1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/GlobalValue.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cstdarg>
34 using namespace llvm;
35
36 //===----------------------------------------------------------------------===//
37 // Constant Class
38 //===----------------------------------------------------------------------===//
39
anchor()40 void Constant::anchor() { }
41
anchor()42 void ConstantData::anchor() {}
43
isNegativeZeroValue() const44 bool Constant::isNegativeZeroValue() const {
45 // Floating point values have an explicit -0.0 value.
46 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
47 return CFP->isZero() && CFP->isNegative();
48
49 // Equivalent for a vector of -0.0's.
50 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
51 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
52 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
53 return true;
54
55 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
56 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
57 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
58 return true;
59
60 // We've already handled true FP case; any other FP vectors can't represent -0.0.
61 if (getType()->isFPOrFPVectorTy())
62 return false;
63
64 // Otherwise, just use +0.0.
65 return isNullValue();
66 }
67
68 // Return true iff this constant is positive zero (floating point), negative
69 // zero (floating point), or a null value.
isZeroValue() const70 bool Constant::isZeroValue() const {
71 // Floating point values have an explicit -0.0 value.
72 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
73 return CFP->isZero();
74
75 // Equivalent for a vector of -0.0's.
76 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
77 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
78 if (SplatCFP && SplatCFP->isZero())
79 return true;
80
81 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
82 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
83 if (SplatCFP && SplatCFP->isZero())
84 return true;
85
86 // Otherwise, just use +0.0.
87 return isNullValue();
88 }
89
isNullValue() const90 bool Constant::isNullValue() const {
91 // 0 is null.
92 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
93 return CI->isZero();
94
95 // +0.0 is null.
96 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
97 return CFP->isZero() && !CFP->isNegative();
98
99 // constant zero is zero for aggregates, cpnull is null for pointers, none for
100 // tokens.
101 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
102 isa<ConstantTokenNone>(this);
103 }
104
isAllOnesValue() const105 bool Constant::isAllOnesValue() const {
106 // Check for -1 integers
107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
108 return CI->isMinusOne();
109
110 // Check for FP which are bitcasted from -1 integers
111 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
112 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
113
114 // Check for constant vectors which are splats of -1 values.
115 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
116 if (Constant *Splat = CV->getSplatValue())
117 return Splat->isAllOnesValue();
118
119 // Check for constant vectors which are splats of -1 values.
120 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
121 if (Constant *Splat = CV->getSplatValue())
122 return Splat->isAllOnesValue();
123
124 return false;
125 }
126
isOneValue() const127 bool Constant::isOneValue() const {
128 // Check for 1 integers
129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130 return CI->isOne();
131
132 // Check for FP which are bitcasted from 1 integers
133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134 return CFP->getValueAPF().bitcastToAPInt() == 1;
135
136 // Check for constant vectors which are splats of 1 values.
137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
138 if (Constant *Splat = CV->getSplatValue())
139 return Splat->isOneValue();
140
141 // Check for constant vectors which are splats of 1 values.
142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
143 if (Constant *Splat = CV->getSplatValue())
144 return Splat->isOneValue();
145
146 return false;
147 }
148
isMinSignedValue() const149 bool Constant::isMinSignedValue() const {
150 // Check for INT_MIN integers
151 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
152 return CI->isMinValue(/*isSigned=*/true);
153
154 // Check for FP which are bitcasted from INT_MIN integers
155 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
156 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
157
158 // Check for constant vectors which are splats of INT_MIN values.
159 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
160 if (Constant *Splat = CV->getSplatValue())
161 return Splat->isMinSignedValue();
162
163 // Check for constant vectors which are splats of INT_MIN values.
164 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
165 if (Constant *Splat = CV->getSplatValue())
166 return Splat->isMinSignedValue();
167
168 return false;
169 }
170
isNotMinSignedValue() const171 bool Constant::isNotMinSignedValue() const {
172 // Check for INT_MIN integers
173 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
174 return !CI->isMinValue(/*isSigned=*/true);
175
176 // Check for FP which are bitcasted from INT_MIN integers
177 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
178 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
179
180 // Check for constant vectors which are splats of INT_MIN values.
181 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
182 if (Constant *Splat = CV->getSplatValue())
183 return Splat->isNotMinSignedValue();
184
185 // Check for constant vectors which are splats of INT_MIN values.
186 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
187 if (Constant *Splat = CV->getSplatValue())
188 return Splat->isNotMinSignedValue();
189
190 // It *may* contain INT_MIN, we can't tell.
191 return false;
192 }
193
194 /// Constructor to create a '0' constant of arbitrary type.
getNullValue(Type * Ty)195 Constant *Constant::getNullValue(Type *Ty) {
196 switch (Ty->getTypeID()) {
197 case Type::IntegerTyID:
198 return ConstantInt::get(Ty, 0);
199 case Type::HalfTyID:
200 return ConstantFP::get(Ty->getContext(),
201 APFloat::getZero(APFloat::IEEEhalf));
202 case Type::FloatTyID:
203 return ConstantFP::get(Ty->getContext(),
204 APFloat::getZero(APFloat::IEEEsingle));
205 case Type::DoubleTyID:
206 return ConstantFP::get(Ty->getContext(),
207 APFloat::getZero(APFloat::IEEEdouble));
208 case Type::X86_FP80TyID:
209 return ConstantFP::get(Ty->getContext(),
210 APFloat::getZero(APFloat::x87DoubleExtended));
211 case Type::FP128TyID:
212 return ConstantFP::get(Ty->getContext(),
213 APFloat::getZero(APFloat::IEEEquad));
214 case Type::PPC_FP128TyID:
215 return ConstantFP::get(Ty->getContext(),
216 APFloat(APFloat::PPCDoubleDouble,
217 APInt::getNullValue(128)));
218 case Type::PointerTyID:
219 return ConstantPointerNull::get(cast<PointerType>(Ty));
220 case Type::StructTyID:
221 case Type::ArrayTyID:
222 case Type::VectorTyID:
223 return ConstantAggregateZero::get(Ty);
224 case Type::TokenTyID:
225 return ConstantTokenNone::get(Ty->getContext());
226 default:
227 // Function, Label, or Opaque type?
228 llvm_unreachable("Cannot create a null constant of that type!");
229 }
230 }
231
getIntegerValue(Type * Ty,const APInt & V)232 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
233 Type *ScalarTy = Ty->getScalarType();
234
235 // Create the base integer constant.
236 Constant *C = ConstantInt::get(Ty->getContext(), V);
237
238 // Convert an integer to a pointer, if necessary.
239 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
240 C = ConstantExpr::getIntToPtr(C, PTy);
241
242 // Broadcast a scalar to a vector, if necessary.
243 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
244 C = ConstantVector::getSplat(VTy->getNumElements(), C);
245
246 return C;
247 }
248
getAllOnesValue(Type * Ty)249 Constant *Constant::getAllOnesValue(Type *Ty) {
250 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
251 return ConstantInt::get(Ty->getContext(),
252 APInt::getAllOnesValue(ITy->getBitWidth()));
253
254 if (Ty->isFloatingPointTy()) {
255 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
256 !Ty->isPPC_FP128Ty());
257 return ConstantFP::get(Ty->getContext(), FL);
258 }
259
260 VectorType *VTy = cast<VectorType>(Ty);
261 return ConstantVector::getSplat(VTy->getNumElements(),
262 getAllOnesValue(VTy->getElementType()));
263 }
264
getAggregateElement(unsigned Elt) const265 Constant *Constant::getAggregateElement(unsigned Elt) const {
266 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
267 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
268
269 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
270 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
271
272 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
273 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
274
275 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
276 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
277 : nullptr;
278 return nullptr;
279 }
280
getAggregateElement(Constant * Elt) const281 Constant *Constant::getAggregateElement(Constant *Elt) const {
282 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
283 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
284 return getAggregateElement(CI->getZExtValue());
285 return nullptr;
286 }
287
destroyConstant()288 void Constant::destroyConstant() {
289 /// First call destroyConstantImpl on the subclass. This gives the subclass
290 /// a chance to remove the constant from any maps/pools it's contained in.
291 switch (getValueID()) {
292 default:
293 llvm_unreachable("Not a constant!");
294 #define HANDLE_CONSTANT(Name) \
295 case Value::Name##Val: \
296 cast<Name>(this)->destroyConstantImpl(); \
297 break;
298 #include "llvm/IR/Value.def"
299 }
300
301 // When a Constant is destroyed, there may be lingering
302 // references to the constant by other constants in the constant pool. These
303 // constants are implicitly dependent on the module that is being deleted,
304 // but they don't know that. Because we only find out when the CPV is
305 // deleted, we must now notify all of our users (that should only be
306 // Constants) that they are, in fact, invalid now and should be deleted.
307 //
308 while (!use_empty()) {
309 Value *V = user_back();
310 #ifndef NDEBUG // Only in -g mode...
311 if (!isa<Constant>(V)) {
312 dbgs() << "While deleting: " << *this
313 << "\n\nUse still stuck around after Def is destroyed: " << *V
314 << "\n\n";
315 }
316 #endif
317 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
318 cast<Constant>(V)->destroyConstant();
319
320 // The constant should remove itself from our use list...
321 assert((use_empty() || user_back() != V) && "Constant not removed!");
322 }
323
324 // Value has no outstanding references it is safe to delete it now...
325 delete this;
326 }
327
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)328 static bool canTrapImpl(const Constant *C,
329 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
330 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
331 // The only thing that could possibly trap are constant exprs.
332 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
333 if (!CE)
334 return false;
335
336 // ConstantExpr traps if any operands can trap.
337 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
338 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
339 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
340 return true;
341 }
342 }
343
344 // Otherwise, only specific operations can trap.
345 switch (CE->getOpcode()) {
346 default:
347 return false;
348 case Instruction::UDiv:
349 case Instruction::SDiv:
350 case Instruction::FDiv:
351 case Instruction::URem:
352 case Instruction::SRem:
353 case Instruction::FRem:
354 // Div and rem can trap if the RHS is not known to be non-zero.
355 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
356 return true;
357 return false;
358 }
359 }
360
canTrap() const361 bool Constant::canTrap() const {
362 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
363 return canTrapImpl(this, NonTrappingOps);
364 }
365
366 /// Check if C contains a GlobalValue for which Predicate is true.
367 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))368 ConstHasGlobalValuePredicate(const Constant *C,
369 bool (*Predicate)(const GlobalValue *)) {
370 SmallPtrSet<const Constant *, 8> Visited;
371 SmallVector<const Constant *, 8> WorkList;
372 WorkList.push_back(C);
373 Visited.insert(C);
374
375 while (!WorkList.empty()) {
376 const Constant *WorkItem = WorkList.pop_back_val();
377 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
378 if (Predicate(GV))
379 return true;
380 for (const Value *Op : WorkItem->operands()) {
381 const Constant *ConstOp = dyn_cast<Constant>(Op);
382 if (!ConstOp)
383 continue;
384 if (Visited.insert(ConstOp).second)
385 WorkList.push_back(ConstOp);
386 }
387 }
388 return false;
389 }
390
isThreadDependent() const391 bool Constant::isThreadDependent() const {
392 auto DLLImportPredicate = [](const GlobalValue *GV) {
393 return GV->isThreadLocal();
394 };
395 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
396 }
397
isDLLImportDependent() const398 bool Constant::isDLLImportDependent() const {
399 auto DLLImportPredicate = [](const GlobalValue *GV) {
400 return GV->hasDLLImportStorageClass();
401 };
402 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
403 }
404
isConstantUsed() const405 bool Constant::isConstantUsed() const {
406 for (const User *U : users()) {
407 const Constant *UC = dyn_cast<Constant>(U);
408 if (!UC || isa<GlobalValue>(UC))
409 return true;
410
411 if (UC->isConstantUsed())
412 return true;
413 }
414 return false;
415 }
416
needsRelocation() const417 bool Constant::needsRelocation() const {
418 if (isa<GlobalValue>(this))
419 return true; // Global reference.
