• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Object/COFF.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/Support/COFF.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <cctype>
23 #include <limits>
24 
25 using namespace llvm;
26 using namespace object;
27 
28 using support::ulittle16_t;
29 using support::ulittle32_t;
30 using support::ulittle64_t;
31 using support::little16_t;
32 
33 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
35   if (M.getBufferSize() < Size) {
36     EC = object_error::unexpected_eof;
37     return false;
38   }
39   return true;
40 }
41 
checkOffset(MemoryBufferRef M,uintptr_t Addr,const uint64_t Size)42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
43                                    const uint64_t Size) {
44   if (Addr + Size < Addr || Addr + Size < Size ||
45       Addr + Size > uintptr_t(M.getBufferEnd()) ||
46       Addr < uintptr_t(M.getBufferStart())) {
47     return object_error::unexpected_eof;
48   }
49   return std::error_code();
50 }
51 
52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
53 // Returns unexpected_eof if error.
54 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
56                                  const void *Ptr,
57                                  const uint64_t Size = sizeof(T)) {
58   uintptr_t Addr = uintptr_t(Ptr);
59   if (std::error_code EC = checkOffset(M, Addr, Size))
60     return EC;
61   Obj = reinterpret_cast<const T *>(Addr);
62   return std::error_code();
63 }
64 
65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
66 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
68   assert(Str.size() <= 6 && "String too long, possible overflow.");
69   if (Str.size() > 6)
70     return true;
71 
72   uint64_t Value = 0;
73   while (!Str.empty()) {
74     unsigned CharVal;
75     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
76       CharVal = Str[0] - 'A';
77     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
78       CharVal = Str[0] - 'a' + 26;
79     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
80       CharVal = Str[0] - '0' + 52;
81     else if (Str[0] == '+') // 62
82       CharVal = 62;
83     else if (Str[0] == '/') // 63
84       CharVal = 63;
85     else
86       return true;
87 
88     Value = (Value * 64) + CharVal;
89     Str = Str.substr(1);
90   }
91 
92   if (Value > std::numeric_limits<uint32_t>::max())
93     return true;
94 
95   Result = static_cast<uint32_t>(Value);
96   return false;
97 }
98 
99 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
101   const coff_symbol_type *Addr =
102       reinterpret_cast<const coff_symbol_type *>(Ref.p);
103 
104   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
105 #ifndef NDEBUG
106   // Verify that the symbol points to a valid entry in the symbol table.
107   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
108 
109   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
110          "Symbol did not point to the beginning of a symbol");
111 #endif
112 
113   return Addr;
114 }
115 
toSec(DataRefImpl Ref) const116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
117   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
118 
119 # ifndef NDEBUG
120   // Verify that the section points to a valid entry in the section table.
121   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
122     report_fatal_error("Section was outside of section table.");
123 
124   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
125   assert(Offset % sizeof(coff_section) == 0 &&
126          "Section did not point to the beginning of a section");
127 # endif
128 
129   return Addr;
130 }
131 
moveSymbolNext(DataRefImpl & Ref) const132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
133   auto End = reinterpret_cast<uintptr_t>(StringTable);
134   if (SymbolTable16) {
135     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
136     Symb += 1 + Symb->NumberOfAuxSymbols;
137     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
138   } else if (SymbolTable32) {
139     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
140     Symb += 1 + Symb->NumberOfAuxSymbols;
141     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
142   } else {
143     llvm_unreachable("no symbol table pointer!");
144   }
145 }
146 
getSymbolName(DataRefImpl Ref) const147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
148   COFFSymbolRef Symb = getCOFFSymbol(Ref);
149   StringRef Result;
150   std::error_code EC = getSymbolName(Symb, Result);
151   if (EC)
152     return errorCodeToError(EC);
153   return Result;
154 }
155 
getSymbolValueImpl(DataRefImpl Ref) const156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
157   return getCOFFSymbol(Ref).getValue();
158 }
159 
getSymbolAddress(DataRefImpl Ref) const160 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
161   uint64_t Result = getSymbolValue(Ref);
162   COFFSymbolRef Symb = getCOFFSymbol(Ref);
163   int32_t SectionNumber = Symb.getSectionNumber();
164 
165   if (Symb.isAnyUndefined() || Symb.isCommon() ||
166       COFF::isReservedSectionNumber(SectionNumber))
167     return Result;
168 
169   const coff_section *Section = nullptr;
170   if (std::error_code EC = getSection(SectionNumber, Section))
171     return errorCodeToError(EC);
172   Result += Section->VirtualAddress;
173 
174   // The section VirtualAddress does not include ImageBase, and we want to
175   // return virtual addresses.
176   Result += getImageBase();
177 
178   return Result;
179 }
180 
getSymbolType(DataRefImpl Ref) const181 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
182   COFFSymbolRef Symb = getCOFFSymbol(Ref);
183   int32_t SectionNumber = Symb.getSectionNumber();
184 
185   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
186     return SymbolRef::ST_Function;
187   if (Symb.isAnyUndefined())
188     return SymbolRef::ST_Unknown;
189   if (Symb.isCommon())
190     return SymbolRef::ST_Data;
191   if (Symb.isFileRecord())
192     return SymbolRef::ST_File;
193 
194   // TODO: perhaps we need a new symbol type ST_Section.
