• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 PDFium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Original code by Matt McCutchen, see the LICENSE file.
6 
7 #include "BigUnsigned.hh"
8 
9 // Memory management definitions have moved to the bottom of NumberlikeArray.hh.
10 
11 // The templates used by these constructors and converters are at the bottom of
12 // BigUnsigned.hh.
13 
BigUnsigned(unsigned long x)14 BigUnsigned::BigUnsigned(unsigned long  x) { initFromPrimitive      (x); }
BigUnsigned(unsigned int x)15 BigUnsigned::BigUnsigned(unsigned int   x) { initFromPrimitive      (x); }
BigUnsigned(unsigned short x)16 BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive      (x); }
BigUnsigned(long x)17 BigUnsigned::BigUnsigned(         long  x) { initFromSignedPrimitive(x); }
BigUnsigned(int x)18 BigUnsigned::BigUnsigned(         int   x) { initFromSignedPrimitive(x); }
BigUnsigned(short x)19 BigUnsigned::BigUnsigned(         short x) { initFromSignedPrimitive(x); }
20 
toUnsignedLong() const21 unsigned long  BigUnsigned::toUnsignedLong () const { return convertToPrimitive      <unsigned long >(); }
toUnsignedInt() const22 unsigned int   BigUnsigned::toUnsignedInt  () const { return convertToPrimitive      <unsigned int  >(); }
toUnsignedShort() const23 unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive      <unsigned short>(); }
toLong() const24 long           BigUnsigned::toLong         () const { return convertToSignedPrimitive<         long >(); }
toInt() const25 int            BigUnsigned::toInt          () const { return convertToSignedPrimitive<         int  >(); }
toShort() const26 short          BigUnsigned::toShort        () const { return convertToSignedPrimitive<         short>(); }
27 
28 // BIT/BLOCK ACCESSORS
29 
setBlock(Index i,Blk newBlock)30 void BigUnsigned::setBlock(Index i, Blk newBlock) {
31 	if (newBlock == 0) {
32 		if (i < len) {
33 			blk[i] = 0;
34 			zapLeadingZeros();
35 		}
36 		// If i >= len, no effect.
37 	} else {
38 		if (i >= len) {
39 			// The nonzero block extends the number.
40 			allocateAndCopy(i+1);
41 			// Zero any added blocks that we aren't setting.
42 			for (Index j = len; j < i; j++)
43 				blk[j] = 0;
44 			len = i+1;
45 		}
46 		blk[i] = newBlock;
47 	}
48 }
49 
50 /* Evidently the compiler wants BigUnsigned:: on the return type because, at
51  * that point, it hasn't yet parsed the BigUnsigned:: on the name to get the
52  * proper scope. */
bitLength() const53 BigUnsigned::Index BigUnsigned::bitLength() const {
54 	if (isZero())
55 		return 0;
56 	else {
57 		Blk leftmostBlock = getBlock(len - 1);
58 		Index leftmostBlockLen = 0;
59 		while (leftmostBlock != 0) {
60 			leftmostBlock >>= 1;
61 			leftmostBlockLen++;
62 		}
63 		return leftmostBlockLen + (len - 1) * N;
64 	}
65 }
66 
setBit(Index bi,bool newBit)67 void BigUnsigned::setBit(Index bi, bool newBit) {
68 	Index blockI = bi / N;
69 	Blk block = getBlock(blockI), mask = Blk(1) << (bi % N);
70 	block = newBit ? (block | mask) : (block & ~mask);
71 	setBlock(blockI, block);
72 }
73 
74 // COMPARISON
compareTo(const BigUnsigned & x) const75 BigUnsigned::CmpRes BigUnsigned::compareTo(const BigUnsigned &x) const {
76 	// A bigger length implies a bigger number.
77 	if (len < x.len)
78 		return less;
79 	else if (len > x.len)
80 		return greater;
81 	else {
82 		// Compare blocks one by one from left to right.