420
421 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
422 return BA->getFunction()->needsRelocation();
423
424 // While raw uses of blockaddress need to be relocated, differences between
425 // two of them don't when they are for labels in the same function. This is a
426 // common idiom when creating a table for the indirect goto extension, so we
427 // handle it efficiently here.
428 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
429 if (CE->getOpcode() == Instruction::Sub) {
430 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
431 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
432 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
433 RHS->getOpcode() == Instruction::PtrToInt &&
434 isa<BlockAddress>(LHS->getOperand(0)) &&
435 isa<BlockAddress>(RHS->getOperand(0)) &&
436 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
437 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
438 return false;
439 }
440
441 bool Result = false;
442 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
443 Result |= cast<Constant>(getOperand(i))->needsRelocation();
444
445 return Result;
446 }
447
448 /// If the specified constantexpr is dead, remove it. This involves recursively
449 /// eliminating any dead users of the constantexpr.
removeDeadUsersOfConstant(const Constant * C)450 static bool removeDeadUsersOfConstant(const Constant *C) {
451 if (isa<GlobalValue>(C)) return false; // Cannot remove this
452
453 while (!C->use_empty()) {
454 const Constant *User = dyn_cast<Constant>(C->user_back());
455 if (!User) return false; // Non-constant usage;
456 if (!removeDeadUsersOfConstant(User))
457 return false; // Constant wasn't dead
458 }
459
460 const_cast<Constant*>(C)->destroyConstant();
461 return true;
462 }
463
464
removeDeadConstantUsers() const465 void Constant::removeDeadConstantUsers() const {
466 Value::const_user_iterator I = user_begin(), E = user_end();
467 Value::const_user_iterator LastNonDeadUser = E;
468 while (I != E) {
469 const Constant *User = dyn_cast<Constant>(*I);
470 if (!User) {
471 LastNonDeadUser = I;
472 ++I;
473 continue;
474 }
475
476 if (!removeDeadUsersOfConstant(User)) {
477 // If the constant wasn't dead, remember that this was the last live use
478 // and move on to the next constant.
479 LastNonDeadUser = I;
480 ++I;
481 continue;
482 }
483
484 // If the constant was dead, then the iterator is invalidated.
485 if (LastNonDeadUser == E) {
486 I = user_begin();
487 if (I == E) break;
488 } else {
489 I = LastNonDeadUser;
490 ++I;
491 }
492 }
493 }
494
495
496
497 //===----------------------------------------------------------------------===//
498 // ConstantInt
499 //===----------------------------------------------------------------------===//
500
anchor()501 void ConstantInt::anchor() { }
502
ConstantInt(IntegerType * Ty,const APInt & V)503 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
504 : ConstantData(Ty, ConstantIntVal), Val(V) {
505 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
506 }
507
getTrue(LLVMContext & Context)508 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
509 LLVMContextImpl *pImpl = Context.pImpl;
510 if (!pImpl->TheTrueVal)
511 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
512 return pImpl->TheTrueVal;
513 }
514
getFalse(LLVMContext & Context)515 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
516 LLVMContextImpl *pImpl = Context.pImpl;
517 if (!pImpl->TheFalseVal)
518 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
519 return pImpl->TheFalseVal;
520 }
521
getTrue(Type * Ty)522 Constant *ConstantInt::getTrue(Type *Ty) {
523 VectorType *VTy = dyn_cast<VectorType>(Ty);
524 if (!VTy) {
525 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
526 return ConstantInt::getTrue(Ty->getContext());
527 }
528 assert(VTy->getElementType()->isIntegerTy(1) &&
529 "True must be vector of i1 or i1.");
530 return ConstantVector::getSplat(VTy->getNumElements(),
531 ConstantInt::getTrue(Ty->getContext()));
532 }
533
getFalse(Type * Ty)534 Constant *ConstantInt::getFalse(Type *Ty) {
535 VectorType *VTy = dyn_cast<VectorType>(Ty);
536 if (!VTy) {
537 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
538 return ConstantInt::getFalse(Ty->getContext());
539 }
540 assert(VTy->getElementType()->isIntegerTy(1) &&
541 "False must be vector of i1 or i1.");
542 return ConstantVector::getSplat(VTy->getNumElements(),
543 ConstantInt::getFalse(Ty->getContext()));
544 }
545
546 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)547 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
548 // get an existing value or the insertion position
549 LLVMContextImpl *pImpl = Context.pImpl;
550 ConstantInt *&Slot = pImpl->IntConstants[V];
551 if (!Slot) {
552 // Get the corresponding integer type for the bit width of the value.
553 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
554 Slot = new ConstantInt(ITy, V);
555 }
556 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
557 return Slot;
558 }
559
get(Type * Ty,uint64_t V,bool isSigned)560 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
561 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
562
563 // For vectors, broadcast the value.
564 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
565 return ConstantVector::getSplat(VTy->getNumElements(), C);
566
567 return C;
568 }
569
get(IntegerType * Ty,uint64_t V,bool isSigned)570 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
571 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
572 }
573
getSigned(IntegerType * Ty,int64_t V)574 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
575 return get(Ty, V, true);
576 }
577
getSigned(Type * Ty,int64_t V)578 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
579 return get(Ty, V, true);
580 }
581
get(Type * Ty,const APInt & V)582 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
583 ConstantInt *C = get(Ty->getContext(), V);
584 assert(C->getType() == Ty->getScalarType() &&
585 "ConstantInt type doesn't match the type implied by its value!");
586
587 // For vectors, broadcast the value.
588 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
589 return ConstantVector::getSplat(VTy->getNumElements(), C);
590
591 return C;
592 }
593
get(IntegerType * Ty,StringRef Str,uint8_t radix)594 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
595 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
596 }
597
598 /// Remove the constant from the constant table.
destroyConstantImpl()599 void ConstantInt::destroyConstantImpl() {
600 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
601 }
602
603 //===----------------------------------------------------------------------===//
604 // ConstantFP
605 //===----------------------------------------------------------------------===//
606
TypeToFloatSemantics(Type * Ty)607 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
608 if (Ty->isHalfTy())
609 return &APFloat::IEEEhalf;
610 if (Ty->isFloatTy())
611 return &APFloat::IEEEsingle;
612 if (Ty->isDoubleTy())
613 return &APFloat::IEEEdouble;
614 if (Ty->isX86_FP80Ty())
615 return &APFloat::x87DoubleExtended;
616 else if (Ty->isFP128Ty())
617 return &APFloat::IEEEquad;
618
619 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
620 return &APFloat::PPCDoubleDouble;
621 }
622
anchor()623 void ConstantFP::anchor() { }
624
get(Type * Ty,double V)625 Constant *ConstantFP::get(Type *Ty, double V) {
626 LLVMContext &Context = Ty->getContext();
627
628 APFloat FV(V);
629 bool ignored;
630 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
631 APFloat::rmNearestTiesToEven, &ignored);
632 Constant *C = get(Context, FV);
633
634 // For vectors, broadcast the value.
635 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
636 return ConstantVector::getSplat(VTy->getNumElements(), C);
637
638 return C;
639 }
640
641
get(Type * Ty,StringRef Str)642 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
643 LLVMContext &Context = Ty->getContext();
644
645 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
646 Constant *C = get(Context, FV);
647
648 // For vectors, broadcast the value.
649 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
650 return ConstantVector::getSplat(VTy->getNumElements(), C);
651
652 return C;
653 }
654
getNaN(Type * Ty,bool Negative,unsigned Type)655 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
656 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
657 APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
658 Constant *C = get(Ty->getContext(), NaN);
659
660 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661 return ConstantVector::getSplat(VTy->getNumElements(), C);
662
663 return C;
664 }
665
getNegativeZero(Type * Ty)666 Constant *ConstantFP::getNegativeZero(Type *Ty) {
667 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
669 Constant *C = get(Ty->getContext(), NegZero);
670
671 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672 return ConstantVector::getSplat(VTy->getNumElements(), C);
673
674 return C;
675 }
676
677
getZeroValueForNegation(Type * Ty)678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
679 if (Ty->isFPOrFPVectorTy())
680 return getNegativeZero(Ty);
681
682 return Constant::getNullValue(Ty);
683 }
684
685
686 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
688 LLVMContextImpl* pImpl = Context.pImpl;
689
690 ConstantFP *&Slot = pImpl->FPConstants[V];
691
692 if (!Slot) {
693 Type *Ty;
694 if (&V.getSemantics() == &APFloat::IEEEhalf)
695 Ty = Type::getHalfTy(Context);
696 else if (&V.getSemantics() == &APFloat::IEEEsingle)
697 Ty = Type::getFloatTy(Context);
698 else if (&V.getSemantics() == &APFloat::IEEEdouble)
699 Ty = Type::getDoubleTy(Context);
700 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
701 Ty = Type::getX86_FP80Ty(Context);
702 else if (&V.getSemantics() == &APFloat::IEEEquad)
703 Ty = Type::getFP128Ty(Context);
704 else {
705 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
706 "Unknown FP format");
707 Ty = Type::getPPC_FP128Ty(Context);
708 }
709 Slot = new ConstantFP(Ty, V);
710 }
711
712 return Slot;
713 }
714
getInfinity(Type * Ty,bool Negative)715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
716 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
717 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
718
719 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720 return ConstantVector::getSplat(VTy->getNumElements(), C);
721
722 return C;
723 }
724
ConstantFP(Type * Ty,const APFloat & V)725 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
726 : ConstantData(Ty, ConstantFPVal), Val(V) {
727 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
728 "FP type Mismatch");
729 }
730
isExactlyValue(const APFloat & V) const731 bool ConstantFP::isExactlyValue(const APFloat &V) const {
732 return Val.bitwiseIsEqual(V);
733 }
734
735 /// Remove the constant from the constant table.
