• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "main/context.h"
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 #include "main/glformats.h"
30 
31 #include "brw_blorp.h"
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "brw_meta_util.h"
35 #include "brw_state.h"
36 #include "intel_fbo.h"
37 #include "intel_debug.h"
38 
39 #define FILE_DEBUG_FLAG DEBUG_BLORP
40 
41 static bool
brw_blorp_lookup_shader(struct blorp_context * blorp,const void * key,uint32_t key_size,uint32_t * kernel_out,void * prog_data_out)42 brw_blorp_lookup_shader(struct blorp_context *blorp,
43                         const void *key, uint32_t key_size,
44                         uint32_t *kernel_out, void *prog_data_out)
45 {
46    struct brw_context *brw = blorp->driver_ctx;
47    return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
48                            key, key_size, kernel_out, prog_data_out);
49 }
50 
51 static void
brw_blorp_upload_shader(struct blorp_context * blorp,const void * key,uint32_t key_size,const void * kernel,uint32_t kernel_size,const struct brw_stage_prog_data * prog_data,uint32_t prog_data_size,uint32_t * kernel_out,void * prog_data_out)52 brw_blorp_upload_shader(struct blorp_context *blorp,
53                         const void *key, uint32_t key_size,
54                         const void *kernel, uint32_t kernel_size,
55                         const struct brw_stage_prog_data *prog_data,
56                         uint32_t prog_data_size,
57                         uint32_t *kernel_out, void *prog_data_out)
58 {
59    struct brw_context *brw = blorp->driver_ctx;
60    brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size,
61                     kernel, kernel_size, prog_data, prog_data_size,
62                     kernel_out, prog_data_out);
63 }
64 
65 void
brw_blorp_init(struct brw_context * brw)66 brw_blorp_init(struct brw_context *brw)
67 {
68    blorp_init(&brw->blorp, brw, &brw->isl_dev);
69 
70    brw->blorp.compiler = brw->screen->compiler;
71 
72    switch (brw->gen) {
73    case 6:
74       brw->blorp.mocs.tex = 0;
75       brw->blorp.mocs.rb = 0;
76       brw->blorp.mocs.vb = 0;
77       brw->blorp.exec = gen6_blorp_exec;
78       break;
79    case 7:
80       brw->blorp.mocs.tex = GEN7_MOCS_L3;
81       brw->blorp.mocs.rb = GEN7_MOCS_L3;
82       brw->blorp.mocs.vb = GEN7_MOCS_L3;
83       if (brw->is_haswell) {
84          brw->blorp.exec = gen75_blorp_exec;
85       } else {
86          brw->blorp.exec = gen7_blorp_exec;
87       }
88       break;
89    case 8:
90       brw->blorp.mocs.tex = BDW_MOCS_WB;
91       brw->blorp.mocs.rb = BDW_MOCS_PTE;
92       brw->blorp.mocs.vb = BDW_MOCS_WB;
93       brw->blorp.exec = gen8_blorp_exec;
94       break;
95    case 9:
96       brw->blorp.mocs.tex = SKL_MOCS_WB;
97       brw->blorp.mocs.rb = SKL_MOCS_PTE;
98       brw->blorp.mocs.vb = SKL_MOCS_WB;
99       brw->blorp.exec = gen9_blorp_exec;
100       break;
101    default:
102       unreachable("Invalid gen");
103    }
104 
105    brw->blorp.lookup_shader = brw_blorp_lookup_shader;
106    brw->blorp.upload_shader = brw_blorp_upload_shader;
107 }
108 
109 static void
apply_gen6_stencil_hiz_offset(struct isl_surf * surf,struct intel_mipmap_tree * mt,uint32_t lod,uint32_t * offset)110 apply_gen6_stencil_hiz_offset(struct isl_surf *surf,
111                               struct intel_mipmap_tree *mt,
112                               uint32_t lod,
113                               uint32_t *offset)
114 {
115    assert(mt->array_layout == ALL_SLICES_AT_EACH_LOD);
116 
117    if (mt->format == MESA_FORMAT_S_UINT8) {
118       /* Note: we can't compute the stencil offset using
119        * intel_miptree_get_aligned_offset(), because the miptree
120        * claims that the region is untiled even though it's W tiled.
