1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
13 //
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need TargetData, and the pieces that do. This is to avoid
16 // a dependence in VMCore on Target.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "ConstantFold.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Function.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Operator.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include <limits>
35 using namespace llvm;
36
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
40
41 /// BitCastConstantVector - Convert the specified ConstantVector node to the
42 /// specified vector type. At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
BitCastConstantVector(ConstantVector * CV,VectorType * DstTy)44 static Constant *BitCastConstantVector(ConstantVector *CV,
45 VectorType *DstTy) {
46
47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts = DstTy->getNumElements();
54 if (NumElts != CV->getNumOperands())
55 return 0;
56
57 // Check to verify that all elements of the input are simple.
58 for (unsigned i = 0; i != NumElts; ++i) {
59 if (!isa<ConstantInt>(CV->getOperand(i)) &&
60 !isa<ConstantFP>(CV->getOperand(i)))
61 return 0;
62 }
63
64 // Bitcast each element now.
65 std::vector<Constant*> Result;
66 Type *DstEltTy = DstTy->getElementType();
67 for (unsigned i = 0; i != NumElts; ++i)
68 Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
69 DstEltTy));
70 return ConstantVector::get(Result);
71 }
72
73 /// This function determines which opcode to use to fold two constant cast
74 /// expressions together. It uses CastInst::isEliminableCastPair to determine
75 /// the opcode. Consequently its just a wrapper around that function.
76 /// @brief Determine if it is valid to fold a cast of a cast
77 static unsigned
foldConstantCastPair(unsigned opc,ConstantExpr * Op,Type * DstTy)78 foldConstantCastPair(
79 unsigned opc, ///< opcode of the second cast constant expression
80 ConstantExpr *Op, ///< the first cast constant expression
81 Type *DstTy ///< desintation type of the first cast
82 ) {
83 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
84 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
85 assert(CastInst::isCast(opc) && "Invalid cast opcode");
86
87 // The the types and opcodes for the two Cast constant expressions
88 Type *SrcTy = Op->getOperand(0)->getType();
89 Type *MidTy = Op->getType();
90 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
91 Instruction::CastOps secondOp = Instruction::CastOps(opc);
92
93 // Let CastInst::isEliminableCastPair do the heavy lifting.
94 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
95 Type::getInt64Ty(DstTy->getContext()));
96 }
97
FoldBitCast(Constant * V,Type * DestTy)98 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
99 Type *SrcTy = V->getType();
100 if (SrcTy == DestTy)
101 return V; // no-op cast
102
103 // Check to see if we are casting a pointer to an aggregate to a pointer to
104 // the first element. If so, return the appropriate GEP instruction.
105 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
106 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
107 if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
108 SmallVector<Value*, 8> IdxList;
109 Value *Zero =
110 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
111 IdxList.push_back(Zero);
112 Type *ElTy = PTy->getElementType();
113 while (ElTy != DPTy->getElementType()) {
114 if (StructType *STy = dyn_cast<StructType>(ElTy)) {
115 if (STy->getNumElements() == 0) break;
116 ElTy = STy->getElementType(0);
117 IdxList.push_back(Zero);
118 } else if (SequentialType *STy =
119 dyn_cast<SequentialType>(ElTy)) {
120 if (ElTy->isPointerTy()) break; // Can't index into pointers!
121 ElTy = STy->getElementType();
122 IdxList.push_back(Zero);
123 } else {
124 break;
125 }
126 }
127
128 if (ElTy == DPTy->getElementType())
129 // This GEP is inbounds because all indices are zero.
130 return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
131 }
132
133 // Handle casts from one vector constant to another. We know that the src
134 // and dest type have the same size (otherwise its an illegal cast).
135 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
136 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
137 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
138 "Not cast between same sized vectors!");
139 SrcTy = NULL;
140 // First, check for null. Undef is already handled.
141 if (isa<ConstantAggregateZero>(V))
142 return Constant::getNullValue(DestTy);
143
144 if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
145 return BitCastConstantVector(CV, DestPTy);
146 }
147
148 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
149 // This allows for other simplifications (although some of them
150 // can only be handled by Analysis/ConstantFolding.cpp).
151 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
152 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
153 }
154
155 // Finally, implement bitcast folding now. The code below doesn't handle
156 // bitcast right.
157 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
158 return ConstantPointerNull::get(cast<PointerType>(DestTy));
159
160 // Handle integral constant input.
161 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
162 if (DestTy->isIntegerTy())
163 // Integral -> Integral. This is a no-op because the bit widths must
164 // be the same. Consequently, we just fold to V.
165 return V;
166
167 if (DestTy->isFloatingPointTy())
168 return ConstantFP::get(DestTy->getContext(),
169 APFloat(CI->getValue(),
170 !DestTy->isPPC_FP128Ty()));
171
172 // Otherwise, can't fold this (vector?)
173 return 0;
174 }
175
176 // Handle ConstantFP input: FP -> Integral.
177 if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
178 return ConstantInt::get(FP->getContext(),
179 FP->getValueAPF().bitcastToAPInt());
180
181 return 0;
182 }
183
184
185 /// ExtractConstantBytes - V is an integer constant which only has a subset of
186 /// its bytes used. The bytes used are indicated by ByteStart (which is the
187 /// first byte used, counting from the least significant byte) and ByteSize,
188 /// which is the number of bytes used.
189 ///
190 /// This function analyzes the specified constant to see if the specified byte
191 /// range can be returned as a simplified constant. If so, the constant is
192 /// returned, otherwise null is returned.
193 ///
ExtractConstantBytes(Constant * C,unsigned ByteStart,unsigned ByteSize)194 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
195 unsigned ByteSize) {
196 assert(C->getType()->isIntegerTy() &&
197 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
198 "Non-byte sized integer input");
199 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
200 assert(ByteSize && "Must be accessing some piece");
201 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
202 assert(ByteSize != CSize && "Should not extract everything");
203
204 // Constant Integers are simple.
205 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
206 APInt V = CI->getValue();
207 if (ByteStart)
208 V = V.lshr(ByteStart*8);
209 V = V.trunc(ByteSize*8);
210 return ConstantInt::get(CI->getContext(), V);
211 }
212
213 // In the input is a constant expr, we might be able to recursively simplify.
214 // If not, we definitely can't do anything.
215 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
216 if (CE == 0) return 0;
217
218 switch (CE->getOpcode()) {
219 default: return 0;
220 case Instruction::Or: {
221 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
222 if (RHS == 0)
223 return 0;
224
225 // X | -1 -> -1.
226 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
227 if (RHSC->isAllOnesValue())
228 return RHSC;
229
230 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
231 if (LHS == 0)
232 return 0;
233 return ConstantExpr::getOr(LHS, RHS);
234 }
235 case Instruction::And: {
236 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
237 if (RHS == 0)
238 return 0;
239
240 // X & 0 -> 0.
241 if (RHS->isNullValue())
242 return RHS;
243
244 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
245 if (LHS == 0)
246 return 0;
247 return ConstantExpr::getAnd(LHS, RHS);
248 }
249 case Instruction::LShr: {
250 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
251 if (Amt == 0)
252 return 0;
253 unsigned ShAmt = Amt->getZExtValue();
254 // Cannot analyze non-byte shifts.
255 if ((ShAmt & 7) != 0)
256 return 0;
257 ShAmt >>= 3;
258
259 // If the extract is known to be all zeros, return zero.
260 if (ByteStart >= CSize-ShAmt)
261 return Constant::getNullValue(IntegerType::get(CE->getContext(),
262 ByteSize*8));
263 // If the extract is known to be fully in the input, extract it.
264 if (ByteStart+ByteSize+ShAmt <= CSize)
265 return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
266
267 // TODO: Handle the 'partially zero' case.
268 return 0;
269 }
270
271 case Instruction::Shl: {
272 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
273 if (Amt == 0)
274 return 0;
275 unsigned ShAmt = Amt->getZExtValue();
276 // Cannot analyze non-byte shifts.
277 if ((ShAmt & 7) != 0)
278 return 0;
279 ShAmt >>= 3;
280
281 // If the extract is known to be all zeros, return zero.
282 if (ByteStart+ByteSize <= ShAmt)
283 return Constant::getNullValue(IntegerType::get(CE->getContext(),
284 ByteSize*8));
285 // If the extract is known to be fully in the input, extract it.
286 if (ByteStart >= ShAmt)
287 return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
288
289 // TODO: Handle the 'partially zero' case.
290 return 0;
291 }
292
293 case Instruction::ZExt: {
294 unsigned SrcBitSize =
295 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
296
297 // If extracting something that is completely zero, return 0.
298 if (ByteStart*8 >= SrcBitSize)
299 return Constant::getNullValue(IntegerType::get(CE->getContext(),
300 ByteSize*8));
301
302 // If exactly extracting the input, return it.
303 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
304 return CE->getOperand(0);
305
306 // If extracting something completely in the input, if if the input is a
307 // multiple of 8 bits, recurse.
308 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
309 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
310
311 // Otherwise, if extracting a subset of the input, which is not multiple of
312 // 8 bits, do a shift and trunc to get the bits.
313 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
314 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
315 Constant *Res = CE->getOperand(0);
316 if (ByteStart)
317 Res = ConstantExpr::getLShr(Res,
318 ConstantInt::get(Res->getType(), ByteStart*8));
319 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
320 ByteSize*8));
321 }
322
323 // TODO: Handle the 'partially zero' case.