destroyConstantImpl()736 void ConstantFP::destroyConstantImpl() {
737 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
738 }
739
740 //===----------------------------------------------------------------------===//
741 // ConstantAggregateZero Implementation
742 //===----------------------------------------------------------------------===//
743
getSequentialElement() const744 Constant *ConstantAggregateZero::getSequentialElement() const {
745 return Constant::getNullValue(getType()->getSequentialElementType());
746 }
747
getStructElement(unsigned Elt) const748 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
749 return Constant::getNullValue(getType()->getStructElementType(Elt));
750 }
751
getElementValue(Constant * C) const752 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
753 if (isa<SequentialType>(getType()))
754 return getSequentialElement();
755 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
756 }
757
getElementValue(unsigned Idx) const758 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
759 if (isa<SequentialType>(getType()))
760 return getSequentialElement();
761 return getStructElement(Idx);
762 }
763
getNumElements() const764 unsigned ConstantAggregateZero::getNumElements() const {
765 Type *Ty = getType();
766 if (auto *AT = dyn_cast<ArrayType>(Ty))
767 return AT->getNumElements();
768 if (auto *VT = dyn_cast<VectorType>(Ty))
769 return VT->getNumElements();
770 return Ty->getStructNumElements();
771 }
772
773 //===----------------------------------------------------------------------===//
774 // UndefValue Implementation
775 //===----------------------------------------------------------------------===//
776
getSequentialElement() const777 UndefValue *UndefValue::getSequentialElement() const {
778 return UndefValue::get(getType()->getSequentialElementType());
779 }
780
getStructElement(unsigned Elt) const781 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
782 return UndefValue::get(getType()->getStructElementType(Elt));
783 }
784
getElementValue(Constant * C) const785 UndefValue *UndefValue::getElementValue(Constant *C) const {
786 if (isa<SequentialType>(getType()))
787 return getSequentialElement();
788 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
789 }
790
getElementValue(unsigned Idx) const791 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
792 if (isa<SequentialType>(getType()))
793 return getSequentialElement();
794 return getStructElement(Idx);
795 }
796
getNumElements() const797 unsigned UndefValue::getNumElements() const {
798 Type *Ty = getType();
799 if (auto *AT = dyn_cast<ArrayType>(Ty))
800 return AT->getNumElements();
801 if (auto *VT = dyn_cast<VectorType>(Ty))
802 return VT->getNumElements();
803 return Ty->getStructNumElements();
804 }
805
806 //===----------------------------------------------------------------------===//
807 // ConstantXXX Classes
808 //===----------------------------------------------------------------------===//
809
810 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)811 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
812 for (; Start != End; ++Start)
813 if (*Start != Elt)
814 return false;
815 return true;
816 }
817
818 template <typename SequentialTy, typename ElementTy>
getIntSequenceIfElementsMatch(ArrayRef<Constant * > V)819 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
820 assert(!V.empty() && "Cannot get empty int sequence.");
821
822 SmallVector<ElementTy, 16> Elts;
823 for (Constant *C : V)
824 if (auto *CI = dyn_cast<ConstantInt>(C))
825 Elts.push_back(CI->getZExtValue());
826 else
827 return nullptr;
828 return SequentialTy::get(V[0]->getContext(), Elts);
829 }
830
831 template <typename SequentialTy, typename ElementTy>
getFPSequenceIfElementsMatch(ArrayRef<Constant * > V)832 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
833 assert(!V.empty() && "Cannot get empty FP sequence.");
834
835 SmallVector<ElementTy, 16> Elts;
836 for (Constant *C : V)
837 if (auto *CFP = dyn_cast<ConstantFP>(C))
838 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
839 else
840 return nullptr;
841 return SequentialTy::getFP(V[0]->getContext(), Elts);
842 }
843
844 template <typename SequenceTy>
getSequenceIfElementsMatch(Constant * C,ArrayRef<Constant * > V)845 static Constant *getSequenceIfElementsMatch(Constant *C,
846 ArrayRef<Constant *> V) {
847 // We speculatively build the elements here even if it turns out that there is
848 // a constantexpr or something else weird, since it is so uncommon for that to
849 // happen.
850 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
851 if (CI->getType()->isIntegerTy(8))
852 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
853 else if (CI->getType()->isIntegerTy(16))
854 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
855 else if (CI->getType()->isIntegerTy(32))
856 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
857 else if (CI->getType()->isIntegerTy(64))
858 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
859 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
860 if (CFP->getType()->isHalfTy())
861 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
862 else if (CFP->getType()->isFloatTy())
863 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
864 else if (CFP->getType()->isDoubleTy())
865 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
866 }
867
868 return nullptr;
869 }
870
ConstantAggregate(CompositeType * T,ValueTy VT,ArrayRef<Constant * > V)871 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
872 ArrayRef<Constant *> V)
873 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
874 V.size()) {
875 std::copy(V.begin(), V.end(), op_begin());
876
877 // Check that types match, unless this is an opaque struct.
878 if (auto *ST = dyn_cast<StructType>(T))
879 if (ST->isOpaque())
880 return;
881 for (unsigned I = 0, E = V.size(); I != E; ++I)
882 assert(V[I]->getType() == T->getTypeAtIndex(I) &&
883 "Initializer for composite element doesn't match!");
884 }
885
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)886 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
887 : ConstantAggregate(T, ConstantArrayVal, V) {
888 assert(V.size() == T->getNumElements() &&
889 "Invalid initializer for constant array");
890 }
891
get(ArrayType * Ty,ArrayRef<Constant * > V)892 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
893 if (Constant *C = getImpl(Ty, V))
894 return C;
895 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
896 }
897
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)898 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
899 // Empty arrays are canonicalized to ConstantAggregateZero.
900 if (V.empty())
901 return ConstantAggregateZero::get(Ty);
902
903 for (unsigned i = 0, e = V.size(); i != e; ++i) {
904 assert(V[i]->getType() == Ty->getElementType() &&
905 "Wrong type in array element initializer");
906 }
907
908 // If this is an all-zero array, return a ConstantAggregateZero object. If
909 // all undef, return an UndefValue, if "all simple", then return a
910 // ConstantDataArray.
911 Constant *C = V[0];
912 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
913 return UndefValue::get(Ty);
914
915 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
916 return ConstantAggregateZero::get(Ty);
917
918 // Check to see if all of the elements are ConstantFP or ConstantInt and if
919 // the element type is compatible with ConstantDataVector. If so, use it.
920 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
921 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
922
923 // Otherwise, we really do want to create a ConstantArray.
924 return nullptr;
925 }
926
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)927 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
928 ArrayRef<Constant*> V,
929 bool Packed) {
930 unsigned VecSize = V.size();
931 SmallVector<Type*, 16> EltTypes(VecSize);
932 for (unsigned i = 0; i != VecSize; ++i)
933 EltTypes[i] = V[i]->getType();
934
935 return StructType::get(Context, EltTypes, Packed);
936 }
937
938
getTypeForElements(ArrayRef<Constant * > V,bool Packed)939 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
940 bool Packed) {
941 assert(!V.empty() &&
942 "ConstantStruct::getTypeForElements cannot be called on empty list");
943 return getTypeForElements(V[0]->getContext(), V, Packed);
944 }
945
ConstantStruct(StructType * T,ArrayRef<Constant * > V)946 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
947 : ConstantAggregate(T, ConstantStructVal, V) {
948 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
949 "Invalid initializer for constant struct");
950 }
951
952 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)953 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
954 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
955 "Incorrect # elements specified to ConstantStruct::get");
956
957 // Create a ConstantAggregateZero value if all elements are zeros.
958 bool isZero = true;
959 bool isUndef = false;
960
961 if (!V.empty()) {
962 isUndef = isa<UndefValue>(V[0]);
963 isZero = V[0]->isNullValue();
964 if (isUndef || isZero) {
965 for (unsigned i = 0, e = V.size(); i != e; ++i) {
966 if (!V[i]->isNullValue())
967 isZero = false;
968 if (!isa<UndefValue>(V[i]))
969 isUndef = false;
970 }
971 }
972 }
973 if (isZero)
974 return ConstantAggregateZero::get(ST);
975 if (isUndef)
976 return UndefValue::get(ST);
977
978 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
979 }
980
get(StructType * T,...)981 Constant *ConstantStruct::get(StructType *T, ...) {
982 va_list ap;
983 SmallVector<Constant*, 8> Values;
984 va_start(ap, T);
985 while (Constant *Val = va_arg(ap, llvm::Constant*))
986 Values.push_back(Val);
987 va_end(ap);
988 return get(T, Values);
989 }
990
ConstantVector(VectorType * T,ArrayRef<Constant * > V)991 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
992 : ConstantAggregate(T, ConstantVectorVal, V) {
993 assert(V.size() == T->getNumElements() &&
994 "Invalid initializer for constant vector");
995 }
996
997 // ConstantVector accessors.
get(ArrayRef<Constant * > V)998 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
999 if (Constant *C = getImpl(V))
1000 return C;
1001 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1002 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1003 }
1004
getImpl(ArrayRef<Constant * > V)1005 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1006 assert(!V.empty() && "Vectors can't be empty");
1007 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1008
1009 // If this is an all-undef or all-zero vector, return a
1010 // ConstantAggregateZero or UndefValue.
1011 Constant *C = V[0];
1012 bool isZero = C->isNullValue();
1013 bool isUndef = isa<UndefValue>(C);
1014
1015 if (isZero || isUndef) {
1016 for (unsigned i = 1, e = V.size(); i != e; ++i)
1017 if (V[i] != C) {
1018 isZero = isUndef = false;
1019 break;
1020 }
1021 }
1022
1023 if (isZero)
1024 return ConstantAggregateZero::get(T);
1025 if (isUndef)
1026 return UndefValue::get(T);
1027
1028 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1029 // the element type is compatible with ConstantDataVector. If so, use it.
1030 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1031 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1032
1033 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1034 // the operand list constants a ConstantExpr or something else strange.
1035 return nullptr;
1036 }
1037
getSplat(unsigned NumElts,Constant * V)1038 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1039 // If this splat is compatible with ConstantDataVector, use it instead of
1040 // ConstantVector.
1041 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1042 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1043 return ConstantDataVector::getSplat(NumElts, V);
1044
1045 SmallVector<Constant*, 32> Elts(NumElts, V);
1046 return get(Elts);
1047 }
1048
get(LLVMContext & Context)1049 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1050 LLVMContextImpl *pImpl = Context.pImpl;
1051 if (!pImpl->TheNoneToken)
1052 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1053 return pImpl->TheNoneToken.get();
1054 }
1055
1056 /// Remove the constant from the constant table.
destroyConstantImpl()1057 void ConstantTokenNone::destroyConstantImpl() {
1058 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1059 }
1060
1061 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1062 // can't be inline because we don't want to #include Instruction.h into
1063 // Constant.h
isCast() const1064 bool ConstantExpr::isCast() const {
1065 return Instruction::isCast(getOpcode());
1066 }
1067
isCompare() const1068 bool ConstantExpr::isCompare() const {
1069 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1070 }
1071
isGEPWithNoNotionalOverIndexing() const1072 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1073 if (getOpcode() != Instruction::GetElementPtr) return false;
1074
1075 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1076 User::const_op_iterator OI = std::next(this->op_begin());
1077
1078 // Skip the first index, as it has no static limit.
1079 ++GEPI;
1080 ++OI;
1081
1082 // The remaining indices must be compile-time known integers within the
1083 // bounds of the corresponding notional static array types.
1084 for (; GEPI != E; ++GEPI, ++OI) {
1085 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1086 if (!CI) return false;
1087 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1088 if (CI->getValue().getActiveBits() > 64 ||
1089 CI->getZExtValue() >= ATy->getNumElements())
1090 return false;
1091 }
1092
1093 // All the indices checked out.
