• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 VMware, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sublicense, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  */
25 
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35 
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39 
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48 
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50 
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52                                    struct intel_mipmap_tree *mt);
53 
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55 
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58                         struct intel_mipmap_tree *mt,
59                         GLuint num_samples);
60 
61 /**
62  * Determine which MSAA layout should be used by the MSAA surface being
63  * created, based on the chip generation and the surface type.
64  */
65 static enum intel_msaa_layout
compute_msaa_layout(struct brw_context * brw,mesa_format format,enum intel_aux_disable aux_disable)66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67                     enum intel_aux_disable aux_disable)
68 {
69    /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70    if (brw->gen < 7)
71       return INTEL_MSAA_LAYOUT_IMS;
72 
73    /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74    switch (_mesa_get_format_base_format(format)) {
75    case GL_DEPTH_COMPONENT:
76    case GL_STENCIL_INDEX:
77    case GL_DEPTH_STENCIL:
78       return INTEL_MSAA_LAYOUT_IMS;
79    default:
80       /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81        *
82        *   This field must be set to 0 for all SINT MSRTs when all RT channels
83        *   are not written
84        *
85        * In practice this means that we have to disable MCS for all signed
86        * integer MSAA buffers.  The alternative, to disable MCS only when one
87        * of the render target channels is disabled, is impractical because it
88        * would require converting between CMS and UMS MSAA layouts on the fly,
89        * which is expensive.
90        */
91       if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92          return INTEL_MSAA_LAYOUT_UMS;
93       } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
94          /* We can't use the CMS layout because it uses an aux buffer, the MCS
95           * buffer. So fallback to UMS, which is identical to CMS without the
96           * MCS. */
97          return INTEL_MSAA_LAYOUT_UMS;
98       } else {
99          return INTEL_MSAA_LAYOUT_CMS;
100       }
101    }
102 }
103 
104 bool
intel_tiling_supports_non_msrt_mcs(const struct brw_context * brw,unsigned tiling)105 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
106                                    unsigned tiling)
107 {
108    /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109     * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110     *
111     *     - Support is limited to tiled render targets.
112     *
113     * Gen9 changes the restriction to Y-tile only.
114     */
115    if (brw->gen >= 9)
116       return tiling == I915_TILING_Y;
117    else if (brw->gen >= 7)
118       return tiling != I915_TILING_NONE;
119    else
120       return false;
121 }
122 
123 /**
124  * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125  * can be used. This doesn't (and should not) inspect any of the properties of
126  * the miptree's BO.
127  *
128  * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129  * beneath the "Fast Color Clear" bullet (p326):
130  *
131  *     - Support is for non-mip-mapped and non-array surface types only.
132  *
133  * And then later, on p327:
134  *
135  *     - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136  *       64bpp, and 128bpp.
137  *
138  * From the Skylake documentation, it is made clear that X-tiling is no longer
139  * supported:
140  *
141  *     - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142  *     non-MSRTs only.
143  */
144 bool
intel_miptree_supports_non_msrt_fast_clear(struct brw_context * brw,const struct intel_mipmap_tree * mt)145 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
146                                            const struct intel_mipmap_tree *mt)
147 {
148    /* MCS support does not exist prior to Gen7 */
149    if (brw->gen < 7)
150       return false;
151 
152    if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
153       return false;
154 
155    /* This function applies only to non-multisampled render targets. */
156    if (mt->num_samples > 1)
157       return false;
158 
159    /* MCS is only supported for color buffers */
160    switch (_mesa_get_format_base_format(mt->format)) {
161    case GL_DEPTH_COMPONENT:
162    case GL_DEPTH_STENCIL:
163    case GL_STENCIL_INDEX:
164       return false;
165    }
166 
167    if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
168       return false;
169 
170    const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
171    const bool arrayed = mt->physical_depth0 != 1;
172 
173    if (arrayed) {
174        /* Multisample surfaces with the CMS layout are not layered surfaces,
175         * yet still have physical_depth0 > 1. Assert that we don't
176         * accidentally reject a multisampled surface here. We should have
177         * rejected it earlier by explicitly checking the sample count.
178         */
179       assert(mt->num_samples <= 1);
180    }
181 
182    /* Handle the hardware restrictions...
183     *
184     * All GENs have the following restriction: "MCS buffer for non-MSRT is
185     * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186     *
187     * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188     * Non-MultiSampler Render Target Restrictions) Support is for
189     * non-mip-mapped and non-array surface types only.
190     *
191     * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192     * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193     * surfaces are supported with MCS buffer layout with these alignments in
194     * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195     *
196     * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197     * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198     * surfaces are supported with MCS buffer layout with these alignments in
199     * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200     */
201    if (brw->gen < 8 && (mip_mapped || arrayed))
202       return false;
203 
204    /* There's no point in using an MCS buffer if the surface isn't in a
205     * renderable format.
206     */
207    if (!brw->format_supported_as_render_target[mt->format])
208       return false;
209 
210    if (brw->gen >= 9) {
211       mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
212       const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
213       return isl_format_supports_lossless_compression(&brw->screen->devinfo,
214                                                       brw_format);
215    } else
216       return true;
217 }
218 
219 /* On Gen9 support for color buffer compression was extended to single
220  * sampled surfaces. This is a helper considering both auxiliary buffer
221  * type and number of samples telling if the given miptree represents
222  * the new single sampled case - also called lossless compression.
223  */
224 bool
intel_miptree_is_lossless_compressed(const struct brw_context * brw,const struct intel_mipmap_tree * mt)225 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
226                                      const struct intel_mipmap_tree *mt)
227 {
228    /* Only available from Gen9 onwards. */
229    if (brw->gen < 9)
230       return false;
231 
232    /* Compression always requires auxiliary buffer. */
233    if (!mt->mcs_buf)
234       return false;
235 
236    /* Single sample compression is represented re-using msaa compression
237     * layout type: "Compressed Multisampled Surfaces".
238     */
239    if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
240       return false;
241 
242    /* And finally distinguish between msaa and single sample case. */
243    return mt->num_samples <= 1;
244 }
245 
246 bool
intel_miptree_supports_lossless_compressed(struct brw_context * brw,const struct intel_mipmap_tree * mt)247 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
248                                            const struct intel_mipmap_tree *mt)
249 {
250    /* For now compression is only enabled for integer formats even though
251     * there exist supported floating point formats also. This is a heuristic
252     * decision based on current public benchmarks. In none of the cases these
253     * formats provided any improvement but a few cases were seen to regress.
254     * Hence these are left to to be enabled in the future when they are known
255     * to improve things.
256     */
257    if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
258       return false;
259 
260    /* Fast clear mechanism and lossless compression go hand in hand. */
261    if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
262       return false;
263 
264    /* Fast clear can be also used to clear srgb surfaces by using equivalent
265     * linear format. This trick, however, can't be extended to be used with
266     * lossless compression and therefore a check is needed to see if the format
267     * really is linear.
268     */
269    return _mesa_get_srgb_format_linear(mt->format) == mt->format;
270 }
271 
272 /**
273  * Determine depth format corresponding to a depth+stencil format,
274  * for separate stencil.
275  */
276 mesa_format
intel_depth_format_for_depthstencil_format(mesa_format format)277 intel_depth_format_for_depthstencil_format(mesa_format format) {
278    switch (format) {
279    case MESA_FORMAT_Z24_UNORM_S8_UINT:
280       return MESA_FORMAT_Z24_UNORM_X8_UINT;
281    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
282       return MESA_FORMAT_Z_FLOAT32;
283    default:
284       return format;
285    }
286 }
287 
288 
289 /**
290  * @param for_bo Indicates that the caller is
291  *        intel_miptree_create_for_bo(). If true, then do not create
292  *        \c stencil_mt.
293  */
294 static struct intel_mipmap_tree *
intel_miptree_create_layout(struct brw_context * brw,GLenum target,mesa_format format,GLuint first_level,GLuint last_level,GLuint width0,GLuint height0,GLuint depth0,GLuint num_samples,uint32_t layout_flags)295 intel_miptree_create_layout(struct brw_context *brw,
296                             GLenum target,
297                             mesa_format format,
298                             GLuint first_level,
299                             GLuint last_level,
300                             GLuint width0,
301                             GLuint height0,
302                             GLuint depth0,
303                             GLuint num_samples,
304                             uint32_t layout_flags)
305 {
306    struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
307    if (!mt)
308       return NULL;
309 
310    DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
311        _mesa_enum_to_string(target),
312        _mesa_get_format_name(format),
313        first_level, last_level, depth0, mt);
314 
315    if (target == GL_TEXTURE_1D_ARRAY)
316       assert(height0 == 1);
317 
318    mt->target = target;
319    mt->format = format;
320    mt->first_level = first_level;
321    mt->last_level = last_level;
322    mt->logical_width0 = width0;
323    mt->logical_height0 = height0;
324    mt->logical_depth0 = depth0;
325    mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
326       INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
327    mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
328    mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
329    exec_list_make_empty(&mt->hiz_map);
330    exec_list_make_empty(&mt->color_resolve_map);
331    mt->cpp = _mesa_get_format_bytes(format);
332    mt->num_samples = num_samples;
333    mt->compressed = _mesa_is_format_compressed(format);
334    mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
335    mt->refcount = 1;
336 
337    int depth_multiply = 1;
338    if (num_samples > 1) {
339       /* Adjust width/height/depth for MSAA */
340       mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
341       if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
342          /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
343           * "If the surface is multisampled and it is a depth or stencil
344           *  surface or Multisampled Surface StorageFormat in SURFACE_STATE is
345           *  MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
346           *  proceeding:
347           *
348           *  +----------------------------------------------------------------+
349           *  | Num Multisamples |        W_l =         |        H_l =         |
350           *  +----------------------------------------------------------------+
351           *  |         2        | ceiling(W_l / 2) * 4 | H_l (no adjustment)  |
352           *  |         4        | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
353           *  |         8        | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
354           *  |        16        | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
355           *  +----------------------------------------------------------------+
356           * "
357           *
358           * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
359           * format rather than UMS/CMS (array slices).  The Sandybridge PRM,
360           * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
361           *
362           * Another more complicated explanation for these adjustments comes
363           * from the Sandybridge PRM, volume 4, part 1, page 31:
364           *
365           *     "Any of the other messages (sample*, LOD, load4) used with a
366           *      (4x) multisampled surface will in-effect sample a surface with
367           *      double the height and width as that indicated in the surface
368           *      state. Each pixel position on the original-sized surface is
369           *      replaced with a 2x2 of samples with the following arrangement:
370           *
371           *         sample 0 sample 2
372           *         sample 1 sample 3"
373           *
374           * Thus, when sampling from a multisampled texture, it behaves as
375           * though the layout in memory for (x,y,sample) is:
376           *
377           *      (0,0,0) (0,0,2)   (1,0,0) (1,0,2)
378           *      (0,0,1) (0,0,3)   (1,0,1) (1,0,3)
379           *
380           *      (0,1,0) (0,1,2)   (1,1,0) (1,1,2)
381           *      (0,1,1) (0,1,3)   (1,1,1) (1,1,3)
382           *
383           * However, the actual layout of multisampled data in memory is:
384           *
385           *      (0,0,0) (1,0,0)   (0,0,1) (1,0,1)
386           *      (0,1,0) (1,1,0)   (0,1,1) (1,1,1)
387           *
388           *      (0,0,2) (1,0,2)   (0,0,3) (1,0,3)
389           *      (0,1,2) (1,1,2)   (0,1,3) (1,1,3)
390           *
391           * This pattern repeats for each 2x2 pixel block.
392           *
393           * As a result, when calculating the size of our 4-sample buffer for
394           * an odd width or height, we have to align before scaling up because
395           * sample 3 is in that bottom right 2x2 block.
396           */
397          switch (num_samples) {
398          case 2:
399             assert(brw->gen >= 8);
400             width0 = ALIGN(width0, 2) * 2;
401             height0 = ALIGN(height0, 2);
402             break;
403          case 4:
404             width0 = ALIGN(width0, 2) * 2;
405             height0 = ALIGN(height0, 2) * 2;
406             break;
407          case 8:
408             width0 = ALIGN(width0, 2) * 4;
409             height0 = ALIGN(height0, 2) * 2;
410             break;
411          case 16:
412             width0 = ALIGN(width0, 2) * 4;
413             height0 = ALIGN(height0, 2) * 4;
414             break;
415          default:
416             /* num_samples should already have been quantized to 0, 1, 2, 4, 8
417              * or 16.
418              */
419             unreachable("not reached");
420          }
421       } else {
422          /* Non-interleaved */
423          depth_multiply = num_samples;
424          depth0 *= depth_multiply;
425       }
426    }
427 
428    /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
429     * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
430     * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
431     * used on Gen8 to make it pick a qpitch value which doesn't include space
432     * for the mipmaps. On Gen9 this is not necessary because it will
433     * automatically pick a packed qpitch value whenever mt->first_level ==
434     * mt->last_level.
435     * TODO: can we use it elsewhere?
436     * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
437     */
438    if (brw->gen >= 9) {
439       mt->array_layout = ALL_LOD_IN_EACH_SLICE;
440    } else {
441       switch (mt->msaa_layout) {
442       case INTEL_MSAA_LAYOUT_NONE:
443       case INTEL_MSAA_LAYOUT_IMS:
444          mt->array_layout = ALL_LOD_IN_EACH_SLICE;
445          break;
446       case INTEL_MSAA_LAYOUT_UMS:
447       case INTEL_MSAA_LAYOUT_CMS:
448          mt->array_layout = ALL_SLICES_AT_EACH_LOD;
449          break;
450       }
451    }
452 
453    if (target == GL_TEXTURE_CUBE_MAP)
454       assert(depth0 == 6 * depth_multiply);
455 
456    mt->physical_width0 = width0;
457    mt->physical_height0 = height0;
458    mt->physical_depth0 = depth0;
459 
460    if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
461        _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
462        (brw->must_use_separate_stencil ||
463 	(brw->has_separate_stencil &&
464          intel_miptree_wants_hiz_buffer(brw, mt)))) {
465       uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
466       if (brw->gen == 6) {
467          stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
468                           MIPTREE_LAYOUT_TILING_ANY;
469       }
470 
471       mt->stencil_mt = intel_miptree_create(brw,
472                                             mt->target,
473                                             MESA_FORMAT_S_UINT8,
474                                             mt->first_level,
475                                             mt->last_level,
476                                             mt->logical_width0,
477                                             mt->logical_height0,
478                                             mt->logical_depth0,
479                                             num_samples,
480                                             stencil_flags);
481 
482       if (!mt->stencil_mt) {
483 	 intel_miptree_release(&mt);
484 	 return NULL;
485       }
486       mt->stencil_mt->r8stencil_needs_update = true;
487 
488       /* Fix up the Z miptree format for how we're splitting out separate
489        * stencil.  Gen7 expects there to be no stencil bits in its depth buffer.