324 return 0;
325 }
326 }
327 }
328
329 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
330 /// on Ty, with any known factors factored out. If Folded is false,
331 /// return null if no factoring was possible, to avoid endlessly
332 /// bouncing an unfoldable expression back into the top-level folder.
333 ///
getFoldedSizeOf(Type * Ty,Type * DestTy,bool Folded)334 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
335 bool Folded) {
336 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
337 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
338 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
339 return ConstantExpr::getNUWMul(E, N);
340 }
341
342 if (StructType *STy = dyn_cast<StructType>(Ty))
343 if (!STy->isPacked()) {
344 unsigned NumElems = STy->getNumElements();
345 // An empty struct has size zero.
346 if (NumElems == 0)
347 return ConstantExpr::getNullValue(DestTy);
348 // Check for a struct with all members having the same size.
349 Constant *MemberSize =
350 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
351 bool AllSame = true;
352 for (unsigned i = 1; i != NumElems; ++i)
353 if (MemberSize !=
354 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
355 AllSame = false;
356 break;
357 }
358 if (AllSame) {
359 Constant *N = ConstantInt::get(DestTy, NumElems);
360 return ConstantExpr::getNUWMul(MemberSize, N);
361 }
362 }
363
364 // Pointer size doesn't depend on the pointee type, so canonicalize them
365 // to an arbitrary pointee.
366 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
367 if (!PTy->getElementType()->isIntegerTy(1))
368 return
369 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
370 PTy->getAddressSpace()),
371 DestTy, true);
372
373 // If there's no interesting folding happening, bail so that we don't create
374 // a constant that looks like it needs folding but really doesn't.
375 if (!Folded)
376 return 0;
377
378 // Base case: Get a regular sizeof expression.
379 Constant *C = ConstantExpr::getSizeOf(Ty);
380 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
381 DestTy, false),
382 C, DestTy);
383 return C;
384 }
385
386 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
387 /// on Ty, with any known factors factored out. If Folded is false,
388 /// return null if no factoring was possible, to avoid endlessly
389 /// bouncing an unfoldable expression back into the top-level folder.
390 ///
getFoldedAlignOf(Type * Ty,Type * DestTy,bool Folded)391 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
392 bool Folded) {
393 // The alignment of an array is equal to the alignment of the
394 // array element. Note that this is not always true for vectors.
395 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
396 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
397 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398 DestTy,
399 false),
400 C, DestTy);
401 return C;
402 }
403
404 if (StructType *STy = dyn_cast<StructType>(Ty)) {
405 // Packed structs always have an alignment of 1.
406 if (STy->isPacked())
407 return ConstantInt::get(DestTy, 1);
408
409 // Otherwise, struct alignment is the maximum alignment of any member.
410 // Without target data, we can't compare much, but we can check to see
411 // if all the members have the same alignment.
412 unsigned NumElems = STy->getNumElements();
413 // An empty struct has minimal alignment.
414 if (NumElems == 0)
415 return ConstantInt::get(DestTy, 1);
416 // Check for a struct with all members having the same alignment.
417 Constant *MemberAlign =
418 getFoldedAlignOf(STy->getElementType(0), DestTy, true);
419 bool AllSame = true;
420 for (unsigned i = 1; i != NumElems; ++i)
421 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
422 AllSame = false;
423 break;
424 }
425 if (AllSame)
426 return MemberAlign;
427 }
428
429 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
430 // to an arbitrary pointee.
431 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
432 if (!PTy->getElementType()->isIntegerTy(1))
433 return
434 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
435 1),
436 PTy->getAddressSpace()),
437 DestTy, true);
438
439 // If there's no interesting folding happening, bail so that we don't create
440 // a constant that looks like it needs folding but really doesn't.
441 if (!Folded)
442 return 0;
443
444 // Base case: Get a regular alignof expression.
445 Constant *C = ConstantExpr::getAlignOf(Ty);
446 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
447 DestTy, false),
448 C, DestTy);
449 return C;
450 }
451
452 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
453 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
454 /// return null if no factoring was possible, to avoid endlessly
455 /// bouncing an unfoldable expression back into the top-level folder.
456 ///
getFoldedOffsetOf(Type * Ty,Constant * FieldNo,Type * DestTy,bool Folded)457 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
458 Type *DestTy,
459 bool Folded) {
460 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
461 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
462 DestTy, false),
463 FieldNo, DestTy);
464 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
465 return ConstantExpr::getNUWMul(E, N);
466 }
467
468 if (StructType *STy = dyn_cast<StructType>(Ty))
469 if (!STy->isPacked()) {
470 unsigned NumElems = STy->getNumElements();
471 // An empty struct has no members.
472 if (NumElems == 0)
473 return 0;
474 // Check for a struct with all members having the same size.
475 Constant *MemberSize =
476 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
477 bool AllSame = true;
478 for (unsigned i = 1; i != NumElems; ++i)
479 if (MemberSize !=
480 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
481 AllSame = false;
482 break;
483 }
484 if (AllSame) {
485 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
486 false,
487 DestTy,
488 false),
489 FieldNo, DestTy);
490 return ConstantExpr::getNUWMul(MemberSize, N);
491 }
492 }
493
494 // If there's no interesting folding happening, bail so that we don't create
495 // a constant that looks like it needs folding but really doesn't.
496 if (!Folded)
497 return 0;
498
499 // Base case: Get a regular offsetof expression.
500 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
501 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
502 DestTy, false),
503 C, DestTy);
504 return C;
505 }
506
ConstantFoldCastInstruction(unsigned opc,Constant * V,Type * DestTy)507 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
508 Type *DestTy) {
509 if (isa<UndefValue>(V)) {
510 // zext(undef) = 0, because the top bits will be zero.
511 // sext(undef) = 0, because the top bits will all be the same.
512 // [us]itofp(undef) = 0, because the result value is bounded.
513 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
514 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
515 return Constant::getNullValue(DestTy);
516 return UndefValue::get(DestTy);
517 }
518
519 // No compile-time operations on this type yet.
520 if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
521 return 0;
522
523 if (V->isNullValue() && !DestTy->isX86_MMXTy())
524 return Constant::getNullValue(DestTy);
525
526 // If the cast operand is a constant expression, there's a few things we can
527 // do to try to simplify it.
528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
529 if (CE->isCast()) {
530 // Try hard to fold cast of cast because they are often eliminable.
531 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
532 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
533 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
534 // If all of the indexes in the GEP are null values, there is no pointer
535 // adjustment going on. We might as well cast the source pointer.
536 bool isAllNull = true;
537 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
538 if (!CE->getOperand(i)->isNullValue()) {
539 isAllNull = false;
540 break;
541 }
542 if (isAllNull)
543 // This is casting one pointer type to another, always BitCast
544 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
545 }
546 }
547
548 // If the cast operand is a constant vector, perform the cast by
549 // operating on each element. In the cast of bitcasts, the element
550 // count may be mismatched; don't attempt to handle that here.
551 if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
552 if (DestTy->isVectorTy() &&
553 cast<VectorType>(DestTy)->getNumElements() ==
554 CV->getType()->getNumElements()) {
555 std::vector<Constant*> res;
556 VectorType *DestVecTy = cast<VectorType>(DestTy);
557 Type *DstEltTy = DestVecTy->getElementType();
558 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
559 res.push_back(ConstantExpr::getCast(opc,
560 CV->getOperand(i), DstEltTy));
561 return ConstantVector::get(res);
562 }
563
564 // We actually have to do a cast now. Perform the cast according to the
565 // opcode specified.
566 switch (opc) {
567 default:
568 llvm_unreachable("Failed to cast constant expression");
569 case Instruction::FPTrunc:
570 case Instruction::FPExt:
571 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
572 bool ignored;
573 APFloat Val = FPC->getValueAPF();
574 Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
575 DestTy->isDoubleTy() ? APFloat::IEEEdouble :
576 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
577 DestTy->isFP128Ty() ? APFloat::IEEEquad :
578 APFloat::Bogus,
579 APFloat::rmNearestTiesToEven, &ignored);
580 return ConstantFP::get(V->getContext(), Val);
581 }
582 return 0; // Can't fold.
583 case Instruction::FPToUI:
584 case Instruction::FPToSI:
585 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
586 const APFloat &V = FPC->getValueAPF();
587 bool ignored;
588 uint64_t x[2];
589 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
590 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
591 APFloat::rmTowardZero, &ignored);
592 APInt Val(DestBitWidth, x);
593 return ConstantInt::get(FPC->getContext(), Val);
594 }
595 return 0; // Can't fold.
596 case Instruction::IntToPtr: //always treated as unsigned
597 if (V->isNullValue()) // Is it an integral null value?
598 return ConstantPointerNull::get(cast<PointerType>(DestTy));
599 return 0; // Other pointer types cannot be casted
600 case Instruction::PtrToInt: // always treated as unsigned
601 // Is it a null pointer value?
602 if (V->isNullValue())
603 return ConstantInt::get(DestTy, 0);
604 // If this is a sizeof-like expression, pull out multiplications by
605 // known factors to expose them to subsequent folding. If it's an
606 // alignof-like expression, factor out known factors.
607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
608 if (CE->getOpcode() == Instruction::GetElementPtr &&
609 CE->getOperand(0)->isNullValue()) {
610 Type *Ty =
611 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
612 if (CE->getNumOperands() == 2) {
613 // Handle a sizeof-like expression.