1094 return true;
1095 }
1096
hasIndices() const1097 bool ConstantExpr::hasIndices() const {
1098 return getOpcode() == Instruction::ExtractValue ||
1099 getOpcode() == Instruction::InsertValue;
1100 }
1101
getIndices() const1102 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1103 if (const ExtractValueConstantExpr *EVCE =
1104 dyn_cast<ExtractValueConstantExpr>(this))
1105 return EVCE->Indices;
1106
1107 return cast<InsertValueConstantExpr>(this)->Indices;
1108 }
1109
getPredicate() const1110 unsigned ConstantExpr::getPredicate() const {
1111 return cast<CompareConstantExpr>(this)->predicate;
1112 }
1113
1114 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1115 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1116 assert(Op->getType() == getOperand(OpNo)->getType() &&
1117 "Replacing operand with value of different type!");
1118 if (getOperand(OpNo) == Op)
1119 return const_cast<ConstantExpr*>(this);
1120
1121 SmallVector<Constant*, 8> NewOps;
1122 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1123 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1124
1125 return getWithOperands(NewOps);
1126 }
1127
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced,Type * SrcTy) const1128 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1129 bool OnlyIfReduced, Type *SrcTy) const {
1130 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1131
1132 // If no operands changed return self.
1133 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1134 return const_cast<ConstantExpr*>(this);
1135
1136 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1137 switch (getOpcode()) {
1138 case Instruction::Trunc:
1139 case Instruction::ZExt:
1140 case Instruction::SExt:
1141 case Instruction::FPTrunc:
1142 case Instruction::FPExt:
1143 case Instruction::UIToFP:
1144 case Instruction::SIToFP:
1145 case Instruction::FPToUI:
1146 case Instruction::FPToSI:
1147 case Instruction::PtrToInt:
1148 case Instruction::IntToPtr:
1149 case Instruction::BitCast:
1150 case Instruction::AddrSpaceCast:
1151 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1152 case Instruction::Select:
1153 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1154 case Instruction::InsertElement:
1155 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1156 OnlyIfReducedTy);
1157 case Instruction::ExtractElement:
1158 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1159 case Instruction::InsertValue:
1160 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1161 OnlyIfReducedTy);
1162 case Instruction::ExtractValue:
1163 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1164 case Instruction::ShuffleVector:
1165 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1166 OnlyIfReducedTy);
1167 case Instruction::GetElementPtr: {
1168 auto *GEPO = cast<GEPOperator>(this);
1169 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1170 return ConstantExpr::getGetElementPtr(
1171 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1172 GEPO->isInBounds(), OnlyIfReducedTy);
1173 }
1174 case Instruction::ICmp:
1175 case Instruction::FCmp:
1176 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1177 OnlyIfReducedTy);
1178 default:
1179 assert(getNumOperands() == 2 && "Must be binary operator?");
1180 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1181 OnlyIfReducedTy);
1182 }
1183 }
1184
1185
1186 //===----------------------------------------------------------------------===//
1187 // isValueValidForType implementations
1188
isValueValidForType(Type * Ty,uint64_t Val)1189 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1190 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1191 if (Ty->isIntegerTy(1))
1192 return Val == 0 || Val == 1;
1193 if (NumBits >= 64)
1194 return true; // always true, has to fit in largest type
1195 uint64_t Max = (1ll << NumBits) - 1;
1196 return Val <= Max;
1197 }
1198
isValueValidForType(Type * Ty,int64_t Val)1199 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1200 unsigned NumBits = Ty->getIntegerBitWidth();
1201 if (Ty->isIntegerTy(1))
1202 return Val == 0 || Val == 1 || Val == -1;
1203 if (NumBits >= 64)
1204 return true; // always true, has to fit in largest type
1205 int64_t Min = -(1ll << (NumBits-1));
1206 int64_t Max = (1ll << (NumBits-1)) - 1;
1207 return (Val >= Min && Val <= Max);
1208 }
1209
isValueValidForType(Type * Ty,const APFloat & Val)1210 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1211 // convert modifies in place, so make a copy.
1212 APFloat Val2 = APFloat(Val);
1213 bool losesInfo;
1214 switch (Ty->getTypeID()) {
1215 default:
1216 return false; // These can't be represented as floating point!
1217
1218 // FIXME rounding mode needs to be more flexible
1219 case Type::HalfTyID: {
1220 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1221 return true;
1222 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1223 return !losesInfo;
1224 }
1225 case Type::FloatTyID: {
1226 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1227 return true;
1228 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1229 return !losesInfo;
1230 }
1231 case Type::DoubleTyID: {
1232 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1233 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1234 &Val2.getSemantics() == &APFloat::IEEEdouble)
1235 return true;
1236 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1237 return !losesInfo;
1238 }
1239 case Type::X86_FP80TyID:
1240 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1241 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1242 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1243 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1244 case Type::FP128TyID:
1245 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1246 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1247 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1248 &Val2.getSemantics() == &APFloat::IEEEquad;
1249 case Type::PPC_FP128TyID:
1250 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1251 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1252 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1253 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1254 }
1255 }
1256
1257
1258 //===----------------------------------------------------------------------===//
1259 // Factory Function Implementation
1260
get(Type * Ty)1261 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1262 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1263 "Cannot create an aggregate zero of non-aggregate type!");
1264
1265 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1266 if (!Entry)
1267 Entry = new ConstantAggregateZero(Ty);
1268
1269 return Entry;
1270 }
1271
1272 /// Remove the constant from the constant table.
destroyConstantImpl()1273 void ConstantAggregateZero::destroyConstantImpl() {
1274 getContext().pImpl->CAZConstants.erase(getType());
1275 }
1276
1277 /// Remove the constant from the constant table.
destroyConstantImpl()1278 void ConstantArray::destroyConstantImpl() {
1279 getType()->getContext().pImpl->ArrayConstants.remove(this);
1280 }
1281
1282
1283 //---- ConstantStruct::get() implementation...
1284 //
1285
1286 /// Remove the constant from the constant table.
destroyConstantImpl()1287 void ConstantStruct::destroyConstantImpl() {
1288 getType()->getContext().pImpl->StructConstants.remove(this);
1289 }
1290
1291 /// Remove the constant from the constant table.
destroyConstantImpl()1292 void ConstantVector::destroyConstantImpl() {
1293 getType()->getContext().pImpl->VectorConstants.remove(this);
1294 }
1295
getSplatValue() const1296 Constant *Constant::getSplatValue() const {
1297 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1298 if (isa<ConstantAggregateZero>(this))
1299 return getNullValue(this->getType()->getVectorElementType());
1300 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1301 return CV->getSplatValue();
1302 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1303 return CV->getSplatValue();
1304 return nullptr;
1305 }
1306
getSplatValue() const1307 Constant *ConstantVector::getSplatValue() const {
1308 // Check out first element.
1309 Constant *Elt = getOperand(0);
1310 // Then make sure all remaining elements point to the same value.
1311 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1312 if (getOperand(I) != Elt)
1313 return nullptr;
1314 return Elt;
1315 }
1316
getUniqueInteger() const1317 const APInt &Constant::getUniqueInteger() const {
1318 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1319 return CI->getValue();
1320 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1321 const Constant *C = this->getAggregateElement(0U);
1322 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1323 return cast<ConstantInt>(C)->getValue();
1324 }
1325
1326 //---- ConstantPointerNull::get() implementation.
1327 //
1328
get(PointerType * Ty)1329 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1330 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1331 if (!Entry)
1332 Entry = new ConstantPointerNull(Ty);
1333
1334 return Entry;
1335 }
1336
1337 /// Remove the constant from the constant table.
destroyConstantImpl()1338 void ConstantPointerNull::destroyConstantImpl() {
1339 getContext().pImpl->CPNConstants.erase(getType());
1340 }
1341
get(Type * Ty)1342 UndefValue *UndefValue::get(Type *Ty) {
1343 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1344 if (!Entry)
1345 Entry = new UndefValue(Ty);
1346
1347 return Entry;
1348 }
1349
1350 /// Remove the constant from the constant table.
destroyConstantImpl()1351 void UndefValue::destroyConstantImpl() {
1352 // Free the constant and any dangling references to it.
1353 getContext().pImpl->UVConstants.erase(getType());
1354 }
1355
get(BasicBlock * BB)1356 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1357 assert(BB->getParent() && "Block must have a parent");
1358 return get(BB->getParent(), BB);
1359 }
1360
get(Function * F,BasicBlock * BB)1361 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1362 BlockAddress *&BA =
1363 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1364 if (!BA)
1365 BA = new BlockAddress(F, BB);
1366
1367 assert(BA->getFunction() == F && "Basic block moved between functions");
1368 return BA;
1369 }
1370
BlockAddress(Function * F,BasicBlock * BB)1371 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1372 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1373 &Op<0>(), 2) {
1374 setOperand(0, F);
1375 setOperand(1, BB);
1376 BB->AdjustBlockAddressRefCount(1);
1377 }
1378
lookup(const BasicBlock * BB)1379 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1380 if (!BB->hasAddressTaken())
1381 return nullptr;
1382
1383 const Function *F = BB->getParent();
1384 assert(F && "Block must have a parent");
1385 BlockAddress *BA =
1386 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1387 assert(BA && "Refcount and block address map disagree!");
1388 return BA;
1389 }
1390
1391 /// Remove the constant from the constant table.
destroyConstantImpl()1392 void BlockAddress::destroyConstantImpl() {
1393 getFunction()->getType()->getContext().pImpl
1394 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1395 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1396 }
1397
handleOperandChangeImpl(Value * From,Value * To)1398 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1399 // This could be replacing either the Basic Block or the Function. In either
1400 // case, we have to remove the map entry.
1401 Function *NewF = getFunction();
1402 BasicBlock *NewBB = getBasicBlock();
1403
1404 if (From == NewF)
1405 NewF = cast<Function>(To->stripPointerCasts());
1406 else {
1407 assert(From == NewBB && "From does not match any operand");
1408 NewBB = cast<BasicBlock>(To);
1409 }
1410
1411 // See if the 'new' entry already exists, if not, just update this in place
1412 // and return early.
1413 BlockAddress *&NewBA =
1414 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1415 if (NewBA)
1416 return NewBA;
1417
1418 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1419
1420 // Remove the old entry, this can't cause the map to rehash (just a
1421 // tombstone will get added).
1422 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1423 getBasicBlock()));
1424 NewBA = this;
1425 setOperand(0, NewF);
1426 setOperand(1, NewBB);
1427 getBasicBlock()->AdjustBlockAddressRefCount(1);
1428
1429 // If we just want to keep the existing value, then return null.
1430 // Callers know that this means we shouldn't delete this value.
1431 return nullptr;
1432 }
1433
1434 //---- ConstantExpr::get() implementations.
1435 //
1436
1437 /// This is a utility function to handle folding of casts and lookup of the
1438 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1439 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1440 bool OnlyIfReduced = false) {
1441 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1442 // Fold a few common cases
1443 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1444 return FC;
1445
1446 if (OnlyIfReduced)
1447 return nullptr;
1448
1449 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1450
1451 // Look up the constant in the table first to ensure uniqueness.