490        */
491       mt->format = intel_depth_format_for_depthstencil_format(mt->format);
492       mt->cpp = 4;
493 
494       if (format == mt->format) {
495          _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
496                        _mesa_get_format_name(mt->format));
497       }
498    }
499 
500    if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
501       mt->array_layout = ALL_SLICES_AT_EACH_LOD;
502 
503    /*
504     * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
505     * multisampled or have an AUX buffer attached to it.
506     *
507     * GEN  |    MSRT        | AUX_CCS_* or AUX_MCS
508     *  -------------------------------------------
509     *  9   |  HALIGN_16     |    HALIGN_16
510     *  8   |  HALIGN_ANY    |    HALIGN_16
511     *  7   |      ?         |        ?
512     *  6   |      ?         |        ?
513     */
514    if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
515       if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
516          layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
517    } else if (brw->gen >= 9 && num_samples > 1) {
518       layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
519    } else {
520       const UNUSED bool is_lossless_compressed_aux =
521          brw->gen >= 9 && num_samples == 1 &&
522          mt->format == MESA_FORMAT_R_UINT32;
523 
524       /* For now, nothing else has this requirement */
525       assert(is_lossless_compressed_aux ||
526              (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
527    }
528 
529    brw_miptree_layout(brw, mt, layout_flags);
530 
531    if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
532       assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
533 
534    return mt;
535 }
536 
537 
538 /**
539  * Choose an appropriate uncompressed format for a requested
540  * compressed format, if unsupported.
541  */
542 mesa_format
intel_lower_compressed_format(struct brw_context * brw,mesa_format format)543 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
544 {
545    /* No need to lower ETC formats on these platforms,
546     * they are supported natively.
547     */
548    if (brw->gen >= 8 || brw->is_baytrail)
549       return format;
550 
551    switch (format) {
552    case MESA_FORMAT_ETC1_RGB8:
553       return MESA_FORMAT_R8G8B8X8_UNORM;
554    case MESA_FORMAT_ETC2_RGB8:
555       return MESA_FORMAT_R8G8B8X8_UNORM;
556    case MESA_FORMAT_ETC2_SRGB8:
557    case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
558    case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
559       return MESA_FORMAT_B8G8R8A8_SRGB;
560    case MESA_FORMAT_ETC2_RGBA8_EAC:
561    case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
562       return MESA_FORMAT_R8G8B8A8_UNORM;
563    case MESA_FORMAT_ETC2_R11_EAC:
564       return MESA_FORMAT_R_UNORM16;
565    case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
566       return MESA_FORMAT_R_SNORM16;
567    case MESA_FORMAT_ETC2_RG11_EAC:
568       return MESA_FORMAT_R16G16_UNORM;
569    case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
570       return MESA_FORMAT_R16G16_SNORM;
571    default:
572       /* Non ETC1 / ETC2 format */
573       return format;
574    }
575 }
576 
577 /* This function computes Yf/Ys tiled bo size, alignment and pitch. */
578 static unsigned long
intel_get_yf_ys_bo_size(struct intel_mipmap_tree * mt,unsigned * alignment,unsigned long * pitch)579 intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
580                         unsigned long *pitch)
581 {
582    uint32_t tile_width, tile_height;
583    unsigned long stride, size, aligned_y;
584 
585    assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
586    intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
587                        &tile_width, &tile_height);
588 
589    aligned_y = ALIGN(mt->total_height, tile_height);
590    stride = mt->total_width * mt->cpp;
591    stride = ALIGN(stride, tile_width);
592    size = stride * aligned_y;
593 
594    if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
595       assert(size % 4096 == 0);
596       *alignment = 4096;
597    } else {
598       assert(size % (64 * 1024) == 0);
599       *alignment = 64 * 1024;
600    }
601    *pitch = stride;
602    return size;
603 }
604 
605 static struct intel_mipmap_tree *
miptree_create(struct brw_context * brw,GLenum target,mesa_format format,GLuint first_level,GLuint last_level,GLuint width0,GLuint height0,GLuint depth0,GLuint num_samples,uint32_t layout_flags)606 miptree_create(struct brw_context *brw,
607                GLenum target,
608                mesa_format format,
609                GLuint first_level,
610                GLuint last_level,
611                GLuint width0,
612                GLuint height0,
613                GLuint depth0,
614                GLuint num_samples,
615                uint32_t layout_flags)
616 {
617    struct intel_mipmap_tree *mt;
618    mesa_format tex_format = format;
619    mesa_format etc_format = MESA_FORMAT_NONE;
620    uint32_t alloc_flags = 0;
621 
622    format = intel_lower_compressed_format(brw, format);
623 
624    etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
625 
626    assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
627    mt = intel_miptree_create_layout(brw, target, format,
628                                     first_level, last_level, width0,
629                                     height0, depth0, num_samples,
630                                     layout_flags);
631    /*
632     * pitch == 0 || height == 0  indicates the null texture
633     */
634    if (!mt || !mt->total_width || !mt->total_height) {
635       intel_miptree_release(&mt);
636       return NULL;
637    }
638 
639    if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
640       mt->tiling = I915_TILING_Y;
641 
642    if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
643       alloc_flags |= BO_ALLOC_FOR_RENDER;
644 
645    unsigned long pitch;
646    mt->etc_format = etc_format;
647 
648    if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
649       unsigned alignment = 0;
650       unsigned long size;
651       size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
652       assert(size);
653       mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
654                                              size, alignment);
655    } else {
656       if (format == MESA_FORMAT_S_UINT8) {
657          /* Align to size of W tile, 64x64. */
658          mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
659                                            ALIGN(mt->total_width, 64),
660                                            ALIGN(mt->total_height, 64),
661                                            mt->cpp, &mt->tiling, &pitch,
662                                            alloc_flags);
663       } else {
664          mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
665                                            mt->total_width, mt->total_height,
666                                            mt->cpp, &mt->tiling, &pitch,
667                                            alloc_flags);
668       }
669    }
670 
671    mt->pitch = pitch;
672 
673    return mt;
674 }
675 
676 struct intel_mipmap_tree *
intel_miptree_create(struct brw_context * brw,GLenum target,mesa_format format,GLuint first_level,GLuint last_level,GLuint width0,GLuint height0,GLuint depth0,GLuint num_samples,uint32_t layout_flags)677 intel_miptree_create(struct brw_context *brw,
678                      GLenum target,
679                      mesa_format format,
680                      GLuint first_level,
681                      GLuint last_level,
682                      GLuint width0,
683                      GLuint height0,
684                      GLuint depth0,
685                      GLuint num_samples,
686                      uint32_t layout_flags)
687 {
688    struct intel_mipmap_tree *mt = miptree_create(
689                                      brw, target, format,
690                                      first_level, last_level,
691                                      width0, height0, depth0, num_samples,
692                                      layout_flags);
693 
694    /* If the BO is too large to fit in the aperture, we need to use the
695     * BLT engine to support it.  Prior to Sandybridge, the BLT paths can't
696     * handle Y-tiling, so we need to fall back to X.
697     */
698    if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
699        mt->tiling == I915_TILING_Y) {
700       unsigned long pitch = mt->pitch;
701       const uint32_t alloc_flags =
702          (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
703          BO_ALLOC_FOR_RENDER : 0;
704       perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
705                  mt->total_width, mt->total_height);
706 
707       mt->tiling = I915_TILING_X;
708       drm_intel_bo_unreference(mt->bo);
709       mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
710                                   mt->total_width, mt->total_height, mt->cpp,
711                                   &mt->tiling, &pitch, alloc_flags);
712       mt->pitch = pitch;
713    }
714 
715    mt->offset = 0;
716 
717    if (!mt->bo) {
718        intel_miptree_release(&mt);
719        return NULL;
720    }
721 
722 
723    if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
724       assert(mt->num_samples > 1);
725       if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
726          intel_miptree_release(&mt);
727          return NULL;
728       }
729    }
730 
731    /* If this miptree is capable of supporting fast color clears, set
732     * fast_clear_state appropriately to ensure that fast clears will occur.
733     * Allocation of the MCS miptree will be deferred until the first fast
734     * clear actually occurs or when compressed single sampled buffer is
735     * written by the GPU for the first time.
736     */
737    if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
738        intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
739       mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
740       assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
741 
742       /* On Gen9+ clients are not currently capable of consuming compressed
743        * single-sampled buffers. Disabling compression allows us to skip
744        * resolves.
745        */
746       const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
747       const bool is_lossless_compressed =
748          unlikely(!lossless_compression_disabled) &&
749          brw->gen >= 9 && !mt->is_scanout &&
750          intel_miptree_supports_lossless_compressed(brw, mt);
751 
752       if (is_lossless_compressed) {
753          intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
754       }
755    }
756 
757    return mt;
758 }
759 
760 struct intel_mipmap_tree *
intel_miptree_create_for_bo(struct brw_context * brw,drm_intel_bo * bo,mesa_format format,uint32_t offset,uint32_t width,uint32_t height,uint32_t depth,int pitch,uint32_t layout_flags)761 intel_miptree_create_for_bo(struct brw_context *brw,
762                             drm_intel_bo *bo,
763                             mesa_format format,
764                             uint32_t offset,
765                             uint32_t width,
766                             uint32_t height,
767                             uint32_t depth,
768                             int pitch,
769                             uint32_t layout_flags)
770 {
771    struct intel_mipmap_tree *mt;
772    uint32_t tiling, swizzle;
773    GLenum target;
774 
775    drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
776 
777    /* Nothing will be able to use this miptree with the BO if the offset isn't
778     * aligned.
779     */
780    if (tiling != I915_TILING_NONE)
781       assert(offset % 4096 == 0);
782 
783    /* miptrees can't handle negative pitch.  If you need flipping of images,
784     * that's outside of the scope of the mt.
785     */
786    assert(pitch >= 0);
787 
788    target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
789 
790    /* The BO already has a tiling format and we shouldn't confuse the lower
791     * layers by making it try to find a tiling format again.
792     */
793    assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
794    assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
795 
796    layout_flags |= MIPTREE_LAYOUT_FOR_BO;
797    mt = intel_miptree_create_layout(brw, target, format,
798                                     0, 0,
799                                     width, height, depth, 0,
800                                     layout_flags);
801    if (!mt)
802       return NULL;
803 
804    drm_intel_bo_reference(bo);
805    mt->bo = bo;
806    mt->pitch = pitch;
807    mt->offset = offset;
808    mt->tiling = tiling;
809 
810    return mt;
811 }
812 
813 /**
814  * For a singlesample renderbuffer, this simply wraps the given BO with a
815  * miptree.
816  *
817  * For a multisample renderbuffer, this wraps the window system's
818  * (singlesample) BO with a singlesample miptree attached to the
819  * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
820  * that will contain the actual rendering (which is lazily resolved to
821  * irb->singlesample_mt).
822  */
823 void
intel_update_winsys_renderbuffer_miptree(struct brw_context * intel,struct intel_renderbuffer * irb,drm_intel_bo * bo,uint32_t width,uint32_t height,uint32_t pitch)824 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
825                                          struct intel_renderbuffer *irb,
826                                          drm_intel_bo *bo,
827                                          uint32_t width, uint32_t height,
828                                          uint32_t pitch)
829 {
830    struct intel_mipmap_tree *singlesample_mt = NULL;
831    struct intel_mipmap_tree *multisample_mt = NULL;
832    struct gl_renderbuffer *rb = &irb->Base.Base;
833    mesa_format format = rb->Format;
834    int num_samples = rb->NumSamples;
835 
836    /* Only the front and back buffers, which are color buffers, are allocated
837     * through the image loader.
838     */
839    assert(_mesa_get_format_base_format(format) == GL_RGB ||
840           _mesa_get_format_base_format(format) == GL_RGBA);
841 
842    singlesample_mt = intel_miptree_create_for_bo(intel,
843                                                  bo,
844                                                  format,
845                                                  0,
846                                                  width,
847                                                  height,
848                                                  1,
849                                                  pitch,
850                                                  MIPTREE_LAYOUT_FOR_SCANOUT);
851    if (!singlesample_mt)
852       goto fail;
853 
854    /* If this miptree is capable of supporting fast color clears, set
855     * mcs_state appropriately to ensure that fast clears will occur.
856     * Allocation of the MCS miptree will be deferred until the first fast
857     * clear actually occurs.
858     */
859    if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
860        intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
861       singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
862    }
863 
864    if (num_samples == 0) {
865       intel_miptree_release(&irb->mt);
866       irb->mt = singlesample_mt;
867 
868       assert(!irb->singlesample_mt);
869    } else {
870       intel_miptree_release(&irb->singlesample_mt);
871       irb->singlesample_mt = singlesample_mt;
872 
873       if (!irb->mt ||
874           irb->mt->logical_width0 != width ||
875           irb->mt->logical_height0 != height) {
876          multisample_mt = intel_miptree_create_for_renderbuffer(intel,
877                                                                 format,
878                                                                 width,
879                                                                 height,
880                                                                 num_samples);
881          if (!multisample_mt)
882             goto fail;
883 
884          irb->need_downsample = false;
885          intel_miptree_release(&irb->mt);
886          irb->mt = multisample_mt;
887       }
888    }
889    return;
890 
891 fail:
892    intel_miptree_release(&irb->singlesample_mt);
893    intel_miptree_release(&irb->mt);
894    return;
895 }
896 
897 struct intel_mipmap_tree*
intel_miptree_create_for_renderbuffer(struct brw_context * brw,mesa_format format,uint32_t width,uint32_t height,uint32_t num_samples)898 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
899                                       mesa_format format,
900                                       uint32_t width,
901                                       uint32_t height,
902                                       uint32_t num_samples)
903 {
904    struct intel_mipmap_tree *mt;
905    uint32_t depth = 1;
906    bool ok;
907    GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
908    const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
909                                  MIPTREE_LAYOUT_TILING_ANY |
910                                  MIPTREE_LAYOUT_FOR_SCANOUT;
911 
912    mt = intel_miptree_create(brw, target, format, 0, 0,
913                              width, height, depth, num_samples,
914                              layout_flags);
915    if (!mt)
916       goto fail;
917 
918    if (intel_miptree_wants_hiz_buffer(brw, mt)) {
919       ok = intel_miptree_alloc_hiz(brw, mt);
920       if (!ok)
921          goto fail;
922    }
923 
924    return mt;
925 
926 fail:
927    intel_miptree_release(&mt);
928    return NULL;
929 }
930 
931 void
intel_miptree_reference(struct intel_mipmap_tree ** dst,struct intel_mipmap_tree * src)932 intel_miptree_reference(struct intel_mipmap_tree **dst,
933                         struct intel_mipmap_tree *src)
934 {
935    if (*dst == src)
936       return;
937 
938    intel_miptree_release(dst);
939 
940    if (src) {
941       src->refcount++;
942       DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
943    }
944 
945    *dst = src;
946 }
947 
948 static void
intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer * hiz_buf)949 intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
950 {
951    if (hiz_buf == NULL)
952       return;
953 
954    if (hiz_buf->mt)
955       intel_miptree_release(&hiz_buf->mt);
956    else
957       drm_intel_bo_unreference(hiz_buf->aux_base.bo);
958 
959    free(hiz_buf);
960 }
961 
962 void
intel_miptree_release(struct intel_mipmap_tree ** mt)963 intel_miptree_release(struct intel_mipmap_tree **mt)
964 {
965    if (!*mt)
966       return;
967 
968    DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
969    if (--(*mt)->refcount <= 0) {
970       GLuint i;
971 
972       DBG("%s deleting %p\n", __func__, *mt);
973 
974       drm_intel_bo_unreference((*mt)->bo);
975       intel_miptree_release(&(*mt)->stencil_mt);
976       intel_miptree_release(&(*mt)->r8stencil_mt);
977       intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
978       if ((*mt)->mcs_buf) {
979          drm_intel_bo_unreference((*mt)->mcs_buf->bo);
980          free((*mt)->mcs_buf);
981       }
982       intel_resolve_map_clear(&(*mt)->hiz_map);
983       intel_resolve_map_clear(&(*mt)->color_resolve_map);
984 
985       intel_miptree_release(&(*mt)->plane[0]);
986       intel_miptree_release(&(*mt)->plane[1]);
987 
988       for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
989 	 free((*mt)->level[i].slice);
990       }
991 
992       free(*mt);
993    }
994    *mt = NULL;
995 }
996 
997 
998 void
intel_get_image_dims(struct gl_texture_image * image,int * width,int * height,int * depth)999 intel_get_image_dims(struct gl_texture_image *image,
1000                      int *width, int *height, int *depth)
1001 {
1002    switch (image->TexObject->Target) {
1003    case GL_TEXTURE_1D_ARRAY:
1004       /* For a 1D Array texture the OpenGL API will treat the image height as
1005        * the number of array slices. For Intel hardware, we treat the 1D array
1006        * as a 2D Array with a height of 1. So, here we want to swap image
1007        * height and depth.