121        */
122       *offset = mt->level[lod].level_y * mt->pitch +
123                 mt->level[lod].level_x * 64;
124    } else {
125       *offset = intel_miptree_get_aligned_offset(mt,
126                                                  mt->level[lod].level_x,
127                                                  mt->level[lod].level_y);
128    }
129 
130    surf->logical_level0_px.width = minify(surf->logical_level0_px.width, lod);
131    surf->logical_level0_px.height = minify(surf->logical_level0_px.height, lod);
132    surf->phys_level0_sa.width = minify(surf->phys_level0_sa.width, lod);
133    surf->phys_level0_sa.height = minify(surf->phys_level0_sa.height, lod);
134    surf->levels = 1;
135    surf->array_pitch_el_rows =
136       ALIGN(surf->phys_level0_sa.height, surf->image_alignment_el.height);
137 }
138 
139 static void
blorp_surf_for_miptree(struct brw_context * brw,struct blorp_surf * surf,struct intel_mipmap_tree * mt,bool is_render_target,uint32_t safe_aux_usage,unsigned * level,unsigned start_layer,unsigned num_layers,struct isl_surf tmp_surfs[2])140 blorp_surf_for_miptree(struct brw_context *brw,
141                        struct blorp_surf *surf,
142                        struct intel_mipmap_tree *mt,
143                        bool is_render_target,
144                        uint32_t safe_aux_usage,
145                        unsigned *level,
146                        unsigned start_layer, unsigned num_layers,
147                        struct isl_surf tmp_surfs[2])
148 {
149    if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
150        mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
151       const unsigned num_samples = MAX2(1, mt->num_samples);
152       for (unsigned i = 0; i < num_layers; i++) {
153          for (unsigned s = 0; s < num_samples; s++) {
154             const unsigned phys_layer = (start_layer + i) * num_samples + s;
155             intel_miptree_check_level_layer(mt, *level, phys_layer);
156          }
157       }
158    } else {
159       for (unsigned i = 0; i < num_layers; i++)
160          intel_miptree_check_level_layer(mt, *level, start_layer + i);
161    }
162 
163    intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]);
164    surf->surf = &tmp_surfs[0];
165    surf->addr = (struct blorp_address) {
166       .buffer = mt->bo,
167       .offset = mt->offset,
168       .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
169                                          I915_GEM_DOMAIN_SAMPLER,
170       .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
171    };
172 
173    if (brw->gen == 6 && mt->format == MESA_FORMAT_S_UINT8 &&
174        mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
175       /* Sandy bridge stencil and HiZ use this ALL_SLICES_AT_EACH_LOD hack in
176        * order to allow for layered rendering.  The hack makes each LOD of the
177        * stencil or HiZ buffer a single tightly packed array surface at some
178        * offset into the surface.  Since ISL doesn't know how to deal with the
179        * crazy ALL_SLICES_AT_EACH_LOD layout and since we have to do a manual
180        * offset of it anyway, we might as well do the offset here and keep the
181        * hacks inside the i965 driver.
182        *
183        * See also gen6_depth_stencil_state.c
184        */
185       uint32_t offset;
186       apply_gen6_stencil_hiz_offset(&tmp_surfs[0], mt, *level, &offset);
187       surf->addr.offset += offset;
188       *level = 0;
189    }
190 
191    struct isl_surf *aux_surf = &tmp_surfs[1];
192    intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage);
193 
194    if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
195       if (surf->aux_usage == ISL_AUX_USAGE_HIZ) {
196          /* If we're not going to use it as a depth buffer, resolve HiZ */
197          if (!(safe_aux_usage & (1 << ISL_AUX_USAGE_HIZ))) {
198             for (unsigned i = 0; i < num_layers; i++) {
199                intel_miptree_slice_resolve_depth(brw, mt, *level,
200                                                  start_layer + i);
201 
202                /* If we're rendering to it then we'll need a HiZ resolve once
203                 * we're done before we can use it with HiZ again.
204                 */
205                if (is_render_target)
206                   intel_miptree_slice_set_needs_hiz_resolve(mt, *level,
207                                                             start_layer + i);
208             }
209             surf->aux_usage = ISL_AUX_USAGE_NONE;
210          }
211       } else if (!(safe_aux_usage & (1 << surf->aux_usage))) {
212          uint32_t flags = 0;
213          if (safe_aux_usage & (1 << ISL_AUX_USAGE_CCS_E))
214             flags |= INTEL_MIPTREE_IGNORE_CCS_E;
215 
216          intel_miptree_resolve_color(brw, mt,
217                                      *level, start_layer, num_layers, flags);
218 
219          assert(!intel_miptree_has_color_unresolved(mt, *level, 1,
220                                                     start_layer, num_layers));
221          surf->aux_usage = ISL_AUX_USAGE_NONE;
222       }
223    }
224 
225    if (is_render_target)
226       intel_miptree_used_for_rendering(brw, mt, *level,
227                                        start_layer, num_layers);
228 
229    if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
230       /* We only really need a clear color if we also have an auxiliary
231        * surface.  Without one, it does nothing.
232        */
233       surf->clear_color = intel_miptree_get_isl_clear_color(brw, mt);
234 
235       surf->aux_surf = aux_surf;
236       surf->aux_addr = (struct blorp_address) {
237          .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
238                                             I915_GEM_DOMAIN_SAMPLER,
239          .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
240       };
241 
242       if (mt->mcs_buf) {
243          surf->aux_addr.buffer = mt->mcs_buf->bo;
244          surf->aux_addr.offset = mt->mcs_buf->offset;
245       } else {
246          assert(surf->aux_usage == ISL_AUX_USAGE_HIZ);
247          struct intel_mipmap_tree *hiz_mt = mt->hiz_buf->mt;
248          if (hiz_mt) {
249             surf->aux_addr.buffer = hiz_mt->bo;
250             if (brw->gen == 6 &&
251                 hiz_mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
252                /* gen6 requires the HiZ buffer to be manually offset to the
253                 * right location.  We could fixup the surf but it doesn't
254                 * matter since most of those fields don't matter.