1452 ConstantExprKeyType Key(opc, C);
1453
1454 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1455 }
1456
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1457 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1458 bool OnlyIfReduced) {
1459 Instruction::CastOps opc = Instruction::CastOps(oc);
1460 assert(Instruction::isCast(opc) && "opcode out of range");
1461 assert(C && Ty && "Null arguments to getCast");
1462 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1463
1464 switch (opc) {
1465 default:
1466 llvm_unreachable("Invalid cast opcode");
1467 case Instruction::Trunc:
1468 return getTrunc(C, Ty, OnlyIfReduced);
1469 case Instruction::ZExt:
1470 return getZExt(C, Ty, OnlyIfReduced);
1471 case Instruction::SExt:
1472 return getSExt(C, Ty, OnlyIfReduced);
1473 case Instruction::FPTrunc:
1474 return getFPTrunc(C, Ty, OnlyIfReduced);
1475 case Instruction::FPExt:
1476 return getFPExtend(C, Ty, OnlyIfReduced);
1477 case Instruction::UIToFP:
1478 return getUIToFP(C, Ty, OnlyIfReduced);
1479 case Instruction::SIToFP:
1480 return getSIToFP(C, Ty, OnlyIfReduced);
1481 case Instruction::FPToUI:
1482 return getFPToUI(C, Ty, OnlyIfReduced);
1483 case Instruction::FPToSI:
1484 return getFPToSI(C, Ty, OnlyIfReduced);
1485 case Instruction::PtrToInt:
1486 return getPtrToInt(C, Ty, OnlyIfReduced);
1487 case Instruction::IntToPtr:
1488 return getIntToPtr(C, Ty, OnlyIfReduced);
1489 case Instruction::BitCast:
1490 return getBitCast(C, Ty, OnlyIfReduced);
1491 case Instruction::AddrSpaceCast:
1492 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1493 }
1494 }
1495
getZExtOrBitCast(Constant * C,Type * Ty)1496 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1497 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1498 return getBitCast(C, Ty);
1499 return getZExt(C, Ty);
1500 }
1501
getSExtOrBitCast(Constant * C,Type * Ty)1502 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1503 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1504 return getBitCast(C, Ty);
1505 return getSExt(C, Ty);
1506 }
1507
getTruncOrBitCast(Constant * C,Type * Ty)1508 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1509 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1510 return getBitCast(C, Ty);
1511 return getTrunc(C, Ty);
1512 }
1513
getPointerCast(Constant * S,Type * Ty)1514 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1515 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1516 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1517 "Invalid cast");
1518
1519 if (Ty->isIntOrIntVectorTy())
1520 return getPtrToInt(S, Ty);
1521
1522 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1523 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1524 return getAddrSpaceCast(S, Ty);
1525
1526 return getBitCast(S, Ty);
1527 }
1528
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1529 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1530 Type *Ty) {
1531 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1532 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1533
1534 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1535 return getAddrSpaceCast(S, Ty);
1536
1537 return getBitCast(S, Ty);
1538 }
1539
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1540 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1541 assert(C->getType()->isIntOrIntVectorTy() &&
1542 Ty->isIntOrIntVectorTy() && "Invalid cast");
1543 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1544 unsigned DstBits = Ty->getScalarSizeInBits();
1545 Instruction::CastOps opcode =
1546 (SrcBits == DstBits ? Instruction::BitCast :
1547 (SrcBits > DstBits ? Instruction::Trunc :
1548 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1549 return getCast(opcode, C, Ty);
1550 }
1551
getFPCast(Constant * C,Type * Ty)1552 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1553 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1554 "Invalid cast");
1555 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1556 unsigned DstBits = Ty->getScalarSizeInBits();
1557 if (SrcBits == DstBits)
1558 return C; // Avoid a useless cast
1559 Instruction::CastOps opcode =
1560 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1561 return getCast(opcode, C, Ty);
1562 }
1563
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1564 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1565 #ifndef NDEBUG
1566 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1567 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1568 #endif
1569 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1570 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1571 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1572 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1573 "SrcTy must be larger than DestTy for Trunc!");
1574
1575 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1576 }
1577
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)1578 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1579 #ifndef NDEBUG
1580 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1581 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1582 #endif
1583 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1584 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1585 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1586 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1587 "SrcTy must be smaller than DestTy for SExt!");
1588
1589 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1590 }
1591
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)1592 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1593 #ifndef NDEBUG
1594 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1595 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1596 #endif
1597 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1598 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1599 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1600 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1601 "SrcTy must be smaller than DestTy for ZExt!");
1602
1603 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1604 }
1605
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1606 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1607 #ifndef NDEBUG
1608 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1609 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1610 #endif
1611 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1612 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1613 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1614 "This is an illegal floating point truncation!");
1615 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1616 }
1617
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)1618 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1619 #ifndef NDEBUG
1620 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1621 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1622 #endif
1623 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1624 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1625 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1626 "This is an illegal floating point extension!");
1627 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1628 }
1629
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1630 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1631 #ifndef NDEBUG
1632 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1633 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1634 #endif
1635 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1636 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1637 "This is an illegal uint to floating point cast!");
1638 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1639 }
1640
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1641 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1642 #ifndef NDEBUG
1643 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1644 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1645 #endif
1646 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1647 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1648 "This is an illegal sint to floating point cast!");
1649 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1650 }
1651
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)1652 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1653 #ifndef NDEBUG
1654 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1655 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1656 #endif
1657 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1658 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1659 "This is an illegal floating point to uint cast!");
1660 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1661 }
1662
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)1663 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1664 #ifndef NDEBUG
1665 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1666 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1667 #endif
1668 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1669 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1670 "This is an illegal floating point to sint cast!");
1671 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1672 }
1673
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)1674 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1675 bool OnlyIfReduced) {
1676 assert(C->getType()->getScalarType()->isPointerTy() &&
1677 "PtrToInt source must be pointer or pointer vector");
1678 assert(DstTy->getScalarType()->isIntegerTy() &&
1679 "PtrToInt destination must be integer or integer vector");
1680 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1681 if (isa<VectorType>(C->getType()))
1682 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1683 "Invalid cast between a different number of vector elements");
1684 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1685 }
1686
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)1687 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1688 bool OnlyIfReduced) {
1689 assert(C->getType()->getScalarType()->isIntegerTy() &&
1690 "IntToPtr source must be integer or integer vector");
1691 assert(DstTy->getScalarType()->isPointerTy() &&
1692 "IntToPtr destination must be a pointer or pointer vector");
1693 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1694 if (isa<VectorType>(C->getType()))
1695 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1696 "Invalid cast between a different number of vector elements");
1697 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1698 }
1699
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1700 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1701 bool OnlyIfReduced) {
1702 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1703 "Invalid constantexpr bitcast!");
1704
1705 // It is common to ask for a bitcast of a value to its own type, handle this
1706 // speedily.
1707 if (C->getType() == DstTy) return C;
1708
1709 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1710 }
1711
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1712 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1713 bool OnlyIfReduced) {
1714 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1715 "Invalid constantexpr addrspacecast!");
1716
1717 // Canonicalize addrspacecasts between different pointer types by first
1718 // bitcasting the pointer type and then converting the address space.
1719 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1720 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1721 Type *DstElemTy = DstScalarTy->getElementType();
1722 if (SrcScalarTy->getElementType() != DstElemTy) {
1723 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1724 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1725 // Handle vectors of pointers.
1726 MidTy = VectorType::get(MidTy, VT->getNumElements());
1727 }
1728 C = getBitCast(C, MidTy);
1729 }
1730 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1731 }
1732
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)1733 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1734 unsigned Flags, Type *OnlyIfReducedTy) {
1735 // Check the operands for consistency first.
1736 assert(Opcode >= Instruction::BinaryOpsBegin &&
1737 Opcode < Instruction::BinaryOpsEnd &&
1738 "Invalid opcode in binary constant expression");
1739 assert(C1->getType() == C2->getType() &&
1740 "Operand types in binary constant expression should match");
1741
1742 #ifndef NDEBUG
1743 switch (Opcode) {
1744 case Instruction::Add:
1745 case Instruction::Sub:
1746 case Instruction::Mul:
1747 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1748 assert(C1->getType()->isIntOrIntVectorTy() &&
1749 "Tried to create an integer operation on a non-integer type!");
1750 break;
1751 case Instruction::FAdd:
1752 case Instruction::FSub:
1753 case Instruction::FMul:
1754 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1755 assert(C1->getType()->isFPOrFPVectorTy() &&
1756 "Tried to create a floating-point operation on a "
1757 "non-floating-point type!");
1758 break;
1759 case Instruction::UDiv:
1760 case Instruction::SDiv:
1761 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1762 assert(C1->getType()->isIntOrIntVectorTy() &&
1763 "Tried to create an arithmetic operation on a non-arithmetic type!");
1764 break;
1765 case Instruction::FDiv:
1766 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1767 assert(C1->getType()->isFPOrFPVectorTy() &&
1768 "Tried to create an arithmetic operation on a non-arithmetic type!");
1769 break;
1770 case Instruction::URem:
1771 case Instruction::SRem:
1772 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1773 assert(C1->getType()->isIntOrIntVectorTy() &&
1774 "Tried to create an arithmetic operation on a non-arithmetic type!");
1775 break;
1776 case Instruction::FRem:
1777 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1778 assert(C1->getType()->isFPOrFPVectorTy() &&
1779 "Tried to create an arithmetic operation on a non-arithmetic type!");
1780 break;
1781 case Instruction::And:
1782 case Instruction::Or:
1783 case Instruction::Xor:
1784 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1785 assert(C1->getType()->isIntOrIntVectorTy() &&
1786 "Tried to create a logical operation on a non-integral type!");
1787 break;
1788 case Instruction::Shl:
1789 case Instruction::LShr:
1790 case Instruction::AShr:
1791 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1792 assert(C1->getType()->isIntOrIntVectorTy() &&
1793 "Tried to create a shift operation on a non-integer type!");
1794 break;
1795 default:
1796 break;
1797 }
1798 #endif
1799
1800 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1801 return FC; // Fold a few common cases.
1802
1803 if (OnlyIfReducedTy == C1->getType())
1804 return nullptr;
1805
1806 Constant *ArgVec[] = { C1, C2 };
1807 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1808
1809 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1810 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1811 }
1812
getSizeOf(Type * Ty)1813 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1814 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1815 // Note that a non-inbounds gep is used, as null isn't within any object.
1816 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1817 Constant *GEP = getGetElementPtr(
1818 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1819 return getPtrToInt(GEP,
1820 Type::getInt64Ty(Ty->getContext()));
1821 }
1822
getAlignOf(Type * Ty)1823 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1824 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1825 // Note that a non-inbounds gep is used, as null isn't within any object.
1826 Type *AligningTy =
1827 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1828 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1829 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1830 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1831 Constant *Indices[2] = { Zero, One };
1832 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1833 return getPtrToInt(GEP,
1834 Type::getInt64Ty(Ty->getContext()));
1835 }
1836
getOffsetOf(StructType * STy,unsigned FieldNo)1837 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1838 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1839 FieldNo));
1840 }
1841
getOffsetOf(Type * Ty,Constant * FieldNo)1842 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1843 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1844 // Note that a non-inbounds gep is used, as null isn't within any object.
