917
getSection(int32_t Index,const coff_section * & Result) const918 std::error_code COFFObjectFile::getSection(int32_t Index,
919 const coff_section *&Result) const {
920 Result = nullptr;
921 if (COFF::isReservedSectionNumber(Index))
922 return std::error_code();
923 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
924 // We already verified the section table data, so no need to check again.
925 Result = SectionTable + (Index - 1);
926 return std::error_code();
927 }
928 return object_error::parse_failed;
929 }
930
getString(uint32_t Offset,StringRef & Result) const931 std::error_code COFFObjectFile::getString(uint32_t Offset,
932 StringRef &Result) const {
933 if (StringTableSize <= 4)
934 // Tried to get a string from an empty string table.
935 return object_error::parse_failed;
936 if (Offset >= StringTableSize)
937 return object_error::unexpected_eof;
938 Result = StringRef(StringTable + Offset);
939 return std::error_code();
940 }
941
getSymbolName(COFFSymbolRef Symbol,StringRef & Res) const942 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
943 StringRef &Res) const {
944 return getSymbolName(Symbol.getGeneric(), Res);
945 }
946
getSymbolName(const coff_symbol_generic * Symbol,StringRef & Res) const947 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
948 StringRef &Res) const {
949 // Check for string table entry. First 4 bytes are 0.
950 if (Symbol->Name.Offset.Zeroes == 0) {
951 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
952 return EC;
953 return std::error_code();
954 }
955
956 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
957 // Null terminated, let ::strlen figure out the length.
958 Res = StringRef(Symbol->Name.ShortName);
959 else
960 // Not null terminated, use all 8 bytes.
961 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
962 return std::error_code();
963 }
964
965 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const966 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
967 const uint8_t *Aux = nullptr;
968
969 size_t SymbolSize = getSymbolTableEntrySize();
970 if (Symbol.getNumberOfAuxSymbols() > 0) {
971 // AUX data comes immediately after the symbol in COFF
972 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
973 # ifndef NDEBUG
974 // Verify that the Aux symbol points to a valid entry in the symbol table.
975 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
976 if (Offset < getPointerToSymbolTable() ||
977 Offset >=
978 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
979 report_fatal_error("Aux Symbol data was outside of symbol table.");
980
981 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
982 "Aux Symbol data did not point to the beginning of a symbol");
983 # endif
984 }
985 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
986 }
987
getSectionName(const coff_section * Sec,StringRef & Res) const988 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
989 StringRef &Res) const {
990 StringRef Name;
991 if (Sec->Name[COFF::NameSize - 1] == 0)
992 // Null terminated, let ::strlen figure out the length.
993 Name = Sec->Name;
994 else
995 // Not null terminated, use all 8 bytes.
996 Name = StringRef(Sec->Name, COFF::NameSize);
997
998 // Check for string table entry. First byte is '/'.
999 if (Name.startswith("/")) {
1000 uint32_t Offset;
1001 if (Name.startswith("//")) {
1002 if (decodeBase64StringEntry(Name.substr(2), Offset))
1003 return object_error::parse_failed;
1004 } else {
1005 if (Name.substr(1).getAsInteger(10, Offset))
1006 return object_error::parse_failed;
1007 }
1008 if (std::error_code EC = getString(Offset, Name))
1009 return EC;
1010 }
1011
1012 Res = Name;
1013 return std::error_code();
1014 }
1015
getSectionSize(const coff_section * Sec) const1016 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1017 // SizeOfRawData and VirtualSize change what they represent depending on
1018 // whether or not we have an executable image.
1019 //
1020 // For object files, SizeOfRawData contains the size of section's data;
1021 // VirtualSize should be zero but isn't due to buggy COFF writers.
1022 //
1023 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1024 // actual section size is in VirtualSize. It is possible for VirtualSize to
1025 // be greater than SizeOfRawData; the contents past that point should be
1026 // considered to be zero.
1027 if (getDOSHeader())
1028 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1029 return Sec->SizeOfRawData;
1030 }
1031
1032 std::error_code
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const1033 COFFObjectFile::getSectionContents(const coff_section *Sec,
1034 ArrayRef<uint8_t> &Res) const {
1035 // In COFF, a virtual section won't have any in-file
1036 // content, so the file pointer to the content will be zero.
1037 if (Sec->PointerToRawData == 0)
1038 return object_error::parse_failed;
1039 // The only thing that we need to verify is that the contents is contained
1040 // within the file bounds. We don't need to make sure it doesn't cover other
1041 // data, as there's nothing that says that is not allowed.