83 		Index i = len;
84 		while (i > 0) {
85 			i--;
86 			if (blk[i] == x.blk[i])
87 				continue;
88 			else if (blk[i] > x.blk[i])
89 				return greater;
90 			else
91 				return less;
92 		}
93 		// If no blocks differed, the numbers are equal.
94 		return equal;
95 	}
96 }
97 
98 // COPY-LESS OPERATIONS
99 
100 /*
101  * On most calls to copy-less operations, it's safe to read the inputs little by
102  * little and write the outputs little by little.  However, if one of the
103  * inputs is coming from the same variable into which the output is to be
104  * stored (an "aliased" call), we risk overwriting the input before we read it.
105  * In this case, we first compute the result into a temporary BigUnsigned
106  * variable and then copy it into the requested output variable *this.
107  * Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on
108  * aliased calls) to generate code for this check.
109  *
110  * I adopted this approach on 2007.02.13 (see Assignment Operators in
111  * BigUnsigned.hh).  Before then, put-here operations rejected aliased calls
112  * with an exception.  I think doing the right thing is better.
113  *
114  * Some of the put-here operations can probably handle aliased calls safely
115  * without the extra copy because (for example) they process blocks strictly
116  * right-to-left.  At some point I might determine which ones don't need the
117  * copy, but my reasoning would need to be verified very carefully.  For now
118  * I'll leave in the copy.
119  */
120 #define DTRT_ALIASED(cond, op) \
121 	if (cond) { \
122 		BigUnsigned tmpThis; \
123 		tmpThis.op; \
124 		*this = tmpThis; \
125 		return; \
126 	}
127 
128 
129 
add(const BigUnsigned & a,const BigUnsigned & b)130 void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) {
131 	DTRT_ALIASED(this == &a || this == &b, add(a, b));
132 	// If one argument is zero, copy the other.
133 	if (a.len == 0) {
134 		operator =(b);
135 		return;
136 	} else if (b.len == 0) {
137 		operator =(a);
138 		return;
139 	}
140 	// Some variables...
141 	// Carries in and out of an addition stage
142 	bool carryIn, carryOut;
143 	Blk temp;
144 	Index i;
145 	// a2 points to the longer input, b2 points to the shorter
146 	const BigUnsigned *a2, *b2;
147 	if (a.len >= b.len) {
148 		a2 = &a;
149 		b2 = &b;
150 	} else {
151 		a2 = &b;
152 		b2 = &a;
153 	}
154 	// Set prelimiary length and make room in this BigUnsigned
155 	len = a2->len + 1;
156 	allocate(len);
157 	// For each block index that is present in both inputs...
158 	for (i = 0, carryIn = false; i < b2->len; i++) {
159 		// Add input blocks
160 		temp = a2->blk[i] + b2->blk[i];
161 		// If a rollover occurred, the result is less than either input.
162 		// This test is used many times in the BigUnsigned code.
163 		carryOut = (temp < a2->blk[i]);
164 		// If a carry was input, handle it
165 		if (carryIn) {
166 			temp++;
167 			carryOut |= (temp == 0);
168 		}
169 		blk[i] = temp; // Save the addition result
170 		carryIn = carryOut; // Pass the carry along
171 	}
172 	// If there is a carry left over, increase blocks until
173 	// one does not roll over.
174 	for (; i < a2->len && carryIn; i++) {
175 		temp = a2->blk[i] + 1;
176 		carryIn = (temp == 0);
177 		blk[i] = temp;
178 	}
179 	// If the carry was resolved but the larger number
180 	// still has blocks, copy them over.
181 	for (; i < a2->len; i++)
182 		blk[i] = a2->blk[i];
183 	// Set the extra block if there's still a carry, decrease length otherwise
184 	if (carryIn)
185 		blk[i] = 1;
186 	else
187 		len--;
188 }
189 
subtract(const BigUnsigned & a,const BigUnsigned & b)190 void BigUnsigned::subtract(const BigUnsigned &a, const BigUnsigned &b) {
191 	DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
192 	if (b.len == 0) {
193 		// If b is zero, copy a.