614 Constant *Idx = CE->getOperand(1);
615 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
616 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
617 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
618 DestTy, false),
619 Idx, DestTy);
620 return ConstantExpr::getMul(C, Idx);
621 }
622 } else if (CE->getNumOperands() == 3 &&
623 CE->getOperand(1)->isNullValue()) {
624 // Handle an alignof-like expression.
625 if (StructType *STy = dyn_cast<StructType>(Ty))
626 if (!STy->isPacked()) {
627 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
628 if (CI->isOne() &&
629 STy->getNumElements() == 2 &&
630 STy->getElementType(0)->isIntegerTy(1)) {
631 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
632 }
633 }
634 // Handle an offsetof-like expression.
635 if (Ty->isStructTy() || Ty->isArrayTy()) {
636 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
637 DestTy, false))
638 return C;
639 }
640 }
641 }
642 // Other pointer types cannot be casted
643 return 0;
644 case Instruction::UIToFP:
645 case Instruction::SIToFP:
646 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
647 APInt api = CI->getValue();
648 APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
649 (void)apf.convertFromAPInt(api,
650 opc==Instruction::SIToFP,
651 APFloat::rmNearestTiesToEven);
652 return ConstantFP::get(V->getContext(), apf);
653 }
654 return 0;
655 case Instruction::ZExt:
656 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
657 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
658 return ConstantInt::get(V->getContext(),
659 CI->getValue().zext(BitWidth));
660 }
661 return 0;
662 case Instruction::SExt:
663 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
664 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
665 return ConstantInt::get(V->getContext(),
666 CI->getValue().sext(BitWidth));
667 }
668 return 0;
669 case Instruction::Trunc: {
670 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
671 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
672 return ConstantInt::get(V->getContext(),
673 CI->getValue().trunc(DestBitWidth));
674 }
675
676 // The input must be a constantexpr. See if we can simplify this based on
677 // the bytes we are demanding. Only do this if the source and dest are an
678 // even multiple of a byte.
679 if ((DestBitWidth & 7) == 0 &&
680 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
681 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
682 return Res;
683
684 return 0;
685 }
686 case Instruction::BitCast:
687 return FoldBitCast(V, DestTy);
688 }
689 }
690
ConstantFoldSelectInstruction(Constant * Cond,Constant * V1,Constant * V2)691 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
692 Constant *V1, Constant *V2) {
693 if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
694 return CB->getZExtValue() ? V1 : V2;
695
696 // Check for zero aggregate and ConstantVector of zeros
697 if (Cond->isNullValue()) return V2;
698
699 if (ConstantVector* CondV = dyn_cast<ConstantVector>(Cond)) {
700
701 if (CondV->isAllOnesValue()) return V1;
702
703 VectorType *VTy = cast<VectorType>(V1->getType());
704 ConstantVector *CP1 = dyn_cast<ConstantVector>(V1);
705 ConstantVector *CP2 = dyn_cast<ConstantVector>(V2);
706
707 if ((CP1 || isa<ConstantAggregateZero>(V1)) &&
708 (CP2 || isa<ConstantAggregateZero>(V2))) {
709
710 // Find the element type of the returned vector
711 Type *EltTy = VTy->getElementType();
712 unsigned NumElem = VTy->getNumElements();
713 std::vector<Constant*> Res(NumElem);
714
715 bool Valid = true;
716 for (unsigned i = 0; i < NumElem; ++i) {
717 ConstantInt* c = dyn_cast<ConstantInt>(CondV->getOperand(i));
718 if (!c) {
719 Valid = false;
720 break;
721 }
722 Constant *C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
723 Constant *C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
724 Res[i] = c->getZExtValue() ? C1 : C2;
725 }
726 // If we were able to build the vector, return it
727 if (Valid) return ConstantVector::get(Res);
728 }
729 }
730
731
732 if (isa<UndefValue>(Cond)) {
733 if (isa<UndefValue>(V1)) return V1;
734 return V2;
735 }
736 if (isa<UndefValue>(V1)) return V2;
737 if (isa<UndefValue>(V2)) return V1;
738 if (V1 == V2) return V1;
739
740 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
741 if (TrueVal->getOpcode() == Instruction::Select)
742 if (TrueVal->getOperand(0) == Cond)
743 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
744 }
745 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
746 if (FalseVal->getOpcode() == Instruction::Select)
747 if (FalseVal->getOperand(0) == Cond)
748 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
749 }
750
751 return 0;
752 }
753
ConstantFoldExtractElementInstruction(Constant * Val,Constant * Idx)754 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
755 Constant *Idx) {
756 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
757 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
758 if (Val->isNullValue()) // ee(zero, x) -> zero
759 return Constant::getNullValue(
760 cast<VectorType>(Val->getType())->getElementType());
761
762 if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
763 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
764 uint64_t Index = CIdx->getZExtValue();
765 if (Index >= CVal->getNumOperands())
766 // ee({w,x,y,z}, wrong_value) -> undef
767 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
768 return CVal->getOperand(CIdx->getZExtValue());
769 } else if (isa<UndefValue>(Idx)) {
770 // ee({w,x,y,z}, undef) -> undef
771 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
772 }
773 }
774 return 0;
775 }
776
ConstantFoldInsertElementInstruction(Constant * Val,Constant * Elt,Constant * Idx)777 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
778 Constant *Elt,
779 Constant *Idx) {
780 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
781 if (!CIdx) return 0;
782 APInt idxVal = CIdx->getValue();
783 if (isa<UndefValue>(Val)) {
784 // Insertion of scalar constant into vector undef
785 // Optimize away insertion of undef
786 if (isa<UndefValue>(Elt))
787 return Val;
788 // Otherwise break the aggregate undef into multiple undefs and do
789 // the insertion
790 unsigned numOps =
791 cast<VectorType>(Val->getType())->getNumElements();
792 std::vector<Constant*> Ops;
793 Ops.reserve(numOps);
794 for (unsigned i = 0; i < numOps; ++i) {
795 Constant *Op =
796 (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
797 Ops.push_back(Op);
798 }
799 return ConstantVector::get(Ops);
800 }
801 if (isa<ConstantAggregateZero>(Val)) {
802 // Insertion of scalar constant into vector aggregate zero
803 // Optimize away insertion of zero
804 if (Elt->isNullValue())
805 return Val;
806 // Otherwise break the aggregate zero into multiple zeros and do
807 // the insertion
808 unsigned numOps =
809 cast<VectorType>(Val->getType())->getNumElements();
810 std::vector<Constant*> Ops;
811 Ops.reserve(numOps);
812 for (unsigned i = 0; i < numOps; ++i) {
813 Constant *Op =
814 (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
815 Ops.push_back(Op);
816 }
817 return ConstantVector::get(Ops);
818 }
819 if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
820 // Insertion of scalar constant into vector constant
821 std::vector<Constant*> Ops;
822 Ops.reserve(CVal->getNumOperands());
823 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
824 Constant *Op =
825 (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
826 Ops.push_back(Op);
827 }
828 return ConstantVector::get(Ops);
829 }
830
831 return 0;
832 }
833
834 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
835 /// return the specified element value. Otherwise return null.
GetVectorElement(Constant * C,unsigned EltNo)836 static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
837 if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
838 return CV->getOperand(EltNo);
839
840 Type *EltTy = cast<VectorType>(C->getType())->getElementType();
841 if (isa<ConstantAggregateZero>(C))
842 return Constant::getNullValue(EltTy);
843 if (isa<UndefValue>(C))
844 return UndefValue::get(EltTy);
845 return 0;
846 }
847
ConstantFoldShuffleVectorInstruction(Constant * V1,Constant * V2,Constant * Mask)848 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
849 Constant *V2,
850 Constant *Mask) {
851 // Undefined shuffle mask -> undefined value.
852 if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
853
854 unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
855 unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
856 Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
857
858 // Loop over the shuffle mask, evaluating each element.
859 SmallVector<Constant*, 32> Result;
860 for (unsigned i = 0; i != MaskNumElts; ++i) {
861 Constant *InElt = GetVectorElement(Mask, i);
862 if (InElt == 0) return 0;
863
864 if (isa<UndefValue>(InElt))
865 InElt = UndefValue::get(EltTy);
866 else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
867 unsigned Elt = CI->getZExtValue();
868 if (Elt >= SrcNumElts*2)
869 InElt = UndefValue::get(EltTy);
870 else if (Elt >= SrcNumElts)
871 InElt = GetVectorElement(V2, Elt - SrcNumElts);
872 else
873 InElt = GetVectorElement(V1, Elt);
874 if (InElt == 0) return 0;
875 } else {
876 // Unknown value.
877 return 0;
878 }
879 Result.push_back(InElt);
880 }
881
882 return ConstantVector::get(Result);
883 }
884
ConstantFoldExtractValueInstruction(Constant * Agg,ArrayRef<unsigned> Idxs)885 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
886 ArrayRef<unsigned> Idxs) {
887 // Base case: no indices, so return the entire value.
888 if (Idxs.empty())
889 return Agg;
890
891 if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef
892 return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
893 Idxs));
894
895 if (isa<ConstantAggregateZero>(Agg)) // ev(0, x) -> 0
896 return
897 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
898 Idxs));
899
900 // Otherwise recurse.