255                 */
256                apply_gen6_stencil_hiz_offset(aux_surf, hiz_mt, *level,
257                                              &surf->aux_addr.offset);
258             } else {
259                surf->aux_addr.offset = 0;
260             }
261             assert(hiz_mt->pitch == aux_surf->row_pitch);
262          } else {
263             surf->aux_addr.buffer = mt->hiz_buf->aux_base.bo;
264             surf->aux_addr.offset = mt->hiz_buf->aux_base.offset;
265          }
266       }
267    } else {
268       surf->aux_addr = (struct blorp_address) {
269          .buffer = NULL,
270       };
271       memset(&surf->clear_color, 0, sizeof(surf->clear_color));
272    }
273    assert((surf->aux_usage == ISL_AUX_USAGE_NONE) ==
274           (surf->aux_addr.buffer == NULL));
275 }
276 
277 static enum isl_format
brw_blorp_to_isl_format(struct brw_context * brw,mesa_format format,bool is_render_target)278 brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format,
279                         bool is_render_target)
280 {
281    switch (format) {
282    case MESA_FORMAT_NONE:
283       return ISL_FORMAT_UNSUPPORTED;
284    case MESA_FORMAT_S_UINT8:
285       return ISL_FORMAT_R8_UINT;
286    case MESA_FORMAT_Z24_UNORM_X8_UINT:
287    case MESA_FORMAT_Z24_UNORM_S8_UINT:
288       return ISL_FORMAT_R24_UNORM_X8_TYPELESS;
289    case MESA_FORMAT_Z_FLOAT32:
290    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
291       return ISL_FORMAT_R32_FLOAT;
292    case MESA_FORMAT_Z_UNORM16:
293       return ISL_FORMAT_R16_UNORM;
294    default: {
295       if (is_render_target) {
296          assert(brw->format_supported_as_render_target[format]);
297          return brw->render_target_format[format];
298       } else {
299          return brw_format_for_mesa_format(format);
300       }
301       break;
302    }
303    }
304 }
305 
306 /**
307  * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
308  * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED).  The mappings are
309  *
310  * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
311  *         0          1          2          3             4            5
312  *         4          5          6          7             0            1
313  *   SCS_RED, SCS_GREEN,  SCS_BLUE, SCS_ALPHA,     SCS_ZERO,     SCS_ONE
314  *
315  * which is simply adding 4 then modding by 8 (or anding with 7).
316  *
317  * We then may need to apply workarounds for textureGather hardware bugs.
318  */
319 static enum isl_channel_select
swizzle_to_scs(GLenum swizzle)320 swizzle_to_scs(GLenum swizzle)
321 {
322    return (enum isl_channel_select)((swizzle + 4) & 7);
323 }
324 
325 static unsigned
physical_to_logical_layer(struct intel_mipmap_tree * mt,unsigned physical_layer)326 physical_to_logical_layer(struct intel_mipmap_tree *mt,
327                           unsigned physical_layer)
328 {
329    if (mt->num_samples > 1 &&
330        (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
331         mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS)) {
332       assert(physical_layer % mt->num_samples == 0);
333       return physical_layer / mt->num_samples;
334    } else {
335       return physical_layer;
336    }
337 }
338 
339 /**
340  * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
341  * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
342  * the physical layer holding sample 0.  So, for example, if
343  * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
344  * 4*n.
345  */
346 void
brw_blorp_blit_miptrees(struct brw_context * brw,struct intel_mipmap_tree * src_mt,unsigned src_level,unsigned src_layer,mesa_format src_format,int src_swizzle,struct intel_mipmap_tree * dst_mt,unsigned dst_level,unsigned dst_layer,mesa_format dst_format,float src_x0,float src_y0,float src_x1,float src_y1,float dst_x0,float dst_y0,float dst_x1,float dst_y1,GLenum filter,bool mirror_x,bool mirror_y,bool decode_srgb,bool encode_srgb)347 brw_blorp_blit_miptrees(struct brw_context *brw,
348                         struct intel_mipmap_tree *src_mt,
349                         unsigned src_level, unsigned src_layer,
350                         mesa_format src_format, int src_swizzle,
351                         struct intel_mipmap_tree *dst_mt,
352                         unsigned dst_level, unsigned dst_layer,
353                         mesa_format dst_format,
354                         float src_x0, float src_y0,
355                         float src_x1, float src_y1,
356                         float dst_x0, float dst_y0,
357                         float dst_x1, float dst_y1,
358                         GLenum filter, bool mirror_x, bool mirror_y,
359                         bool decode_srgb, bool encode_srgb)
360 {
361    /* Blorp operates in logical layers */
362    src_layer = physical_to_logical_layer(src_mt, src_layer);
363    dst_layer = physical_to_logical_layer(dst_mt, dst_layer);
364 
365    DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
366        "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
367        __func__,
368        src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
369        src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
370        dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
371        dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
372        mirror_x, mirror_y);
373 
374    if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB)
375       src_format = _mesa_get_srgb_format_linear(src_format);
376 
377    if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB)
378       dst_format = _mesa_get_srgb_format_linear(dst_format);
379 
380    /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
381     * texture, the above code configures the source format for L32_FLOAT or
382     * I32_FLOAT, and the destination format for R32_FLOAT.  On Sandy Bridge,
383     * the SAMPLE message appears to handle multisampled L32_FLOAT and
384     * I32_FLOAT textures incorrectly, resulting in blocky artifacts.  So work
385     * around the problem by using a source format of R32_FLOAT.  This
386     * shouldn't affect rendering correctness, since the destination format is
387     * R32_FLOAT, so only the contents of the red channel matters.