1008        */
1009       assert(image->Depth == 1);
1010       *width = image->Width;
1011       *height = 1;
1012       *depth = image->Height;
1013       break;
1014    case GL_TEXTURE_CUBE_MAP:
1015       /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1016        * though we really have 6 slices.
1017        */
1018       assert(image->Depth == 1);
1019       *width = image->Width;
1020       *height = image->Height;
1021       *depth = 6;
1022       break;
1023    default:
1024       *width = image->Width;
1025       *height = image->Height;
1026       *depth = image->Depth;
1027       break;
1028    }
1029 }
1030 
1031 /**
1032  * Can the image be pulled into a unified mipmap tree?  This mirrors
1033  * the completeness test in a lot of ways.
1034  *
1035  * Not sure whether I want to pass gl_texture_image here.
1036  */
1037 bool
intel_miptree_match_image(struct intel_mipmap_tree * mt,struct gl_texture_image * image)1038 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1039                           struct gl_texture_image *image)
1040 {
1041    struct intel_texture_image *intelImage = intel_texture_image(image);
1042    GLuint level = intelImage->base.Base.Level;
1043    int width, height, depth;
1044 
1045    /* glTexImage* choose the texture object based on the target passed in, and
1046     * objects can't change targets over their lifetimes, so this should be
1047     * true.
1048     */
1049    assert(image->TexObject->Target == mt->target);
1050 
1051    mesa_format mt_format = mt->format;
1052    if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1053       mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1054    if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1055       mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1056    if (mt->etc_format != MESA_FORMAT_NONE)
1057       mt_format = mt->etc_format;
1058 
1059    if (image->TexFormat != mt_format)
1060       return false;
1061 
1062    intel_get_image_dims(image, &width, &height, &depth);
1063 
1064    if (mt->target == GL_TEXTURE_CUBE_MAP)
1065       depth = 6;
1066 
1067    int level_depth = mt->level[level].depth;
1068    if (mt->num_samples > 1) {
1069       switch (mt->msaa_layout) {
1070       case INTEL_MSAA_LAYOUT_NONE:
1071       case INTEL_MSAA_LAYOUT_IMS:
1072          break;
1073       case INTEL_MSAA_LAYOUT_UMS:
1074       case INTEL_MSAA_LAYOUT_CMS:
1075          level_depth /= mt->num_samples;
1076          break;
1077       }
1078    }
1079 
1080    /* Test image dimensions against the base level image adjusted for
1081     * minification.  This will also catch images not present in the
1082     * tree, changed targets, etc.
1083     */
1084    if (width != minify(mt->logical_width0, level - mt->first_level) ||
1085        height != minify(mt->logical_height0, level - mt->first_level) ||
1086        depth != level_depth) {
1087       return false;
1088    }
1089 
1090    if (image->NumSamples != mt->num_samples)
1091       return false;
1092 
1093    return true;
1094 }
1095 
1096 
1097 void
intel_miptree_set_level_info(struct intel_mipmap_tree * mt,GLuint level,GLuint x,GLuint y,GLuint d)1098 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1099 			     GLuint level,
1100 			     GLuint x, GLuint y, GLuint d)
1101 {
1102    mt->level[level].depth = d;
1103    mt->level[level].level_x = x;
1104    mt->level[level].level_y = y;
1105 
1106    DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1107        level, d, x, y);
1108 
1109    assert(mt->level[level].slice == NULL);
1110 
1111    mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1112    mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1113    mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1114 }
1115 
1116 
1117 void
intel_miptree_set_image_offset(struct intel_mipmap_tree * mt,GLuint level,GLuint img,GLuint x,GLuint y)1118 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1119 			       GLuint level, GLuint img,
1120 			       GLuint x, GLuint y)
1121 {
1122    if (img == 0 && level == 0)
1123       assert(x == 0 && y == 0);
1124 
1125    assert(img < mt->level[level].depth);
1126 
1127    mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1128    mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1129 
1130    DBG("%s level %d img %d pos %d,%d\n",
1131        __func__, level, img,
1132        mt->level[level].slice[img].x_offset,
1133        mt->level[level].slice[img].y_offset);
1134 }
1135 
1136 void
intel_miptree_get_image_offset(const struct intel_mipmap_tree * mt,GLuint level,GLuint slice,GLuint * x,GLuint * y)1137 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1138 			       GLuint level, GLuint slice,
1139 			       GLuint *x, GLuint *y)
1140 {
1141    assert(slice < mt->level[level].depth);
1142 
1143    *x = mt->level[level].slice[slice].x_offset;
1144    *y = mt->level[level].slice[slice].y_offset;
1145 }
1146 
1147 
1148 /**
1149  * This function computes the tile_w (in bytes) and tile_h (in rows) of
1150  * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1151  * and tile_h is set to 1.
1152  */
1153 void
intel_get_tile_dims(uint32_t tiling,uint32_t tr_mode,uint32_t cpp,uint32_t * tile_w,uint32_t * tile_h)1154 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1155                     uint32_t *tile_w, uint32_t *tile_h)
1156 {
1157    if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
1158       switch (tiling) {
1159       case I915_TILING_X:
1160          *tile_w = 512;
1161          *tile_h = 8;
1162          break;
1163       case I915_TILING_Y:
1164          *tile_w = 128;
1165          *tile_h = 32;
1166          break;
1167       case I915_TILING_NONE:
1168          *tile_w = cpp;
1169          *tile_h = 1;
1170          break;
1171       default:
1172          unreachable("not reached");
1173       }
1174    } else {
1175       uint32_t aspect_ratio = 1;
1176       assert(_mesa_is_pow_two(cpp));
1177 
1178       switch (cpp) {
1179       case 1:
1180          *tile_h = 64;
1181          break;
1182       case 2:
1183       case 4:
1184          *tile_h = 32;
1185          break;
1186       case 8:
1187       case 16:
1188          *tile_h = 16;
1189          break;
1190       default:
1191          unreachable("not reached");
1192       }
1193 
1194       if (cpp == 2 || cpp == 8)
1195          aspect_ratio = 2;
1196 
1197       if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
1198          *tile_h *= 4;
1199 
1200       *tile_w = *tile_h * aspect_ratio * cpp;
1201    }
1202 }
1203 
1204 
1205 /**
1206  * This function computes masks that may be used to select the bits of the X
1207  * and Y coordinates that indicate the offset within a tile.  If the BO is
1208  * untiled, the masks are set to 0.
1209  */
1210 void
intel_get_tile_masks(uint32_t tiling,uint32_t tr_mode,uint32_t cpp,uint32_t * mask_x,uint32_t * mask_y)1211 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1212                      uint32_t *mask_x, uint32_t *mask_y)
1213 {
1214    uint32_t tile_w_bytes, tile_h;
1215 
1216    intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
1217 
1218    *mask_x = tile_w_bytes / cpp - 1;
1219    *mask_y = tile_h - 1;
1220 }
1221 
1222 /**
1223  * Compute the offset (in bytes) from the start of the BO to the given x
1224  * and y coordinate.  For tiled BOs, caller must ensure that x and y are
1225  * multiples of the tile size.
1226  */
1227 uint32_t
intel_miptree_get_aligned_offset(const struct intel_mipmap_tree * mt,uint32_t x,uint32_t y)1228 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1229                                  uint32_t x, uint32_t y)
1230 {
1231    int cpp = mt->cpp;
1232    uint32_t pitch = mt->pitch;
1233    uint32_t tiling = mt->tiling;
1234 
1235    switch (tiling) {
1236    default:
1237       unreachable("not reached");
1238    case I915_TILING_NONE:
1239       return y * pitch + x * cpp;
1240    case I915_TILING_X:
1241       assert((x % (512 / cpp)) == 0);
1242       assert((y % 8) == 0);
1243       return y * pitch + x / (512 / cpp) * 4096;
1244    case I915_TILING_Y:
1245       assert((x % (128 / cpp)) == 0);
1246       assert((y % 32) == 0);
1247       return y * pitch + x / (128 / cpp) * 4096;
1248    }
1249 }
1250 
1251 /**
1252  * Rendering with tiled buffers requires that the base address of the buffer
1253  * be aligned to a page boundary.  For renderbuffers, and sometimes with
1254  * textures, we may want the surface to point at a texture image level that
1255  * isn't at a page boundary.
1256  *
1257  * This function returns an appropriately-aligned base offset
1258  * according to the tiling restrictions, plus any required x/y offset
1259  * from there.
1260  */
1261 uint32_t
intel_miptree_get_tile_offsets(const struct intel_mipmap_tree * mt,GLuint level,GLuint slice,uint32_t * tile_x,uint32_t * tile_y)1262 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1263                                GLuint level, GLuint slice,
1264                                uint32_t *tile_x,
1265                                uint32_t *tile_y)
1266 {
1267    uint32_t x, y;
1268    uint32_t mask_x, mask_y;
1269 
1270    intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
1271    intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1272 
1273    *tile_x = x & mask_x;
1274    *tile_y = y & mask_y;
1275 
1276    return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1277 }
1278 
1279 static void
intel_miptree_copy_slice_sw(struct brw_context * brw,struct intel_mipmap_tree * dst_mt,struct intel_mipmap_tree * src_mt,int level,int slice,int width,int height)1280 intel_miptree_copy_slice_sw(struct brw_context *brw,
1281                             struct intel_mipmap_tree *dst_mt,
1282                             struct intel_mipmap_tree *src_mt,
1283                             int level,
1284                             int slice,
1285                             int width,
1286                             int height)
1287 {
1288    void *src, *dst;
1289    ptrdiff_t src_stride, dst_stride;
1290    int cpp = dst_mt->cpp;
1291 
1292    intel_miptree_map(brw, src_mt,
1293                      level, slice,
1294                      0, 0,
1295                      width, height,
1296                      GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1297                      &src, &src_stride);
1298 
1299    intel_miptree_map(brw, dst_mt,
1300                      level, slice,
1301                      0, 0,
1302                      width, height,
1303                      GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1304                      BRW_MAP_DIRECT_BIT,
1305                      &dst, &dst_stride);
1306 
1307    DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1308        _mesa_get_format_name(src_mt->format),
1309        src_mt, src, src_stride,
1310        _mesa_get_format_name(dst_mt->format),
1311        dst_mt, dst, dst_stride,
1312        width, height);
1313 
1314    int row_size = cpp * width;
1315    if (src_stride == row_size &&
1316        dst_stride == row_size) {
1317       memcpy(dst, src, row_size * height);
1318    } else {
1319       for (int i = 0; i < height; i++) {
1320          memcpy(dst, src, row_size);
1321          dst += dst_stride;
1322          src += src_stride;
1323       }
1324    }
1325 
1326    intel_miptree_unmap(brw, dst_mt, level, slice);
1327    intel_miptree_unmap(brw, src_mt, level, slice);
1328 
1329    /* Don't forget to copy the stencil data over, too.  We could have skipped
1330     * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1331     * shuffling the two data sources in/out of temporary storage instead of
1332     * the direct mapping we get this way.
1333     */
1334    if (dst_mt->stencil_mt) {
1335       assert(src_mt->stencil_mt);
1336       intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1337                                   level, slice, width, height);
1338    }
1339 }
1340 
1341 static void
intel_miptree_copy_slice(struct brw_context * brw,struct intel_mipmap_tree * dst_mt,struct intel_mipmap_tree * src_mt,int level,int face,int depth)1342 intel_miptree_copy_slice(struct brw_context *brw,
1343 			 struct intel_mipmap_tree *dst_mt,
1344 			 struct intel_mipmap_tree *src_mt,
1345 			 int level,
1346 			 int face,
1347 			 int depth)
1348 
1349 {
1350    mesa_format format = src_mt->format;
1351    uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1352    uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1353    int slice;
1354 
1355    if (face > 0)
1356       slice = face;
1357    else
1358       slice = depth;
1359 
1360    assert(depth < src_mt->level[level].depth);
1361    assert(src_mt->format == dst_mt->format);
1362 
1363    if (dst_mt->compressed) {
1364       unsigned int i, j;
1365       _mesa_get_format_block_size(dst_mt->format, &i, &j);
1366       height = ALIGN_NPOT(height, j) / j;
1367       width = ALIGN_NPOT(width, i) / i;
1368    }
1369 
1370    /* If it's a packed depth/stencil buffer with separate stencil, the blit
1371     * below won't apply since we can't do the depth's Y tiling or the
1372     * stencil's W tiling in the blitter.
1373     */
1374    if (src_mt->stencil_mt) {
1375       intel_miptree_copy_slice_sw(brw,
1376                                   dst_mt, src_mt,
1377                                   level, slice,
1378                                   width, height);
1379       return;
1380    }
1381 
1382    uint32_t dst_x, dst_y, src_x, src_y;
1383    intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1384    intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1385 
1386    DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1387        _mesa_get_format_name(src_mt->format),
1388        src_mt, src_x, src_y, src_mt->pitch,
1389        _mesa_get_format_name(dst_mt->format),
1390        dst_mt, dst_x, dst_y, dst_mt->pitch,
1391        width, height);
1392 
1393    if (!intel_miptree_blit(brw,
1394                            src_mt, level, slice, 0, 0, false,
1395                            dst_mt, level, slice, 0, 0, false,
1396                            width, height, GL_COPY)) {
1397       perf_debug("miptree validate blit for %s failed\n",
1398                  _mesa_get_format_name(format));
1399 
1400       intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1401                                   width, height);
1402    }
1403 }
1404 
1405 /**
1406  * Copies the image's current data to the given miptree, and associates that
1407  * miptree with the image.