1042 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1043 uint32_t SectionSize = getSectionSize(Sec);
1044 if (checkOffset(Data, ConStart, SectionSize))
1045 return object_error::parse_failed;
1046 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1047 return std::error_code();
1048 }
1049
toRel(DataRefImpl Rel) const1050 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1051 return reinterpret_cast<const coff_relocation*>(Rel.p);
1052 }
1053
moveRelocationNext(DataRefImpl & Rel) const1054 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1055 Rel.p = reinterpret_cast<uintptr_t>(
1056 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1057 }
1058
getRelocationOffset(DataRefImpl Rel) const1059 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1060 const coff_relocation *R = toRel(Rel);
1061 return R->VirtualAddress;
1062 }
1063
getRelocationSymbol(DataRefImpl Rel) const1064 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1065 const coff_relocation *R = toRel(Rel);
1066 DataRefImpl Ref;
1067 if (R->SymbolTableIndex >= getNumberOfSymbols())
1068 return symbol_end();
1069 if (SymbolTable16)
1070 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1071 else if (SymbolTable32)
1072 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1073 else
1074 llvm_unreachable("no symbol table pointer!");
1075 return symbol_iterator(SymbolRef(Ref, this));
1076 }
1077
getRelocationType(DataRefImpl Rel) const1078 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1079 const coff_relocation* R = toRel(Rel);
1080 return R->Type;
1081 }
1082
1083 const coff_section *
getCOFFSection(const SectionRef & Section) const1084 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1085 return toSec(Section.getRawDataRefImpl());
1086 }
1087
getCOFFSymbol(const DataRefImpl & Ref) const1088 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1089 if (SymbolTable16)
1090 return toSymb<coff_symbol16>(Ref);
1091 if (SymbolTable32)
1092 return toSymb<coff_symbol32>(Ref);
1093 llvm_unreachable("no symbol table pointer!");
1094 }
1095
getCOFFSymbol(const SymbolRef & Symbol) const1096 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1097 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1098 }
1099
1100 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1101 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1102 return toRel(Reloc.getRawDataRefImpl());
1103 }
1104
1105 iterator_range<const coff_relocation *>
getRelocations(const coff_section * Sec) const1106 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1107 const coff_relocation *I = getFirstReloc(Sec, Data, base());
1108 const coff_relocation *E = I;
1109 if (I)
1110 E += getNumberOfRelocations(Sec, Data, base());
1111 return make_range(I, E);
1112 }
1113
1114 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1115 case COFF::reloc_type: \
1116 Res = #reloc_type; \
1117 break;
1118
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1119 void COFFObjectFile::getRelocationTypeName(
1120 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1121 const coff_relocation *Reloc = toRel(Rel);
1122 StringRef Res;
1123 switch (getMachine()) {
1124 case COFF::IMAGE_FILE_MACHINE_AMD64:
1125 switch (Reloc->Type) {
1126 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1127 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1128 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1129 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1130 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1131 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1132 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1133 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1134 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1135 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1136 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1137 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1138 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1139 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1140 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1141 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1142 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1143 default:
1144 Res = "Unknown";
1145 }
1146 break;
1147 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1148 switch (Reloc->Type) {
1149 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1150 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1151 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1152 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1164 default:
1165 Res = "Unknown";
1166 }
1167 break;
1168 case COFF::IMAGE_FILE_MACHINE_I386:
1169 switch (Reloc->Type) {
1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1181 default:
1182 Res = "Unknown";
1183 }
1184 break;
1185 default:
1186 Res = "Unknown";
1187 }
1188 Result.append(Res.begin(), Res.end());
1189 }
1190
1191 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1192
isRelocatableObject() const1193 bool COFFObjectFile::isRelocatableObject() const {
1194 return !DataDirectory;
1195 }
1196
1197 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1198 operator==(const ImportDirectoryEntryRef &Other) const {
1199 return ImportTable == Other.ImportTable && Index == Other.Index;
1200 }
1201
moveNext()1202 void ImportDirectoryEntryRef::moveNext() {
1203 ++Index;
1204 if (ImportTable[Index].ImportLookupTableRVA == 0) {
1205 Index = -1;
1206 ImportTable = nullptr;
1207 }
1208 }
1209
getImportTableEntry(const import_directory_table_entry * & Result) const1210 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1211 const import_directory_table_entry *&Result) const {
1212 return getObject(Result, OwningObject->Data, ImportTable + Index);
1213 }
1214
1215 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1216 makeImportedSymbolIterator(const COFFObjectFile *Object,
1217 uintptr_t Ptr, int Index) {
1218 if (Object->getBytesInAddress() == 4) {
1219 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1220 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1221 }
1222 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1223 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1224 }
1225
1226 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1227 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1228 uintptr_t IntPtr = 0;
1229 Object->getRvaPtr(RVA, IntPtr);
1230 return makeImportedSymbolIterator(Object, IntPtr, 0);
1231 }
1232
1233 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1234 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1235 uintptr_t IntPtr = 0;
1236 Object->getRvaPtr(RVA, IntPtr);
1237 // Forward the pointer to the last entry which is null.