194 		operator =(a);
195 		return;
196 	} else if (a.len < b.len)
197 		// If a is shorter than b, the result is negative.
198         abort();
199 	// Some variables...
200 	bool borrowIn, borrowOut;
201 	Blk temp;
202 	Index i;
203 	// Set preliminary length and make room
204 	len = a.len;
205 	allocate(len);
206 	// For each block index that is present in both inputs...
207 	for (i = 0, borrowIn = false; i < b.len; i++) {
208 		temp = a.blk[i] - b.blk[i];
209 		// If a reverse rollover occurred,
210 		// the result is greater than the block from a.
211 		borrowOut = (temp > a.blk[i]);
212 		// Handle an incoming borrow
213 		if (borrowIn) {
214 			borrowOut |= (temp == 0);
215 			temp--;
216 		}
217 		blk[i] = temp; // Save the subtraction result
218 		borrowIn = borrowOut; // Pass the borrow along
219 	}
220 	// If there is a borrow left over, decrease blocks until
221 	// one does not reverse rollover.
222 	for (; i < a.len && borrowIn; i++) {
223 		borrowIn = (a.blk[i] == 0);
224 		blk[i] = a.blk[i] - 1;
225 	}
226 	/* If there's still a borrow, the result is negative.
227 	 * Throw an exception, but zero out this object so as to leave it in a
228 	 * predictable state. */
229 	if (borrowIn) {
230 		len = 0;
231         abort();
232 	} else
233 		// Copy over the rest of the blocks
234 		for (; i < a.len; i++)
235 			blk[i] = a.blk[i];
236 	// Zap leading zeros
237 	zapLeadingZeros();
238 }
239 
240 /*
241  * About the multiplication and division algorithms:
242  *
243  * I searched unsucessfully for fast C++ built-in operations like the `b_0'
244  * and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer
245  * Programming'' (replace `place' by `Blk'):
246  *
247  *    ``b_0[:] multiplication of a one-place integer by another one-place
248  *      integer, giving a two-place answer;
249  *
250  *    ``c_0[:] division of a two-place integer by a one-place integer,
251  *      provided that the quotient is a one-place integer, and yielding
252  *      also a one-place remainder.''
253  *
254  * I also missed his note that ``[b]y adjusting the word size, if
255  * necessary, nearly all computers will have these three operations
256  * available'', so I gave up on trying to use algorithms similar to his.
257  * A future version of the library might include such algorithms; I
258  * would welcome contributions from others for this.
259  *
260  * I eventually decided to use bit-shifting algorithms.  To multiply `a'
261  * and `b', we zero out the result.  Then, for each `1' bit in `a', we
262  * shift `b' left the appropriate amount and add it to the result.
263  * Similarly, to divide `a' by `b', we shift `b' left varying amounts,
264  * repeatedly trying to subtract it from `a'.  When we succeed, we note
265  * the fact by setting a bit in the quotient.  While these algorithms
266  * have the same O(n^2) time complexity as Knuth's, the ``constant factor''
267  * is likely to be larger.
268  *
269  * Because I used these algorithms, which require single-block addition
270  * and subtraction rather than single-block multiplication and division,
271  * the innermost loops of all four routines are very similar.  Study one
272  * of them and all will become clear.
273  */
274 
275 /*
276  * This is a little inline function used by both the multiplication
277  * routine and the division routine.
278  *
279  * `getShiftedBlock' returns the `x'th block of `num << y'.
280  * `y' may be anything from 0 to N - 1, and `x' may be anything from
281  * 0 to `num.len'.
282  *
283  * Two things contribute to this block:
284  *
285  * (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left.
286  *
287  * (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right.
288  *
289  * But we must be careful if `x == 0' or `x == num.len', in
290  * which case we should use 0 instead of (2) or (1), respectively.