1408  *
1409  * If \c invalidate is true, then the actual image data does not need to be
1410  * copied, but the image still needs to be associated to the new miptree (this
1411  * is set to true if we're about to clear the image).
1412  */
1413 void
intel_miptree_copy_teximage(struct brw_context * brw,struct intel_texture_image * intelImage,struct intel_mipmap_tree * dst_mt,bool invalidate)1414 intel_miptree_copy_teximage(struct brw_context *brw,
1415 			    struct intel_texture_image *intelImage,
1416 			    struct intel_mipmap_tree *dst_mt,
1417                             bool invalidate)
1418 {
1419    struct intel_mipmap_tree *src_mt = intelImage->mt;
1420    struct intel_texture_object *intel_obj =
1421       intel_texture_object(intelImage->base.Base.TexObject);
1422    int level = intelImage->base.Base.Level;
1423    int face = intelImage->base.Base.Face;
1424 
1425    GLuint depth;
1426    if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1427       depth = intelImage->base.Base.Height;
1428    else
1429       depth = intelImage->base.Base.Depth;
1430 
1431    if (!invalidate) {
1432       for (int slice = 0; slice < depth; slice++) {
1433          intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1434       }
1435    }
1436 
1437    intel_miptree_reference(&intelImage->mt, dst_mt);
1438    intel_obj->needs_validate = true;
1439 }
1440 
1441 static void
intel_miptree_init_mcs(struct brw_context * brw,struct intel_mipmap_tree * mt,int init_value)1442 intel_miptree_init_mcs(struct brw_context *brw,
1443                        struct intel_mipmap_tree *mt,
1444                        int init_value)
1445 {
1446    assert(mt->mcs_buf != NULL);
1447 
1448    /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1449     *
1450     *     When MCS buffer is enabled and bound to MSRT, it is required that it
1451     *     is cleared prior to any rendering.
1452     *
1453     * Since we don't use the MCS buffer for any purpose other than rendering,
1454     * it makes sense to just clear it immediately upon allocation.
1455     *
1456     * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1457     */
1458    const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
1459    if (unlikely(ret)) {
1460       fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1461       drm_intel_bo_unreference(mt->mcs_buf->bo);
1462       free(mt->mcs_buf);
1463       return;
1464    }
1465    void *data = mt->mcs_buf->bo->virtual;
1466    memset(data, init_value, mt->mcs_buf->size);
1467    drm_intel_bo_unmap(mt->mcs_buf->bo);
1468 }
1469 
1470 static struct intel_miptree_aux_buffer *
intel_mcs_miptree_buf_create(struct brw_context * brw,struct intel_mipmap_tree * mt,mesa_format format,unsigned mcs_width,unsigned mcs_height,uint32_t layout_flags)1471 intel_mcs_miptree_buf_create(struct brw_context *brw,
1472                              struct intel_mipmap_tree *mt,
1473                              mesa_format format,
1474                              unsigned mcs_width,
1475                              unsigned mcs_height,
1476                              uint32_t layout_flags)
1477 {
1478    struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1479    struct intel_mipmap_tree *temp_mt;
1480 
1481    if (!buf)
1482       return NULL;
1483 
1484    /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1485     *
1486     *     "The MCS surface must be stored as Tile Y."
1487     */
1488    layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1489    temp_mt = miptree_create(brw,
1490                             mt->target,
1491                             format,
1492                             mt->first_level,
1493                             mt->last_level,
1494                             mcs_width,
1495                             mcs_height,
1496                             mt->logical_depth0,
1497                             0 /* num_samples */,
1498                             layout_flags);
1499    if (!temp_mt) {
1500       free(buf);
1501       return NULL;
1502    }
1503 
1504    buf->bo = temp_mt->bo;
1505    buf->offset = temp_mt->offset;
1506    buf->size = temp_mt->total_height * temp_mt->pitch;
1507    buf->pitch = temp_mt->pitch;
1508    buf->qpitch = temp_mt->qpitch;
1509 
1510    /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1511     * structure should go away. We use miptree create simply as a means to make
1512     * sure all the constraints for the buffer are satisfied.
1513     */
1514    drm_intel_bo_reference(temp_mt->bo);
1515    intel_miptree_release(&temp_mt);
1516 
1517    return buf;
1518 }
1519 
1520 static bool
intel_miptree_alloc_mcs(struct brw_context * brw,struct intel_mipmap_tree * mt,GLuint num_samples)1521 intel_miptree_alloc_mcs(struct brw_context *brw,
1522                         struct intel_mipmap_tree *mt,
1523                         GLuint num_samples)
1524 {
1525    assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1526    assert(mt->mcs_buf == NULL);
1527    assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1528 
1529    /* Choose the correct format for the MCS buffer.  All that really matters
1530     * is that we allocate the right buffer size, since we'll always be
1531     * accessing this miptree using MCS-specific hardware mechanisms, which
1532     * infer the correct format based on num_samples.
1533     */
1534    mesa_format format;
1535    switch (num_samples) {
1536    case 2:
1537    case 4:
1538       /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1539        * each sample).
1540        */
1541       format = MESA_FORMAT_R_UNORM8;
1542       break;
1543    case 8:
1544       /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1545        * for each sample, plus 8 padding bits).
1546        */
1547       format = MESA_FORMAT_R_UINT32;
1548       break;
1549    case 16:
1550       /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1551        * for each sample).
1552        */
1553       format = MESA_FORMAT_RG_UINT32;
1554       break;
1555    default:
1556       unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1557    };
1558 
1559    mt->mcs_buf =
1560       intel_mcs_miptree_buf_create(brw, mt,
1561                                    format,
1562                                    mt->logical_width0,
1563                                    mt->logical_height0,
1564                                    MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1565    if (!mt->mcs_buf)
1566       return false;
1567 
1568    intel_miptree_init_mcs(brw, mt, 0xFF);
1569 
1570    /* Multisampled miptrees are only supported for single level. */
1571    assert(mt->first_level == 0);
1572    intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
1573                                       mt->logical_depth0,
1574                                       INTEL_FAST_CLEAR_STATE_CLEAR);
1575 
1576    return true;
1577 }
1578 
1579 
1580 bool
intel_miptree_alloc_non_msrt_mcs(struct brw_context * brw,struct intel_mipmap_tree * mt,bool is_lossless_compressed)1581 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1582                                  struct intel_mipmap_tree *mt,
1583                                  bool is_lossless_compressed)
1584 {
1585    assert(mt->mcs_buf == NULL);
1586    assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1587 
1588    struct isl_surf temp_main_surf;
1589    struct isl_surf temp_ccs_surf;
1590 
1591    /* Create first an ISL presentation for the main color surface and let ISL
1592     * calculate equivalent CCS surface against it.
1593     */
1594    intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1595    if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1596       return false;
1597 
1598    assert(temp_ccs_surf.size &&
1599           (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1600 
1601    struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1602    if (!buf)
1603       return false;
1604 
1605    buf->size = temp_ccs_surf.size;
1606    buf->pitch = temp_ccs_surf.row_pitch;
1607    buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
1608 
1609    /* In case of compression mcs buffer needs to be initialised requiring the
1610     * buffer to be immediately mapped to cpu space for writing. Therefore do
1611     * not use the gpu access flag which can cause an unnecessary delay if the
1612     * backing pages happened to be just used by the GPU.
1613     */
1614    const uint32_t alloc_flags =
1615       is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1616    uint32_t tiling = I915_TILING_Y;
1617    unsigned long pitch;
1618 
1619    /* ISL has stricter set of alignment rules then the drm allocator.
1620     * Therefore one can pass the ISL dimensions in terms of bytes instead of
1621     * trying to recalculate based on different format block sizes.
1622     */
1623    buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
1624                                       buf->pitch, buf->size / buf->pitch,
1625                                       1, &tiling, &pitch, alloc_flags);
1626    if (buf->bo) {
1627       assert(pitch == buf->pitch);
1628       assert(tiling == I915_TILING_Y);
1629    } else {
1630       free(buf);
1631       return false;
1632    }
1633 
1634    mt->mcs_buf = buf;
1635 
1636    /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1637     * used for lossless compression which requires similar initialisation
1638     * as multi-sample compression.
1639     */
1640    if (is_lossless_compressed) {
1641       /* Hardware sets the auxiliary buffer to all zeroes when it does full
1642        * resolve. Initialize it accordingly in case the first renderer is
1643        * cpu (or other none compression aware party).
1644        *
1645        * This is also explicitly stated in the spec (MCS Buffer for Render
1646        * Target(s)):
1647        *   "If Software wants to enable Color Compression without Fast clear,
1648        *    Software needs to initialize MCS with zeros."
1649        */
1650       intel_miptree_init_mcs(brw, mt, 0);
1651       mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1652    }
1653 
1654    return true;
1655 }
1656 
1657 /**
1658  * Helper for intel_miptree_alloc_hiz() that sets
1659  * \c mt->level[level].has_hiz. Return true if and only if
1660  * \c has_hiz was set.
1661  */
1662 static bool
intel_miptree_level_enable_hiz(struct brw_context * brw,struct intel_mipmap_tree * mt,uint32_t level)1663 intel_miptree_level_enable_hiz(struct brw_context *brw,
1664                                struct intel_mipmap_tree *mt,
1665                                uint32_t level)
1666 {
1667    assert(mt->hiz_buf);
1668 
1669    if (brw->gen >= 8 || brw->is_haswell) {
1670       uint32_t width = minify(mt->physical_width0, level);
1671       uint32_t height = minify(mt->physical_height0, level);
1672 
1673       /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1674        * and the height is 4 aligned. This allows our HiZ support
1675        * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1676        * we can grow the width & height to allow the HiZ op to
1677        * force the proper size alignments.
1678        */
1679       if (level > 0 && ((width & 7) || (height & 3))) {
1680          DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1681          return false;
1682       }
1683    }
1684 
1685    DBG("mt %p level %d: HiZ enabled\n", mt, level);
1686    mt->level[level].has_hiz = true;
1687    return true;
1688 }
1689 
1690 
1691 /**
1692  * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1693  * buffer dimensions and allocates a bo for the hiz buffer.
1694  */
1695 static struct intel_miptree_hiz_buffer *
intel_gen7_hiz_buf_create(struct brw_context * brw,struct intel_mipmap_tree * mt)1696 intel_gen7_hiz_buf_create(struct brw_context *brw,
1697                           struct intel_mipmap_tree *mt)
1698 {
1699    unsigned z_width = mt->logical_width0;
1700    unsigned z_height = mt->logical_height0;
1701    const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1702    unsigned hz_width, hz_height;
1703    struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1704 
1705    if (!buf)
1706       return NULL;
1707 
1708    /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1709     * adjustments required for Z_Height and Z_Width based on multisampling.
1710     */
1711    switch (mt->num_samples) {
1712    case 0:
1713    case 1:
1714       break;
1715    case 2:
1716    case 4:
1717       z_width *= 2;
1718       z_height *= 2;
1719       break;
1720    case 8:
1721       z_width *= 4;
1722       z_height *= 2;
1723       break;
1724    default:
1725       unreachable("unsupported sample count");
1726    }
1727 
1728    const unsigned vertical_align = 8; /* 'j' in the docs */
1729    const unsigned H0 = z_height;
1730    const unsigned h0 = ALIGN(H0, vertical_align);
1731    const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1732    const unsigned Z0 = z_depth;
1733 
1734    /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1735    hz_width = ALIGN(z_width, 16);
1736 
1737    if (mt->target == GL_TEXTURE_3D) {
1738       unsigned H_i = H0;
1739       unsigned Z_i = Z0;
1740       hz_height = 0;
1741       for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1742          unsigned h_i = ALIGN(H_i, vertical_align);
1743          /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1744          hz_height += h_i * Z_i;
1745          H_i = minify(H_i, 1);
1746          Z_i = minify(Z_i, 1);
1747       }
1748       /* HZ_Height =
1749        *    (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1750        */
1751       hz_height = DIV_ROUND_UP(hz_height, 2);
1752    } else {
1753       const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1754       /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1755       hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1756    }
1757 
1758    unsigned long pitch;
1759    uint32_t tiling = I915_TILING_Y;
1760    buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1761                                                hz_width, hz_height, 1,
1762                                                &tiling, &pitch,
1763                                                BO_ALLOC_FOR_RENDER);
1764    if (!buf->aux_base.bo) {
1765       free(buf);
1766       return NULL;
1767    } else if (tiling != I915_TILING_Y) {
1768       drm_intel_bo_unreference(buf->aux_base.bo);
1769       free(buf);
1770       return NULL;
1771    }
1772 
1773    buf->aux_base.size = hz_width * hz_height;
1774    buf->aux_base.pitch = pitch;
1775 
1776    return buf;
1777 }
1778 
1779 
1780 /**
1781  * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1782  * buffer dimensions and allocates a bo for the hiz buffer.
1783  */
1784 static struct intel_miptree_hiz_buffer *
intel_gen8_hiz_buf_create(struct brw_context * brw,struct intel_mipmap_tree * mt)1785 intel_gen8_hiz_buf_create(struct brw_context *brw,
1786                           struct intel_mipmap_tree *mt)
1787 {
1788    unsigned z_width = mt->logical_width0;
1789    unsigned z_height = mt->logical_height0;
1790    const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1791    unsigned hz_width, hz_height;
1792    struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1793 
1794    if (!buf)
1795       return NULL;
1796 
1797    /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1798     * adjustments required for Z_Height and Z_Width based on multisampling.