195   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
196     return SymbolRef::ST_Debug;
197 
198   if (!COFF::isReservedSectionNumber(SectionNumber))
199     return SymbolRef::ST_Data;
200 
201   return SymbolRef::ST_Other;
202 }
203 
getSymbolFlags(DataRefImpl Ref) const204 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
205   COFFSymbolRef Symb = getCOFFSymbol(Ref);
206   uint32_t Result = SymbolRef::SF_None;
207 
208   if (Symb.isExternal() || Symb.isWeakExternal())
209     Result |= SymbolRef::SF_Global;
210 
211   if (Symb.isWeakExternal())
212     Result |= SymbolRef::SF_Weak;
213 
214   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
215     Result |= SymbolRef::SF_Absolute;
216 
217   if (Symb.isFileRecord())
218     Result |= SymbolRef::SF_FormatSpecific;
219 
220   if (Symb.isSectionDefinition())
221     Result |= SymbolRef::SF_FormatSpecific;
222 
223   if (Symb.isCommon())
224     Result |= SymbolRef::SF_Common;
225 
226   if (Symb.isAnyUndefined())
227     Result |= SymbolRef::SF_Undefined;
228 
229   return Result;
230 }
231 
getCommonSymbolSizeImpl(DataRefImpl Ref) const232 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
233   COFFSymbolRef Symb = getCOFFSymbol(Ref);
234   return Symb.getValue();
235 }
236 
237 Expected<section_iterator>
getSymbolSection(DataRefImpl Ref) const238 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
239   COFFSymbolRef Symb = getCOFFSymbol(Ref);
240   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
241     return section_end();
242   const coff_section *Sec = nullptr;
243   if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
244     return errorCodeToError(EC);
245   DataRefImpl Ret;
246   Ret.p = reinterpret_cast<uintptr_t>(Sec);
247   return section_iterator(SectionRef(Ret, this));
248 }
249 
getSymbolSectionID(SymbolRef Sym) const250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
251   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
252   return Symb.getSectionNumber();
253 }
254 
moveSectionNext(DataRefImpl & Ref) const255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
256   const coff_section *Sec = toSec(Ref);
257   Sec += 1;
258   Ref.p = reinterpret_cast<uintptr_t>(Sec);
259 }
260 
getSectionName(DataRefImpl Ref,StringRef & Result) const261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
262                                                StringRef &Result) const {
263   const coff_section *Sec = toSec(Ref);
264   return getSectionName(Sec, Result);
265 }
266 
getSectionAddress(DataRefImpl Ref) const267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
268   const coff_section *Sec = toSec(Ref);
269   uint64_t Result = Sec->VirtualAddress;
270 
271   // The section VirtualAddress does not include ImageBase, and we want to
272   // return virtual addresses.
273   Result += getImageBase();
274   return Result;
275 }
276 
getSectionSize(DataRefImpl Ref) const277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
278   return getSectionSize(toSec(Ref));
279 }
280 
getSectionContents(DataRefImpl Ref,StringRef & Result) const281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
282                                                    StringRef &Result) const {
283   const coff_section *Sec = toSec(Ref);
284   ArrayRef<uint8_t> Res;
285   std::error_code EC = getSectionContents(Sec, Res);
286   Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
287   return EC;
288 }
289 
getSectionAlignment(DataRefImpl Ref) const290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
291   const coff_section *Sec = toSec(Ref);
292   return Sec->getAlignment();
293 }
294 
isSectionCompressed(DataRefImpl Sec) const295 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
296   return false;
297 }
298 
isSectionText(DataRefImpl Ref) const299 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
300   const coff_section *Sec = toSec(Ref);
301   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
302 }
303 
isSectionData(DataRefImpl Ref) const304 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
305   const coff_section *Sec = toSec(Ref);
306   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
307 }
308 
isSectionBSS(DataRefImpl Ref) const309 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
310   const coff_section *Sec = toSec(Ref);
311   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
312                             COFF::IMAGE_SCN_MEM_READ |
313                             COFF::IMAGE_SCN_MEM_WRITE;
314   return (Sec->Characteristics & BssFlags) == BssFlags;
315 }
316 
getSectionID(SectionRef Sec) const317 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
318   uintptr_t Offset =
319       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
320   assert((Offset % sizeof(coff_section)) == 0);
321   return (Offset / sizeof(coff_section)) + 1;
322 }
323 
isSectionVirtual(DataRefImpl Ref) const324 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
325   const coff_section *Sec = toSec(Ref);
326   // In COFF, a virtual section won't have any in-file
327   // content, so the file pointer to the content will be zero.
328   return Sec->PointerToRawData == 0;
329 }
330 
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)331 static uint32_t getNumberOfRelocations(const coff_section *Sec,
332                                        MemoryBufferRef M, const uint8_t *base) {
333   // The field for the number of relocations in COFF section table is only
334   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
335   // NumberOfRelocations field, and the actual relocation count is stored in the
336   // VirtualAddress field in the first relocation entry.
337   if (Sec->hasExtendedRelocations()) {
338     const coff_relocation *FirstReloc;
339     if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
340         base + Sec->PointerToRelocations)))
341       return 0;
342     // -1 to exclude this first relocation entry.
343     return FirstReloc->VirtualAddress - 1;
344   }
345   return Sec->NumberOfRelocations;
346 }
347 
348 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)349 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
350   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
351   if (!NumRelocs)
352     return nullptr;
353   auto begin = reinterpret_cast<const coff_relocation *>(
354       Base + Sec->PointerToRelocations);
355   if (Sec->hasExtendedRelocations()) {
356     // Skip the first relocation entry repurposed to store the number of
357     // relocations.
358     begin++;
359   }
360   if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
361     return nullptr;
362   return begin;
363 }
364 
section_rel_begin(DataRefImpl Ref) const365 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
366   const coff_section *Sec = toSec(Ref);
367   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
368   if (begin && Sec->VirtualAddress != 0)
369     report_fatal_error("Sections with relocations should have an address of 0");
370   DataRefImpl Ret;
371   Ret.p = reinterpret_cast<uintptr_t>(begin);
372   return relocation_iterator(RelocationRef(Ret, this));
373 }
374 
section_rel_end(DataRefImpl Ref) const375 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
376   const coff_section *Sec = toSec(Ref);
377   const coff_relocation *I = getFirstReloc(Sec, Data, base());
378   if (I)
379     I += getNumberOfRelocations(Sec, Data, base());
380   DataRefImpl Ret;
381   Ret.p = reinterpret_cast<uintptr_t>(I);
382   return relocation_iterator(RelocationRef(Ret, this));
383 }
384 
385 // Initialize the pointer to the symbol table.
initSymbolTablePtr()386 std::error_code COFFObjectFile::initSymbolTablePtr() {
387   if (COFFHeader)
388     if (std::error_code EC = getObject(
389             SymbolTable16, Data, base() + getPointerToSymbolTable(),
390             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
391       return EC;
392 
393   if (COFFBigObjHeader)
394     if (std::error_code EC = getObject(
395             SymbolTable32, Data, base() + getPointerToSymbolTable(),
396             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
397       return EC;
398 
399   // Find string table. The first four byte of the string table contains the
400   // total size of the string table, including the size field itself. If the
401   // string table is empty, the value of the first four byte would be 4.