901 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
902 return ConstantFoldExtractValueInstruction(CS->getOperand(Idxs[0]),
903 Idxs.slice(1));
904
905 if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
906 return ConstantFoldExtractValueInstruction(CA->getOperand(Idxs[0]),
907 Idxs.slice(1));
908 ConstantVector *CV = cast<ConstantVector>(Agg);
909 return ConstantFoldExtractValueInstruction(CV->getOperand(Idxs[0]),
910 Idxs.slice(1));
911 }
912
ConstantFoldInsertValueInstruction(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)913 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
914 Constant *Val,
915 ArrayRef<unsigned> Idxs) {
916 // Base case: no indices, so replace the entire value.
917 if (Idxs.empty())
918 return Val;
919
920 if (isa<UndefValue>(Agg)) {
921 // Insertion of constant into aggregate undef
922 // Optimize away insertion of undef.
923 if (isa<UndefValue>(Val))
924 return Agg;
925
926 // Otherwise break the aggregate undef into multiple undefs and do
927 // the insertion.
928 CompositeType *AggTy = cast<CompositeType>(Agg->getType());
929 unsigned numOps;
930 if (ArrayType *AR = dyn_cast<ArrayType>(AggTy))
931 numOps = AR->getNumElements();
932 else
933 numOps = cast<StructType>(AggTy)->getNumElements();
934
935 std::vector<Constant*> Ops(numOps);
936 for (unsigned i = 0; i < numOps; ++i) {
937 Type *MemberTy = AggTy->getTypeAtIndex(i);
938 Constant *Op =
939 (Idxs[0] == i) ?
940 ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
941 Val, Idxs.slice(1)) :
942 UndefValue::get(MemberTy);
943 Ops[i] = Op;
944 }
945
946 if (StructType* ST = dyn_cast<StructType>(AggTy))
947 return ConstantStruct::get(ST, Ops);
948 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
949 }
950
951 if (isa<ConstantAggregateZero>(Agg)) {
952 // Insertion of constant into aggregate zero
953 // Optimize away insertion of zero.
954 if (Val->isNullValue())
955 return Agg;
956
957 // Otherwise break the aggregate zero into multiple zeros and do
958 // the insertion.
959 CompositeType *AggTy = cast<CompositeType>(Agg->getType());
960 unsigned numOps;
961 if (ArrayType *AR = dyn_cast<ArrayType>(AggTy))
962 numOps = AR->getNumElements();
963 else
964 numOps = cast<StructType>(AggTy)->getNumElements();
965
966 std::vector<Constant*> Ops(numOps);
967 for (unsigned i = 0; i < numOps; ++i) {
968 Type *MemberTy = AggTy->getTypeAtIndex(i);
969 Constant *Op =
970 (Idxs[0] == i) ?
971 ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
972 Val, Idxs.slice(1)) :
973 Constant::getNullValue(MemberTy);
974 Ops[i] = Op;
975 }
976
977 if (StructType *ST = dyn_cast<StructType>(AggTy))
978 return ConstantStruct::get(ST, Ops);
979 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
980 }
981
982 if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
983 // Insertion of constant into aggregate constant.
984 std::vector<Constant*> Ops(Agg->getNumOperands());
985 for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
986 Constant *Op = cast<Constant>(Agg->getOperand(i));
987 if (Idxs[0] == i)
988 Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs.slice(1));
989 Ops[i] = Op;
990 }
991
992 if (StructType* ST = dyn_cast<StructType>(Agg->getType()))
993 return ConstantStruct::get(ST, Ops);
994 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
995 }
996
997 return 0;
998 }
999
1000
ConstantFoldBinaryInstruction(unsigned Opcode,Constant * C1,Constant * C2)1001 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
1002 Constant *C1, Constant *C2) {
1003 // No compile-time operations on this type yet.
1004 if (C1->getType()->isPPC_FP128Ty())
1005 return 0;
1006
1007 // Handle UndefValue up front.
1008 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1009 switch (Opcode) {
1010 case Instruction::Xor:
1011 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1012 // Handle undef ^ undef -> 0 special case. This is a common
1013 // idiom (misuse).
1014 return Constant::getNullValue(C1->getType());
1015 // Fallthrough
1016 case Instruction::Add:
1017 case Instruction::Sub:
1018 return UndefValue::get(C1->getType());
1019 case Instruction::And:
1020 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1021 return C1;
1022 return Constant::getNullValue(C1->getType()); // undef & X -> 0
1023 case Instruction::Mul: {
1024 ConstantInt *CI;
1025 // X * undef -> undef if X is odd or undef
1026 if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
1027 ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
1028 (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1029 return UndefValue::get(C1->getType());
1030
1031 // X * undef -> 0 otherwise
1032 return Constant::getNullValue(C1->getType());
1033 }
1034 case Instruction::UDiv:
1035 case Instruction::SDiv:
1036 // undef / 1 -> undef
1037 if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
1038 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
1039 if (CI2->isOne())
1040 return C1;
1041 // FALL THROUGH
1042 case Instruction::URem:
1043 case Instruction::SRem:
1044 if (!isa<UndefValue>(C2)) // undef / X -> 0
1045 return Constant::getNullValue(C1->getType());
1046 return C2; // X / undef -> undef
1047 case Instruction::Or: // X | undef -> -1
1048 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1049 return C1;
1050 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1051 case Instruction::LShr:
1052 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1053 return C1; // undef lshr undef -> undef
1054 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
1055 // undef lshr X -> 0
1056 case Instruction::AShr:
1057 if (!isa<UndefValue>(C2)) // undef ashr X --> all ones
1058 return Constant::getAllOnesValue(C1->getType());
1059 else if (isa<UndefValue>(C1))
1060 return C1; // undef ashr undef -> undef
1061 else
1062 return C1; // X ashr undef --> X
1063 case Instruction::Shl:
1064 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1065 return C1; // undef shl undef -> undef
1066 // undef << X -> 0 or X << undef -> 0
1067 return Constant::getNullValue(C1->getType());
1068 }
1069 }
1070
1071 // Handle simplifications when the RHS is a constant int.
1072 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1073 switch (Opcode) {
1074 case Instruction::Add:
1075 if (CI2->equalsInt(0)) return C1; // X + 0 == X
1076 break;
1077 case Instruction::Sub:
1078 if (CI2->equalsInt(0)) return C1; // X - 0 == X
1079 break;
1080 case Instruction::Mul:
1081 if (CI2->equalsInt(0)) return C2; // X * 0 == 0
1082 if (CI2->equalsInt(1))
1083 return C1; // X * 1 == X
1084 break;
1085 case Instruction::UDiv:
1086 case Instruction::SDiv:
1087 if (CI2->equalsInt(1))
1088 return C1; // X / 1 == X
1089 if (CI2->equalsInt(0))
1090 return UndefValue::get(CI2->getType()); // X / 0 == undef
1091 break;
1092 case Instruction::URem:
1093 case Instruction::SRem:
1094 if (CI2->equalsInt(1))
1095 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1096 if (CI2->equalsInt(0))
1097 return UndefValue::get(CI2->getType()); // X % 0 == undef
1098 break;
1099 case Instruction::And:
1100 if (CI2->isZero()) return C2; // X & 0 == 0
1101 if (CI2->isAllOnesValue())
1102 return C1; // X & -1 == X
1103
1104 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1105 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1106 if (CE1->getOpcode() == Instruction::ZExt) {
1107 unsigned DstWidth = CI2->getType()->getBitWidth();
1108 unsigned SrcWidth =
1109 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1110 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1111 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1112 return C1;
1113 }
1114
1115 // If and'ing the address of a global with a constant, fold it.
1116 if (CE1->getOpcode() == Instruction::PtrToInt &&
1117 isa<GlobalValue>(CE1->getOperand(0))) {
1118 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1119
1120 // Functions are at least 4-byte aligned.
1121 unsigned GVAlign = GV->getAlignment();
1122 if (isa<Function>(GV))
1123 GVAlign = std::max(GVAlign, 4U);
1124
1125 if (GVAlign > 1) {
1126 unsigned DstWidth = CI2->getType()->getBitWidth();
1127 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1128 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1129
1130 // If checking bits we know are clear, return zero.
1131 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1132 return Constant::getNullValue(CI2->getType());
1133 }
1134 }
1135 }
1136 break;
1137 case Instruction::Or:
1138 if (CI2->equalsInt(0)) return C1; // X | 0 == X
1139 if (CI2->isAllOnesValue())
1140 return C2; // X | -1 == -1
1141 break;
1142 case Instruction::Xor:
1143 if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
1144
1145 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1146 switch (CE1->getOpcode()) {
1147 default: break;
1148 case Instruction::ICmp:
1149 case Instruction::FCmp:
1150 // cmp pred ^ true -> cmp !pred
1151 assert(CI2->equalsInt(1));
1152 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1153 pred = CmpInst::getInversePredicate(pred);
1154 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1155 CE1->getOperand(1));
1156 }
1157 }
1158 break;
1159 case Instruction::AShr:
1160 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1161 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1162 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1163 return ConstantExpr::getLShr(C1, C2);
1164 break;
1165 }
1166 } else if (isa<ConstantInt>(C1)) {
1167 // If C1 is a ConstantInt and C2 is not, swap the operands.
1168 if (Instruction::isCommutative(Opcode))
1169 return ConstantExpr::get(Opcode, C2, C1);
1170 }
1171
1172 // At this point we know neither constant is an UndefValue.