1238 int Index = 0;
1239 if (Object->getBytesInAddress() == 4) {
1240 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1241 while (*Entry++)
1242 ++Index;
1243 } else {
1244 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1245 while (*Entry++)
1246 ++Index;
1247 }
1248 return makeImportedSymbolIterator(Object, IntPtr, Index);
1249 }
1250
1251 imported_symbol_iterator
imported_symbol_begin() const1252 ImportDirectoryEntryRef::imported_symbol_begin() const {
1253 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1254 OwningObject);
1255 }
1256
1257 imported_symbol_iterator
imported_symbol_end() const1258 ImportDirectoryEntryRef::imported_symbol_end() const {
1259 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1260 OwningObject);
1261 }
1262
1263 iterator_range<imported_symbol_iterator>
imported_symbols() const1264 ImportDirectoryEntryRef::imported_symbols() const {
1265 return make_range(imported_symbol_begin(), imported_symbol_end());
1266 }
1267
getName(StringRef & Result) const1268 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1269 uintptr_t IntPtr = 0;
1270 if (std::error_code EC =
1271 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1272 return EC;
1273 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1274 return std::error_code();
1275 }
1276
1277 std::error_code
getImportLookupTableRVA(uint32_t & Result) const1278 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1279 Result = ImportTable[Index].ImportLookupTableRVA;
1280 return std::error_code();
1281 }
1282
1283 std::error_code
getImportAddressTableRVA(uint32_t & Result) const1284 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1285 Result = ImportTable[Index].ImportAddressTableRVA;
1286 return std::error_code();
1287 }
1288
1289 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1290 operator==(const DelayImportDirectoryEntryRef &Other) const {
1291 return Table == Other.Table && Index == Other.Index;
1292 }
1293
moveNext()1294 void DelayImportDirectoryEntryRef::moveNext() {
1295 ++Index;
1296 }
1297
1298 imported_symbol_iterator
imported_symbol_begin() const1299 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1300 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1301 OwningObject);
1302 }
1303
1304 imported_symbol_iterator
imported_symbol_end() const1305 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1306 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1307 OwningObject);
1308 }
1309
1310 iterator_range<imported_symbol_iterator>
imported_symbols() const1311 DelayImportDirectoryEntryRef::imported_symbols() const {
1312 return make_range(imported_symbol_begin(), imported_symbol_end());
1313 }
1314
getName(StringRef & Result) const1315 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1316 uintptr_t IntPtr = 0;
1317 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1318 return EC;
1319 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1320 return std::error_code();
1321 }
1322
1323 std::error_code DelayImportDirectoryEntryRef::
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1324 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1325 Result = Table;
1326 return std::error_code();
1327 }
1328
1329 std::error_code DelayImportDirectoryEntryRef::
getImportAddress(int AddrIndex,uint64_t & Result) const1330 getImportAddress(int AddrIndex, uint64_t &Result) const {
1331 uint32_t RVA = Table[Index].DelayImportAddressTable +
1332 AddrIndex * (OwningObject->is64() ? 8 : 4);
1333 uintptr_t IntPtr = 0;
1334 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1335 return EC;
1336 if (OwningObject->is64())
1337 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1338 else
1339 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1340 return std::error_code();
1341 }
1342
1343 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1344 operator==(const ExportDirectoryEntryRef &Other) const {
1345 return ExportTable == Other.ExportTable && Index == Other.Index;
1346 }
1347
moveNext()1348 void ExportDirectoryEntryRef::moveNext() {
1349 ++Index;
1350 }
1351
1352 // Returns the name of the current export symbol. If the symbol is exported only
1353 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1354 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1355 uintptr_t IntPtr = 0;
1356 if (std::error_code EC =
1357 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1358 return EC;
1359 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1360 return std::error_code();
1361 }
1362
1363 // Returns the starting ordinal number.
1364 std::error_code
getOrdinalBase(uint32_t & Result) const1365 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1366 Result = ExportTable->OrdinalBase;
1367 return std::error_code();
1368 }
1369
1370 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1371 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1372 Result = ExportTable->OrdinalBase + Index;
1373 return std::error_code();
1374 }
1375
1376 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1377 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1378 uintptr_t IntPtr = 0;
1379 if (std::error_code EC =
1380 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1381 return EC;
1382 const export_address_table_entry *entry =
1383 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1384 Result = entry[Index].ExportRVA;
1385 return std::error_code();
1386 }
1387
1388 // Returns the name of the current export symbol. If the symbol is exported only
1389 // by ordinal, the empty string is set as a result.