1845 Constant *GEPIdx[] = {
1846 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1847 FieldNo
1848 };
1849 Constant *GEP = getGetElementPtr(
1850 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1851 return getPtrToInt(GEP,
1852 Type::getInt64Ty(Ty->getContext()));
1853 }
1854
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)1855 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1856 Constant *C2, bool OnlyIfReduced) {
1857 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1858
1859 switch (Predicate) {
1860 default: llvm_unreachable("Invalid CmpInst predicate");
1861 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1862 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1863 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1864 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1865 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1866 case CmpInst::FCMP_TRUE:
1867 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1868
1869 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1870 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1871 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1872 case CmpInst::ICMP_SLE:
1873 return getICmp(Predicate, C1, C2, OnlyIfReduced);
1874 }
1875 }
1876
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)1877 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1878 Type *OnlyIfReducedTy) {
1879 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1880
1881 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1882 return SC; // Fold common cases
1883
1884 if (OnlyIfReducedTy == V1->getType())
1885 return nullptr;
1886
1887 Constant *ArgVec[] = { C, V1, V2 };
1888 ConstantExprKeyType Key(Instruction::Select, ArgVec);
1889
1890 LLVMContextImpl *pImpl = C->getContext().pImpl;
1891 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1892 }
1893
getGetElementPtr(Type * Ty,Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Type * OnlyIfReducedTy)1894 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1895 ArrayRef<Value *> Idxs, bool InBounds,
1896 Type *OnlyIfReducedTy) {
1897 if (!Ty)
1898 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1899 else
1900 assert(
1901 Ty ==
1902 cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1903
1904 if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
1905 return FC; // Fold a few common cases.
1906
1907 // Get the result type of the getelementptr!
1908 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1909 assert(DestTy && "GEP indices invalid!");
1910 unsigned AS = C->getType()->getPointerAddressSpace();
1911 Type *ReqTy = DestTy->getPointerTo(AS);
1912
1913 unsigned NumVecElts = 0;
1914 if (C->getType()->isVectorTy())
1915 NumVecElts = C->getType()->getVectorNumElements();
1916 else for (auto Idx : Idxs)
1917 if (Idx->getType()->isVectorTy())
1918 NumVecElts = Idx->getType()->getVectorNumElements();
1919
1920 if (NumVecElts)
1921 ReqTy = VectorType::get(ReqTy, NumVecElts);
1922
1923 if (OnlyIfReducedTy == ReqTy)
1924 return nullptr;
1925
1926 // Look up the constant in the table first to ensure uniqueness
1927 std::vector<Constant*> ArgVec;
1928 ArgVec.reserve(1 + Idxs.size());
1929 ArgVec.push_back(C);
1930 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1931 assert((!Idxs[i]->getType()->isVectorTy() ||
1932 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
1933 "getelementptr index type missmatch");
1934
1935 Constant *Idx = cast<Constant>(Idxs[i]);
1936 if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
1937 Idx = ConstantVector::getSplat(NumVecElts, Idx);
1938 ArgVec.push_back(Idx);
1939 }
1940 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1941 InBounds ? GEPOperator::IsInBounds : 0, None,
1942 Ty);
1943
1944 LLVMContextImpl *pImpl = C->getContext().pImpl;
1945 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1946 }
1947
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)1948 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
1949 Constant *RHS, bool OnlyIfReduced) {
1950 assert(LHS->getType() == RHS->getType());
1951 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1952 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1953
1954 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1955 return FC; // Fold a few common cases...
1956
1957 if (OnlyIfReduced)
1958 return nullptr;
1959
1960 // Look up the constant in the table first to ensure uniqueness
1961 Constant *ArgVec[] = { LHS, RHS };
1962 // Get the key type with both the opcode and predicate
1963 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
1964
1965 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1966 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1967 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1968
1969 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1970 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1971 }
1972
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)1973 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
1974 Constant *RHS, bool OnlyIfReduced) {
1975 assert(LHS->getType() == RHS->getType());
1976 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1977
1978 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1979 return FC; // Fold a few common cases...
1980
1981 if (OnlyIfReduced)
1982 return nullptr;
1983
1984 // Look up the constant in the table first to ensure uniqueness
1985 Constant *ArgVec[] = { LHS, RHS };
1986 // Get the key type with both the opcode and predicate
1987 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
1988
1989 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1990 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1991 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1992
1993 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1994 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1995 }
1996
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)1997 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
1998 Type *OnlyIfReducedTy) {
1999 assert(Val->getType()->isVectorTy() &&
2000 "Tried to create extractelement operation on non-vector type!");
2001 assert(Idx->getType()->isIntegerTy() &&
2002 "Extractelement index must be an integer type!");
2003
2004 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2005 return FC; // Fold a few common cases.
2006
2007 Type *ReqTy = Val->getType()->getVectorElementType();
2008 if (OnlyIfReducedTy == ReqTy)
2009 return nullptr;
2010
2011 // Look up the constant in the table first to ensure uniqueness
2012 Constant *ArgVec[] = { Val, Idx };
2013 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2014
2015 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2016 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2017 }
2018
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2019 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2020 Constant *Idx, Type *OnlyIfReducedTy) {
2021 assert(Val->getType()->isVectorTy() &&
2022 "Tried to create insertelement operation on non-vector type!");
2023 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2024 "Insertelement types must match!");
2025 assert(Idx->getType()->isIntegerTy() &&
2026 "Insertelement index must be i32 type!");
2027
2028 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2029 return FC; // Fold a few common cases.
2030
2031 if (OnlyIfReducedTy == Val->getType())
2032 return nullptr;
2033
2034 // Look up the constant in the table first to ensure uniqueness
2035 Constant *ArgVec[] = { Val, Elt, Idx };
2036 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2037
2038 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2039 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2040 }
2041
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask,Type * OnlyIfReducedTy)2042 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2043 Constant *Mask, Type *OnlyIfReducedTy) {
2044 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2045 "Invalid shuffle vector constant expr operands!");
2046
2047 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2048 return FC; // Fold a few common cases.
2049
2050 unsigned NElts = Mask->getType()->getVectorNumElements();
2051 Type *EltTy = V1->getType()->getVectorElementType();
2052 Type *ShufTy = VectorType::get(EltTy, NElts);
2053
2054 if (OnlyIfReducedTy == ShufTy)
2055 return nullptr;
2056
2057 // Look up the constant in the table first to ensure uniqueness
2058 Constant *ArgVec[] = { V1, V2, Mask };
2059 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2060
2061 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2062 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2063 }
2064
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2065 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2066 ArrayRef<unsigned> Idxs,
2067 Type *OnlyIfReducedTy) {
2068 assert(Agg->getType()->isFirstClassType() &&
2069 "Non-first-class type for constant insertvalue expression");
2070
2071 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2072 Idxs) == Val->getType() &&
2073 "insertvalue indices invalid!");
2074 Type *ReqTy = Val->getType();
2075
2076 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2077 return FC;
2078
2079 if (OnlyIfReducedTy == ReqTy)
2080 return nullptr;
2081
2082 Constant *ArgVec[] = { Agg, Val };
2083 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2084
2085 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2086 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2087 }
2088
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2089 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2090 Type *OnlyIfReducedTy) {
2091 assert(Agg->getType()->isFirstClassType() &&
2092 "Tried to create extractelement operation on non-first-class type!");
2093
2094 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2095 (void)ReqTy;
2096 assert(ReqTy && "extractvalue indices invalid!");
2097
2098 assert(Agg->getType()->isFirstClassType() &&
2099 "Non-first-class type for constant extractvalue expression");
2100 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2101 return FC;
2102
2103 if (OnlyIfReducedTy == ReqTy)
2104 return nullptr;
2105
2106 Constant *ArgVec[] = { Agg };
2107 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2108
2109 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2110 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2111 }
2112
getNeg(Constant * C,bool HasNUW,bool HasNSW)2113 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2114 assert(C->getType()->isIntOrIntVectorTy() &&
2115 "Cannot NEG a nonintegral value!");
2116 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2117 C, HasNUW, HasNSW);
2118 }
2119
getFNeg(Constant * C)2120 Constant *ConstantExpr::getFNeg(Constant *C) {
2121 assert(C->getType()->isFPOrFPVectorTy() &&
2122 "Cannot FNEG a non-floating-point value!");
2123 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2124 }
2125
getNot(Constant * C)2126 Constant *ConstantExpr::getNot(Constant *C) {
2127 assert(C->getType()->isIntOrIntVectorTy() &&
2128 "Cannot NOT a nonintegral value!");
2129 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2130 }
2131
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2132 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2133 bool HasNUW, bool HasNSW) {
2134 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2135 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2136 return get(Instruction::Add, C1, C2, Flags);
2137 }
2138
getFAdd(Constant * C1,Constant * C2)2139 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2140 return get(Instruction::FAdd, C1, C2);
2141 }
2142
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2143 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2144 bool HasNUW, bool HasNSW) {
2145 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2146 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2147 return get(Instruction::Sub, C1, C2, Flags);
2148 }
2149
getFSub(Constant * C1,Constant * C2)2150 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2151 return get(Instruction::FSub, C1, C2);
2152 }
2153
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2154 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2155 bool HasNUW, bool HasNSW) {
2156 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2157 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2158 return get(Instruction::Mul, C1, C2, Flags);
2159 }
2160
getFMul(Constant * C1,Constant * C2)2161 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2162 return get(Instruction::FMul, C1, C2);
2163 }
2164
getUDiv(Constant * C1,Constant * C2,bool isExact)2165 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2166 return get(Instruction::UDiv, C1, C2,
2167 isExact ? PossiblyExactOperator::IsExact : 0);
2168 }
2169
getSDiv(Constant * C1,Constant * C2,bool isExact)2170 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2171 return get(Instruction::SDiv, C1, C2,
2172 isExact ? PossiblyExactOperator::IsExact : 0);
2173 }
2174
getFDiv(Constant * C1,Constant * C2)2175 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2176 return get(Instruction::FDiv, C1, C2);
2177 }
2178
getURem(Constant * C1,Constant * C2)2179 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2180 return get(Instruction::URem, C1, C2);
2181 }
2182
getSRem(Constant * C1,Constant * C2)2183 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2184 return get(Instruction::SRem, C1, C2);
2185 }
2186
getFRem(Constant * C1,Constant * C2)2187 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2188 return get(Instruction::FRem, C1, C2);
2189 }
2190
getAnd(Constant * C1,Constant * C2)2191 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2192 return get(Instruction::And, C1, C2);
2193 }
2194
getOr(Constant * C1,Constant * C2)2195 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2196 return get(Instruction::Or, C1, C2);
2197 }
2198
getXor(Constant * C1,Constant * C2)2199 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2200 return get(Instruction::Xor, C1, C2);
2201 }
2202
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2203 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2204 bool HasNUW, bool HasNSW) {
2205 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2206 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2207 return get(Instruction::Shl, C1, C2, Flags);
2208 }
2209
getLShr(Constant * C1,Constant * C2,bool isExact)2210 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2211 return get(Instruction::LShr, C1, C2,
2212 isExact ? PossiblyExactOperator::IsExact : 0);
2213 }
2214
getAShr(Constant * C1,Constant * C2,bool isExact)2215 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2216 return get(Instruction::AShr, C1, C2,
2217 isExact ? PossiblyExactOperator::IsExact : 0);
2218 }
2219
getBinOpIdentity(unsigned Opcode,Type * Ty)2220 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2221 switch (Opcode) {
2222 default:
2223 // Doesn't have an identity.