1173 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1174 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1175 using namespace APIntOps;
1176 const APInt &C1V = CI1->getValue();
1177 const APInt &C2V = CI2->getValue();
1178 switch (Opcode) {
1179 default:
1180 break;
1181 case Instruction::Add:
1182 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1183 case Instruction::Sub:
1184 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1185 case Instruction::Mul:
1186 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1187 case Instruction::UDiv:
1188 assert(!CI2->isNullValue() && "Div by zero handled above");
1189 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1190 case Instruction::SDiv:
1191 assert(!CI2->isNullValue() && "Div by zero handled above");
1192 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1193 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1194 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1195 case Instruction::URem:
1196 assert(!CI2->isNullValue() && "Div by zero handled above");
1197 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1198 case Instruction::SRem:
1199 assert(!CI2->isNullValue() && "Div by zero handled above");
1200 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1201 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1202 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1203 case Instruction::And:
1204 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1205 case Instruction::Or:
1206 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1207 case Instruction::Xor:
1208 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1209 case Instruction::Shl: {
1210 uint32_t shiftAmt = C2V.getZExtValue();
1211 if (shiftAmt < C1V.getBitWidth())
1212 return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1213 else
1214 return UndefValue::get(C1->getType()); // too big shift is undef
1215 }
1216 case Instruction::LShr: {
1217 uint32_t shiftAmt = C2V.getZExtValue();
1218 if (shiftAmt < C1V.getBitWidth())
1219 return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1220 else
1221 return UndefValue::get(C1->getType()); // too big shift is undef
1222 }
1223 case Instruction::AShr: {
1224 uint32_t shiftAmt = C2V.getZExtValue();
1225 if (shiftAmt < C1V.getBitWidth())
1226 return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1227 else
1228 return UndefValue::get(C1->getType()); // too big shift is undef
1229 }
1230 }
1231 }
1232
1233 switch (Opcode) {
1234 case Instruction::SDiv:
1235 case Instruction::UDiv:
1236 case Instruction::URem:
1237 case Instruction::SRem:
1238 case Instruction::LShr:
1239 case Instruction::AShr:
1240 case Instruction::Shl:
1241 if (CI1->equalsInt(0)) return C1;
1242 break;
1243 default:
1244 break;
1245 }
1246 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1247 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1248 APFloat C1V = CFP1->getValueAPF();
1249 APFloat C2V = CFP2->getValueAPF();
1250 APFloat C3V = C1V; // copy for modification
1251 switch (Opcode) {
1252 default:
1253 break;
1254 case Instruction::FAdd:
1255 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1256 return ConstantFP::get(C1->getContext(), C3V);
1257 case Instruction::FSub:
1258 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1259 return ConstantFP::get(C1->getContext(), C3V);
1260 case Instruction::FMul:
1261 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1262 return ConstantFP::get(C1->getContext(), C3V);
1263 case Instruction::FDiv:
1264 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1265 return ConstantFP::get(C1->getContext(), C3V);
1266 case Instruction::FRem:
1267 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1268 return ConstantFP::get(C1->getContext(), C3V);
1269 }
1270 }
1271 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1272 ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1273 ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1274 if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1275 (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1276 std::vector<Constant*> Res;
1277 Type* EltTy = VTy->getElementType();
1278 Constant *C1 = 0;
1279 Constant *C2 = 0;
1280 switch (Opcode) {
1281 default:
1282 break;
1283 case Instruction::Add:
1284 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1285 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1286 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1287 Res.push_back(ConstantExpr::getAdd(C1, C2));
1288 }
1289 return ConstantVector::get(Res);
1290 case Instruction::FAdd:
1291 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1292 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1293 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1294 Res.push_back(ConstantExpr::getFAdd(C1, C2));
1295 }
1296 return ConstantVector::get(Res);
1297 case Instruction::Sub:
1298 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1299 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1300 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1301 Res.push_back(ConstantExpr::getSub(C1, C2));
1302 }
1303 return ConstantVector::get(Res);
1304 case Instruction::FSub:
1305 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1306 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1307 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1308 Res.push_back(ConstantExpr::getFSub(C1, C2));
1309 }
1310 return ConstantVector::get(Res);
1311 case Instruction::Mul:
1312 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1313 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1314 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1315 Res.push_back(ConstantExpr::getMul(C1, C2));
1316 }
1317 return ConstantVector::get(Res);
1318 case Instruction::FMul:
1319 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1320 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1321 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1322 Res.push_back(ConstantExpr::getFMul(C1, C2));
1323 }
1324 return ConstantVector::get(Res);
1325 case Instruction::UDiv:
1326 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1327 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1328 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1329 Res.push_back(ConstantExpr::getUDiv(C1, C2));
1330 }
1331 return ConstantVector::get(Res);
1332 case Instruction::SDiv:
1333 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1334 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1335 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1336 Res.push_back(ConstantExpr::getSDiv(C1, C2));
1337 }
1338 return ConstantVector::get(Res);
1339 case Instruction::FDiv:
1340 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1341 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1342 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1343 Res.push_back(ConstantExpr::getFDiv(C1, C2));
1344 }
1345 return ConstantVector::get(Res);
1346 case Instruction::URem:
1347 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1348 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1349 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1350 Res.push_back(ConstantExpr::getURem(C1, C2));
1351 }
1352 return ConstantVector::get(Res);
1353 case Instruction::SRem:
1354 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1355 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1356 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1357 Res.push_back(ConstantExpr::getSRem(C1, C2));
1358 }
1359 return ConstantVector::get(Res);
1360 case Instruction::FRem:
1361 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1362 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1363 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1364 Res.push_back(ConstantExpr::getFRem(C1, C2));
1365 }
1366 return ConstantVector::get(Res);
1367 case Instruction::And:
1368 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1369 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1370 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1371 Res.push_back(ConstantExpr::getAnd(C1, C2));
1372 }
1373 return ConstantVector::get(Res);
1374 case Instruction::Or:
1375 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1376 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1377 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1378 Res.push_back(ConstantExpr::getOr(C1, C2));
1379 }
1380 return ConstantVector::get(Res);
1381 case Instruction::Xor:
1382 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1383 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1384 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1385 Res.push_back(ConstantExpr::getXor(C1, C2));
1386 }
1387 return ConstantVector::get(Res);
1388 case Instruction::LShr:
1389 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1390 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1391 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1392 Res.push_back(ConstantExpr::getLShr(C1, C2));
1393 }
1394 return ConstantVector::get(Res);
1395 case Instruction::AShr:
1396 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1397 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1398 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1399 Res.push_back(ConstantExpr::getAShr(C1, C2));
1400 }
1401 return ConstantVector::get(Res);
1402 case Instruction::Shl:
1403 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1404 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1405 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1406 Res.push_back(ConstantExpr::getShl(C1, C2));
1407 }
1408 return ConstantVector::get(Res);
1409 }
1410 }
1411 }
1412
1413 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1414 // There are many possible foldings we could do here. We should probably
1415 // at least fold add of a pointer with an integer into the appropriate
1416 // getelementptr. This will improve alias analysis a bit.
1417
1418 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1419 // (a + (b + c)).
1420 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1421 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1422 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1423 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1424 }
1425 } else if (isa<ConstantExpr>(C2)) {
1426 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1427 // other way if possible.
1428 if (Instruction::isCommutative(Opcode))
1429 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1430 }
1431
1432 // i1 can be simplified in many cases.
1433 if (C1->getType()->isIntegerTy(1)) {
1434 switch (Opcode) {
1435 case Instruction::Add:
1436 case Instruction::Sub:
1437 return ConstantExpr::getXor(C1, C2);
1438 case Instruction::Mul:
1439 return ConstantExpr::getAnd(C1, C2);
1440 case Instruction::Shl:
1441 case Instruction::LShr:
1442 case Instruction::AShr:
1443 // We can assume that C2 == 0. If it were one the result would be
1444 // undefined because the shift value is as large as the bitwidth.
1445 return C1;
1446 case Instruction::SDiv:
1447 case Instruction::UDiv:
1448 // We can assume that C2 == 1. If it were zero the result would be
1449 // undefined through division by zero.
1450 return C1;
1451 case Instruction::URem:
1452 case Instruction::SRem:
1453 // We can assume that C2 == 1. If it were zero the result would be
1454 // undefined through division by zero.
1455 return ConstantInt::getFalse(C1->getContext());
1456 default:
1457 break;
1458 }
1459 }
1460
1461 // We don't know how to fold this.
1462 return 0;
1463 }
1464
1465 /// isZeroSizedType - This type is zero sized if its an array or structure of
1466 /// zero sized types. The only leaf zero sized type is an empty structure.
isMaybeZeroSizedType(Type * Ty)1467 static bool isMaybeZeroSizedType(Type *Ty) {
1468 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1469 if (STy->isOpaque()) return true; // Can't say.
1470
1471 // If all of elements have zero size, this does too.
1472 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1473 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1474 return true;
1475
1476 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1477 return isMaybeZeroSizedType(ATy->getElementType());
1478 }
1479 return false;
1480 }
1481
1482 /// IdxCompare - Compare the two constants as though they were getelementptr
1483 /// indices. This allows coersion of the types to be the same thing.
1484 ///
1485 /// If the two constants are the "same" (after coersion), return 0. If the
1486 /// first is less than the second, return -1, if the second is less than the
1487 /// first, return 1. If the constants are not integral, return -2.
1488 ///
IdxCompare(Constant * C1,Constant * C2,Type * ElTy)1489 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1490 if (C1 == C2) return 0;
1491
1492 // Ok, we found a different index. If they are not ConstantInt, we can't do
1493 // anything with them.