1799     */
1800    if (brw->gen < 9) {
1801       switch (mt->num_samples) {
1802       case 0:
1803       case 1:
1804          break;
1805       case 2:
1806       case 4:
1807          z_width *= 2;
1808          z_height *= 2;
1809          break;
1810       case 8:
1811          z_width *= 4;
1812          z_height *= 2;
1813          break;
1814       default:
1815          unreachable("unsupported sample count");
1816       }
1817    }
1818 
1819    const unsigned vertical_align = 8; /* 'j' in the docs */
1820    const unsigned H0 = z_height;
1821    const unsigned h0 = ALIGN(H0, vertical_align);
1822    const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1823    const unsigned Z0 = z_depth;
1824 
1825    /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1826    hz_width = ALIGN(z_width, 16);
1827 
1828    unsigned H_i = H0;
1829    unsigned Z_i = Z0;
1830    unsigned sum_h_i = 0;
1831    unsigned hz_height_3d_sum = 0;
1832    for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1833       unsigned i = level - mt->first_level;
1834       unsigned h_i = ALIGN(H_i, vertical_align);
1835       /* sum(i=2 to m; h_i) */
1836       if (i >= 2) {
1837          sum_h_i += h_i;
1838       }
1839       /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1840       hz_height_3d_sum += h_i * Z_i;
1841       H_i = minify(H_i, 1);
1842       Z_i = minify(Z_i, 1);
1843    }
1844    /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1845    buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1846 
1847    if (mt->target == GL_TEXTURE_3D) {
1848       /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1849       hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1850    } else {
1851       /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1852       hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1853    }
1854 
1855    unsigned long pitch;
1856    uint32_t tiling = I915_TILING_Y;
1857    buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1858                                                hz_width, hz_height, 1,
1859                                                &tiling, &pitch,
1860                                                BO_ALLOC_FOR_RENDER);
1861    if (!buf->aux_base.bo) {
1862       free(buf);
1863       return NULL;
1864    } else if (tiling != I915_TILING_Y) {
1865       drm_intel_bo_unreference(buf->aux_base.bo);
1866       free(buf);
1867       return NULL;
1868    }
1869 
1870    buf->aux_base.size = hz_width * hz_height;
1871    buf->aux_base.pitch = pitch;
1872 
1873    return buf;
1874 }
1875 
1876 
1877 static struct intel_miptree_hiz_buffer *
intel_hiz_miptree_buf_create(struct brw_context * brw,struct intel_mipmap_tree * mt)1878 intel_hiz_miptree_buf_create(struct brw_context *brw,
1879                              struct intel_mipmap_tree *mt)
1880 {
1881    struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1882    uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1883 
1884    if (brw->gen == 6)
1885       layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1886 
1887    if (!buf)
1888       return NULL;
1889 
1890    layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1891    buf->mt = intel_miptree_create(brw,
1892                                   mt->target,
1893                                   mt->format,
1894                                   mt->first_level,
1895                                   mt->last_level,
1896                                   mt->logical_width0,
1897                                   mt->logical_height0,
1898                                   mt->logical_depth0,
1899                                   mt->num_samples,
1900                                   layout_flags);
1901    if (!buf->mt) {
1902       free(buf);
1903       return NULL;
1904    }
1905 
1906    buf->aux_base.bo = buf->mt->bo;
1907    buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1908    buf->aux_base.pitch = buf->mt->pitch;
1909    buf->aux_base.qpitch = buf->mt->qpitch;
1910 
1911    return buf;
1912 }
1913 
1914 bool
intel_miptree_wants_hiz_buffer(struct brw_context * brw,struct intel_mipmap_tree * mt)1915 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1916                                struct intel_mipmap_tree *mt)
1917 {
1918    if (!brw->has_hiz)
1919       return false;
1920 
1921    if (mt->hiz_buf != NULL)
1922       return false;
1923 
1924    if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1925       return false;
1926 
1927    switch (mt->format) {
1928    case MESA_FORMAT_Z_FLOAT32:
1929    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1930    case MESA_FORMAT_Z24_UNORM_X8_UINT:
1931    case MESA_FORMAT_Z24_UNORM_S8_UINT:
1932    case MESA_FORMAT_Z_UNORM16:
1933       return true;
1934    default:
1935       return false;
1936    }
1937 }
1938 
1939 bool
intel_miptree_alloc_hiz(struct brw_context * brw,struct intel_mipmap_tree * mt)1940 intel_miptree_alloc_hiz(struct brw_context *brw,
1941 			struct intel_mipmap_tree *mt)
1942 {
1943    assert(mt->hiz_buf == NULL);
1944    assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1945 
1946    if (brw->gen == 7) {
1947       mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1948    } else if (brw->gen >= 8) {
1949       mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1950    } else {
1951       mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1952    }
1953 
1954    if (!mt->hiz_buf)
1955       return false;
1956 
1957    /* Mark that all slices need a HiZ resolve. */
1958    for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1959       if (!intel_miptree_level_enable_hiz(brw, mt, level))
1960          continue;
1961 
1962       for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
1963          struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1964          exec_node_init(&m->link);
1965          m->level = level;
1966          m->layer = layer;
1967          m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
1968 
1969          exec_list_push_tail(&mt->hiz_map, &m->link);
1970       }
1971    }
1972 
1973    return true;
1974 }
1975 
1976 /**
1977  * Can the miptree sample using the hiz buffer?
1978  */
1979 bool
intel_miptree_sample_with_hiz(struct brw_context * brw,struct intel_mipmap_tree * mt)1980 intel_miptree_sample_with_hiz(struct brw_context *brw,
1981                               struct intel_mipmap_tree *mt)
1982 {
1983    /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1984     * so keep things conservative for now and never enable it unless we're SKL+.
1985     */
1986    if (brw->gen < 9) {
1987       return false;
1988    }
1989 
1990    if (!mt->hiz_buf) {
1991       return false;
1992    }
1993 
1994    /* It seems the hardware won't fallback to the depth buffer if some of the
1995     * mipmap levels aren't available in the HiZ buffer. So we need all levels
1996     * of the texture to be HiZ enabled.
1997     */
1998    for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1999       if (!intel_miptree_level_has_hiz(mt, level))
2000          return false;
2001    }
2002 
2003    /* If compressed multisampling is enabled, then we use it for the auxiliary
2004     * buffer instead.
2005     *
2006     * From the BDW PRM (Volume 2d: Command Reference: Structures
2007     *                   RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
2008     *
2009     *  "If this field is set to AUX_HIZ, Number of Multisamples must be
2010     *   MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
2011     *
2012     * There is no such blurb for 1D textures, but there is sufficient evidence
2013     * that this is broken on SKL+.
2014     */
2015    return (mt->num_samples <= 1 &&
2016            mt->target != GL_TEXTURE_3D &&
2017            mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
2018 }
2019 
2020 /**
2021  * Does the miptree slice have hiz enabled?
2022  */
2023 bool
intel_miptree_level_has_hiz(struct intel_mipmap_tree * mt,uint32_t level)2024 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
2025 {
2026    intel_miptree_check_level_layer(mt, level, 0);
2027    return mt->level[level].has_hiz;
2028 }
2029 
2030 void
intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree * mt,uint32_t level,uint32_t layer)2031 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
2032 					  uint32_t level,
2033 					  uint32_t layer)
2034 {
2035    if (!intel_miptree_level_has_hiz(mt, level))
2036       return;
2037 
2038    intel_resolve_map_set(&mt->hiz_map,
2039 			 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
2040 }
2041 
2042 
2043 void
intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree * mt,uint32_t level,uint32_t layer)2044 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
2045                                             uint32_t level,
2046                                             uint32_t layer)
2047 {
2048    if (!intel_miptree_level_has_hiz(mt, level))
2049       return;
2050 
2051    intel_resolve_map_set(&mt->hiz_map,
2052 			 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
2053 }
2054 
2055 void
intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree * mt,uint32_t level)2056 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
2057                                                 uint32_t level)
2058 {
2059    uint32_t layer;
2060    uint32_t end_layer = mt->level[level].depth;
2061 
2062    for (layer = 0; layer < end_layer; layer++) {
2063       intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2064    }
2065 }
2066 
2067 static bool
intel_miptree_slice_resolve(struct brw_context * brw,struct intel_mipmap_tree * mt,uint32_t level,uint32_t layer,enum blorp_hiz_op need)2068 intel_miptree_slice_resolve(struct brw_context *brw,
2069 			    struct intel_mipmap_tree *mt,
2070 			    uint32_t level,
2071 			    uint32_t layer,
2072 			    enum blorp_hiz_op need)
2073 {
2074    intel_miptree_check_level_layer(mt, level, layer);
2075 
2076    struct intel_resolve_map *item =
2077 	 intel_resolve_map_get(&mt->hiz_map, level, layer);
2078 
2079    if (!item || item->need != need)
2080       return false;
2081 
2082    intel_hiz_exec(brw, mt, level, layer, need);
2083    intel_resolve_map_remove(item);
2084    return true;
2085 }
2086 
2087 bool
intel_miptree_slice_resolve_hiz(struct brw_context * brw,struct intel_mipmap_tree * mt,uint32_t level,uint32_t layer)2088 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2089 				struct intel_mipmap_tree *mt,
2090 				uint32_t level,
2091 				uint32_t layer)
2092 {
2093    return intel_miptree_slice_resolve(brw, mt, level, layer,
2094 				      BLORP_HIZ_OP_HIZ_RESOLVE);
2095 }
2096 
2097 bool
intel_miptree_slice_resolve_depth(struct brw_context * brw,struct intel_mipmap_tree * mt,uint32_t level,uint32_t layer)2098 intel_miptree_slice_resolve_depth(struct brw_context *brw,
2099 				  struct intel_mipmap_tree *mt,
2100 				  uint32_t level,
2101 				  uint32_t layer)
2102 {
2103    return intel_miptree_slice_resolve(brw, mt, level, layer,
2104 				      BLORP_HIZ_OP_DEPTH_RESOLVE);
2105 }
2106 
2107 static bool
intel_miptree_all_slices_resolve(struct brw_context * brw,struct intel_mipmap_tree * mt,enum blorp_hiz_op need)2108 intel_miptree_all_slices_resolve(struct brw_context *brw,
2109 				 struct intel_mipmap_tree *mt,
2110 				 enum blorp_hiz_op need)
2111 {
2112    bool did_resolve = false;
2113 
2114    foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2115       if (map->need != need)
2116 	 continue;
2117 
2118       intel_hiz_exec(brw, mt, map->level, map->layer, need);
2119       intel_resolve_map_remove(map);
2120       did_resolve = true;
2121    }
2122 
2123    return did_resolve;
2124 }
2125 
2126 bool
intel_miptree_all_slices_resolve_hiz(struct brw_context * brw,struct intel_mipmap_tree * mt)2127 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2128 				     struct intel_mipmap_tree *mt)
2129 {
2130    return intel_miptree_all_slices_resolve(brw, mt,
2131 					   BLORP_HIZ_OP_HIZ_RESOLVE);
2132 }
2133 
2134 bool
intel_miptree_all_slices_resolve_depth(struct brw_context * brw,struct intel_mipmap_tree * mt)2135 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2136 				       struct intel_mipmap_tree *mt)
2137 {
2138    return intel_miptree_all_slices_resolve(brw, mt,
2139 					   BLORP_HIZ_OP_DEPTH_RESOLVE);
2140 }
2141 
2142 enum intel_fast_clear_state
intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree * mt,unsigned level,unsigned layer)2143 intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
2144                                    unsigned level, unsigned layer)
2145 {
2146    intel_miptree_check_level_layer(mt, level, layer);
2147 
2148    const struct intel_resolve_map *item =
2149       intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
2150 
2151    if (!item)
2152       return INTEL_FAST_CLEAR_STATE_RESOLVED;
2153 
2154    return item->fast_clear_state;
2155 }
2156 
2157 static void
intel_miptree_check_color_resolve(const struct brw_context * brw,const struct intel_mipmap_tree * mt,unsigned level,unsigned layer)2158 intel_miptree_check_color_resolve(const struct brw_context *brw,
2159                                   const struct intel_mipmap_tree *mt,
2160                                   unsigned level, unsigned layer)
2161 {
2162 
2163    if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
2164       return;
2165 
2166    /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2167    assert(brw->gen >= 8 ||
2168           (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2169 
2170    /* Compression of arrayed msaa surfaces is supported. */
2171    if (mt->num_samples > 1)
2172       return;
2173 
2174    /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2175    assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2176 
2177    (void)level;
2178    (void)layer;
2179 }
2180 
2181 void
intel_miptree_set_fast_clear_state(const struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned level,unsigned first_layer,unsigned num_layers,enum intel_fast_clear_state new_state)2182 intel_miptree_set_fast_clear_state(const struct brw_context *brw,
2183                                    struct intel_mipmap_tree *mt,
2184                                    unsigned level,
2185                                    unsigned first_layer,
2186                                    unsigned num_layers,
2187                                    enum intel_fast_clear_state new_state)
2188 {
2189    /* Setting the state to resolved means removing the item from the list
2190     * altogether.
2191     */
2192    assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2193 
2194    intel_miptree_check_color_resolve(brw, mt, level, first_layer);
2195 
2196    assert(first_layer + num_layers <= mt->physical_depth0);
2197 
2198    for (unsigned i = 0; i < num_layers; i++)
2199       intel_resolve_map_set(&mt->color_resolve_map, level,
2200                             first_layer + i, new_state);
2201 }
2202 
2203 bool
intel_miptree_has_color_unresolved(const struct intel_mipmap_tree * mt,unsigned start_level,unsigned num_levels,unsigned start_layer,unsigned num_layers)2204 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2205                                    unsigned start_level, unsigned num_levels,
2206                                    unsigned start_layer, unsigned num_layers)
2207 {
2208    return intel_resolve_map_find_any(&mt->color_resolve_map,
2209                                      start_level, num_levels,
2210                                      start_layer, num_layers) != NULL;
2211 }
2212 
2213 void
intel_miptree_used_for_rendering(const struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned level,unsigned start_layer,unsigned num_layers)2214 intel_miptree_used_for_rendering(const struct brw_context *brw,
2215                                  struct intel_mipmap_tree *mt, unsigned level,
2216                                  unsigned start_layer, unsigned num_layers)
2217 {
2218    const bool is_lossless_compressed =
2219       intel_miptree_is_lossless_compressed(brw, mt);
2220 
2221    for (unsigned i = 0; i < num_layers; ++i) {
2222       const enum intel_fast_clear_state fast_clear_state =
2223          intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
2224 
2225       /* If the buffer was previously in fast clear state, change it to
2226        * unresolved state, since it won't be guaranteed to be clear after
2227        * rendering occurs.
2228        */
2229       if (is_lossless_compressed ||
2230           fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
2231          intel_miptree_set_fast_clear_state(
2232             brw, mt, level, start_layer + i, 1,
2233             INTEL_FAST_CLEAR_STATE_UNRESOLVED);
2234       }
2235    }
2236 }
2237 
2238 static bool
intel_miptree_needs_color_resolve(const struct brw_context * brw,const struct intel_mipmap_tree * mt,int flags)2239 intel_miptree_needs_color_resolve(const struct brw_context *brw,
2240                                   const struct intel_mipmap_tree *mt,
2241                                   int flags)
2242 {
2243    if (mt->aux_disable & INTEL_AUX_DISABLE_CCS)
2244       return false;
2245 
2246    const bool is_lossless_compressed =
2247       intel_miptree_is_lossless_compressed(brw, mt);
2248 
2249    /* From gen9 onwards there is new compression scheme for single sampled
2250     * surfaces called "lossless compressed". These don't need to be always
2251     * resolved.