2224 return nullptr;
2225
2226 case Instruction::Add:
2227 case Instruction::Or:
2228 case Instruction::Xor:
2229 return Constant::getNullValue(Ty);
2230
2231 case Instruction::Mul:
2232 return ConstantInt::get(Ty, 1);
2233
2234 case Instruction::And:
2235 return Constant::getAllOnesValue(Ty);
2236 }
2237 }
2238
getBinOpAbsorber(unsigned Opcode,Type * Ty)2239 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2240 switch (Opcode) {
2241 default:
2242 // Doesn't have an absorber.
2243 return nullptr;
2244
2245 case Instruction::Or:
2246 return Constant::getAllOnesValue(Ty);
2247
2248 case Instruction::And:
2249 case Instruction::Mul:
2250 return Constant::getNullValue(Ty);
2251 }
2252 }
2253
2254 /// Remove the constant from the constant table.
destroyConstantImpl()2255 void ConstantExpr::destroyConstantImpl() {
2256 getType()->getContext().pImpl->ExprConstants.remove(this);
2257 }
2258
getOpcodeName() const2259 const char *ConstantExpr::getOpcodeName() const {
2260 return Instruction::getOpcodeName(getOpcode());
2261 }
2262
GetElementPtrConstantExpr(Type * SrcElementTy,Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2263 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2264 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2265 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2266 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2267 (IdxList.size() + 1),
2268 IdxList.size() + 1),
2269 SrcElementTy(SrcElementTy),
2270 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2271 Op<0>() = C;
2272 Use *OperandList = getOperandList();
2273 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2274 OperandList[i+1] = IdxList[i];
2275 }
2276
getSourceElementType() const2277 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2278 return SrcElementTy;
2279 }
2280
getResultElementType() const2281 Type *GetElementPtrConstantExpr::getResultElementType() const {
2282 return ResElementTy;
2283 }
2284
2285 //===----------------------------------------------------------------------===//
2286 // ConstantData* implementations
2287
anchor()2288 void ConstantDataArray::anchor() {}
anchor()2289 void ConstantDataVector::anchor() {}
2290
getElementType() const2291 Type *ConstantDataSequential::getElementType() const {
2292 return getType()->getElementType();
2293 }
2294
getRawDataValues() const2295 StringRef ConstantDataSequential::getRawDataValues() const {
2296 return StringRef(DataElements, getNumElements()*getElementByteSize());
2297 }
2298
isElementTypeCompatible(Type * Ty)2299 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2300 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2301 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2302 switch (IT->getBitWidth()) {
2303 case 8:
2304 case 16:
2305 case 32:
2306 case 64:
2307 return true;
2308 default: break;
2309 }
2310 }
2311 return false;
2312 }
2313
getNumElements() const2314 unsigned ConstantDataSequential::getNumElements() const {
2315 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2316 return AT->getNumElements();
2317 return getType()->getVectorNumElements();
2318 }
2319
2320
getElementByteSize() const2321 uint64_t ConstantDataSequential::getElementByteSize() const {
2322 return getElementType()->getPrimitiveSizeInBits()/8;
2323 }
2324
2325 /// Return the start of the specified element.
getElementPointer(unsigned Elt) const2326 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2327 assert(Elt < getNumElements() && "Invalid Elt");
2328 return DataElements+Elt*getElementByteSize();
2329 }
2330
2331
2332 /// Return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2333 static bool isAllZeros(StringRef Arr) {
2334 for (char I : Arr)
2335 if (I != 0)
2336 return false;
2337 return true;
2338 }
2339
2340 /// This is the underlying implementation of all of the
2341 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2342 /// the correct element type. We take the bytes in as a StringRef because
2343 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2344 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2345 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2346 // If the elements are all zero or there are no elements, return a CAZ, which
2347 // is more dense and canonical.
2348 if (isAllZeros(Elements))
2349 return ConstantAggregateZero::get(Ty);
2350
2351 // Do a lookup to see if we have already formed one of these.
2352 auto &Slot =
2353 *Ty->getContext()
2354 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2355 .first;
2356
2357 // The bucket can point to a linked list of different CDS's that have the same
2358 // body but different types. For example, 0,0,0,1 could be a 4 element array
2359 // of i8, or a 1-element array of i32. They'll both end up in the same
2360 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2361 ConstantDataSequential **Entry = &Slot.second;
2362 for (ConstantDataSequential *Node = *Entry; Node;
2363 Entry = &Node->Next, Node = *Entry)
2364 if (Node->getType() == Ty)
2365 return Node;
2366
2367 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2368 // and return it.
2369 if (isa<ArrayType>(Ty))
2370 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2371
2372 assert(isa<VectorType>(Ty));
2373 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2374 }
2375
destroyConstantImpl()2376 void ConstantDataSequential::destroyConstantImpl() {
2377 // Remove the constant from the StringMap.
2378 StringMap<ConstantDataSequential*> &CDSConstants =
2379 getType()->getContext().pImpl->CDSConstants;
2380
2381 StringMap<ConstantDataSequential*>::iterator Slot =
2382 CDSConstants.find(getRawDataValues());
2383
2384 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2385
2386 ConstantDataSequential **Entry = &Slot->getValue();
2387
2388 // Remove the entry from the hash table.
2389 if (!(*Entry)->Next) {
2390 // If there is only one value in the bucket (common case) it must be this
2391 // entry, and removing the entry should remove the bucket completely.
2392 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2393 getContext().pImpl->CDSConstants.erase(Slot);
2394 } else {
2395 // Otherwise, there are multiple entries linked off the bucket, unlink the
2396 // node we care about but keep the bucket around.
2397 for (ConstantDataSequential *Node = *Entry; ;
2398 Entry = &Node->Next, Node = *Entry) {
2399 assert(Node && "Didn't find entry in its uniquing hash table!");
2400 // If we found our entry, unlink it from the list and we're done.
2401 if (Node == this) {
2402 *Entry = Node->Next;
2403 break;
2404 }
2405 }
2406 }
2407
2408 // If we were part of a list, make sure that we don't delete the list that is
2409 // still owned by the uniquing map.
2410 Next = nullptr;
2411 }
2412
2413 /// get() constructors - Return a constant with array type with an element
2414 /// count and element type matching the ArrayRef passed in. Note that this
2415 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2416 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2417 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2418 const char *Data = reinterpret_cast<const char *>(Elts.data());
2419 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2420 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2421 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2422 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2423 const char *Data = reinterpret_cast<const char *>(Elts.data());
2424 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2425 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2426 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2427 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2428 const char *Data = reinterpret_cast<const char *>(Elts.data());
2429 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2430 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2431 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2432 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2433 const char *Data = reinterpret_cast<const char *>(Elts.data());
2434 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2435 }
get(LLVMContext & Context,ArrayRef<float> Elts)2436 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2437 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2438 const char *Data = reinterpret_cast<const char *>(Elts.data());
2439 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2440 }
get(LLVMContext & Context,ArrayRef<double> Elts)2441 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2442 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2443 const char *Data = reinterpret_cast<const char *>(Elts.data());
2444 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2445 }
2446
2447 /// getFP() constructors - Return a constant with array type with an element
2448 /// count and element type of float with precision matching the number of
2449 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2450 /// double for 64bits) Note that this can return a ConstantAggregateZero
2451 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2452 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2453 ArrayRef<uint16_t> Elts) {
2454 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2455 const char *Data = reinterpret_cast<const char *>(Elts.data());
2456 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2457 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2458 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2459 ArrayRef<uint32_t> Elts) {
2460 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2461 const char *Data = reinterpret_cast<const char *>(Elts.data());
2462 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2463 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2464 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2465 ArrayRef<uint64_t> Elts) {
2466 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2467 const char *Data = reinterpret_cast<const char *>(Elts.data());
2468 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2469 }
2470
getString(LLVMContext & Context,StringRef Str,bool AddNull)2471 Constant *ConstantDataArray::getString(LLVMContext &Context,
2472 StringRef Str, bool AddNull) {
2473 if (!AddNull) {
2474 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2475 return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2476 Str.size()));
2477 }
2478
2479 SmallVector<uint8_t, 64> ElementVals;
2480 ElementVals.append(Str.begin(), Str.end());
2481 ElementVals.push_back(0);
2482 return get(Context, ElementVals);
2483 }
2484
2485 /// get() constructors - Return a constant with vector type with an element
2486 /// count and element type matching the ArrayRef passed in. Note that this
2487 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2488 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2489 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2490 const char *Data = reinterpret_cast<const char *>(Elts.data());
2491 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2492 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2493 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2494 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2495 const char *Data = reinterpret_cast<const char *>(Elts.data());
2496 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2497 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2498 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2499 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2500 const char *Data = reinterpret_cast<const char *>(Elts.data());
2501 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2502 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2503 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2504 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2505 const char *Data = reinterpret_cast<const char *>(Elts.data());
2506 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2507 }
get(LLVMContext & Context,ArrayRef<float> Elts)2508 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2509 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2510 const char *Data = reinterpret_cast<const char *>(Elts.data());
2511 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2512 }
get(LLVMContext & Context,ArrayRef<double> Elts)2513 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2514 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2515 const char *Data = reinterpret_cast<const char *>(Elts.data());
2516 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2517 }
2518
2519 /// getFP() constructors - Return a constant with vector type with an element
2520 /// count and element type of float with the precision matching the number of
2521 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2522 /// double for 64bits) Note that this can return a ConstantAggregateZero
2523 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2524 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2525 ArrayRef<uint16_t> Elts) {
2526 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2527 const char *Data = reinterpret_cast<const char *>(Elts.data());
2528 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2529 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2530 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2531 ArrayRef<uint32_t> Elts) {
2532 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2533 const char *Data = reinterpret_cast<const char *>(Elts.data());
2534 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2535 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2536 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2537 ArrayRef<uint64_t> Elts) {
2538 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2539 const char *Data = reinterpret_cast<const char *>(Elts.data());
2540 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2541 }
2542
getSplat(unsigned NumElts,Constant * V)2543 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2544 assert(isElementTypeCompatible(V->getType()) &&
2545 "Element type not compatible with ConstantData");
2546 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2547 if (CI->getType()->isIntegerTy(8)) {
2548 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2549 return get(V->getContext(), Elts);
2550 }
2551 if (CI->getType()->isIntegerTy(16)) {
2552 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2553 return get(V->getContext(), Elts);
2554 }
2555 if (CI->getType()->isIntegerTy(32)) {
2556 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2557 return get(V->getContext(), Elts);
2558 }
2559 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2560 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2561 return get(V->getContext(), Elts);
2562 }
2563
2564 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2565 if (CFP->getType()->isHalfTy()) {
2566 SmallVector<uint16_t, 16> Elts(
2567 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2568 return getFP(V->getContext(), Elts);
2569 }
2570 if (CFP->getType()->isFloatTy()) {
2571 SmallVector<uint32_t, 16> Elts(
2572 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2573 return getFP(V->getContext(), Elts);
2574 }
2575 if (CFP->getType()->isDoubleTy()) {
2576 SmallVector<uint64_t, 16> Elts(
2577 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2578 return getFP(V->getContext(), Elts);
2579 }
2580 }
2581 return ConstantVector::getSplat(NumElts, V);
2582 }
2583
2584
getElementAsInteger(unsigned Elt) const2585 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2586 assert(isa<IntegerType>(getElementType()) &&
2587 "Accessor can only be used when element is an integer");
2588 const char *EltPtr = getElementPointer(Elt);
2589
2590 // The data is stored in host byte order, make sure to cast back to the right
2591 // type to load with the right endianness.