1494 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1495 return -2; // don't know!
1496
1497 // Ok, we have two differing integer indices. Sign extend them to be the same
1498 // type. Long is always big enough, so we use it.
1499 if (!C1->getType()->isIntegerTy(64))
1500 C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1501
1502 if (!C2->getType()->isIntegerTy(64))
1503 C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1504
1505 if (C1 == C2) return 0; // They are equal
1506
1507 // If the type being indexed over is really just a zero sized type, there is
1508 // no pointer difference being made here.
1509 if (isMaybeZeroSizedType(ElTy))
1510 return -2; // dunno.
1511
1512 // If they are really different, now that they are the same type, then we
1513 // found a difference!
1514 if (cast<ConstantInt>(C1)->getSExtValue() <
1515 cast<ConstantInt>(C2)->getSExtValue())
1516 return -1;
1517 else
1518 return 1;
1519 }
1520
1521 /// evaluateFCmpRelation - This function determines if there is anything we can
1522 /// decide about the two constants provided. This doesn't need to handle simple
1523 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1524 /// If we can determine that the two constants have a particular relation to
1525 /// each other, we should return the corresponding FCmpInst predicate,
1526 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1527 /// ConstantFoldCompareInstruction.
1528 ///
1529 /// To simplify this code we canonicalize the relation so that the first
1530 /// operand is always the most "complex" of the two. We consider ConstantFP
1531 /// to be the simplest, and ConstantExprs to be the most complex.
evaluateFCmpRelation(Constant * V1,Constant * V2)1532 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1533 assert(V1->getType() == V2->getType() &&
1534 "Cannot compare values of different types!");
1535
1536 // No compile-time operations on this type yet.
1537 if (V1->getType()->isPPC_FP128Ty())
1538 return FCmpInst::BAD_FCMP_PREDICATE;
1539
1540 // Handle degenerate case quickly
1541 if (V1 == V2) return FCmpInst::FCMP_OEQ;
1542
1543 if (!isa<ConstantExpr>(V1)) {
1544 if (!isa<ConstantExpr>(V2)) {
1545 // We distilled thisUse the standard constant folder for a few cases
1546 ConstantInt *R = 0;
1547 R = dyn_cast<ConstantInt>(
1548 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1549 if (R && !R->isZero())
1550 return FCmpInst::FCMP_OEQ;
1551 R = dyn_cast<ConstantInt>(
1552 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1553 if (R && !R->isZero())
1554 return FCmpInst::FCMP_OLT;
1555 R = dyn_cast<ConstantInt>(
1556 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1557 if (R && !R->isZero())
1558 return FCmpInst::FCMP_OGT;
1559
1560 // Nothing more we can do
1561 return FCmpInst::BAD_FCMP_PREDICATE;
1562 }
1563
1564 // If the first operand is simple and second is ConstantExpr, swap operands.
1565 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1566 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1567 return FCmpInst::getSwappedPredicate(SwappedRelation);
1568 } else {
1569 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1570 // constantexpr or a simple constant.
1571 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1572 switch (CE1->getOpcode()) {
1573 case Instruction::FPTrunc:
1574 case Instruction::FPExt:
1575 case Instruction::UIToFP:
1576 case Instruction::SIToFP:
1577 // We might be able to do something with these but we don't right now.
1578 break;
1579 default:
1580 break;
1581 }
1582 }
1583 // There are MANY other foldings that we could perform here. They will
1584 // probably be added on demand, as they seem needed.
1585 return FCmpInst::BAD_FCMP_PREDICATE;
1586 }
1587
1588 /// evaluateICmpRelation - This function determines if there is anything we can
1589 /// decide about the two constants provided. This doesn't need to handle simple
1590 /// things like integer comparisons, but should instead handle ConstantExprs
1591 /// and GlobalValues. If we can determine that the two constants have a
1592 /// particular relation to each other, we should return the corresponding ICmp
1593 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1594 ///
1595 /// To simplify this code we canonicalize the relation so that the first
1596 /// operand is always the most "complex" of the two. We consider simple
1597 /// constants (like ConstantInt) to be the simplest, followed by
1598 /// GlobalValues, followed by ConstantExpr's (the most complex).
1599 ///
evaluateICmpRelation(Constant * V1,Constant * V2,bool isSigned)1600 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1601 bool isSigned) {
1602 assert(V1->getType() == V2->getType() &&
1603 "Cannot compare different types of values!");
1604 if (V1 == V2) return ICmpInst::ICMP_EQ;
1605
1606 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1607 !isa<BlockAddress>(V1)) {
1608 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1609 !isa<BlockAddress>(V2)) {
1610 // We distilled this down to a simple case, use the standard constant
1611 // folder.
1612 ConstantInt *R = 0;
1613 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1614 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1615 if (R && !R->isZero())
1616 return pred;
1617 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1618 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1619 if (R && !R->isZero())
1620 return pred;
1621 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1622 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1623 if (R && !R->isZero())
1624 return pred;
1625
1626 // If we couldn't figure it out, bail.
1627 return ICmpInst::BAD_ICMP_PREDICATE;
1628 }
1629
1630 // If the first operand is simple, swap operands.
1631 ICmpInst::Predicate SwappedRelation =
1632 evaluateICmpRelation(V2, V1, isSigned);
1633 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1634 return ICmpInst::getSwappedPredicate(SwappedRelation);
1635
1636 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1637 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1638 ICmpInst::Predicate SwappedRelation =
1639 evaluateICmpRelation(V2, V1, isSigned);
1640 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1641 return ICmpInst::getSwappedPredicate(SwappedRelation);
1642 return ICmpInst::BAD_ICMP_PREDICATE;
1643 }
1644
1645 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1646 // constant (which, since the types must match, means that it's a
1647 // ConstantPointerNull).
1648 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1649 // Don't try to decide equality of aliases.
1650 if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1651 if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1652 return ICmpInst::ICMP_NE;
1653 } else if (isa<BlockAddress>(V2)) {
1654 return ICmpInst::ICMP_NE; // Globals never equal labels.
1655 } else {
1656 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1657 // GlobalVals can never be null unless they have external weak linkage.
1658 // We don't try to evaluate aliases here.
1659 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1660 return ICmpInst::ICMP_NE;
1661 }
1662 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1663 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1664 ICmpInst::Predicate SwappedRelation =
1665 evaluateICmpRelation(V2, V1, isSigned);
1666 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1667 return ICmpInst::getSwappedPredicate(SwappedRelation);
1668 return ICmpInst::BAD_ICMP_PREDICATE;
1669 }
1670
1671 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1672 // constant (which, since the types must match, means that it is a
1673 // ConstantPointerNull).
1674 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1675 // Block address in another function can't equal this one, but block
1676 // addresses in the current function might be the same if blocks are
1677 // empty.
1678 if (BA2->getFunction() != BA->getFunction())
1679 return ICmpInst::ICMP_NE;
1680 } else {
1681 // Block addresses aren't null, don't equal the address of globals.
1682 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1683 "Canonicalization guarantee!");
1684 return ICmpInst::ICMP_NE;
1685 }
1686 } else {
1687 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1688 // constantexpr, a global, block address, or a simple constant.
1689 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1690 Constant *CE1Op0 = CE1->getOperand(0);
1691
1692 switch (CE1->getOpcode()) {
1693 case Instruction::Trunc:
1694 case Instruction::FPTrunc:
1695 case Instruction::FPExt:
1696 case Instruction::FPToUI:
1697 case Instruction::FPToSI:
1698 break; // We can't evaluate floating point casts or truncations.
1699
1700 case Instruction::UIToFP:
1701 case Instruction::SIToFP:
1702 case Instruction::BitCast:
1703 case Instruction::ZExt:
1704 case Instruction::SExt:
1705 // If the cast is not actually changing bits, and the second operand is a
1706 // null pointer, do the comparison with the pre-casted value.
1707 if (V2->isNullValue() &&
1708 (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1709 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1710 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1711 return evaluateICmpRelation(CE1Op0,
1712 Constant::getNullValue(CE1Op0->getType()),
1713 isSigned);
1714 }
1715 break;
1716
1717 case Instruction::GetElementPtr:
1718 // Ok, since this is a getelementptr, we know that the constant has a
1719 // pointer type. Check the various cases.
1720 if (isa<ConstantPointerNull>(V2)) {
1721 // If we are comparing a GEP to a null pointer, check to see if the base
1722 // of the GEP equals the null pointer.
1723 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1724 if (GV->hasExternalWeakLinkage())
1725 // Weak linkage GVals could be zero or not. We're comparing that
1726 // to null pointer so its greater-or-equal
1727 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1728 else
1729 // If its not weak linkage, the GVal must have a non-zero address
1730 // so the result is greater-than
1731 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1732 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1733 // If we are indexing from a null pointer, check to see if we have any
1734 // non-zero indices.
1735 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1736 if (!CE1->getOperand(i)->isNullValue())
1737 // Offsetting from null, must not be equal.
1738 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1739 // Only zero indexes from null, must still be zero.
1740 return ICmpInst::ICMP_EQ;
1741 }
1742 // Otherwise, we can't really say if the first operand is null or not.