2252     */
2253    if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
2254       return false;
2255 
2256    /* Fast color clear resolves only make sense for non-MSAA buffers. */
2257    if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
2258       return false;
2259 
2260    return true;
2261 }
2262 
2263 bool
intel_miptree_resolve_color(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned level,unsigned start_layer,unsigned num_layers,int flags)2264 intel_miptree_resolve_color(struct brw_context *brw,
2265                             struct intel_mipmap_tree *mt, unsigned level,
2266                             unsigned start_layer, unsigned num_layers,
2267                             int flags)
2268 {
2269    intel_miptree_check_color_resolve(brw, mt, level, start_layer);
2270 
2271    if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2272       return false;
2273 
2274    /* Arrayed fast clear is only supported for gen8+. */
2275    assert(brw->gen >= 8 || num_layers == 1);
2276 
2277    bool resolved = false;
2278    for (unsigned i = 0; i < num_layers; ++i) {
2279       intel_miptree_check_level_layer(mt, level, start_layer + i);
2280 
2281       struct intel_resolve_map *item =
2282          intel_resolve_map_get(&mt->color_resolve_map, level,
2283                                start_layer + i);
2284 
2285       if (item) {
2286          assert(item->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2287 
2288          brw_blorp_resolve_color(brw, mt, level, start_layer);
2289          intel_resolve_map_remove(item);
2290          resolved = true;
2291       }
2292    }
2293 
2294    return resolved;
2295 }
2296 
2297 void
intel_miptree_all_slices_resolve_color(struct brw_context * brw,struct intel_mipmap_tree * mt,int flags)2298 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
2299                                        struct intel_mipmap_tree *mt,
2300                                        int flags)
2301 {
2302    if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2303       return;
2304 
2305    foreach_list_typed_safe(struct intel_resolve_map, map, link,
2306                            &mt->color_resolve_map) {
2307       assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2308 
2309       brw_blorp_resolve_color(brw, mt, map->level, map->layer);
2310       intel_resolve_map_remove(map);
2311    }
2312 }
2313 
2314 /**
2315  * Make it possible to share the BO backing the given miptree with another
2316  * process or another miptree.
2317  *
2318  * Fast color clears are unsafe with shared buffers, so we need to resolve and
2319  * then discard the MCS buffer, if present.  We also set the no_ccs flag to
2320  * ensure that no MCS buffer gets allocated in the future.
2321  *
2322  * HiZ is similarly unsafe with shared buffers.
2323  */
2324 void
intel_miptree_make_shareable(struct brw_context * brw,struct intel_mipmap_tree * mt)2325 intel_miptree_make_shareable(struct brw_context *brw,
2326                              struct intel_mipmap_tree *mt)
2327 {
2328    /* MCS buffers are also used for multisample buffers, but we can't resolve
2329     * away a multisample MCS buffer because it's an integral part of how the
2330     * pixel data is stored.  Fortunately this code path should never be
2331     * reached for multisample buffers.
2332     */
2333    assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2334 
2335    if (mt->mcs_buf) {
2336       intel_miptree_all_slices_resolve_color(brw, mt, 0);
2337       mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2338       drm_intel_bo_unreference(mt->mcs_buf->bo);
2339       free(mt->mcs_buf);
2340       mt->mcs_buf = NULL;
2341    }
2342 
2343    if (mt->hiz_buf) {
2344       mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2345       intel_miptree_all_slices_resolve_depth(brw, mt);
2346       intel_miptree_hiz_buffer_free(mt->hiz_buf);
2347       mt->hiz_buf = NULL;
2348    }
2349 }
2350 
2351 
2352 /**
2353  * \brief Get pointer offset into stencil buffer.
2354  *
2355  * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2356  * must decode the tile's layout in software.
2357  *
2358  * See
2359  *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2360  *     Format.
2361  *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2362  *
2363  * Even though the returned offset is always positive, the return type is
2364  * signed due to
2365  *    commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2366  *    mesa: Fix return type of  _mesa_get_format_bytes() (#37351)
2367  */
2368 static intptr_t
intel_offset_S8(uint32_t stride,uint32_t x,uint32_t y,bool swizzled)2369 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2370 {
2371    uint32_t tile_size = 4096;
2372    uint32_t tile_width = 64;
2373    uint32_t tile_height = 64;
2374    uint32_t row_size = 64 * stride;
2375 
2376    uint32_t tile_x = x / tile_width;
2377    uint32_t tile_y = y / tile_height;
2378 
2379    /* The byte's address relative to the tile's base addres. */
2380    uint32_t byte_x = x % tile_width;
2381    uint32_t byte_y = y % tile_height;
2382 
2383    uintptr_t u = tile_y * row_size
2384                + tile_x * tile_size
2385                + 512 * (byte_x / 8)
2386                +  64 * (byte_y / 8)
2387                +  32 * ((byte_y / 4) % 2)
2388                +  16 * ((byte_x / 4) % 2)
2389                +   8 * ((byte_y / 2) % 2)
2390                +   4 * ((byte_x / 2) % 2)
2391                +   2 * (byte_y % 2)
2392                +   1 * (byte_x % 2);
2393 
2394    if (swizzled) {
2395       /* adjust for bit6 swizzling */
2396       if (((byte_x / 8) % 2) == 1) {
2397 	 if (((byte_y / 8) % 2) == 0) {
2398 	    u += 64;
2399 	 } else {
2400 	    u -= 64;
2401 	 }
2402       }
2403    }
2404 
2405    return u;
2406 }
2407 
2408 void
intel_miptree_updownsample(struct brw_context * brw,struct intel_mipmap_tree * src,struct intel_mipmap_tree * dst)2409 intel_miptree_updownsample(struct brw_context *brw,
2410                            struct intel_mipmap_tree *src,
2411                            struct intel_mipmap_tree *dst)
2412 {
2413    brw_blorp_blit_miptrees(brw,
2414                            src, 0 /* level */, 0 /* layer */,
2415                            src->format, SWIZZLE_XYZW,
2416                            dst, 0 /* level */, 0 /* layer */, dst->format,
2417                            0, 0,
2418                            src->logical_width0, src->logical_height0,
2419                            0, 0,
2420                            dst->logical_width0, dst->logical_height0,
2421                            GL_NEAREST, false, false /*mirror x, y*/,
2422                            false, false);
2423 
2424    if (src->stencil_mt) {
2425       brw_blorp_blit_miptrees(brw,
2426                               src->stencil_mt, 0 /* level */, 0 /* layer */,
2427                               src->stencil_mt->format, SWIZZLE_XYZW,
2428                               dst->stencil_mt, 0 /* level */, 0 /* layer */,
2429                               dst->stencil_mt->format,
2430                               0, 0,
2431                               src->logical_width0, src->logical_height0,
2432                               0, 0,
2433                               dst->logical_width0, dst->logical_height0,
2434                               GL_NEAREST, false, false /*mirror x, y*/,
2435                               false, false /* decode/encode srgb */);
2436    }
2437 }
2438 
2439 void
intel_update_r8stencil(struct brw_context * brw,struct intel_mipmap_tree * mt)2440 intel_update_r8stencil(struct brw_context *brw,
2441                        struct intel_mipmap_tree *mt)
2442 {
2443    assert(brw->gen >= 7);
2444    struct intel_mipmap_tree *src =
2445       mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2446    if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2447       return;
2448 
2449    if (!mt->r8stencil_mt) {
2450       const uint32_t r8stencil_flags =
2451          MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2452          MIPTREE_LAYOUT_DISABLE_AUX;
2453       assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
2454       mt->r8stencil_mt = intel_miptree_create(brw,
2455                                               src->target,
2456                                               MESA_FORMAT_R_UINT8,
2457                                               src->first_level,
2458                                               src->last_level,
2459                                               src->logical_width0,
2460                                               src->logical_height0,
2461                                               src->logical_depth0,
2462                                               src->num_samples,
2463                                               r8stencil_flags);
2464       assert(mt->r8stencil_mt);
2465    }
2466 
2467    struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2468 
2469    for (int level = src->first_level; level <= src->last_level; level++) {
2470       const unsigned depth = src->level[level].depth;
2471       const int layers_per_blit =
2472          (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
2473           dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
2474          dst->num_samples : 1;
2475 
2476       for (unsigned layer = 0; layer < depth; layer++) {
2477          brw_blorp_blit_miptrees(brw,
2478                                  src, level, layer,
2479                                  src->format, SWIZZLE_X,
2480                                  dst, level, layers_per_blit * layer,
2481                                  MESA_FORMAT_R_UNORM8,
2482                                  0, 0,
2483                                  minify(src->logical_width0, level),
2484                                  minify(src->logical_height0, level),
2485                                  0, 0,
2486                                  minify(dst->logical_width0, level),
2487                                  minify(dst->logical_height0, level),
2488                                  GL_NEAREST, false, false /*mirror x, y*/,
2489                                  false, false /* decode/encode srgb */);
2490       }
2491    }
2492 
2493    brw_render_cache_set_check_flush(brw, dst->bo);
2494    src->r8stencil_needs_update = false;
2495 }
2496 
2497 static void *
intel_miptree_map_raw(struct brw_context * brw,struct intel_mipmap_tree * mt)2498 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2499 {
2500    /* CPU accesses to color buffers don't understand fast color clears, so
2501     * resolve any pending fast color clears before we map.
2502     */
2503    intel_miptree_all_slices_resolve_color(brw, mt, 0);
2504 
2505    drm_intel_bo *bo = mt->bo;
2506 
2507    if (drm_intel_bo_references(brw->batch.bo, bo))
2508       intel_batchbuffer_flush(brw);
2509 
2510    if (mt->tiling != I915_TILING_NONE)
2511       brw_bo_map_gtt(brw, bo, "miptree");
2512    else
2513       brw_bo_map(brw, bo, true, "miptree");
2514 
2515    return bo->virtual;
2516 }
2517 
2518 static void
intel_miptree_unmap_raw(struct intel_mipmap_tree * mt)2519 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2520 {
2521    drm_intel_bo_unmap(mt->bo);
2522 }
2523 
2524 static void
intel_miptree_map_gtt(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2525 intel_miptree_map_gtt(struct brw_context *brw,
2526 		      struct intel_mipmap_tree *mt,
2527 		      struct intel_miptree_map *map,
2528 		      unsigned int level, unsigned int slice)
2529 {
2530    unsigned int bw, bh;
2531    void *base;
2532    unsigned int image_x, image_y;
2533    intptr_t x = map->x;
2534    intptr_t y = map->y;
2535 
2536    /* For compressed formats, the stride is the number of bytes per
2537     * row of blocks.  intel_miptree_get_image_offset() already does
2538     * the divide.
2539     */
2540    _mesa_get_format_block_size(mt->format, &bw, &bh);
2541    assert(y % bh == 0);
2542    assert(x % bw == 0);
2543    y /= bh;
2544    x /= bw;
2545 
2546    base = intel_miptree_map_raw(brw, mt) + mt->offset;
2547 
2548    if (base == NULL)
2549       map->ptr = NULL;
2550    else {
2551       /* Note that in the case of cube maps, the caller must have passed the
2552        * slice number referencing the face.
2553       */
2554       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2555       x += image_x;
2556       y += image_y;
2557 
2558       map->stride = mt->pitch;
2559       map->ptr = base + y * map->stride + x * mt->cpp;
2560    }
2561 
2562    DBG("%s: %d,%d %dx%d from mt %p (%s) "
2563        "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2564        map->x, map->y, map->w, map->h,
2565        mt, _mesa_get_format_name(mt->format),
2566        x, y, map->ptr, map->stride);
2567 }
2568 
2569 static void
intel_miptree_unmap_gtt(struct intel_mipmap_tree * mt)2570 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2571 {
2572    intel_miptree_unmap_raw(mt);
2573 }
2574 
2575 static void
intel_miptree_map_blit(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2576 intel_miptree_map_blit(struct brw_context *brw,
2577 		       struct intel_mipmap_tree *mt,
2578 		       struct intel_miptree_map *map,
2579 		       unsigned int level, unsigned int slice)
2580 {
2581    map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2582                                          /* first_level */ 0,
2583                                          /* last_level */ 0,
2584                                          map->w, map->h, 1,
2585                                          /* samples */ 0,
2586                                          MIPTREE_LAYOUT_TILING_NONE);
2587 
2588    if (!map->linear_mt) {
2589       fprintf(stderr, "Failed to allocate blit temporary\n");
2590       goto fail;
2591    }
2592    map->stride = map->linear_mt->pitch;
2593 
2594    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
2595     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
2596     * invalidate is set, since we'll be writing the whole rectangle from our
2597     * temporary buffer back out.
2598     */
2599    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2600       if (!intel_miptree_copy(brw,
2601                               mt, level, slice, map->x, map->y,
2602                               map->linear_mt, 0, 0, 0, 0,
2603                               map->w, map->h)) {
2604          fprintf(stderr, "Failed to blit\n");
2605          goto fail;
2606       }
2607    }
2608 
2609    map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2610 
2611    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2612        map->x, map->y, map->w, map->h,
2613        mt, _mesa_get_format_name(mt->format),
2614        level, slice, map->ptr, map->stride);
2615 
2616    return;
2617 
2618 fail:
2619    intel_miptree_release(&map->linear_mt);
2620    map->ptr = NULL;
2621    map->stride = 0;
2622 }
2623 
2624 static void
intel_miptree_unmap_blit(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2625 intel_miptree_unmap_blit(struct brw_context *brw,
2626 			 struct intel_mipmap_tree *mt,
2627 			 struct intel_miptree_map *map,
2628 			 unsigned int level,
2629 			 unsigned int slice)
2630 {
2631    struct gl_context *ctx = &brw->ctx;
2632 
2633    intel_miptree_unmap_raw(map->linear_mt);
2634 
2635    if (map->mode & GL_MAP_WRITE_BIT) {
2636       bool ok = intel_miptree_copy(brw,
2637                                    map->linear_mt, 0, 0, 0, 0,
2638                                    mt, level, slice, map->x, map->y,
2639                                    map->w, map->h);
2640       WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2641    }
2642 
2643    intel_miptree_release(&map->linear_mt);
2644 }
2645 
2646 /**
2647  * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2648  */
2649 #if defined(USE_SSE41)
2650 static void
intel_miptree_map_movntdqa(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2651 intel_miptree_map_movntdqa(struct brw_context *brw,
2652                            struct intel_mipmap_tree *mt,
2653                            struct intel_miptree_map *map,
2654                            unsigned int level, unsigned int slice)
2655 {
2656    assert(map->mode & GL_MAP_READ_BIT);
2657    assert(!(map->mode & GL_MAP_WRITE_BIT));
2658 
2659    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2660        map->x, map->y, map->w, map->h,
2661        mt, _mesa_get_format_name(mt->format),
2662        level, slice, map->ptr, map->stride);
2663 
2664    /* Map the original image */
2665    uint32_t image_x;
2666    uint32_t image_y;
2667    intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2668    image_x += map->x;
2669    image_y += map->y;
2670 
2671    void *src = intel_miptree_map_raw(brw, mt);
2672    if (!src)
2673       return;
2674 
2675    src += mt->offset;
2676 
2677    src += image_y * mt->pitch;
2678    src += image_x * mt->cpp;
2679 
2680    /* Due to the pixel offsets for the particular image being mapped, our
2681     * src pointer may not be 16-byte aligned.  However, if the pitch is
2682     * divisible by 16, then the amount by which it's misaligned will remain
2683     * consistent from row to row.