2592 switch (getElementType()->getIntegerBitWidth()) {
2593 default: llvm_unreachable("Invalid bitwidth for CDS");
2594 case 8:
2595 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2596 case 16:
2597 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2598 case 32:
2599 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2600 case 64:
2601 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2602 }
2603 }
2604
getElementAsAPFloat(unsigned Elt) const2605 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2606 const char *EltPtr = getElementPointer(Elt);
2607
2608 switch (getElementType()->getTypeID()) {
2609 default:
2610 llvm_unreachable("Accessor can only be used when element is float/double!");
2611 case Type::HalfTyID: {
2612 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2613 return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
2614 }
2615 case Type::FloatTyID: {
2616 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2617 return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2618 }
2619 case Type::DoubleTyID: {
2620 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2621 return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2622 }
2623 }
2624 }
2625
getElementAsFloat(unsigned Elt) const2626 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2627 assert(getElementType()->isFloatTy() &&
2628 "Accessor can only be used when element is a 'float'");
2629 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2630 return *const_cast<float *>(EltPtr);
2631 }
2632
getElementAsDouble(unsigned Elt) const2633 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2634 assert(getElementType()->isDoubleTy() &&
2635 "Accessor can only be used when element is a 'float'");
2636 const double *EltPtr =
2637 reinterpret_cast<const double *>(getElementPointer(Elt));
2638 return *const_cast<double *>(EltPtr);
2639 }
2640
getElementAsConstant(unsigned Elt) const2641 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2642 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2643 getElementType()->isDoubleTy())
2644 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2645
2646 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2647 }
2648
isString() const2649 bool ConstantDataSequential::isString() const {
2650 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2651 }
2652
isCString() const2653 bool ConstantDataSequential::isCString() const {
2654 if (!isString())
2655 return false;
2656
2657 StringRef Str = getAsString();
2658
2659 // The last value must be nul.
2660 if (Str.back() != 0) return false;
2661
2662 // Other elements must be non-nul.
2663 return Str.drop_back().find(0) == StringRef::npos;
2664 }
2665
getSplatValue() const2666 Constant *ConstantDataVector::getSplatValue() const {
2667 const char *Base = getRawDataValues().data();
2668
2669 // Compare elements 1+ to the 0'th element.
2670 unsigned EltSize = getElementByteSize();
2671 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2672 if (memcmp(Base, Base+i*EltSize, EltSize))
2673 return nullptr;
2674
2675 // If they're all the same, return the 0th one as a representative.
2676 return getElementAsConstant(0);
2677 }
2678
2679 //===----------------------------------------------------------------------===//
2680 // handleOperandChange implementations
2681
2682 /// Update this constant array to change uses of
2683 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2684 /// etc.
2685 ///
2686 /// Note that we intentionally replace all uses of From with To here. Consider
2687 /// a large array that uses 'From' 1000 times. By handling this case all here,
2688 /// ConstantArray::handleOperandChange is only invoked once, and that
2689 /// single invocation handles all 1000 uses. Handling them one at a time would
2690 /// work, but would be really slow because it would have to unique each updated
2691 /// array instance.
2692 ///
handleOperandChange(Value * From,Value * To)2693 void Constant::handleOperandChange(Value *From, Value *To) {
2694 Value *Replacement = nullptr;
2695 switch (getValueID()) {
2696 default:
2697 llvm_unreachable("Not a constant!");
2698 #define HANDLE_CONSTANT(Name) \
2699 case Value::Name##Val: \
2700 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2701 break;
2702 #include "llvm/IR/Value.def"
2703 }
2704
2705 // If handleOperandChangeImpl returned nullptr, then it handled
2706 // replacing itself and we don't want to delete or replace anything else here.
2707 if (!Replacement)
2708 return;
2709
2710 // I do need to replace this with an existing value.
2711 assert(Replacement != this && "I didn't contain From!");
2712
2713 // Everyone using this now uses the replacement.
2714 replaceAllUsesWith(Replacement);
2715
2716 // Delete the old constant!
2717 destroyConstant();
2718 }
2719
handleOperandChangeImpl(Value * From,Value * To)2720 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2721 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2722 Constant *ToC = cast<Constant>(To);
2723
2724 SmallVector<Constant*, 8> Values;
2725 Values.reserve(getNumOperands()); // Build replacement array.
2726
2727 // Fill values with the modified operands of the constant array. Also,
2728 // compute whether this turns into an all-zeros array.
2729 unsigned NumUpdated = 0;
2730
2731 // Keep track of whether all the values in the array are "ToC".
2732 bool AllSame = true;
2733 Use *OperandList = getOperandList();
2734 unsigned OperandNo = 0;
2735 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2736 Constant *Val = cast<Constant>(O->get());
2737 if (Val == From) {
2738 OperandNo = (O - OperandList);
2739 Val = ToC;
2740 ++NumUpdated;
2741 }
2742 Values.push_back(Val);
2743 AllSame &= Val == ToC;
2744 }
2745
2746 if (AllSame && ToC->isNullValue())
2747 return ConstantAggregateZero::get(getType());
2748
2749 if (AllSame && isa<UndefValue>(ToC))
2750 return UndefValue::get(getType());
2751
2752 // Check for any other type of constant-folding.
2753 if (Constant *C = getImpl(getType(), Values))
2754 return C;
2755
2756 // Update to the new value.
2757 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2758 Values, this, From, ToC, NumUpdated, OperandNo);
2759 }
2760
handleOperandChangeImpl(Value * From,Value * To)2761 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2762 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2763 Constant *ToC = cast<Constant>(To);
2764
2765 Use *OperandList = getOperandList();
2766
2767 SmallVector<Constant*, 8> Values;
2768 Values.reserve(getNumOperands()); // Build replacement struct.
2769
2770 // Fill values with the modified operands of the constant struct. Also,
2771 // compute whether this turns into an all-zeros struct.
2772 unsigned NumUpdated = 0;
2773 bool AllSame = true;
2774 unsigned OperandNo = 0;
2775 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2776 Constant *Val = cast<Constant>(O->get());
2777 if (Val == From) {
2778 OperandNo = (O - OperandList);
2779 Val = ToC;
2780 ++NumUpdated;
2781 }
2782 Values.push_back(Val);
2783 AllSame &= Val == ToC;
2784 }
2785
2786 if (AllSame && ToC->isNullValue())
2787 return ConstantAggregateZero::get(getType());
2788
2789 if (AllSame && isa<UndefValue>(ToC))
2790 return UndefValue::get(getType());
2791
2792 // Update to the new value.
2793 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2794 Values, this, From, ToC, NumUpdated, OperandNo);
2795 }
2796
handleOperandChangeImpl(Value * From,Value * To)2797 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
2798 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2799 Constant *ToC = cast<Constant>(To);
2800
2801 SmallVector<Constant*, 8> Values;
2802 Values.reserve(getNumOperands()); // Build replacement array...
2803 unsigned NumUpdated = 0;
2804 unsigned OperandNo = 0;
2805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2806 Constant *Val = getOperand(i);
2807 if (Val == From) {
2808 OperandNo = i;
2809 ++NumUpdated;
2810 Val = ToC;
2811 }
2812 Values.push_back(Val);
2813 }
2814
2815 if (Constant *C = getImpl(Values))
2816 return C;
2817
2818 // Update to the new value.
2819 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2820 Values, this, From, ToC, NumUpdated, OperandNo);
2821 }
2822
handleOperandChangeImpl(Value * From,Value * ToV)2823 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
2824 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2825 Constant *To = cast<Constant>(ToV);
2826
2827 SmallVector<Constant*, 8> NewOps;
2828 unsigned NumUpdated = 0;
2829 unsigned OperandNo = 0;
2830 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2831 Constant *Op = getOperand(i);
2832 if (Op == From) {
2833 OperandNo = i;
2834 ++NumUpdated;
2835 Op = To;
2836 }
2837 NewOps.push_back(Op);
2838 }
2839 assert(NumUpdated && "I didn't contain From!");
2840
2841 if (Constant *C = getWithOperands(NewOps, getType(), true))
2842 return C;
2843
2844 // Update to the new value.
2845 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2846 NewOps, this, From, To, NumUpdated, OperandNo);
2847 }
2848
getAsInstruction()2849 Instruction *ConstantExpr::getAsInstruction() {
2850 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2851 ArrayRef<Value*> Ops(ValueOperands);
2852
2853 switch (getOpcode()) {
2854 case Instruction::Trunc:
2855 case Instruction::ZExt:
2856 case Instruction::SExt:
2857 case Instruction::FPTrunc:
2858 case Instruction::FPExt:
2859 case Instruction::UIToFP:
2860 case Instruction::SIToFP:
2861 case Instruction::FPToUI:
2862 case Instruction::FPToSI:
2863 case Instruction::PtrToInt:
2864 case Instruction::IntToPtr:
2865 case Instruction::BitCast:
2866 case Instruction::AddrSpaceCast:
2867 return CastInst::Create((Instruction::CastOps)getOpcode(),
2868 Ops[0], getType());
2869 case Instruction::Select:
2870 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2871 case Instruction::InsertElement:
2872 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2873 case Instruction::ExtractElement:
2874 return ExtractElementInst::Create(Ops[0], Ops[1]);
2875 case Instruction::InsertValue:
2876 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2877 case Instruction::ExtractValue:
2878 return ExtractValueInst::Create(Ops[0], getIndices());
2879 case Instruction::ShuffleVector:
2880 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2881
2882 case Instruction::GetElementPtr: {
2883 const auto *GO = cast<GEPOperator>(this);
2884 if (GO->isInBounds())
2885 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
2886 Ops[0], Ops.slice(1));
2887 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
2888 Ops.slice(1));
2889 }
2890 case Instruction::ICmp:
2891 case Instruction::FCmp:
2892 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2893 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
2894
2895 default:
2896 assert(getNumOperands() == 2 && "Must be binary operator?");
2897 BinaryOperator *BO =
2898 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2899 Ops[0], Ops[1]);
2900 if (isa<OverflowingBinaryOperator>(BO)) {
2901 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2902 OverflowingBinaryOperator::NoUnsignedWrap);
2903 BO->setHasNoSignedWrap(SubclassOptionalData &
2904 OverflowingBinaryOperator::NoSignedWrap);
2905 }
2906 if (isa<PossiblyExactOperator>(BO))
2907 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2908 return BO;
2909 }
2910 }
2911