1743 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1744 if (isa<ConstantPointerNull>(CE1Op0)) {
1745 if (GV2->hasExternalWeakLinkage())
1746 // Weak linkage GVals could be zero or not. We're comparing it to
1747 // a null pointer, so its less-or-equal
1748 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1749 else
1750 // If its not weak linkage, the GVal must have a non-zero address
1751 // so the result is less-than
1752 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1753 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1754 if (GV == GV2) {
1755 // If this is a getelementptr of the same global, then it must be
1756 // different. Because the types must match, the getelementptr could
1757 // only have at most one index, and because we fold getelementptr's
1758 // with a single zero index, it must be nonzero.
1759 assert(CE1->getNumOperands() == 2 &&
1760 !CE1->getOperand(1)->isNullValue() &&
1761 "Surprising getelementptr!");
1762 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1763 } else {
1764 // If they are different globals, we don't know what the value is,
1765 // but they can't be equal.
1766 return ICmpInst::ICMP_NE;
1767 }
1768 }
1769 } else {
1770 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1771 Constant *CE2Op0 = CE2->getOperand(0);
1772
1773 // There are MANY other foldings that we could perform here. They will
1774 // probably be added on demand, as they seem needed.
1775 switch (CE2->getOpcode()) {
1776 default: break;
1777 case Instruction::GetElementPtr:
1778 // By far the most common case to handle is when the base pointers are
1779 // obviously to the same or different globals.
1780 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1781 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1782 return ICmpInst::ICMP_NE;
1783 // Ok, we know that both getelementptr instructions are based on the
1784 // same global. From this, we can precisely determine the relative
1785 // ordering of the resultant pointers.
1786 unsigned i = 1;
1787
1788 // The logic below assumes that the result of the comparison
1789 // can be determined by finding the first index that differs.
1790 // This doesn't work if there is over-indexing in any
1791 // subsequent indices, so check for that case first.
1792 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1793 !CE2->isGEPWithNoNotionalOverIndexing())
1794 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1795
1796 // Compare all of the operands the GEP's have in common.
1797 gep_type_iterator GTI = gep_type_begin(CE1);
1798 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1799 ++i, ++GTI)
1800 switch (IdxCompare(CE1->getOperand(i),
1801 CE2->getOperand(i), GTI.getIndexedType())) {
1802 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1803 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1804 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1805 }
1806
1807 // Ok, we ran out of things they have in common. If any leftovers
1808 // are non-zero then we have a difference, otherwise we are equal.
1809 for (; i < CE1->getNumOperands(); ++i)
1810 if (!CE1->getOperand(i)->isNullValue()) {
1811 if (isa<ConstantInt>(CE1->getOperand(i)))
1812 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1813 else
1814 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1815 }
1816
1817 for (; i < CE2->getNumOperands(); ++i)
1818 if (!CE2->getOperand(i)->isNullValue()) {
1819 if (isa<ConstantInt>(CE2->getOperand(i)))
1820 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1821 else
1822 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1823 }
1824 return ICmpInst::ICMP_EQ;
1825 }
1826 }
1827 }
1828 default:
1829 break;
1830 }
1831 }
1832
1833 return ICmpInst::BAD_ICMP_PREDICATE;
1834 }
1835
ConstantFoldCompareInstruction(unsigned short pred,Constant * C1,Constant * C2)1836 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1837 Constant *C1, Constant *C2) {
1838 Type *ResultTy;
1839 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1840 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1841 VT->getNumElements());
1842 else
1843 ResultTy = Type::getInt1Ty(C1->getContext());
1844
1845 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1846 if (pred == FCmpInst::FCMP_FALSE)
1847 return Constant::getNullValue(ResultTy);
1848
1849 if (pred == FCmpInst::FCMP_TRUE)
1850 return Constant::getAllOnesValue(ResultTy);
1851
1852 // Handle some degenerate cases first
1853 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1854 // For EQ and NE, we can always pick a value for the undef to make the
1855 // predicate pass or fail, so we can return undef.
1856 // Also, if both operands are undef, we can return undef.
1857 if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1858 (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1859 return UndefValue::get(ResultTy);
1860 // Otherwise, pick the same value as the non-undef operand, and fold
1861 // it to true or false.
1862 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1863 }
1864
1865 // No compile-time operations on this type yet.
1866 if (C1->getType()->isPPC_FP128Ty())
1867 return 0;
1868
1869 // icmp eq/ne(null,GV) -> false/true
1870 if (C1->isNullValue()) {
1871 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1872 // Don't try to evaluate aliases. External weak GV can be null.
1873 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1874 if (pred == ICmpInst::ICMP_EQ)
1875 return ConstantInt::getFalse(C1->getContext());
1876 else if (pred == ICmpInst::ICMP_NE)
1877 return ConstantInt::getTrue(C1->getContext());
1878 }
1879 // icmp eq/ne(GV,null) -> false/true
1880 } else if (C2->isNullValue()) {
1881 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1882 // Don't try to evaluate aliases. External weak GV can be null.
1883 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1884 if (pred == ICmpInst::ICMP_EQ)
1885 return ConstantInt::getFalse(C1->getContext());
1886 else if (pred == ICmpInst::ICMP_NE)
1887 return ConstantInt::getTrue(C1->getContext());
1888 }
1889 }
1890
1891 // If the comparison is a comparison between two i1's, simplify it.
1892 if (C1->getType()->isIntegerTy(1)) {
1893 switch(pred) {
1894 case ICmpInst::ICMP_EQ:
1895 if (isa<ConstantInt>(C2))
1896 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1897 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1898 case ICmpInst::ICMP_NE:
1899 return ConstantExpr::getXor(C1, C2);
1900 default:
1901 break;
1902 }
1903 }
1904
1905 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1906 APInt V1 = cast<ConstantInt>(C1)->getValue();
1907 APInt V2 = cast<ConstantInt>(C2)->getValue();
1908 switch (pred) {
1909 default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1910 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1911 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1912 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1913 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1914 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1915 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1916 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1917 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1918 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1919 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1920 }
1921 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1922 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1923 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1924 APFloat::cmpResult R = C1V.compare(C2V);
1925 switch (pred) {
1926 default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1927 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1928 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1929 case FCmpInst::FCMP_UNO:
1930 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1931 case FCmpInst::FCMP_ORD:
1932 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1933 case FCmpInst::FCMP_UEQ:
1934 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1935 R==APFloat::cmpEqual);
1936 case FCmpInst::FCMP_OEQ:
1937 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1938 case FCmpInst::FCMP_UNE:
1939 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1940 case FCmpInst::FCMP_ONE:
1941 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1942 R==APFloat::cmpGreaterThan);
1943 case FCmpInst::FCMP_ULT:
1944 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1945 R==APFloat::cmpLessThan);
1946 case FCmpInst::FCMP_OLT:
1947 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1948 case FCmpInst::FCMP_UGT:
1949 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1950 R==APFloat::cmpGreaterThan);
1951 case FCmpInst::FCMP_OGT:
1952 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1953 case FCmpInst::FCMP_ULE:
1954 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1955 case FCmpInst::FCMP_OLE:
1956 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1957 R==APFloat::cmpEqual);
1958 case FCmpInst::FCMP_UGE:
1959 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1960 case FCmpInst::FCMP_OGE:
1961 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1962 R==APFloat::cmpEqual);
1963 }
1964 } else if (C1->getType()->isVectorTy()) {
1965 SmallVector<Constant*, 16> C1Elts, C2Elts;
1966 C1->getVectorElements(C1Elts);
1967 C2->getVectorElements(C2Elts);
1968 if (C1Elts.empty() || C2Elts.empty())
1969 return 0;
1970
1971 // If we can constant fold the comparison of each element, constant fold
1972 // the whole vector comparison.
1973 SmallVector<Constant*, 4> ResElts;
1974 // Compare the elements, producing an i1 result or constant expr.
1975 for (unsigned i = 0, e = C1Elts.size(); i != e; ++i)
1976 ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1977
1978 return ConstantVector::get(ResElts);
1979 }
1980
1981 if (C1->getType()->isFloatingPointTy()) {
1982 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1983 switch (evaluateFCmpRelation(C1, C2)) {
1984 default: llvm_unreachable("Unknown relation!");
1985 case FCmpInst::FCMP_UNO:
1986 case FCmpInst::FCMP_ORD:
1987 case FCmpInst::FCMP_UEQ:
1988 case FCmpInst::FCMP_UNE:
1989 case FCmpInst::FCMP_ULT:
1990 case FCmpInst::FCMP_UGT:
1991 case FCmpInst::FCMP_ULE:
1992 case FCmpInst::FCMP_UGE:
1993 case FCmpInst::FCMP_TRUE:
1994 case FCmpInst::FCMP_FALSE:
1995 case FCmpInst::BAD_FCMP_PREDICATE:
1996 break; // Couldn't determine anything about these constants.
1997 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1998 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1999 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
2000 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2001 break;
2002 case FCmpInst::FCMP_OLT: // We know that C1 < C2
2003 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2004 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
2005 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
2006 break;
2007 case FCmpInst::FCMP_OGT: // We know that C1 > C2
2008 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2009 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
2010 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2011 break;
2012 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
2013 // We can only partially decide this relation.
2014 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2015 Result = 0;
2016 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2017 Result = 1;
2018 break;
2019 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2020 // We can only partially decide this relation.
2021 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2022 Result = 0;
2023 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2024 Result = 1;
2025 break;
2026 case FCmpInst::FCMP_ONE: // We know that C1 != C2
2027 // We can only partially decide this relation.
2028 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2029 Result = 0;
2030 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2031 Result = 1;
2032 break;
2033 }
2034
2035 // If we evaluated the result, return it now.