388     */
389    if (brw->gen == 6 &&
390        src_mt->num_samples > 1 && dst_mt->num_samples <= 1 &&
391        src_mt->format == dst_mt->format &&
392        (dst_format == MESA_FORMAT_L_FLOAT32 ||
393         dst_format == MESA_FORMAT_I_FLOAT32)) {
394       src_format = dst_format = MESA_FORMAT_R_FLOAT32;
395    }
396 
397    uint32_t src_usage_flags = (1 << ISL_AUX_USAGE_MCS);
398    if (src_format == src_mt->format)
399       src_usage_flags |= (1 << ISL_AUX_USAGE_CCS_E);
400 
401    uint32_t dst_usage_flags = (1 << ISL_AUX_USAGE_MCS);
402    if (dst_format == dst_mt->format) {
403       dst_usage_flags |= (1 << ISL_AUX_USAGE_CCS_E) |
404                          (1 << ISL_AUX_USAGE_CCS_D);
405    }
406 
407    struct isl_surf tmp_surfs[4];
408    struct blorp_surf src_surf, dst_surf;
409    blorp_surf_for_miptree(brw, &src_surf, src_mt, false, src_usage_flags,
410                           &src_level, src_layer, 1, &tmp_surfs[0]);
411    blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true, dst_usage_flags,
412                           &dst_level, dst_layer, 1, &tmp_surfs[2]);
413 
414    struct isl_swizzle src_isl_swizzle = {
415       .r = swizzle_to_scs(GET_SWZ(src_swizzle, 0)),
416       .g = swizzle_to_scs(GET_SWZ(src_swizzle, 1)),
417       .b = swizzle_to_scs(GET_SWZ(src_swizzle, 2)),
418       .a = swizzle_to_scs(GET_SWZ(src_swizzle, 3)),
419    };
420 
421    struct blorp_batch batch;
422    blorp_batch_init(&brw->blorp, &batch, brw, 0);
423    blorp_blit(&batch, &src_surf, src_level, src_layer,
424               brw_blorp_to_isl_format(brw, src_format, false), src_isl_swizzle,
425               &dst_surf, dst_level, dst_layer,
426               brw_blorp_to_isl_format(brw, dst_format, true),
427               ISL_SWIZZLE_IDENTITY,
428               src_x0, src_y0, src_x1, src_y1,
429               dst_x0, dst_y0, dst_x1, dst_y1,
430               filter, mirror_x, mirror_y);
431    blorp_batch_finish(&batch);
432 }
433 
434 void
brw_blorp_copy_miptrees(struct brw_context * brw,struct intel_mipmap_tree * src_mt,unsigned src_level,unsigned src_layer,struct intel_mipmap_tree * dst_mt,unsigned dst_level,unsigned dst_layer,unsigned src_x,unsigned src_y,unsigned dst_x,unsigned dst_y,unsigned src_width,unsigned src_height)435 brw_blorp_copy_miptrees(struct brw_context *brw,
436                         struct intel_mipmap_tree *src_mt,
437                         unsigned src_level, unsigned src_layer,
438                         struct intel_mipmap_tree *dst_mt,
439                         unsigned dst_level, unsigned dst_layer,
440                         unsigned src_x, unsigned src_y,
441                         unsigned dst_x, unsigned dst_y,
442                         unsigned src_width, unsigned src_height)
443 {
444    DBG("%s from %dx %s mt %p %d %d (%d,%d) %dx%d"
445        "to %dx %s mt %p %d %d (%d,%d)\n",
446        __func__,
447        src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
448        src_level, src_layer, src_x, src_y, src_width, src_height,
449        dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
450        dst_level, dst_layer, dst_x, dst_y);
451 
452    struct isl_surf tmp_surfs[4];
453    struct blorp_surf src_surf, dst_surf;
454    blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
455                           (1 << ISL_AUX_USAGE_MCS) |
456                           (1 << ISL_AUX_USAGE_CCS_E),
457                           &src_level, src_layer, 1, &tmp_surfs[0]);
458    blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
459                           (1 << ISL_AUX_USAGE_MCS) |
460                           (1 << ISL_AUX_USAGE_CCS_E),
461                           &dst_level, dst_layer, 1, &tmp_surfs[2]);
462 
463    struct blorp_batch batch;
464    blorp_batch_init(&brw->blorp, &batch, brw, 0);
465    blorp_copy(&batch, &src_surf, src_level, src_layer,
466               &dst_surf, dst_level, dst_layer,
467               src_x, src_y, dst_x, dst_y, src_width, src_height);
468    blorp_batch_finish(&batch);
469 }
470 
471 static struct intel_mipmap_tree *
find_miptree(GLbitfield buffer_bit,struct intel_renderbuffer * irb)472 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
473 {
474    struct intel_mipmap_tree *mt = irb->mt;
475    if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
476       mt = mt->stencil_mt;
477    return mt;
478 }
479 
480 static int
blorp_get_texture_swizzle(const struct intel_renderbuffer * irb)481 blorp_get_texture_swizzle(const struct intel_renderbuffer *irb)
482 {
483    return irb->Base.Base._BaseFormat == GL_RGB ?