402   uint32_t StringTableOffset = getPointerToSymbolTable() +
403                                getNumberOfSymbols() * getSymbolTableEntrySize();
404   const uint8_t *StringTableAddr = base() + StringTableOffset;
405   const ulittle32_t *StringTableSizePtr;
406   if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
407     return EC;
408   StringTableSize = *StringTableSizePtr;
409   if (std::error_code EC =
410           getObject(StringTable, Data, StringTableAddr, StringTableSize))
411     return EC;
412 
413   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
414   // tools like cvtres write a size of 0 for an empty table instead of 4.
415   if (StringTableSize < 4)
416       StringTableSize = 4;
417 
418   // Check that the string table is null terminated if has any in it.
419   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
420     return  object_error::parse_failed;
421   return std::error_code();
422 }
423 
getImageBase() const424 uint64_t COFFObjectFile::getImageBase() const {
425   if (PE32Header)
426     return PE32Header->ImageBase;
427   else if (PE32PlusHeader)
428     return PE32PlusHeader->ImageBase;
429   // This actually comes up in practice.
430   return 0;
431 }
432 
433 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const434 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
435   uint64_t ImageBase = getImageBase();
436   uint64_t Rva = Addr - ImageBase;
437   assert(Rva <= UINT32_MAX);
438   return getRvaPtr((uint32_t)Rva, Res);
439 }
440 
441 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res) const442 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
443   for (const SectionRef &S : sections()) {
444     const coff_section *Section = getCOFFSection(S);
445     uint32_t SectionStart = Section->VirtualAddress;
446     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
447     if (SectionStart <= Addr && Addr < SectionEnd) {
448       uint32_t Offset = Addr - SectionStart;
449       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
450       return std::error_code();
451     }
452   }
453   return object_error::parse_failed;
454 }
455 
456 std::error_code
getRvaAndSizeAsBytes(uint32_t RVA,uint32_t Size,ArrayRef<uint8_t> & Contents) const457 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
458                                      ArrayRef<uint8_t> &Contents) const {
459   for (const SectionRef &S : sections()) {
460     const coff_section *Section = getCOFFSection(S);
461     uint32_t SectionStart = Section->VirtualAddress;
462     // Check if this RVA is within the section bounds. Be careful about integer
463     // overflow.
464     uint32_t OffsetIntoSection = RVA - SectionStart;
465     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
466         Size <= Section->VirtualSize - OffsetIntoSection) {
467       uintptr_t Begin =
468           uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
469       Contents =
470           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
471       return std::error_code();
472     }
473   }
474   return object_error::parse_failed;
475 }
476 
477 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
478 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const479 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
480                                             StringRef &Name) const {
481   uintptr_t IntPtr = 0;
482   if (std::error_code EC = getRvaPtr(Rva, IntPtr))
483     return EC;
484   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
485   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
486   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
487   return std::error_code();
488 }
489 
getDebugPDBInfo(const debug_directory * DebugDir,const debug_pdb_info * & PDBInfo,StringRef & PDBFileName) const490 std::error_code COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
491                                                 const debug_pdb_info *&PDBInfo,
492                                                 StringRef &PDBFileName) const {
493   ArrayRef<uint8_t> InfoBytes;
494   if (std::error_code EC = getRvaAndSizeAsBytes(
495           DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
496     return EC;
497   if (InfoBytes.size() < sizeof(debug_pdb_info) + 1)
498     return object_error::parse_failed;
499   PDBInfo = reinterpret_cast<const debug_pdb_info *>(InfoBytes.data());
500   InfoBytes = InfoBytes.drop_front(sizeof(debug_pdb_info));
501   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
502                           InfoBytes.size());
503   // Truncate the name at the first null byte. Ignore any padding.
504   PDBFileName = PDBFileName.split('\0').first;
505   return std::error_code();
506 }
507 
getDebugPDBInfo(const debug_pdb_info * & PDBInfo,StringRef & PDBFileName) const508 std::error_code COFFObjectFile::getDebugPDBInfo(const debug_pdb_info *&PDBInfo,
509                                                 StringRef &PDBFileName) const {
510   for (const debug_directory &D : debug_directories())
511     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
512       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
513   // If we get here, there is no PDB info to return.
514   PDBInfo = nullptr;
515   PDBFileName = StringRef();
516   return std::error_code();
517 }
518 
519 // Find the import table.
initImportTablePtr()520 std::error_code COFFObjectFile::initImportTablePtr() {
521   // First, we get the RVA of the import table. If the file lacks a pointer to
522   // the import table, do nothing.
523   const data_directory *DataEntry;
524   if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
525     return std::error_code();
526 
527   // Do nothing if the pointer to import table is NULL.
528   if (DataEntry->RelativeVirtualAddress == 0)
529     return std::error_code();
530 
531   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
532 
533   // Find the section that contains the RVA. This is needed because the RVA is
534   // the import table's memory address which is different from its file offset.
535   uintptr_t IntPtr = 0;
536   if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
537     return EC;
538   if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
539     return EC;
540   ImportDirectory = reinterpret_cast<
541       const import_directory_table_entry *>(IntPtr);
542   return std::error_code();
543 }
544 
545 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()546 std::error_code COFFObjectFile::initDelayImportTablePtr() {
547   const data_directory *DataEntry;
548   if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
549     return std::error_code();
550   if (DataEntry->RelativeVirtualAddress == 0)
551     return std::error_code();
552 
553   uint32_t RVA = DataEntry->RelativeVirtualAddress;
554   NumberOfDelayImportDirectory = DataEntry->Size /
555       sizeof(delay_import_directory_table_entry) - 1;
556 
557   uintptr_t IntPtr = 0;
558   if (std::error_code EC = getRvaPtr(RVA, IntPtr))
559     return EC;
560   DelayImportDirectory = reinterpret_cast<
561       const delay_import_directory_table_entry *>(IntPtr);
562   return std::error_code();
563 }
564 
565 // Find the export table.
initExportTablePtr()566 std::error_code COFFObjectFile::initExportTablePtr() {
567   // First, we get the RVA of the export table. If the file lacks a pointer to
568   // the export table, do nothing.