291  *
292  * If `y == 0', then (2) contributes 0, as it should.  However,
293  * in some computer environments, for a reason I cannot understand,
294  * `a >> b' means `a >> (b % N)'.  This means `num.blk[x-1] >> (N - y)'
295  * will return `num.blk[x-1]' instead of the desired 0 when `y == 0';
296  * the test `y == 0' handles this case specially.
297  */
getShiftedBlock(const BigUnsigned & num,BigUnsigned::Index x,unsigned int y)298 inline BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num,
299 	BigUnsigned::Index x, unsigned int y) {
300 	BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y));
301 	BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y);
302 	return part1 | part2;
303 }
304 
multiply(const BigUnsigned & a,const BigUnsigned & b)305 void BigUnsigned::multiply(const BigUnsigned &a, const BigUnsigned &b) {
306 	DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
307 	// If either a or b is zero, set to zero.
308 	if (a.len == 0 || b.len == 0) {
309 		len = 0;
310 		return;
311 	}
312 	/*
313 	 * Overall method:
314 	 *
315 	 * Set this = 0.
316 	 * For each 1-bit of `a' (say the `i2'th bit of block `i'):
317 	 *    Add `b << (i blocks and i2 bits)' to *this.
318 	 */
319 	// Variables for the calculation
320 	Index i, j, k;
321 	unsigned int i2;
322 	Blk temp;
323 	bool carryIn, carryOut;
324 	// Set preliminary length and make room
325 	len = a.len + b.len;
326 	allocate(len);
327 	// Zero out this object
328 	for (i = 0; i < len; i++)
329 		blk[i] = 0;
330 	// For each block of the first number...
331 	for (i = 0; i < a.len; i++) {
332 		// For each 1-bit of that block...
333 		for (i2 = 0; i2 < N; i2++) {
334 			if ((a.blk[i] & (Blk(1) << i2)) == 0)
335 				continue;
336 			/*
337 			 * Add b to this, shifted left i blocks and i2 bits.
338 			 * j is the index in b, and k = i + j is the index in this.
339 			 *
340 			 * `getShiftedBlock', a short inline function defined above,
341 			 * is now used for the bit handling.  It replaces the more
342 			 * complex `bHigh' code, in which each run of the loop dealt
343 			 * immediately with the low bits and saved the high bits to
344 			 * be picked up next time.  The last run of the loop used to
345 			 * leave leftover high bits, which were handled separately.
346 			 * Instead, this loop runs an additional time with j == b.len.
347 			 * These changes were made on 2005.01.11.
348 			 */
349 			for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) {
350 				/*
351 				 * The body of this loop is very similar to the body of the first loop
352 				 * in `add', except that this loop does a `+=' instead of a `+'.
353 				 */
354 				temp = blk[k] + getShiftedBlock(b, j, i2);
355 				carryOut = (temp < blk[k]);
356 				if (carryIn) {
357 					temp++;
358 					carryOut |= (temp == 0);
359 				}
360 				blk[k] = temp;
361 				carryIn = carryOut;
362 			}
363 			// No more extra iteration to deal with `bHigh'.
364 			// Roll-over a carry as necessary.
365 			for (; carryIn; k++) {
366 				blk[k]++;
367 				carryIn = (blk[k] == 0);
368 			}
369 		}
370 	}
371 	// Zap possible leading zero
372 	if (blk[len - 1] == 0)
373 		len--;
374 }
375 
376 /*
377  * DIVISION WITH REMAINDER
378  * This monstrous function mods *this by the given divisor b while storing the
379  * quotient in the given object q; at the end, *this contains the remainder.
380  * The seemingly bizarre pattern of inputs and outputs was chosen so that the
381  * function copies as little as possible (since it is implemented by repeated
382  * subtraction of multiples of b from *this).
383  *
384  * "modWithQuotient" might be a better name for this function, but I would
385  * rather not change the name now.
386  */
divideWithRemainder(const BigUnsigned & b,BigUnsigned & q)387 void BigUnsigned::divideWithRemainder(const BigUnsigned &b, BigUnsigned &q) {
388 	/* Defending against aliased calls is more complex than usual because we
389 	 * are writing to both *this and q.