484       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) :
485       SWIZZLE_XYZW;
486 }
487 
488 static void
do_blorp_blit(struct brw_context * brw,GLbitfield buffer_bit,struct intel_renderbuffer * src_irb,mesa_format src_format,struct intel_renderbuffer * dst_irb,mesa_format dst_format,GLfloat srcX0,GLfloat srcY0,GLfloat srcX1,GLfloat srcY1,GLfloat dstX0,GLfloat dstY0,GLfloat dstX1,GLfloat dstY1,GLenum filter,bool mirror_x,bool mirror_y)489 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
490               struct intel_renderbuffer *src_irb, mesa_format src_format,
491               struct intel_renderbuffer *dst_irb, mesa_format dst_format,
492               GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
493               GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
494               GLenum filter, bool mirror_x, bool mirror_y)
495 {
496    const struct gl_context *ctx = &brw->ctx;
497 
498    /* Find source/dst miptrees */
499    struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
500    struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
501 
502    const bool do_srgb = ctx->Color.sRGBEnabled;
503 
504    /* Do the blit */
505    brw_blorp_blit_miptrees(brw,
506                            src_mt, src_irb->mt_level, src_irb->mt_layer,
507                            src_format, blorp_get_texture_swizzle(src_irb),
508                            dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
509                            dst_format,
510                            srcX0, srcY0, srcX1, srcY1,
511                            dstX0, dstY0, dstX1, dstY1,
512                            filter, mirror_x, mirror_y,
513                            do_srgb, do_srgb);
514 
515    dst_irb->need_downsample = true;
516 }
517 
518 static bool
try_blorp_blit(struct brw_context * brw,const struct gl_framebuffer * read_fb,const struct gl_framebuffer * draw_fb,GLfloat srcX0,GLfloat srcY0,GLfloat srcX1,GLfloat srcY1,GLfloat dstX0,GLfloat dstY0,GLfloat dstX1,GLfloat dstY1,GLenum filter,GLbitfield buffer_bit)519 try_blorp_blit(struct brw_context *brw,
520                const struct gl_framebuffer *read_fb,
521                const struct gl_framebuffer *draw_fb,
522                GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
523                GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
524                GLenum filter, GLbitfield buffer_bit)
525 {
526    struct gl_context *ctx = &brw->ctx;
527 
528    /* Sync up the state of window system buffers.  We need to do this before
529     * we go looking for the buffers.
530     */
531    intel_prepare_render(brw);
532 
533    bool mirror_x, mirror_y;
534    if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
535                                         &srcX0, &srcY0, &srcX1, &srcY1,
536                                         &dstX0, &dstY0, &dstX1, &dstY1,
537                                         &mirror_x, &mirror_y))
538       return true;
539 
540    /* Find buffers */
541    struct intel_renderbuffer *src_irb;
542    struct intel_renderbuffer *dst_irb;
543    struct intel_mipmap_tree *src_mt;
544    struct intel_mipmap_tree *dst_mt;
545    switch (buffer_bit) {
546    case GL_COLOR_BUFFER_BIT:
547       src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
548       for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
549          dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
550 	 if (dst_irb)
551             do_blorp_blit(brw, buffer_bit,
552                           src_irb, src_irb->Base.Base.Format,
553                           dst_irb, dst_irb->Base.Base.Format,
554                           srcX0, srcY0, srcX1, srcY1,
555                           dstX0, dstY0, dstX1, dstY1,
556                           filter, mirror_x, mirror_y);
557       }
558       break;
559    case GL_DEPTH_BUFFER_BIT:
560       src_irb =
561          intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
562       dst_irb =
563          intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
564       src_mt = find_miptree(buffer_bit, src_irb);
565       dst_mt = find_miptree(buffer_bit, dst_irb);
566 
567       /* We can't handle format conversions between Z24 and other formats
568        * since we have to lie about the surface format. See the comments in
569        * brw_blorp_surface_info::set().
570        */
571       if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
572           (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
573          return false;
574 
575       do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
576                     dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
577                     srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
578                     filter, mirror_x, mirror_y);
579       break;
580    case GL_STENCIL_BUFFER_BIT:
581       src_irb =
582          intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
583       dst_irb =
584          intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
585       do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
586                     dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
587                     srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
588                     filter, mirror_x, mirror_y);
589       break;
590    default:
591       unreachable("not reached");
592    }
593 
594    return true;
595 }
596 
597 bool
brw_blorp_copytexsubimage(struct brw_context * brw,struct gl_renderbuffer * src_rb,struct gl_texture_image * dst_image,int slice,int srcX0,int srcY0,int dstX0,int dstY0,int width,int height)598 brw_blorp_copytexsubimage(struct brw_context *brw,
599                           struct gl_renderbuffer *src_rb,
600                           struct gl_texture_image *dst_image,
601                           int slice,
602                           int srcX0, int srcY0,
603                           int dstX0, int dstY0,
604                           int width, int height)
605 {
606    struct gl_context *ctx = &brw->ctx;
607    struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
608    struct intel_texture_image *intel_image = intel_texture_image(dst_image);
609 
610    /* No pixel transfer operations (zoom, bias, mapping), just a blit */
611    if (brw->ctx._ImageTransferState)
612       return false;
613 
614    /* Sync up the state of window system buffers.  We need to do this before
615     * we go looking at the src renderbuffer's miptree.
616     */
617    intel_prepare_render(brw);
618 
619    struct intel_mipmap_tree *src_mt = src_irb->mt;
620    struct intel_mipmap_tree *dst_mt = intel_image->mt;
621 
622    /* There is support for only up to eight samples. */
623    if (src_mt->num_samples > 8 || dst_mt->num_samples > 8)
624       return false;
625 
626    /* BLORP is only supported from Gen6 onwards. */
627    if (brw->gen < 6)
628       return false;
629 
630    if (_mesa_get_format_base_format(src_rb->Format) !=
631        _mesa_get_format_base_format(dst_image->TexFormat)) {
632       return false;
633    }
634 
635    /* We can't handle format conversions between Z24 and other formats since
636     * we have to lie about the surface format.  See the comments in
637     * brw_blorp_surface_info::set().