569   const data_directory *DataEntry;
570   if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
571     return std::error_code();
572 
573   // Do nothing if the pointer to export table is NULL.
574   if (DataEntry->RelativeVirtualAddress == 0)
575     return std::error_code();
576 
577   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
578   uintptr_t IntPtr = 0;
579   if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
580     return EC;
581   ExportDirectory =
582       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
583   return std::error_code();
584 }
585 
initBaseRelocPtr()586 std::error_code COFFObjectFile::initBaseRelocPtr() {
587   const data_directory *DataEntry;
588   if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
589     return std::error_code();
590   if (DataEntry->RelativeVirtualAddress == 0)
591     return std::error_code();
592 
593   uintptr_t IntPtr = 0;
594   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
595     return EC;
596   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
597       IntPtr);
598   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
599       IntPtr + DataEntry->Size);
600   return std::error_code();
601 }
602 
initDebugDirectoryPtr()603 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
604   // Get the RVA of the debug directory. Do nothing if it does not exist.
605   const data_directory *DataEntry;
606   if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
607     return std::error_code();
608 
609   // Do nothing if the RVA is NULL.
610   if (DataEntry->RelativeVirtualAddress == 0)
611     return std::error_code();
612 
613   // Check that the size is a multiple of the entry size.
614   if (DataEntry->Size % sizeof(debug_directory) != 0)
615     return object_error::parse_failed;
616 
617   uintptr_t IntPtr = 0;
618   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
619     return EC;
620   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
621   if (std::error_code EC = getRvaPtr(
622           DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr))
623     return EC;
624   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr);
625   return std::error_code();
626 }
627 
COFFObjectFile(MemoryBufferRef Object,std::error_code & EC)628 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
629     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
630       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
631       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
632       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
633       ImportDirectory(nullptr),
634       DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
635       ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
636       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
637   // Check that we at least have enough room for a header.
638   if (!checkSize(Data, EC, sizeof(coff_file_header)))
639     return;
640 
641   // The current location in the file where we are looking at.
642   uint64_t CurPtr = 0;
643 
644   // PE header is optional and is present only in executables. If it exists,
645   // it is placed right after COFF header.
646   bool HasPEHeader = false;
647 
648   // Check if this is a PE/COFF file.
649   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
650     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
651     // PE signature to find 'normal' COFF header.
652     const auto *DH = reinterpret_cast<const dos_header *>(base());
653     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
654       CurPtr = DH->AddressOfNewExeHeader;
655       // Check the PE magic bytes. ("PE\0\0")
656       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
657         EC = object_error::parse_failed;
658         return;
659       }
660       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
661       HasPEHeader = true;
662     }
663   }
664 
665   if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
666     return;
667 
668   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
669   // import libraries share a common prefix but bigobj is more restrictive.
670   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
671       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
672       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
673     if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
674       return;
675 
676     // Verify that we are dealing with bigobj.
677     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
678         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
679                     sizeof(COFF::BigObjMagic)) == 0) {
680       COFFHeader = nullptr;
681       CurPtr += sizeof(coff_bigobj_file_header);
682     } else {
683       // It's not a bigobj.
684       COFFBigObjHeader = nullptr;
685     }
686   }
687   if (COFFHeader) {
688     // The prior checkSize call may have failed.  This isn't a hard error
689     // because we were just trying to sniff out bigobj.
690     EC = std::error_code();
691     CurPtr += sizeof(coff_file_header);
692 
693     if (COFFHeader->isImportLibrary())
694       return;
695   }
696 
697   if (HasPEHeader) {
698     const pe32_header *Header;
699     if ((EC = getObject(Header, Data, base() + CurPtr)))
700       return;
701 
702     const uint8_t *DataDirAddr;
703     uint64_t DataDirSize;
704     if (Header->Magic == COFF::PE32Header::PE32) {
705       PE32Header = Header;
706       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
707       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
708     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
709       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
710       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
711       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
712     } else {
713       // It's neither PE32 nor PE32+.
714       EC = object_error::parse_failed;
715       return;
716     }
717     if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
718       return;
719     CurPtr += COFFHeader->SizeOfOptionalHeader;
720   }
721 
722   if ((EC = getObject(SectionTable, Data, base() + CurPtr,
723                       (uint64_t)getNumberOfSections() * sizeof(coff_section))))
724     return;
725 
726   // Initialize the pointer to the symbol table.
727   if (getPointerToSymbolTable() != 0) {
728     if ((EC = initSymbolTablePtr()))
729       return;
730   } else {
731     // We had better not have any symbols if we don't have a symbol table.
732     if (getNumberOfSymbols() != 0) {
733       EC = object_error::parse_failed;
734       return;
735     }
736   }
737 
738   // Initialize the pointer to the beginning of the import table.
739   if ((EC = initImportTablePtr()))
740     return;
741   if ((EC = initDelayImportTablePtr()))
742     return;
743 
744   // Initialize the pointer to the export table.
745   if ((EC = initExportTablePtr()))
746     return;
747 
748   // Initialize the pointer to the base relocation table.
749   if ((EC = initBaseRelocPtr()))
750     return;
751 
752   // Initialize the pointer to the export table.
753   if ((EC = initDebugDirectoryPtr()))
754     return;
755 
756   EC = std::error_code();
757 }
758 
symbol_begin_impl() const759 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
760   DataRefImpl Ret;
761   Ret.p = getSymbolTable();
762   return basic_symbol_iterator(SymbolRef(Ret, this));
763 }
764 
symbol_end_impl() const765 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
766   // The symbol table ends where the string table begins.