2036 if (Result != -1)
2037 return ConstantInt::get(ResultTy, Result);
2038
2039 } else {
2040 // Evaluate the relation between the two constants, per the predicate.
2041 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
2042 switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
2043 default: llvm_unreachable("Unknown relational!");
2044 case ICmpInst::BAD_ICMP_PREDICATE:
2045 break; // Couldn't determine anything about these constants.
2046 case ICmpInst::ICMP_EQ: // We know the constants are equal!
2047 // If we know the constants are equal, we can decide the result of this
2048 // computation precisely.
2049 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2050 break;
2051 case ICmpInst::ICMP_ULT:
2052 switch (pred) {
2053 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2054 Result = 1; break;
2055 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2056 Result = 0; break;
2057 }
2058 break;
2059 case ICmpInst::ICMP_SLT:
2060 switch (pred) {
2061 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2062 Result = 1; break;
2063 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2064 Result = 0; break;
2065 }
2066 break;
2067 case ICmpInst::ICMP_UGT:
2068 switch (pred) {
2069 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2070 Result = 1; break;
2071 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2072 Result = 0; break;
2073 }
2074 break;
2075 case ICmpInst::ICMP_SGT:
2076 switch (pred) {
2077 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2078 Result = 1; break;
2079 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2080 Result = 0; break;
2081 }
2082 break;
2083 case ICmpInst::ICMP_ULE:
2084 if (pred == ICmpInst::ICMP_UGT) Result = 0;
2085 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2086 break;
2087 case ICmpInst::ICMP_SLE:
2088 if (pred == ICmpInst::ICMP_SGT) Result = 0;
2089 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2090 break;
2091 case ICmpInst::ICMP_UGE:
2092 if (pred == ICmpInst::ICMP_ULT) Result = 0;
2093 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2094 break;
2095 case ICmpInst::ICMP_SGE:
2096 if (pred == ICmpInst::ICMP_SLT) Result = 0;
2097 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2098 break;
2099 case ICmpInst::ICMP_NE:
2100 if (pred == ICmpInst::ICMP_EQ) Result = 0;
2101 if (pred == ICmpInst::ICMP_NE) Result = 1;
2102 break;
2103 }
2104
2105 // If we evaluated the result, return it now.
2106 if (Result != -1)
2107 return ConstantInt::get(ResultTy, Result);
2108
2109 // If the right hand side is a bitcast, try using its inverse to simplify
2110 // it by moving it to the left hand side. We can't do this if it would turn
2111 // a vector compare into a scalar compare or visa versa.
2112 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2113 Constant *CE2Op0 = CE2->getOperand(0);
2114 if (CE2->getOpcode() == Instruction::BitCast &&
2115 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
2116 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2117 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2118 }
2119 }
2120
2121 // If the left hand side is an extension, try eliminating it.
2122 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2123 if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
2124 (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
2125 Constant *CE1Op0 = CE1->getOperand(0);
2126 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2127 if (CE1Inverse == CE1Op0) {
2128 // Check whether we can safely truncate the right hand side.
2129 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2130 if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2131 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2132 }
2133 }
2134 }
2135 }
2136
2137 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2138 (C1->isNullValue() && !C2->isNullValue())) {
2139 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2140 // other way if possible.
2141 // Also, if C1 is null and C2 isn't, flip them around.
2142 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2143 return ConstantExpr::getICmp(pred, C2, C1);
2144 }
2145 }
2146 return 0;
2147 }
2148
2149 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2150 /// is "inbounds".
2151 template<typename IndexTy>
isInBoundsIndices(ArrayRef<IndexTy> Idxs)2152 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2153 // No indices means nothing that could be out of bounds.
2154 if (Idxs.empty()) return true;
2155
2156 // If the first index is zero, it's in bounds.
2157 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2158
2159 // If the first index is one and all the rest are zero, it's in bounds,
2160 // by the one-past-the-end rule.
2161 if (!cast<ConstantInt>(Idxs[0])->isOne())
2162 return false;
2163 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2164 if (!cast<Constant>(Idxs[i])->isNullValue())
2165 return false;
2166 return true;
2167 }
2168
2169 template<typename IndexTy>
ConstantFoldGetElementPtrImpl(Constant * C,bool inBounds,ArrayRef<IndexTy> Idxs)2170 static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
2171 bool inBounds,
2172 ArrayRef<IndexTy> Idxs) {
2173 if (Idxs.empty()) return C;
2174 Constant *Idx0 = cast<Constant>(Idxs[0]);
2175 if ((Idxs.size() == 1 && Idx0->isNullValue()))
2176 return C;
2177
2178 if (isa<UndefValue>(C)) {
2179 PointerType *Ptr = cast<PointerType>(C->getType());
2180 Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
2181 assert(Ty != 0 && "Invalid indices for GEP!");
2182 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2183 }
2184
2185 if (C->isNullValue()) {
2186 bool isNull = true;
2187 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2188 if (!cast<Constant>(Idxs[i])->isNullValue()) {
2189 isNull = false;
2190 break;
2191 }
2192 if (isNull) {
2193 PointerType *Ptr = cast<PointerType>(C->getType());
2194 Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
2195 assert(Ty != 0 && "Invalid indices for GEP!");
2196 return ConstantPointerNull::get(PointerType::get(Ty,
2197 Ptr->getAddressSpace()));
2198 }
2199 }
2200
2201 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2202 // Combine Indices - If the source pointer to this getelementptr instruction
2203 // is a getelementptr instruction, combine the indices of the two
2204 // getelementptr instructions into a single instruction.
2205 //
2206 if (CE->getOpcode() == Instruction::GetElementPtr) {
2207 Type *LastTy = 0;
2208 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2209 I != E; ++I)
2210 LastTy = *I;
2211
2212 if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2213 SmallVector<Value*, 16> NewIndices;
2214 NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2215 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2216 NewIndices.push_back(CE->getOperand(i));
2217
2218 // Add the last index of the source with the first index of the new GEP.
2219 // Make sure to handle the case when they are actually different types.
2220 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2221 // Otherwise it must be an array.
2222 if (!Idx0->isNullValue()) {
2223 Type *IdxTy = Combined->getType();
2224 if (IdxTy != Idx0->getType()) {
2225 Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2226 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2227 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2228 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2229 } else {
2230 Combined =
2231 ConstantExpr::get(Instruction::Add, Idx0, Combined);
2232 }
2233 }
2234
2235 NewIndices.push_back(Combined);
2236 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2237 return
2238 ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
2239 inBounds &&
2240 cast<GEPOperator>(CE)->isInBounds());
2241 }
2242 }
2243
2244 // Implement folding of:
2245 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2246 // i64 0, i64 0)
2247 // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2248 //
2249 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2250 if (PointerType *SPT =
2251 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2252 if (ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2253 if (ArrayType *CAT =
2254 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2255 if (CAT->getElementType() == SAT->getElementType())
2256 return
2257 ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
2258 Idxs, inBounds);
2259 }
2260 }
2261
2262 // Check to see if any array indices are not within the corresponding
2263 // notional array bounds. If so, try to determine if they can be factored
2264 // out into preceding dimensions.
2265 bool Unknown = false;
2266 SmallVector<Constant *, 8> NewIdxs;
2267 Type *Ty = C->getType();
2268 Type *Prev = 0;
2269 for (unsigned i = 0, e = Idxs.size(); i != e;
2270 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2271 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2272 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2273 if (ATy->getNumElements() <= INT64_MAX &&
2274 ATy->getNumElements() != 0 &&
2275 CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2276 if (isa<SequentialType>(Prev)) {
2277 // It's out of range, but we can factor it into the prior
2278 // dimension.
2279 NewIdxs.resize(Idxs.size());
2280 ConstantInt *Factor = ConstantInt::get(CI->getType(),
2281 ATy->getNumElements());
2282 NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2283
2284 Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2285 Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2286
2287 // Before adding, extend both operands to i64 to avoid
2288 // overflow trouble.
2289 if (!PrevIdx->getType()->isIntegerTy(64))
2290 PrevIdx = ConstantExpr::getSExt(PrevIdx,
2291 Type::getInt64Ty(Div->getContext()));
2292 if (!Div->getType()->isIntegerTy(64))
2293 Div = ConstantExpr::getSExt(Div,
2294 Type::getInt64Ty(Div->getContext()));
2295
2296 NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2297 } else {
2298 // It's out of range, but the prior dimension is a struct
2299 // so we can't do anything about it.
2300 Unknown = true;
2301 }
2302 }
2303 } else {
2304 // We don't know if it's in range or not.
2305 Unknown = true;
2306 }
2307 }
2308
2309 // If we did any factoring, start over with the adjusted indices.
2310 if (!NewIdxs.empty()) {
2311 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2312 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2313 return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2314 }
2315
2316 // If all indices are known integers and normalized, we can do a simple
2317 // check for the "inbounds" property.
2318 if (!Unknown && !inBounds &&
2319 isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2320 return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2321
2322 return 0;
2323 }
2324
ConstantFoldGetElementPtr(Constant * C,bool inBounds,ArrayRef<Constant * > Idxs)2325 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2326 bool inBounds,
2327 ArrayRef<Constant *> Idxs) {
2328 return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2329 }
2330
ConstantFoldGetElementPtr(Constant * C,bool inBounds,ArrayRef<Value * > Idxs)2331 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2332 bool inBounds,
2333 ArrayRef<Value *> Idxs) {
2334 return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2335 }
2336