390 	 *
391 	 * It would be silly to try to write quotient and remainder to the
392 	 * same variable.  Rule that out right away. */
393 	if (this == &q)
394         abort();
395 	/* Now *this and q are separate, so the only concern is that b might be
396 	 * aliased to one of them.  If so, use a temporary copy of b. */
397 	if (this == &b || &q == &b) {
398 		BigUnsigned tmpB(b);
399 		divideWithRemainder(tmpB, q);
400 		return;
401 	}
402 
403 	/*
404 	 * Knuth's definition of mod (which this function uses) is somewhat
405 	 * different from the C++ definition of % in case of division by 0.
406 	 *
407 	 * We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no
408 	 * exceptions thrown.  This allows us to preserve both Knuth's demand
409 	 * that a mod 0 == a and the useful property that
410 	 * (a / b) * b + (a % b) == a.
411 	 */
412 	if (b.len == 0) {
413 		q.len = 0;
414 		return;
415 	}
416 
417 	/*
418 	 * If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into
419 	 * *this at all.  The quotient is 0 and *this is already the remainder (so leave it alone).
420 	 */
421 	if (len < b.len) {
422 		q.len = 0;
423 		return;
424 	}
425 
426 	// At this point we know (*this).len >= b.len > 0.  (Whew!)
427 
428 	/*
429 	 * Overall method:
430 	 *
431 	 * For each appropriate i and i2, decreasing:
432 	 *    Subtract (b << (i blocks and i2 bits)) from *this, storing the
433 	 *      result in subtractBuf.
434 	 *    If the subtraction succeeds with a nonnegative result:
435 	 *        Turn on bit i2 of block i of the quotient q.
436 	 *        Copy subtractBuf back into *this.
437 	 *    Otherwise bit i2 of block i remains off, and *this is unchanged.
438 	 *
439 	 * Eventually q will contain the entire quotient, and *this will
440 	 * be left with the remainder.
441 	 *
442 	 * subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11.
443 	 * But on a single iteration, we don't touch the i lowest blocks of blk
444 	 * (and don't use those of subtractBuf) because these blocks are
445 	 * unaffected by the subtraction: we are subtracting
446 	 * (b << (i blocks and i2 bits)), which ends in at least `i' zero
447 	 * blocks. */
448 	// Variables for the calculation
449 	Index i, j, k;
450 	unsigned int i2;
451 	Blk temp;
452 	bool borrowIn, borrowOut;
453 
454 	/*
455 	 * Make sure we have an extra zero block just past the value.
456 	 *
457 	 * When we attempt a subtraction, we might shift `b' so
458 	 * its first block begins a few bits left of the dividend,
459 	 * and then we'll try to compare these extra bits with
460 	 * a nonexistent block to the left of the dividend.  The
461 	 * extra zero block ensures sensible behavior; we need
462 	 * an extra block in `subtractBuf' for exactly the same reason.
463 	 */
464 	Index origLen = len; // Save real length.
465 	/* To avoid an out-of-bounds access in case of reallocation, allocate
466 	 * first and then increment the logical length. */
467 	allocateAndCopy(len + 1);
468 	len++;
469 	blk[origLen] = 0; // Zero the added block.
470 
471 	// subtractBuf holds part of the result of a subtraction; see above.
472 	Blk *subtractBuf = new Blk[len];
473 
474 	// Set preliminary length for quotient and make room
475 	q.len = origLen - b.len + 1;
476 	q.allocate(q.len);
477 	// Zero out the quotient
478 	for (i = 0; i < q.len; i++)
479 		q.blk[i] = 0;
480 
481 	// For each possible left-shift of b in blocks...
482 	i = q.len;
483 	while (i > 0) {
484 		i--;
485 		// For each possible left-shift of b in bits...
486 		// (Remember, N is the number of bits in a Blk.)