767   DataRefImpl Ret;
768   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
769   return basic_symbol_iterator(SymbolRef(Ret, this));
770 }
771 
import_directory_begin() const772 import_directory_iterator COFFObjectFile::import_directory_begin() const {
773   if (!ImportDirectory)
774     return import_directory_end();
775   if (ImportDirectory[0].ImportLookupTableRVA == 0)
776     return import_directory_end();
777   return import_directory_iterator(
778       ImportDirectoryEntryRef(ImportDirectory, 0, this));
779 }
780 
import_directory_end() const781 import_directory_iterator COFFObjectFile::import_directory_end() const {
782   return import_directory_iterator(
783       ImportDirectoryEntryRef(nullptr, -1, this));
784 }
785 
786 delay_import_directory_iterator
delay_import_directory_begin() const787 COFFObjectFile::delay_import_directory_begin() const {
788   return delay_import_directory_iterator(
789       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
790 }
791 
792 delay_import_directory_iterator
delay_import_directory_end() const793 COFFObjectFile::delay_import_directory_end() const {
794   return delay_import_directory_iterator(
795       DelayImportDirectoryEntryRef(
796           DelayImportDirectory, NumberOfDelayImportDirectory, this));
797 }
798 
export_directory_begin() const799 export_directory_iterator COFFObjectFile::export_directory_begin() const {
800   return export_directory_iterator(
801       ExportDirectoryEntryRef(ExportDirectory, 0, this));
802 }
803 
export_directory_end() const804 export_directory_iterator COFFObjectFile::export_directory_end() const {
805   if (!ExportDirectory)
806     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
807   ExportDirectoryEntryRef Ref(ExportDirectory,
808                               ExportDirectory->AddressTableEntries, this);
809   return export_directory_iterator(Ref);
810 }
811 
section_begin() const812 section_iterator COFFObjectFile::section_begin() const {
813   DataRefImpl Ret;
814   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
815   return section_iterator(SectionRef(Ret, this));
816 }
817 
section_end() const818 section_iterator COFFObjectFile::section_end() const {
819   DataRefImpl Ret;
820   int NumSections =
821       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
822   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
823   return section_iterator(SectionRef(Ret, this));
824 }
825 
base_reloc_begin() const826 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
827   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
828 }
829 
base_reloc_end() const830 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
831   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
832 }
833 
getBytesInAddress() const834 uint8_t COFFObjectFile::getBytesInAddress() const {
835   return getArch() == Triple::x86_64 ? 8 : 4;
836 }
837 
getFileFormatName() const838 StringRef COFFObjectFile::getFileFormatName() const {
839   switch(getMachine()) {
840   case COFF::IMAGE_FILE_MACHINE_I386:
841     return "COFF-i386";
842   case COFF::IMAGE_FILE_MACHINE_AMD64:
843     return "COFF-x86-64";
844   case COFF::IMAGE_FILE_MACHINE_ARMNT:
845     return "COFF-ARM";
846   case COFF::IMAGE_FILE_MACHINE_ARM64:
847     return "COFF-ARM64";
848   default:
849     return "COFF-<unknown arch>";
850   }
851 }
852 
getArch() const853 unsigned COFFObjectFile::getArch() const {
854   switch (getMachine()) {
855   case COFF::IMAGE_FILE_MACHINE_I386:
856     return Triple::x86;
857   case COFF::IMAGE_FILE_MACHINE_AMD64:
858     return Triple::x86_64;
859   case COFF::IMAGE_FILE_MACHINE_ARMNT:
860     return Triple::thumb;
861   case COFF::IMAGE_FILE_MACHINE_ARM64:
862     return Triple::aarch64;
863   default:
864     return Triple::UnknownArch;
865   }
866 }
867 
868 iterator_range<import_directory_iterator>
import_directories() const869 COFFObjectFile::import_directories() const {
870   return make_range(import_directory_begin(), import_directory_end());
871 }
872 
873 iterator_range<delay_import_directory_iterator>
delay_import_directories() const874 COFFObjectFile::delay_import_directories() const {
875   return make_range(delay_import_directory_begin(),
876                     delay_import_directory_end());
877 }
878 
879 iterator_range<export_directory_iterator>
export_directories() const880 COFFObjectFile::export_directories() const {
881   return make_range(export_directory_begin(), export_directory_end());
882 }
883 
base_relocs() const884 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
885   return make_range(base_reloc_begin(), base_reloc_end());
886 }
887 
getPE32Header(const pe32_header * & Res) const888 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
889   Res = PE32Header;
890   return std::error_code();
891 }
892 
893 std::error_code
getPE32PlusHeader(const pe32plus_header * & Res) const894 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
895   Res = PE32PlusHeader;
896   return std::error_code();
897 }
898 
899 std::error_code
getDataDirectory(uint32_t Index,const data_directory * & Res) const900 COFFObjectFile::getDataDirectory(uint32_t Index,
901                                  const data_directory *&Res) const {
902   // Error if if there's no data directory or the index is out of range.
903   if (!DataDirectory) {
904     Res = nullptr;
905     return object_error::parse_failed;
906   }
907   assert(PE32Header || PE32PlusHeader);
908   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
909                                : PE32PlusHeader->NumberOfRvaAndSize;
910   if (Index >= NumEnt) {
911     Res = nullptr;
912     return object_error::parse_failed;
913   }
914   Res = &DataDirectory[Index];
915   return std::error_code();
916 }
917 
getSection(int32_t Index,const coff_section * & Result) const918 std::error_code COFFObjectFile::getSection(int32_t Index,
919                                            const coff_section *&Result) const {
920   Result = nullptr;
921   if (COFF::isReservedSectionNumber(Index))
922     return std::error_code();
923   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
924     // We already verified the section table data, so no need to check again.
925     Result = SectionTable + (Index - 1);
926     return std::error_code();
927   }
928   return object_error::parse_failed;
929 }
930 
getString(uint32_t Offset,StringRef & Result) const931 std::error_code COFFObjectFile::getString(uint32_t Offset,
932                                           StringRef &Result) const {
933   if (StringTableSize <= 4)
934     // Tried to get a string from an empty string table.