2684     */
2685    assert((mt->pitch % 16) == 0);
2686    const int misalignment = ((uintptr_t) src) & 15;
2687 
2688    /* Create an untiled temporary buffer for the mapping. */
2689    const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2690 
2691    map->stride = ALIGN(misalignment + width_bytes, 16);
2692 
2693    map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2694    /* Offset the destination so it has the same misalignment as src. */
2695    map->ptr = map->buffer + misalignment;
2696 
2697    assert((((uintptr_t) map->ptr) & 15) == misalignment);
2698 
2699    for (uint32_t y = 0; y < map->h; y++) {
2700       void *dst_ptr = map->ptr + y * map->stride;
2701       void *src_ptr = src + y * mt->pitch;
2702 
2703       _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2704    }
2705 
2706    intel_miptree_unmap_raw(mt);
2707 }
2708 
2709 static void
intel_miptree_unmap_movntdqa(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2710 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2711                              struct intel_mipmap_tree *mt,
2712                              struct intel_miptree_map *map,
2713                              unsigned int level,
2714                              unsigned int slice)
2715 {
2716    _mesa_align_free(map->buffer);
2717    map->buffer = NULL;
2718    map->ptr = NULL;
2719 }
2720 #endif
2721 
2722 static void
intel_miptree_map_s8(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2723 intel_miptree_map_s8(struct brw_context *brw,
2724 		     struct intel_mipmap_tree *mt,
2725 		     struct intel_miptree_map *map,
2726 		     unsigned int level, unsigned int slice)
2727 {
2728    map->stride = map->w;
2729    map->buffer = map->ptr = malloc(map->stride * map->h);
2730    if (!map->buffer)
2731       return;
2732 
2733    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
2734     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
2735     * invalidate is set, since we'll be writing the whole rectangle from our
2736     * temporary buffer back out.
2737     */
2738    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2739       uint8_t *untiled_s8_map = map->ptr;
2740       uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2741       unsigned int image_x, image_y;
2742 
2743       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2744 
2745       for (uint32_t y = 0; y < map->h; y++) {
2746 	 for (uint32_t x = 0; x < map->w; x++) {
2747 	    ptrdiff_t offset = intel_offset_S8(mt->pitch,
2748 	                                       x + image_x + map->x,
2749 	                                       y + image_y + map->y,
2750 					       brw->has_swizzling);
2751 	    untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2752 	 }
2753       }
2754 
2755       intel_miptree_unmap_raw(mt);
2756 
2757       DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2758 	  map->x, map->y, map->w, map->h,
2759 	  mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2760    } else {
2761       DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2762 	  map->x, map->y, map->w, map->h,
2763 	  mt, map->ptr, map->stride);
2764    }
2765 }
2766 
2767 static void
intel_miptree_unmap_s8(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2768 intel_miptree_unmap_s8(struct brw_context *brw,
2769 		       struct intel_mipmap_tree *mt,
2770 		       struct intel_miptree_map *map,
2771 		       unsigned int level,
2772 		       unsigned int slice)
2773 {
2774    if (map->mode & GL_MAP_WRITE_BIT) {
2775       unsigned int image_x, image_y;
2776       uint8_t *untiled_s8_map = map->ptr;
2777       uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2778 
2779       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2780 
2781       for (uint32_t y = 0; y < map->h; y++) {
2782 	 for (uint32_t x = 0; x < map->w; x++) {
2783 	    ptrdiff_t offset = intel_offset_S8(mt->pitch,
2784 	                                       image_x + x + map->x,
2785 	                                       image_y + y + map->y,
2786 					       brw->has_swizzling);
2787 	    tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2788 	 }
2789       }
2790 
2791       intel_miptree_unmap_raw(mt);
2792    }
2793 
2794    free(map->buffer);
2795 }
2796 
2797 static void
intel_miptree_map_etc(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2798 intel_miptree_map_etc(struct brw_context *brw,
2799                       struct intel_mipmap_tree *mt,
2800                       struct intel_miptree_map *map,
2801                       unsigned int level,
2802                       unsigned int slice)
2803 {
2804    assert(mt->etc_format != MESA_FORMAT_NONE);
2805    if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2806       assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2807    }
2808 
2809    assert(map->mode & GL_MAP_WRITE_BIT);
2810    assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2811 
2812    map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2813    map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2814                                                 map->w, map->h, 1));
2815    map->ptr = map->buffer;
2816 }
2817 
2818 static void
intel_miptree_unmap_etc(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2819 intel_miptree_unmap_etc(struct brw_context *brw,
2820                         struct intel_mipmap_tree *mt,
2821                         struct intel_miptree_map *map,
2822                         unsigned int level,
2823                         unsigned int slice)
2824 {
2825    uint32_t image_x;
2826    uint32_t image_y;
2827    intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2828 
2829    image_x += map->x;
2830    image_y += map->y;
2831 
2832    uint8_t *dst = intel_miptree_map_raw(brw, mt)
2833                 + image_y * mt->pitch
2834                 + image_x * mt->cpp;
2835 
2836    if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2837       _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2838                                  map->ptr, map->stride,
2839                                  map->w, map->h);
2840    else
2841       _mesa_unpack_etc2_format(dst, mt->pitch,
2842                                map->ptr, map->stride,
2843                                map->w, map->h, mt->etc_format);
2844 
2845    intel_miptree_unmap_raw(mt);
2846    free(map->buffer);
2847 }
2848 
2849 /**
2850  * Mapping function for packed depth/stencil miptrees backed by real separate
2851  * miptrees for depth and stencil.
2852  *
2853  * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2854  * separate from the depth buffer.  Yet at the GL API level, we have to expose
2855  * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2856  * be able to map that memory for texture storage and glReadPixels-type
2857  * operations.  We give Mesa core that access by mallocing a temporary and
2858  * copying the data between the actual backing store and the temporary.
2859  */
2860 static void
intel_miptree_map_depthstencil(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2861 intel_miptree_map_depthstencil(struct brw_context *brw,
2862 			       struct intel_mipmap_tree *mt,
2863 			       struct intel_miptree_map *map,
2864 			       unsigned int level, unsigned int slice)
2865 {
2866    struct intel_mipmap_tree *z_mt = mt;
2867    struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2868    bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2869    int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2870 
2871    map->stride = map->w * packed_bpp;
2872    map->buffer = map->ptr = malloc(map->stride * map->h);
2873    if (!map->buffer)
2874       return;
2875 
2876    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
2877     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
2878     * invalidate is set, since we'll be writing the whole rectangle from our
2879     * temporary buffer back out.
2880     */
2881    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2882       uint32_t *packed_map = map->ptr;
2883       uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2884       uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2885       unsigned int s_image_x, s_image_y;
2886       unsigned int z_image_x, z_image_y;
2887 
2888       intel_miptree_get_image_offset(s_mt, level, slice,
2889 				     &s_image_x, &s_image_y);
2890       intel_miptree_get_image_offset(z_mt, level, slice,
2891 				     &z_image_x, &z_image_y);
2892 
2893       for (uint32_t y = 0; y < map->h; y++) {
2894 	 for (uint32_t x = 0; x < map->w; x++) {
2895 	    int map_x = map->x + x, map_y = map->y + y;
2896 	    ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2897 						 map_x + s_image_x,
2898 						 map_y + s_image_y,
2899 						 brw->has_swizzling);
2900 	    ptrdiff_t z_offset = ((map_y + z_image_y) *
2901                                   (z_mt->pitch / 4) +
2902 				  (map_x + z_image_x));
2903 	    uint8_t s = s_map[s_offset];
2904 	    uint32_t z = z_map[z_offset];
2905 
2906 	    if (map_z32f_x24s8) {
2907 	       packed_map[(y * map->w + x) * 2 + 0] = z;
2908 	       packed_map[(y * map->w + x) * 2 + 1] = s;
2909 	    } else {
2910 	       packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2911 	    }
2912 	 }
2913       }
2914 
2915       intel_miptree_unmap_raw(s_mt);
2916       intel_miptree_unmap_raw(z_mt);
2917 
2918       DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2919 	  __func__,
2920 	  map->x, map->y, map->w, map->h,
2921 	  z_mt, map->x + z_image_x, map->y + z_image_y,
2922 	  s_mt, map->x + s_image_x, map->y + s_image_y,
2923 	  map->ptr, map->stride);
2924    } else {
2925       DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2926 	  map->x, map->y, map->w, map->h,
2927 	  mt, map->ptr, map->stride);
2928    }
2929 }
2930 
2931 static void
intel_miptree_unmap_depthstencil(struct brw_context * brw,struct intel_mipmap_tree * mt,struct intel_miptree_map * map,unsigned int level,unsigned int slice)2932 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2933 				 struct intel_mipmap_tree *mt,
2934 				 struct intel_miptree_map *map,
2935 				 unsigned int level,
2936 				 unsigned int slice)
2937 {
2938    struct intel_mipmap_tree *z_mt = mt;
2939    struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2940    bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2941 
2942    if (map->mode & GL_MAP_WRITE_BIT) {
2943       uint32_t *packed_map = map->ptr;
2944       uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2945       uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2946       unsigned int s_image_x, s_image_y;
2947       unsigned int z_image_x, z_image_y;
2948 
2949       intel_miptree_get_image_offset(s_mt, level, slice,
2950 				     &s_image_x, &s_image_y);
2951       intel_miptree_get_image_offset(z_mt, level, slice,
2952 				     &z_image_x, &z_image_y);
2953 
2954       for (uint32_t y = 0; y < map->h; y++) {
2955 	 for (uint32_t x = 0; x < map->w; x++) {
2956 	    ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2957 						 x + s_image_x + map->x,
2958 						 y + s_image_y + map->y,
2959 						 brw->has_swizzling);
2960 	    ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2961                                   (z_mt->pitch / 4) +
2962 				  (x + z_image_x + map->x));
2963 
2964 	    if (map_z32f_x24s8) {
2965 	       z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2966 	       s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2967 	    } else {
2968 	       uint32_t packed = packed_map[y * map->w + x];
2969 	       s_map[s_offset] = packed >> 24;
2970 	       z_map[z_offset] = packed;
2971 	    }
2972 	 }
2973       }
2974 
2975       intel_miptree_unmap_raw(s_mt);
2976       intel_miptree_unmap_raw(z_mt);
2977 
2978       DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2979 	  __func__,
2980 	  map->x, map->y, map->w, map->h,
2981 	  z_mt, _mesa_get_format_name(z_mt->format),
2982 	  map->x + z_image_x, map->y + z_image_y,
2983 	  s_mt, map->x + s_image_x, map->y + s_image_y,
2984 	  map->ptr, map->stride);
2985    }
2986 
2987    free(map->buffer);
2988 }
2989 
2990 /**
2991  * Create and attach a map to the miptree at (level, slice). Return the
2992  * attached map.
2993  */
2994 static struct intel_miptree_map*
intel_miptree_attach_map(struct intel_mipmap_tree * mt,unsigned int level,unsigned int slice,unsigned int x,unsigned int y,unsigned int w,unsigned int h,GLbitfield mode)2995 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2996                          unsigned int level,
2997                          unsigned int slice,
2998                          unsigned int x,
2999                          unsigned int y,
3000                          unsigned int w,
3001                          unsigned int h,
3002                          GLbitfield mode)
3003 {
3004    struct intel_miptree_map *map = calloc(1, sizeof(*map));
3005 
3006    if (!map)
3007       return NULL;
3008 
3009    assert(mt->level[level].slice[slice].map == NULL);
3010    mt->level[level].slice[slice].map = map;
3011 
3012    map->mode = mode;
3013    map->x = x;
3014    map->y = y;
3015    map->w = w;
3016    map->h = h;
3017 
3018    return map;
3019 }
3020 
3021 /**
3022  * Release the map at (level, slice).
3023  */
3024 static void
intel_miptree_release_map(struct intel_mipmap_tree * mt,unsigned int level,unsigned int slice)3025 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3026                          unsigned int level,
3027                          unsigned int slice)
3028 {
3029    struct intel_miptree_map **map;
3030 
3031    map = &mt->level[level].slice[slice].map;
3032    free(*map);
3033    *map = NULL;
3034 }
3035 
3036 static bool
can_blit_slice(struct intel_mipmap_tree * mt,unsigned int level,unsigned int slice)3037 can_blit_slice(struct intel_mipmap_tree *mt,
3038                unsigned int level, unsigned int slice)
3039 {
3040    /* See intel_miptree_blit() for details on the 32k pitch limit. */
3041    if (mt->pitch >= 32768)
3042       return false;
3043 
3044    return true;
3045 }
3046 
3047 static bool
use_intel_mipree_map_blit(struct brw_context * brw,struct intel_mipmap_tree * mt,GLbitfield mode,unsigned int level,unsigned int slice)3048 use_intel_mipree_map_blit(struct brw_context *brw,
3049                           struct intel_mipmap_tree *mt,
3050                           GLbitfield mode,
3051                           unsigned int level,
3052                           unsigned int slice)
3053 {
3054    if (brw->has_llc &&
3055       /* It's probably not worth swapping to the blit ring because of
3056        * all the overhead involved. But, we must use blitter for the
3057        * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
3058        */
3059        (!(mode & GL_MAP_WRITE_BIT) ||
3060         mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
3061        !mt->compressed &&
3062        (mt->tiling == I915_TILING_X ||
3063         /* Prior to Sandybridge, the blitter can't handle Y tiling */
3064         (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3065         /* Fast copy blit on skl+ supports all tiling formats. */
3066         brw->gen >= 9) &&
3067        can_blit_slice(mt, level, slice))
3068       return true;
3069 
3070    if (mt->tiling != I915_TILING_NONE &&
3071        mt->bo->size >= brw->max_gtt_map_object_size) {
3072       assert(can_blit_slice(mt, level, slice));
3073       return true;
3074    }
3075 
3076    return false;
3077 }
3078 
3079 /**
3080  * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3081  * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3082  * arithmetic overflow.
3083  *
3084  * If you call this function and use \a out_stride, then you're doing pointer
3085  * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3086  * bugs.  The caller must still take care to avoid 32-bit overflow errors in
3087  * all arithmetic expressions that contain buffer offsets and pixel sizes,
3088  * which usually have type uint32_t or GLuint.