638     */
639    if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
640        (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
641       return false;
642    }
643 
644    if (!brw->format_supported_as_render_target[dst_image->TexFormat])
645       return false;
646 
647    /* Source clipping shouldn't be necessary, since copytexsubimage (in
648     * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
649     * takes care of it.
650     *
651     * Destination clipping shouldn't be necessary since the restrictions on
652     * glCopyTexSubImage prevent the user from specifying a destination rectangle
653     * that falls outside the bounds of the destination texture.
654     * See error_check_subtexture_dimensions().
655     */
656 
657    int srcY1 = srcY0 + height;
658    int srcX1 = srcX0 + width;
659    int dstX1 = dstX0 + width;
660    int dstY1 = dstY0 + height;
661 
662    /* Account for the fact that in the system framebuffer, the origin is at
663     * the lower left.
664     */
665    bool mirror_y = false;
666    if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
667       GLint tmp = src_rb->Height - srcY0;
668       srcY0 = src_rb->Height - srcY1;
669       srcY1 = tmp;
670       mirror_y = true;
671    }
672 
673    /* Account for face selection and texture view MinLayer */
674    int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
675    int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
676 
677    brw_blorp_blit_miptrees(brw,
678                            src_mt, src_irb->mt_level, src_irb->mt_layer,
679                            src_rb->Format, blorp_get_texture_swizzle(src_irb),
680                            dst_mt, dst_level, dst_slice,
681                            dst_image->TexFormat,
682                            srcX0, srcY0, srcX1, srcY1,
683                            dstX0, dstY0, dstX1, dstY1,
684                            GL_NEAREST, false, mirror_y,
685                            false, false);
686 
687    /* If we're copying to a packed depth stencil texture and the source
688     * framebuffer has separate stencil, we need to also copy the stencil data
689     * over.
690     */
691    src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
692    if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
693        src_rb != NULL) {
694       src_irb = intel_renderbuffer(src_rb);
695       src_mt = src_irb->mt;
696 
697       if (src_mt->stencil_mt)
698          src_mt = src_mt->stencil_mt;
699       if (dst_mt->stencil_mt)
700          dst_mt = dst_mt->stencil_mt;
701 
702       if (src_mt != dst_mt) {
703          brw_blorp_blit_miptrees(brw,
704                                  src_mt, src_irb->mt_level, src_irb->mt_layer,
705                                  src_mt->format,
706                                  blorp_get_texture_swizzle(src_irb),
707                                  dst_mt, dst_level, dst_slice,
708                                  dst_mt->format,
709                                  srcX0, srcY0, srcX1, srcY1,
710                                  dstX0, dstY0, dstX1, dstY1,
711                                  GL_NEAREST, false, mirror_y,
712                                  false, false);
713       }
714    }
715 
716    return true;
717 }
718 
719 
720 GLbitfield
brw_blorp_framebuffer(struct brw_context * brw,struct gl_framebuffer * readFb,struct gl_framebuffer * drawFb,GLint srcX0,GLint srcY0,GLint srcX1,GLint srcY1,GLint dstX0,GLint dstY0,GLint dstX1,GLint dstY1,GLbitfield mask,GLenum filter)721 brw_blorp_framebuffer(struct brw_context *brw,
722                       struct gl_framebuffer *readFb,
723                       struct gl_framebuffer *drawFb,
724                       GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
725                       GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
726                       GLbitfield mask, GLenum filter)
727 {
728    /* BLORP is not supported before Gen6. */
729    if (brw->gen < 6)
730       return mask;
731 
732    static GLbitfield buffer_bits[] = {
733       GL_COLOR_BUFFER_BIT,
734       GL_DEPTH_BUFFER_BIT,
735       GL_STENCIL_BUFFER_BIT,
736    };
737 
738    for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
739       if ((mask & buffer_bits[i]) &&
740        try_blorp_blit(brw, readFb, drawFb,
741                       srcX0, srcY0, srcX1, srcY1,
742                       dstX0, dstY0, dstX1, dstY1,
743                       filter, buffer_bits[i])) {
744          mask &= ~buffer_bits[i];
745       }
746    }
747 
748    return mask;
749 }
750 
751 static bool
set_write_disables(const struct intel_renderbuffer * irb,const GLubyte * color_mask,bool * color_write_disable)752 set_write_disables(const struct intel_renderbuffer *irb,
753                    const GLubyte *color_mask, bool *color_write_disable)
754 {
755    /* Format information in the renderbuffer represents the requirements
756     * given by the client. There are cases where the backing miptree uses,
757     * for example, RGBA to represent RGBX. Since the client is only expecting
758     * RGB we can treat alpha as not used and write whatever we like into it.