935     return object_error::parse_failed;
936   if (Offset >= StringTableSize)
937     return object_error::unexpected_eof;
938   Result = StringRef(StringTable + Offset);
939   return std::error_code();
940 }
941 
getSymbolName(COFFSymbolRef Symbol,StringRef & Res) const942 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
943                                               StringRef &Res) const {
944   return getSymbolName(Symbol.getGeneric(), Res);
945 }
946 
getSymbolName(const coff_symbol_generic * Symbol,StringRef & Res) const947 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
948                                               StringRef &Res) const {
949   // Check for string table entry. First 4 bytes are 0.
950   if (Symbol->Name.Offset.Zeroes == 0) {
951     if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
952       return EC;
953     return std::error_code();
954   }
955 
956   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
957     // Null terminated, let ::strlen figure out the length.
958     Res = StringRef(Symbol->Name.ShortName);
959   else
960     // Not null terminated, use all 8 bytes.
961     Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
962   return std::error_code();
963 }
964 
965 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const966 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
967   const uint8_t *Aux = nullptr;
968 
969   size_t SymbolSize = getSymbolTableEntrySize();
970   if (Symbol.getNumberOfAuxSymbols() > 0) {
971     // AUX data comes immediately after the symbol in COFF
972     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
973 # ifndef NDEBUG
974     // Verify that the Aux symbol points to a valid entry in the symbol table.
975     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
976     if (Offset < getPointerToSymbolTable() ||
977         Offset >=
978             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
979       report_fatal_error("Aux Symbol data was outside of symbol table.");
980 
981     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
982            "Aux Symbol data did not point to the beginning of a symbol");
983 # endif
984   }
985   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
986 }
987 
getSectionName(const coff_section * Sec,StringRef & Res) const988 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
989                                                StringRef &Res) const {
990   StringRef Name;
991   if (Sec->Name[COFF::NameSize - 1] == 0)
992     // Null terminated, let ::strlen figure out the length.
993     Name = Sec->Name;
994   else
995     // Not null terminated, use all 8 bytes.
996     Name = StringRef(Sec->Name, COFF::NameSize);
997 
998   // Check for string table entry. First byte is '/'.
999   if (Name.startswith("/")) {
1000     uint32_t Offset;
1001     if (Name.startswith("//")) {
1002       if (decodeBase64StringEntry(Name.substr(2), Offset))
1003         return object_error::parse_failed;
1004     } else {
1005       if (Name.substr(1).getAsInteger(10, Offset))
1006         return object_error::parse_failed;
1007     }
1008     if (std::error_code EC = getString(Offset, Name))
1009       return EC;
1010   }
1011 
1012   Res = Name;
1013   return std::error_code();
1014 }
1015 
getSectionSize(const coff_section * Sec) const1016 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1017   // SizeOfRawData and VirtualSize change what they represent depending on
1018   // whether or not we have an executable image.
1019   //
1020   // For object files, SizeOfRawData contains the size of section's data;
1021   // VirtualSize should be zero but isn't due to buggy COFF writers.
1022   //
1023   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1024   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1025   // be greater than SizeOfRawData; the contents past that point should be
1026   // considered to be zero.
1027   if (getDOSHeader())
1028     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1029   return Sec->SizeOfRawData;
1030 }
1031 
1032 std::error_code
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const1033 COFFObjectFile::getSectionContents(const coff_section *Sec,
1034                                    ArrayRef<uint8_t> &Res) const {
1035   // In COFF, a virtual section won't have any in-file
1036   // content, so the file pointer to the content will be zero.
1037   if (Sec->PointerToRawData == 0)
1038     return object_error::parse_failed;
1039   // The only thing that we need to verify is that the contents is contained
1040   // within the file bounds. We don't need to make sure it doesn't cover other
1041   // data, as there's nothing that says that is not allowed.
1042   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1043   uint32_t SectionSize = getSectionSize(Sec);
1044   if (checkOffset(Data, ConStart, SectionSize))
1045     return object_error::parse_failed;
1046   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1047   return std::error_code();
1048 }
1049 
toRel(DataRefImpl Rel) const1050 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1051   return reinterpret_cast<const coff_relocation*>(Rel.p);
1052 }
1053 
moveRelocationNext(DataRefImpl & Rel) const1054 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1055   Rel.p = reinterpret_cast<uintptr_t>(
1056             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1057 }
1058 
getRelocationOffset(DataRefImpl Rel) const1059 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1060   const coff_relocation *R = toRel(Rel);
1061   return R->VirtualAddress;
1062 }
1063 
getRelocationSymbol(DataRefImpl Rel) const1064 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1065   const coff_relocation *R = toRel(Rel);
1066   DataRefImpl Ref;
1067   if (R->SymbolTableIndex >= getNumberOfSymbols())
1068     return symbol_end();
1069   if (SymbolTable16)
1070     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1071   else if (SymbolTable32)
1072     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1073   else
1074     llvm_unreachable("no symbol table pointer!");
1075   return symbol_iterator(SymbolRef(Ref, this));
1076 }
1077 
getRelocationType(DataRefImpl Rel) const1078 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1079   const coff_relocation* R = toRel(Rel);
1080   return R->Type;
1081 }
1082 
1083 const coff_section *
getCOFFSection(const SectionRef & Section) const1084 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1085   return toSec(Section.getRawDataRefImpl());
1086 }
1087 
getCOFFSymbol(const DataRefImpl & Ref) const1088 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1089   if (SymbolTable16)
1090     return toSymb<coff_symbol16>(Ref);
1091   if (SymbolTable32)
1092     return toSymb<coff_symbol32>(Ref);
1093   llvm_unreachable("no symbol table pointer!");
1094 }
1095 
getCOFFSymbol(const SymbolRef & Symbol) const1096 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1097   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1098 }
1099 
1100 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1101 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1102   return toRel(Reloc.getRawDataRefImpl());
1103 }
1104 
1105 iterator_range<const coff_relocation *>
getRelocations(const coff_section * Sec) const1106 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1107   const coff_relocation *I = getFirstReloc(Sec, Data, base());
1108   const coff_relocation *E = I;
1109   if (I)
1110     E += getNumberOfRelocations(Sec, Data, base());
1111   return make_range(I, E);
1112 }
1113 
1114 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1115   case COFF::reloc_type:                                                       \
1116     Res = #reloc_type;                                                         \
1117     break;
1118 
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1119 void COFFObjectFile::getRelocationTypeName(
1120     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1121   const coff_relocation *Reloc = toRel(Rel);
1122   StringRef Res;
1123   switch (getMachine()) {
1124   case COFF::IMAGE_FILE_MACHINE_AMD64:
1125     switch (Reloc->Type) {
1126     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1127     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1128     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1129     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1130     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1131     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1132     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1133     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1134     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1135     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1136     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1137     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1138     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1139     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1140     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1141     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1142     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1143     default:
1144       Res = "Unknown";
1145     }
1146     break;
1147   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1148     switch (Reloc->Type) {
1149     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1150     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1151     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1152     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1153     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1154     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1155     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1156     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1157     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1158     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1159     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1160     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1161     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1162     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1163     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1164     default:
1165       Res = "Unknown";
1166     }
1167     break;
1168   case COFF::IMAGE_FILE_MACHINE_I386:
1169     switch (Reloc->Type) {
1170     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1171     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1172     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1173     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1174     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1175     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1176     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1177     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1178     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1179     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1180     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1181     default:
1182       Res = "Unknown";
1183     }
1184     break;
1185   default:
1186     Res = "Unknown";
1187   }
1188   Result.append(Res.begin(), Res.end());
1189 }
1190 
1191 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1192 
isRelocatableObject() const1193 bool COFFObjectFile::isRelocatableObject() const {
1194   return !DataDirectory;
1195 }
1196 
1197 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1198 operator==(const ImportDirectoryEntryRef &Other) const {
1199   return ImportTable == Other.ImportTable && Index == Other.Index;
1200 }
1201 
moveNext()1202 void ImportDirectoryEntryRef::moveNext() {
1203   ++Index;
1204   if (ImportTable[Index].ImportLookupTableRVA == 0) {
1205     Index = -1;
1206     ImportTable = nullptr;
1207   }
1208 }
1209 
getImportTableEntry(const import_directory_table_entry * & Result) const1210 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1211     const import_directory_table_entry *&Result) const {
1212   return getObject(Result, OwningObject->Data, ImportTable + Index);
1213 }
1214 
1215 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1216 makeImportedSymbolIterator(const COFFObjectFile *Object,
1217                            uintptr_t Ptr, int Index) {
1218   if (Object->getBytesInAddress() == 4) {
1219     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1220     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1221   }
1222   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1223   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1224 }
1225 
1226 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1227 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1228   uintptr_t IntPtr = 0;
1229   Object->getRvaPtr(RVA, IntPtr);
1230   return makeImportedSymbolIterator(Object, IntPtr, 0);
1231 }
1232 
1233 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1234 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1235   uintptr_t IntPtr = 0;
1236   Object->getRvaPtr(RVA, IntPtr);
1237   // Forward the pointer to the last entry which is null.
1238   int Index = 0;
1239   if (Object->getBytesInAddress() == 4) {
1240     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1241     while (*Entry++)
1242       ++Index;
1243   } else {
1244     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1245     while (*Entry++)
1246       ++Index;
1247   }
1248   return makeImportedSymbolIterator(Object, IntPtr, Index);
1249 }
1250 
1251 imported_symbol_iterator
imported_symbol_begin() const1252 ImportDirectoryEntryRef::imported_symbol_begin() const {
1253   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1254                              OwningObject);
1255 }
1256 
1257 imported_symbol_iterator
imported_symbol_end() const1258 ImportDirectoryEntryRef::imported_symbol_end() const {
1259   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1260                            OwningObject);
1261 }
1262 
1263 iterator_range<imported_symbol_iterator>
imported_symbols() const1264 ImportDirectoryEntryRef::imported_symbols() const {
1265   return make_range(imported_symbol_begin(), imported_symbol_end());
1266 }
1267 
getName(StringRef & Result) const1268 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1269   uintptr_t IntPtr = 0;
1270   if (std::error_code EC =
1271           OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1272     return EC;
1273   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1274   return std::error_code();
1275 }
1276 
1277 std::error_code
getImportLookupTableRVA(uint32_t & Result) const1278 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1279   Result = ImportTable[Index].ImportLookupTableRVA;
1280   return std::error_code();
1281 }
1282 
1283 std::error_code
getImportAddressTableRVA(uint32_t & Result) const1284 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1285   Result = ImportTable[Index].ImportAddressTableRVA;
1286   return std::error_code();
1287 }
1288 
1289 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1290 operator==(const DelayImportDirectoryEntryRef &Other) const {
1291   return Table == Other.Table && Index == Other.Index;
1292 }
1293 
moveNext()1294 void DelayImportDirectoryEntryRef::moveNext() {
1295   ++Index;
1296 }
1297 
1298 imported_symbol_iterator
imported_symbol_begin() const1299 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1300   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1301                              OwningObject);
1302 }
1303 
1304 imported_symbol_iterator
imported_symbol_end() const1305 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1306   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1307                            OwningObject);
1308 }
1309 
1310 iterator_range<imported_symbol_iterator>
imported_symbols() const1311 DelayImportDirectoryEntryRef::imported_symbols() const {
1312   return make_range(imported_symbol_begin(), imported_symbol_end());
1313 }
1314 
getName(StringRef & Result) const1315 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1316   uintptr_t IntPtr = 0;
1317   if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1318     return EC;
1319   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1320   return std::error_code();
1321 }
1322 
1323 std::error_code DelayImportDirectoryEntryRef::
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1324 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1325   Result = Table;
1326   return std::error_code();
1327 }
1328 
1329 std::error_code DelayImportDirectoryEntryRef::
getImportAddress(int AddrIndex,uint64_t & Result) const1330 getImportAddress(int AddrIndex, uint64_t &Result) const {
1331   uint32_t RVA = Table[Index].DelayImportAddressTable +
1332       AddrIndex * (OwningObject->is64() ? 8 : 4);
1333   uintptr_t IntPtr = 0;
1334   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1335     return EC;
1336   if (OwningObject->is64())
1337     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1338   else
1339     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1340   return std::error_code();
1341 }
1342 
1343 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1344 operator==(const ExportDirectoryEntryRef &Other) const {
1345   return ExportTable == Other.ExportTable && Index == Other.Index;
1346 }
1347 
moveNext()1348 void ExportDirectoryEntryRef::moveNext() {
1349   ++Index;
1350 }
1351 
1352 // Returns the name of the current export symbol. If the symbol is exported only
1353 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1354 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1355   uintptr_t IntPtr = 0;
1356   if (std::error_code EC =
1357           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1358     return EC;
1359   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1360   return std::error_code();
1361 }
1362 
1363 // Returns the starting ordinal number.