487 		q.blk[i] = 0;
488 		i2 = N;
489 		while (i2 > 0) {
490 			i2--;
491 			/*
492 			 * Subtract b, shifted left i blocks and i2 bits, from *this,
493 			 * and store the answer in subtractBuf.  In the for loop, `k == i + j'.
494 			 *
495 			 * Compare this to the middle section of `multiply'.  They
496 			 * are in many ways analogous.  See especially the discussion
497 			 * of `getShiftedBlock'.
498 			 */
499 			for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) {
500 				temp = blk[k] - getShiftedBlock(b, j, i2);
501 				borrowOut = (temp > blk[k]);
502 				if (borrowIn) {
503 					borrowOut |= (temp == 0);
504 					temp--;
505 				}
506 				// Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'.
507 				subtractBuf[k] = temp;
508 				borrowIn = borrowOut;
509 			}
510 			// No more extra iteration to deal with `bHigh'.
511 			// Roll-over a borrow as necessary.
512 			for (; k < origLen && borrowIn; k++) {
513 				borrowIn = (blk[k] == 0);
514 				subtractBuf[k] = blk[k] - 1;
515 			}
516 			/*
517 			 * If the subtraction was performed successfully (!borrowIn),
518 			 * set bit i2 in block i of the quotient.
519 			 *
520 			 * Then, copy the portion of subtractBuf filled by the subtraction
521 			 * back to *this.  This portion starts with block i and ends--
522 			 * where?  Not necessarily at block `i + b.len'!  Well, we
523 			 * increased k every time we saved a block into subtractBuf, so
524 			 * the region of subtractBuf we copy is just [i, k).
525 			 */
526 			if (!borrowIn) {
527 				q.blk[i] |= (Blk(1) << i2);
528 				while (k > i) {
529 					k--;
530 					blk[k] = subtractBuf[k];
531 				}
532 			}
533 		}
534 	}
535 	// Zap possible leading zero in quotient
536 	if (q.blk[q.len - 1] == 0)
537 		q.len--;
538 	// Zap any/all leading zeros in remainder
539 	zapLeadingZeros();
540 	// Deallocate subtractBuf.
541 	// (Thanks to Brad Spencer for noticing my accidental omission of this!)
542 	delete [] subtractBuf;
543 }
544 
545 /* BITWISE OPERATORS
546  * These are straightforward blockwise operations except that they differ in
547  * the output length and the necessity of zapLeadingZeros. */
548 
bitAnd(const BigUnsigned & a,const BigUnsigned & b)549 void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) {
550 	DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b));
551 	// The bitwise & can't be longer than either operand.
552 	len = (a.len >= b.len) ? b.len : a.len;
553 	allocate(len);
554 	Index i;
555 	for (i = 0; i < len; i++)
556 		blk[i] = a.blk[i] & b.blk[i];
557 	zapLeadingZeros();
558 }
559 
bitOr(const BigUnsigned & a,const BigUnsigned & b)560 void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) {
561 	DTRT_ALIASED(this == &a || this == &b, bitOr(a, b));
562 	Index i;
563 	const BigUnsigned *a2, *b2;
564 	if (a.len >= b.len) {
565 		a2 = &a;
566 		b2 = &b;
567 	} else {
568 		a2 = &b;
569 		b2 = &a;
570 	}
571 	allocate(a2->len);
572 	for (i = 0; i < b2->len; i++)
573 		blk[i] = a2->blk[i] | b2->blk[i];
574 	for (; i < a2->len; i++)
575 		blk[i] = a2->blk[i];
576 	len = a2->len;
577 	// Doesn't need zapLeadingZeros.