759     */
760    const GLenum base_format = irb->Base.Base._BaseFormat;
761    const int components = _mesa_base_format_component_count(base_format);
762    bool disables = false;
763 
764    assert(components > 0);
765 
766    for (int i = 0; i < components; i++) {
767       color_write_disable[i] = !color_mask[i];
768       disables = disables || !color_mask[i];
769    }
770 
771    return disables;
772 }
773 
774 static unsigned
irb_logical_mt_layer(struct intel_renderbuffer * irb)775 irb_logical_mt_layer(struct intel_renderbuffer *irb)
776 {
777    return physical_to_logical_layer(irb->mt, irb->mt_layer);
778 }
779 
780 static bool
do_single_blorp_clear(struct brw_context * brw,struct gl_framebuffer * fb,struct gl_renderbuffer * rb,unsigned buf,bool partial_clear,bool encode_srgb)781 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
782                       struct gl_renderbuffer *rb, unsigned buf,
783                       bool partial_clear, bool encode_srgb)
784 {
785    struct gl_context *ctx = &brw->ctx;
786    struct intel_renderbuffer *irb = intel_renderbuffer(rb);
787    mesa_format format = irb->mt->format;
788    uint32_t x0, x1, y0, y1;
789 
790    if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB)
791       format = _mesa_get_srgb_format_linear(format);
792 
793    x0 = fb->_Xmin;
794    x1 = fb->_Xmax;
795    if (rb->Name != 0) {
796       y0 = fb->_Ymin;
797       y1 = fb->_Ymax;
798    } else {
799       y0 = rb->Height - fb->_Ymax;
800       y1 = rb->Height - fb->_Ymin;
801    }
802 
803    /* If the clear region is empty, just return. */
804    if (x0 == x1 || y0 == y1)
805       return true;
806 
807    bool can_fast_clear = !partial_clear;
808 
809    bool color_write_disable[4] = { false, false, false, false };
810    if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable))
811       can_fast_clear = false;
812 
813    if (irb->mt->aux_disable & INTEL_AUX_DISABLE_CCS ||
814        !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor))
815       can_fast_clear = false;
816 
817    const unsigned logical_layer = irb_logical_mt_layer(irb);
818    const enum intel_fast_clear_state fast_clear_state =
819       intel_miptree_get_fast_clear_state(irb->mt, irb->mt_level,
820                                          logical_layer);
821 
822    /* Surface state can only record one fast clear color value. Therefore
823     * unless different levels/layers agree on the color it can be used to
824     * represent only single level/layer. Here it will be reserved for the
825     * first slice (level 0, layer 0).
826     */
827    if (irb->layer_count > 1 || irb->mt_level || irb->mt_layer)
828       can_fast_clear = false;
829 
830    if (can_fast_clear) {
831       union gl_color_union override_color =
832          brw_meta_convert_fast_clear_color(brw, irb->mt,
833                                            &ctx->Color.ClearColor);
834 
835       /* Record the clear color in the miptree so that it will be
836        * programmed in SURFACE_STATE by later rendering and resolve
837        * operations.
838        */
839       const bool color_updated = brw_meta_set_fast_clear_color(
840                                     brw, &irb->mt->gen9_fast_clear_color,
841                                     &override_color);
842 
843       /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
844        * is redundant and can be skipped.
845        */
846       if (!color_updated && fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
847          return true;
848 
849       /* If the MCS buffer hasn't been allocated yet, we need to allocate
850        * it now.
851        */
852       if (!irb->mt->mcs_buf) {
853          assert(!intel_miptree_is_lossless_compressed(brw, irb->mt));
854          if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt, false)) {
855             /* MCS allocation failed--probably this will only happen in
856              * out-of-memory conditions.  But in any case, try to recover
857              * by falling back to a non-blorp clear technique.
858              */
859             return false;
860          }
861       }
862    }
863 
864    const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
865 
866    /* We can't setup the blorp_surf until we've allocated the MCS above */
867    struct isl_surf isl_tmp[2];
868    struct blorp_surf surf;
869    unsigned level = irb->mt_level;
870    blorp_surf_for_miptree(brw, &surf, irb->mt, true,
871                           (1 << ISL_AUX_USAGE_MCS) |
872                           (1 << ISL_AUX_USAGE_CCS_E) |
873                           (1 << ISL_AUX_USAGE_CCS_D),
874                           &level, logical_layer, num_layers, isl_tmp);
875 
876    if (can_fast_clear) {
877       DBG("%s (fast) to mt %p level %d layers %d+%d\n", __FUNCTION__,
878           irb->mt, irb->mt_level, irb->mt_layer, num_layers);
879 
880       struct blorp_batch batch;
881       blorp_batch_init(&brw->blorp, &batch, brw, 0);
882       blorp_fast_clear(&batch, &surf,
883                        (enum isl_format)brw->render_target_format[format],
884                        level, logical_layer, num_layers,
885                        x0, y0, x1, y1);
886       blorp_batch_finish(&batch);
887 
888       /* Now that the fast clear has occurred, put the buffer in
889        * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
890        * redundant clears.
891        */
892       intel_miptree_set_fast_clear_state(brw, irb->mt, irb->mt_level,
893                                          logical_layer, num_layers,
894                                          INTEL_FAST_CLEAR_STATE_CLEAR);
895    } else {
896       DBG("%s (slow) to mt %p level %d layer %d+%d\n", __FUNCTION__,
897           irb->mt, irb->mt_level, irb->mt_layer, num_layers);
898 
899       union isl_color_value clear_color;
900       memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4);
901 
902       struct blorp_batch batch;
903       blorp_batch_init(&brw->blorp, &batch, brw, 0);
904       blorp_clear(&batch, &surf,
905                   (enum isl_format)brw->render_target_format[format],
906                   ISL_SWIZZLE_IDENTITY,
907                   level, irb_logical_mt_layer(irb), num_layers,
908                   x0, y0, x1, y1,
909                   clear_color, color_write_disable);
910       blorp_batch_finish(&batch);
911    }
912 
913    /*
914     * Ivybrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
915     *
916     *  Any transition from any value in {Clear, Render, Resolve} to a
917     *  different value in {Clear, Render, Resolve} requires end of pipe
918     *  synchronization.