1364 std::error_code
getOrdinalBase(uint32_t & Result) const1365 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1366   Result = ExportTable->OrdinalBase;
1367   return std::error_code();
1368 }
1369 
1370 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1371 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1372   Result = ExportTable->OrdinalBase + Index;
1373   return std::error_code();
1374 }
1375 
1376 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1377 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1378   uintptr_t IntPtr = 0;
1379   if (std::error_code EC =
1380           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1381     return EC;
1382   const export_address_table_entry *entry =
1383       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1384   Result = entry[Index].ExportRVA;
1385   return std::error_code();
1386 }
1387 
1388 // Returns the name of the current export symbol. If the symbol is exported only
1389 // by ordinal, the empty string is set as a result.
1390 std::error_code
getSymbolName(StringRef & Result) const1391 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1392   uintptr_t IntPtr = 0;
1393   if (std::error_code EC =
1394           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1395     return EC;
1396   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1397 
1398   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1399   int Offset = 0;
1400   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1401        I < E; ++I, ++Offset) {
1402     if (*I != Index)
1403       continue;
1404     if (std::error_code EC =
1405             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1406       return EC;
1407     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1408     if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1409       return EC;
1410     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1411     return std::error_code();
1412   }
1413   Result = "";
1414   return std::error_code();
1415 }
1416 
isForwarder(bool & Result) const1417 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1418   const data_directory *DataEntry;
1419   if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1420     return EC;
1421   uint32_t RVA;
1422   if (auto EC = getExportRVA(RVA))
1423     return EC;
1424   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1425   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1426   Result = (Begin <= RVA && RVA < End);
1427   return std::error_code();
1428 }
1429 
getForwardTo(StringRef & Result) const1430 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1431   uint32_t RVA;
1432   if (auto EC = getExportRVA(RVA))
1433     return EC;
1434   uintptr_t IntPtr = 0;
1435   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1436     return EC;
1437   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1438   return std::error_code();
1439 }
1440 
1441 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1442 operator==(const ImportedSymbolRef &Other) const {
1443   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1444       && Index == Other.Index;
1445 }
1446 
moveNext()1447 void ImportedSymbolRef::moveNext() {
1448   ++Index;
1449 }
1450 
1451 std::error_code
getSymbolName(StringRef & Result) const1452 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1453   uint32_t RVA;
1454   if (Entry32) {
1455     // If a symbol is imported only by ordinal, it has no name.
1456     if (Entry32[Index].isOrdinal())
1457       return std::error_code();
1458     RVA = Entry32[Index].getHintNameRVA();
1459   } else {
1460     if (Entry64[Index].isOrdinal())
1461       return std::error_code();
1462     RVA = Entry64[Index].getHintNameRVA();
1463   }
1464   uintptr_t IntPtr = 0;
1465   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1466     return EC;
1467   // +2 because the first two bytes is hint.
1468   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1469   return std::error_code();
1470 }
1471 
isOrdinal(bool & Result) const1472 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1473   if (Entry32)
1474     Result = Entry32[Index].isOrdinal();
1475   else
1476     Result = Entry64[Index].isOrdinal();
1477   return std::error_code();
1478 }
1479 
getHintNameRVA(uint32_t & Result) const1480 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1481   if (Entry32)
1482     Result = Entry32[Index].getHintNameRVA();
1483   else
1484     Result = Entry64[Index].getHintNameRVA();
1485   return std::error_code();
1486 }
1487 
getOrdinal(uint16_t & Result) const1488 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1489   uint32_t RVA;
1490   if (Entry32) {
1491     if (Entry32[Index].isOrdinal()) {
1492       Result = Entry32[Index].getOrdinal();
1493       return std::error_code();
1494     }
1495     RVA = Entry32[Index].getHintNameRVA();
1496   } else {
1497     if (Entry64[Index].isOrdinal()) {
1498       Result = Entry64[Index].getOrdinal();
1499       return std::error_code();
1500     }
1501     RVA = Entry64[Index].getHintNameRVA();
1502   }
1503   uintptr_t IntPtr = 0;
1504   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1505     return EC;
1506   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1507   return std::error_code();
1508 }
1509 
1510 ErrorOr<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1511 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1512   std::error_code EC;
1513   std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1514   if (EC)
1515     return EC;
1516   return std::move(Ret);
1517 }
1518 
operator ==(const BaseRelocRef & Other) const1519 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1520   return Header == Other.Header && Index == Other.Index;
1521 }
1522 
moveNext()1523 void BaseRelocRef::moveNext() {
1524   // Header->BlockSize is the size of the current block, including the
1525   // size of the header itself.
1526   uint32_t Size = sizeof(*Header) +
1527       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1528   if (Size == Header->BlockSize) {
1529     // .reloc contains a list of base relocation blocks. Each block
1530     // consists of the header followed by entries. The header contains
1531     // how many entories will follow. When we reach the end of the
1532     // current block, proceed to the next block.
1533     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1534         reinterpret_cast<const uint8_t *>(Header) + Size);
1535     Index = 0;
1536   } else {
1537     ++Index;
1538   }
1539 }
1540 
getType(uint8_t & Type) const1541 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1542   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1543   Type = Entry[Index].getType();
1544   return std::error_code();
1545 }
1546 
getRVA(uint32_t & Result) const1547 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1548   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1549   Result = Header->PageRVA + Entry[Index].getOffset();
1550   return std::error_code();
1551 }
1552