578 }
579 
bitXor(const BigUnsigned & a,const BigUnsigned & b)580 void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) {
581 	DTRT_ALIASED(this == &a || this == &b, bitXor(a, b));
582 	Index i;
583 	const BigUnsigned *a2, *b2;
584 	if (a.len >= b.len) {
585 		a2 = &a;
586 		b2 = &b;
587 	} else {
588 		a2 = &b;
589 		b2 = &a;
590 	}
591 	allocate(a2->len);
592 	for (i = 0; i < b2->len; i++)
593 		blk[i] = a2->blk[i] ^ b2->blk[i];
594 	for (; i < a2->len; i++)
595 		blk[i] = a2->blk[i];
596 	len = a2->len;
597 	zapLeadingZeros();
598 }
599 
bitShiftLeft(const BigUnsigned & a,int b)600 void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) {
601 	DTRT_ALIASED(this == &a, bitShiftLeft(a, b));
602 	if (b < 0) {
603 		if (b << 1 == 0)
604             abort();
605 		else {
606 			bitShiftRight(a, -b);
607 			return;
608 		}
609 	}
610 	Index shiftBlocks = b / N;
611 	unsigned int shiftBits = b % N;
612 	// + 1: room for high bits nudged left into another block
613 	len = a.len + shiftBlocks + 1;
614 	allocate(len);
615 	Index i, j;
616 	for (i = 0; i < shiftBlocks; i++)
617 		blk[i] = 0;
618 	for (j = 0, i = shiftBlocks; j <= a.len; j++, i++)
619 		blk[i] = getShiftedBlock(a, j, shiftBits);
620 	// Zap possible leading zero
621 	if (blk[len - 1] == 0)
622 		len--;
623 }
624 
bitShiftRight(const BigUnsigned & a,int b)625 void BigUnsigned::bitShiftRight(const BigUnsigned &a, int b) {
626 	DTRT_ALIASED(this == &a, bitShiftRight(a, b));
627 	if (b < 0) {
628 		if (b << 1 == 0)
629             abort();
630 		else {
631 			bitShiftLeft(a, -b);
632 			return;
633 		}
634 	}
635 	// This calculation is wacky, but expressing the shift as a left bit shift
636 	// within each block lets us use getShiftedBlock.
637 	Index rightShiftBlocks = (b + N - 1) / N;
638 	unsigned int leftShiftBits = N * rightShiftBlocks - b;
639 	// Now (N * rightShiftBlocks - leftShiftBits) == b
640 	// and 0 <= leftShiftBits < N.
641 	if (rightShiftBlocks >= a.len + 1) {
642 		// All of a is guaranteed to be shifted off, even considering the left
643 		// bit shift.
644 		len = 0;
645 		return;
646 	}
647 	// Now we're allocating a positive amount.
648 	// + 1: room for high bits nudged left into another block
649 	len = a.len + 1 - rightShiftBlocks;
650 	allocate(len);
651 	Index i, j;
652 	for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++)
653 		blk[i] = getShiftedBlock(a, j, leftShiftBits);
654 	// Zap possible leading zero
655 	if (blk[len - 1] == 0)
656 		len--;
657 }
658 
659 // INCREMENT/DECREMENT OPERATORS
660 
661 // Prefix increment
operator ++()662 void BigUnsigned::operator ++() {
663 	Index i;
664 	bool carry = true;
665 	for (i = 0; i < len && carry; i++) {
666 		blk[i]++;
667 		carry = (blk[i] == 0);
668 	}
669 	if (carry) {
670 		// Allocate and then increase length, as in divideWithRemainder
671 		allocateAndCopy(len + 1);
672 		len++;
673 		blk[i] = 1;
674 	}
675 }
676 
677 // Postfix increment: same as prefix
operator ++(int)678 void BigUnsigned::operator ++(int) {
679 	operator ++();
680 }
681 
682 // Prefix decrement
operator --()683 void BigUnsigned::operator --() {
684 	if (len == 0)
685         abort();
686 	Index i;
687 	bool borrow = true;
688 	for (i = 0; borrow; i++) {
689 		borrow = (blk[i] == 0);
690 		blk[i]--;
691 	}
692 	// Zap possible leading zero (there can only be one)
693 	if (blk[len - 1] == 0)
694 		len--;
695 }
696 
697 // Postfix decrement: same as prefix
operator --(int)698 void BigUnsigned::operator --(int) {
699 	operator --();
700 }
701