1390 std::error_code
getSymbolName(StringRef & Result) const1391 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1392 uintptr_t IntPtr = 0;
1393 if (std::error_code EC =
1394 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1395 return EC;
1396 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1397
1398 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1399 int Offset = 0;
1400 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1401 I < E; ++I, ++Offset) {
1402 if (*I != Index)
1403 continue;
1404 if (std::error_code EC =
1405 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1406 return EC;
1407 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1408 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1409 return EC;
1410 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1411 return std::error_code();
1412 }
1413 Result = "";
1414 return std::error_code();
1415 }
1416
isForwarder(bool & Result) const1417 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1418 const data_directory *DataEntry;
1419 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1420 return EC;
1421 uint32_t RVA;
1422 if (auto EC = getExportRVA(RVA))
1423 return EC;
1424 uint32_t Begin = DataEntry->RelativeVirtualAddress;
1425 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1426 Result = (Begin <= RVA && RVA < End);
1427 return std::error_code();
1428 }
1429
getForwardTo(StringRef & Result) const1430 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1431 uint32_t RVA;
1432 if (auto EC = getExportRVA(RVA))
1433 return EC;
1434 uintptr_t IntPtr = 0;
1435 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1436 return EC;
1437 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1438 return std::error_code();
1439 }
1440
1441 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1442 operator==(const ImportedSymbolRef &Other) const {
1443 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1444 && Index == Other.Index;
1445 }
1446
moveNext()1447 void ImportedSymbolRef::moveNext() {
1448 ++Index;
1449 }
1450
1451 std::error_code
getSymbolName(StringRef & Result) const1452 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1453 uint32_t RVA;
1454 if (Entry32) {
1455 // If a symbol is imported only by ordinal, it has no name.
1456 if (Entry32[Index].isOrdinal())
1457 return std::error_code();
1458 RVA = Entry32[Index].getHintNameRVA();
1459 } else {
1460 if (Entry64[Index].isOrdinal())
1461 return std::error_code();
1462 RVA = Entry64[Index].getHintNameRVA();
1463 }
1464 uintptr_t IntPtr = 0;
1465 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1466 return EC;
1467 // +2 because the first two bytes is hint.
1468 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1469 return std::error_code();
1470 }
1471
isOrdinal(bool & Result) const1472 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1473 if (Entry32)
1474 Result = Entry32[Index].isOrdinal();
1475 else
1476 Result = Entry64[Index].isOrdinal();
1477 return std::error_code();
1478 }
1479
getHintNameRVA(uint32_t & Result) const1480 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1481 if (Entry32)
1482 Result = Entry32[Index].getHintNameRVA();
1483 else
1484 Result = Entry64[Index].getHintNameRVA();
1485 return std::error_code();
1486 }
1487
getOrdinal(uint16_t & Result) const1488 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1489 uint32_t RVA;
1490 if (Entry32) {
1491 if (Entry32[Index].isOrdinal()) {
1492 Result = Entry32[Index].getOrdinal();
1493 return std::error_code();
1494 }
1495 RVA = Entry32[Index].getHintNameRVA();
1496 } else {
1497 if (Entry64[Index].isOrdinal()) {
1498 Result = Entry64[Index].getOrdinal();
1499 return std::error_code();
1500 }
1501 RVA = Entry64[Index].getHintNameRVA();
1502 }
1503 uintptr_t IntPtr = 0;
1504 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1505 return EC;
1506 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1507 return std::error_code();
1508 }
1509
1510 ErrorOr<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1511 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1512 std::error_code EC;
1513 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1514 if (EC)
1515 return EC;
1516 return std::move(Ret);
1517 }
1518
operator ==(const BaseRelocRef & Other) const1519 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1520 return Header == Other.Header && Index == Other.Index;
1521 }
1522
moveNext()1523 void BaseRelocRef::moveNext() {
1524 // Header->BlockSize is the size of the current block, including the
1525 // size of the header itself.
1526 uint32_t Size = sizeof(*Header) +
1527 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1528 if (Size == Header->BlockSize) {
1529 // .reloc contains a list of base relocation blocks. Each block
1530 // consists of the header followed by entries. The header contains
1531 // how many entories will follow. When we reach the end of the
1532 // current block, proceed to the next block.
1533 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1534 reinterpret_cast<const uint8_t *>(Header) + Size);
1535 Index = 0;
1536 } else {
1537 ++Index;
1538 }
1539 }
1540
getType(uint8_t & Type) const1541 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1542 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1543 Type = Entry[Index].getType();
1544 return std::error_code();
1545 }
1546
getRVA(uint32_t & Result) const1547 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1548 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1549 Result = Header->PageRVA + Entry[Index].getOffset();
1550 return std::error_code();
1551 }
1552