3089  */
3090 void
intel_miptree_map(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned int level,unsigned int slice,unsigned int x,unsigned int y,unsigned int w,unsigned int h,GLbitfield mode,void ** out_ptr,ptrdiff_t * out_stride)3091 intel_miptree_map(struct brw_context *brw,
3092                   struct intel_mipmap_tree *mt,
3093                   unsigned int level,
3094                   unsigned int slice,
3095                   unsigned int x,
3096                   unsigned int y,
3097                   unsigned int w,
3098                   unsigned int h,
3099                   GLbitfield mode,
3100                   void **out_ptr,
3101                   ptrdiff_t *out_stride)
3102 {
3103    struct intel_miptree_map *map;
3104 
3105    assert(mt->num_samples <= 1);
3106 
3107    map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3108    if (!map){
3109       *out_ptr = NULL;
3110       *out_stride = 0;
3111       return;
3112    }
3113 
3114    intel_miptree_slice_resolve_depth(brw, mt, level, slice);
3115    if (map->mode & GL_MAP_WRITE_BIT) {
3116       intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
3117    }
3118 
3119    if (mt->format == MESA_FORMAT_S_UINT8) {
3120       intel_miptree_map_s8(brw, mt, map, level, slice);
3121    } else if (mt->etc_format != MESA_FORMAT_NONE &&
3122               !(mode & BRW_MAP_DIRECT_BIT)) {
3123       intel_miptree_map_etc(brw, mt, map, level, slice);
3124    } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3125       intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3126    } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3127       intel_miptree_map_blit(brw, mt, map, level, slice);
3128 #if defined(USE_SSE41)
3129    } else if (!(mode & GL_MAP_WRITE_BIT) &&
3130               !mt->compressed && cpu_has_sse4_1 &&
3131               (mt->pitch % 16 == 0)) {
3132       intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3133 #endif
3134    } else {
3135       /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
3136       assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
3137       intel_miptree_map_gtt(brw, mt, map, level, slice);
3138    }
3139 
3140    *out_ptr = map->ptr;
3141    *out_stride = map->stride;
3142 
3143    if (map->ptr == NULL)
3144       intel_miptree_release_map(mt, level, slice);
3145 }
3146 
3147 void
intel_miptree_unmap(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned int level,unsigned int slice)3148 intel_miptree_unmap(struct brw_context *brw,
3149                     struct intel_mipmap_tree *mt,
3150                     unsigned int level,
3151                     unsigned int slice)
3152 {
3153    struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3154 
3155    assert(mt->num_samples <= 1);
3156 
3157    if (!map)
3158       return;
3159 
3160    DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3161        mt, _mesa_get_format_name(mt->format), level, slice);
3162 
3163    if (mt->format == MESA_FORMAT_S_UINT8) {
3164       intel_miptree_unmap_s8(brw, mt, map, level, slice);
3165    } else if (mt->etc_format != MESA_FORMAT_NONE &&
3166               !(map->mode & BRW_MAP_DIRECT_BIT)) {
3167       intel_miptree_unmap_etc(brw, mt, map, level, slice);
3168    } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3169       intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3170    } else if (map->linear_mt) {
3171       intel_miptree_unmap_blit(brw, mt, map, level, slice);
3172 #if defined(USE_SSE41)
3173    } else if (map->buffer && cpu_has_sse4_1) {
3174       intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3175 #endif
3176    } else {
3177       intel_miptree_unmap_gtt(mt);
3178    }
3179 
3180    intel_miptree_release_map(mt, level, slice);
3181 }
3182 
3183 enum isl_surf_dim
get_isl_surf_dim(GLenum target)3184 get_isl_surf_dim(GLenum target)
3185 {
3186    switch (target) {
3187    case GL_TEXTURE_1D:
3188    case GL_TEXTURE_1D_ARRAY:
3189       return ISL_SURF_DIM_1D;
3190 
3191    case GL_TEXTURE_2D:
3192    case GL_TEXTURE_2D_ARRAY:
3193    case GL_TEXTURE_RECTANGLE:
3194    case GL_TEXTURE_CUBE_MAP:
3195    case GL_TEXTURE_CUBE_MAP_ARRAY:
3196    case GL_TEXTURE_2D_MULTISAMPLE:
3197    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3198    case GL_TEXTURE_EXTERNAL_OES:
3199       return ISL_SURF_DIM_2D;
3200 
3201    case GL_TEXTURE_3D:
3202       return ISL_SURF_DIM_3D;
3203    }
3204 
3205    unreachable("Invalid texture target");
3206 }
3207 
3208 enum isl_dim_layout
get_isl_dim_layout(const struct gen_device_info * devinfo,uint32_t tiling,GLenum target)3209 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3210                    GLenum target)
3211 {
3212    switch (target) {
3213    case GL_TEXTURE_1D:
3214    case GL_TEXTURE_1D_ARRAY:
3215       return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3216               ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3217 
3218    case GL_TEXTURE_2D:
3219    case GL_TEXTURE_2D_ARRAY:
3220    case GL_TEXTURE_RECTANGLE:
3221    case GL_TEXTURE_2D_MULTISAMPLE:
3222    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3223    case GL_TEXTURE_EXTERNAL_OES:
3224       return ISL_DIM_LAYOUT_GEN4_2D;
3225 
3226    case GL_TEXTURE_CUBE_MAP:
3227    case GL_TEXTURE_CUBE_MAP_ARRAY:
3228       return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3229               ISL_DIM_LAYOUT_GEN4_2D);
3230 
3231    case GL_TEXTURE_3D:
3232       return (devinfo->gen >= 9 ?
3233               ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3234    }
3235 
3236    unreachable("Invalid texture target");
3237 }
3238 
3239 enum isl_tiling
intel_miptree_get_isl_tiling(const struct intel_mipmap_tree * mt)3240 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3241 {
3242    if (mt->format == MESA_FORMAT_S_UINT8) {
3243       return ISL_TILING_W;
3244    } else {
3245       switch (mt->tiling) {
3246       case I915_TILING_NONE:
3247          return ISL_TILING_LINEAR;
3248       case I915_TILING_X:
3249          return ISL_TILING_X;
3250       case I915_TILING_Y:
3251          switch (mt->tr_mode) {
3252          case INTEL_MIPTREE_TRMODE_NONE:
3253             return ISL_TILING_Y0;
3254          case INTEL_MIPTREE_TRMODE_YF:
3255             return ISL_TILING_Yf;
3256          case INTEL_MIPTREE_TRMODE_YS:
3257             return ISL_TILING_Ys;
3258          default:
3259             unreachable("Invalid tiled resource mode");
3260          }
3261       default:
3262          unreachable("Invalid tiling mode");
3263       }
3264    }
3265 }
3266 
3267 void
intel_miptree_get_isl_surf(struct brw_context * brw,const struct intel_mipmap_tree * mt,struct isl_surf * surf)3268 intel_miptree_get_isl_surf(struct brw_context *brw,
3269                            const struct intel_mipmap_tree *mt,
3270                            struct isl_surf *surf)
3271 {
3272    surf->dim = get_isl_surf_dim(mt->target);
3273    surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3274                                          mt->tiling, mt->target);
3275 
3276    if (mt->num_samples > 1) {
3277       switch (mt->msaa_layout) {
3278       case INTEL_MSAA_LAYOUT_IMS:
3279          surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3280          break;
3281       case INTEL_MSAA_LAYOUT_UMS:
3282       case INTEL_MSAA_LAYOUT_CMS:
3283          surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3284          break;
3285       default:
3286          unreachable("Invalid MSAA layout");
3287       }
3288    } else {
3289       surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3290    }
3291 
3292    surf->tiling = intel_miptree_get_isl_tiling(mt);
3293 
3294    if (mt->format == MESA_FORMAT_S_UINT8) {
3295       /* The ISL definition of row_pitch matches the surface state pitch field
3296        * a bit better than intel_mipmap_tree.  In particular, ISL incorporates
3297        * the factor of 2 for W-tiling in row_pitch.
3298        */
3299       surf->row_pitch = 2 * mt->pitch;
3300    } else {
3301       surf->row_pitch = mt->pitch;
3302    }
3303 
3304    surf->format = translate_tex_format(brw, mt->format, false);
3305 
3306    if (brw->gen >= 9) {
3307       if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3308          /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3309          surf->image_alignment_el = isl_extent3d(64, 1, 1);
3310       } else {
3311          /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3312           * alignment in terms of surface elements like we want.
3313           */
3314          surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3315       }
3316    } else {
3317       /* On earlier gens it's stored in pixels. */
3318       unsigned bw, bh;
3319       _mesa_get_format_block_size(mt->format, &bw, &bh);
3320       surf->image_alignment_el =
3321          isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3322    }
3323 
3324    surf->logical_level0_px.width = mt->logical_width0;
3325    surf->logical_level0_px.height = mt->logical_height0;
3326    if (surf->dim == ISL_SURF_DIM_3D) {
3327       surf->logical_level0_px.depth = mt->logical_depth0;
3328       surf->logical_level0_px.array_len = 1;
3329    } else {
3330       surf->logical_level0_px.depth = 1;
3331       surf->logical_level0_px.array_len = mt->logical_depth0;
3332    }
3333 
3334    surf->phys_level0_sa.width = mt->physical_width0;
3335    surf->phys_level0_sa.height = mt->physical_height0;
3336    if (surf->dim == ISL_SURF_DIM_3D) {
3337       surf->phys_level0_sa.depth = mt->physical_depth0;
3338       surf->phys_level0_sa.array_len = 1;
3339    } else {
3340       surf->phys_level0_sa.depth = 1;
3341       surf->phys_level0_sa.array_len = mt->physical_depth0;
3342    }
3343 
3344    surf->levels = mt->last_level + 1;
3345    surf->samples = MAX2(mt->num_samples, 1);
3346 
3347    surf->size = 0; /* TODO */
3348    surf->alignment = 0; /* TODO */
3349 
3350    switch (surf->dim_layout) {
3351    case ISL_DIM_LAYOUT_GEN4_2D:
3352    case ISL_DIM_LAYOUT_GEN4_3D:
3353       if (brw->gen >= 9) {
3354          surf->array_pitch_el_rows = mt->qpitch;
3355       } else {
3356          unsigned bw, bh;
3357          _mesa_get_format_block_size(mt->format, &bw, &bh);
3358          assert(mt->qpitch % bh == 0);
3359          surf->array_pitch_el_rows = mt->qpitch / bh;
3360       }
3361       break;
3362    case ISL_DIM_LAYOUT_GEN9_1D:
3363       surf->array_pitch_el_rows = 1;
3364       break;
3365    }
3366 
3367    switch (mt->array_layout) {
3368    case ALL_LOD_IN_EACH_SLICE:
3369       surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3370       break;
3371    case ALL_SLICES_AT_EACH_LOD:
3372       surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3373       break;
3374    default:
3375       unreachable("Invalid array layout");
3376    }
3377 
3378    GLenum base_format = _mesa_get_format_base_format(mt->format);
3379    switch (base_format) {
3380    case GL_DEPTH_COMPONENT:
3381       surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3382       break;
3383    case GL_STENCIL_INDEX:
3384       surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3385       if (brw->gen >= 8)
3386          surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3387       break;
3388    case GL_DEPTH_STENCIL:
3389       /* In this case we only texture from the depth part */
3390       surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3391                     ISL_SURF_USAGE_TEXTURE_BIT;
3392       break;
3393    default:
3394       surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3395       if (brw->format_supported_as_render_target[mt->format])
3396          surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3397       break;
3398    }
3399 
3400    if (_mesa_is_cube_map_texture(mt->target))
3401       surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3402 }
3403 
3404 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3405  * USED FOR ANY REAL CALCULATIONS.  THE ONLY VALID USE OF SUCH A SURFACE IS TO
3406  * PASS IT INTO isl_surf_fill_state.
3407  */
3408 void
intel_miptree_get_aux_isl_surf(struct brw_context * brw,const struct intel_mipmap_tree * mt,struct isl_surf * surf,enum isl_aux_usage * usage)3409 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3410                                const struct intel_mipmap_tree *mt,
3411                                struct isl_surf *surf,
3412                                enum isl_aux_usage *usage)
3413 {
3414    uint32_t aux_pitch, aux_qpitch;
3415    if (mt->mcs_buf) {
3416       aux_pitch = mt->mcs_buf->pitch;
3417       aux_qpitch = mt->mcs_buf->qpitch;
3418 
3419       if (mt->num_samples > 1) {
3420          assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3421          *usage = ISL_AUX_USAGE_MCS;
3422       } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3423          assert(brw->gen >= 9);
3424          *usage = ISL_AUX_USAGE_CCS_E;
3425       } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
3426          *usage = ISL_AUX_USAGE_CCS_D;
3427       } else {
3428          unreachable("Invalid MCS miptree");
3429       }
3430    } else if (mt->hiz_buf) {
3431       if (mt->hiz_buf->mt) {
3432          aux_pitch = mt->hiz_buf->mt->pitch;
3433          aux_qpitch = mt->hiz_buf->mt->qpitch;
3434       } else {
3435          aux_pitch = mt->hiz_buf->aux_base.pitch;
3436          aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3437       }
3438 
3439       *usage = ISL_AUX_USAGE_HIZ;
3440    } else {
3441       *usage = ISL_AUX_USAGE_NONE;
3442       return;
3443    }
3444 
3445    /* Start with a copy of the original surface. */
3446    intel_miptree_get_isl_surf(brw, mt, surf);
3447 
3448    /* Figure out the format and tiling of the auxiliary surface */
3449    switch (*usage) {
3450    case ISL_AUX_USAGE_NONE:
3451       unreachable("Invalid auxiliary usage");
3452 
3453    case ISL_AUX_USAGE_HIZ:
3454       isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3455       break;
3456 
3457    case ISL_AUX_USAGE_MCS:
3458       /*
3459        * From the SKL PRM:
3460        *    "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3461        *    HALIGN 16 must be used."
3462        */
3463       if (brw->gen >= 9)
3464          assert(mt->halign == 16);
3465 
3466       isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3467       break;
3468 
3469    case ISL_AUX_USAGE_CCS_D:
3470    case ISL_AUX_USAGE_CCS_E:
3471       /*
3472        * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3473        *
3474        *    "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3475        *
3476        * From the hardware spec for GEN9:
3477        *
3478        *    "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3479        *    HALIGN 16 must be used."
3480        */
3481       assert(mt->num_samples <= 1);
3482       if (brw->gen >= 8)
3483          assert(mt->halign == 16);
3484 
3485       isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3486       break;
3487    }
3488 
3489    /* We want the pitch of the actual aux buffer. */
3490    surf->row_pitch = aux_pitch;
3491 
3492    /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3493     * is in elements.  This doesn't match intel_mipmap_tree::qpitch which is
3494     * in elements of the primary color surface so we have to divide by the
3495     * compression block height.
3496     */
3497    surf->array_pitch_el_rows =
3498       aux_qpitch / isl_format_get_layout(surf->format)->bh;
3499 }
3500 
3501 union isl_color_value
intel_miptree_get_isl_clear_color(struct brw_context * brw,const struct intel_mipmap_tree * mt)3502 intel_miptree_get_isl_clear_color(struct brw_context *brw,
3503                                   const struct intel_mipmap_tree *mt)
3504 {
3505    union isl_color_value clear_color;
3506 
3507    if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
3508       clear_color.i32[0] = mt->depth_clear_value;
3509       clear_color.i32[1] = 0;
3510       clear_color.i32[2] = 0;
3511       clear_color.i32[3] = 0;
3512    } else if (brw->gen >= 9) {
3513       clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
3514       clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
3515       clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
3516       clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
3517    } else if (_mesa_is_format_integer(mt->format)) {
3518       clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3519       clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3520       clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3521       clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3522    } else {
3523       clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3524       clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3525       clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3526       clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3527    }
3528 
3529    return clear_color;
3530 }
3531