919     */
920    brw_emit_pipe_control_flush(brw,
921                                PIPE_CONTROL_RENDER_TARGET_FLUSH |
922                                PIPE_CONTROL_CS_STALL);
923 
924    return true;
925 }
926 
927 bool
brw_blorp_clear_color(struct brw_context * brw,struct gl_framebuffer * fb,GLbitfield mask,bool partial_clear,bool encode_srgb)928 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
929                       GLbitfield mask, bool partial_clear, bool encode_srgb)
930 {
931    for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
932       struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
933       struct intel_renderbuffer *irb = intel_renderbuffer(rb);
934 
935       /* Only clear the buffers present in the provided mask */
936       if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
937          continue;
938 
939       /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
940        * the framebuffer can be complete with some attachments missing.  In
941        * this case the _ColorDrawBuffers pointer will be NULL.
942        */
943       if (rb == NULL)
944          continue;
945 
946       if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
947                                  encode_srgb)) {
948          return false;
949       }
950 
951       irb->need_downsample = true;
952    }
953 
954    return true;
955 }
956 
957 void
brw_blorp_resolve_color(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned level,unsigned layer)958 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt,
959                         unsigned level, unsigned layer)
960 {
961    DBG("%s to mt %p level %u layer %u\n", __FUNCTION__, mt, level, layer);
962 
963    const mesa_format format = _mesa_get_srgb_format_linear(mt->format);
964 
965    struct isl_surf isl_tmp[2];
966    struct blorp_surf surf;
967    blorp_surf_for_miptree(brw, &surf, mt, true,
968                           (1 << ISL_AUX_USAGE_CCS_E) |
969                           (1 << ISL_AUX_USAGE_CCS_D),
970                           &level, layer, 1 /* num_layers */,
971                           isl_tmp);
972 
973    enum blorp_fast_clear_op resolve_op;
974    if (brw->gen >= 9) {
975       if (surf.aux_usage == ISL_AUX_USAGE_CCS_E)
976          resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
977       else
978          resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
979    } else {
980       assert(surf.aux_usage == ISL_AUX_USAGE_CCS_D);
981       /* Broadwell and earlier do not have a partial resolve */
982       resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
983    }
984 
985    struct blorp_batch batch;
986    blorp_batch_init(&brw->blorp, &batch, brw, 0);
987    blorp_ccs_resolve(&batch, &surf, level, layer,
988                      brw_blorp_to_isl_format(brw, format, true),
989                      resolve_op);
990    blorp_batch_finish(&batch);
991 
992    /*
993     * Ivybrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
994     *
995     *  Any transition from any value in {Clear, Render, Resolve} to a
996     *  different value in {Clear, Render, Resolve} requires end of pipe
997     *  synchronization.
998     */
999    brw_emit_pipe_control_flush(brw,
1000                                PIPE_CONTROL_RENDER_TARGET_FLUSH |
1001                                PIPE_CONTROL_CS_STALL);
1002 }
1003 
1004 static void
gen6_blorp_hiz_exec(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned int level,unsigned int layer,enum blorp_hiz_op op)1005 gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1006                     unsigned int level, unsigned int layer, enum blorp_hiz_op op)
1007 {
1008    assert(intel_miptree_level_has_hiz(mt, level));
1009 
1010    struct isl_surf isl_tmp[2];
1011    struct blorp_surf surf;
1012    blorp_surf_for_miptree(brw, &surf, mt, true, (1 << ISL_AUX_USAGE_HIZ),
1013                           &level, layer, 1, isl_tmp);
1014 
1015    struct blorp_batch batch;
1016    blorp_batch_init(&brw->blorp, &batch, brw, 0);
1017    blorp_gen6_hiz_op(&batch, &surf, level, layer, op);
1018    blorp_batch_finish(&batch);
1019 }
1020 
1021 /**
1022  * Perform a HiZ or depth resolve operation.
1023  *
1024  * For an overview of HiZ ops, see the following sections of the Sandy Bridge
1025  * PRM, Volume 1, Part 2:
1026  *   - 7.5.3.1 Depth Buffer Clear
1027  *   - 7.5.3.2 Depth Buffer Resolve
1028  *   - 7.5.3.3 Hierarchical Depth Buffer Resolve
1029  */
1030 void
intel_hiz_exec(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned int level,unsigned int layer,enum blorp_hiz_op op)1031 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1032 	       unsigned int level, unsigned int layer, enum blorp_hiz_op op)
1033 {
1034    const char *opname = NULL;
1035 
1036    switch (op) {
1037    case BLORP_HIZ_OP_DEPTH_RESOLVE:
1038       opname = "depth resolve";
1039       break;
1040    case BLORP_HIZ_OP_HIZ_RESOLVE:
1041       opname = "hiz ambiguate";
1042       break;
1043    case BLORP_HIZ_OP_DEPTH_CLEAR:
1044       opname = "depth clear";
1045       break;
1046    case BLORP_HIZ_OP_NONE:
1047       opname = "noop?";
1048       break;
1049    }
1050 
1051    DBG("%s %s to mt %p level %d layer %d\n",
1052        __func__, opname, mt, level, layer);
1053 
1054    if (brw->gen >= 8) {
1055       gen8_hiz_exec(brw, mt, level, layer, op);
1056    } else {
1057       gen6_blorp_hiz_exec(brw, mt, level, layer, op);
1058    }
1059 }
1060