1 #include <unistd.h>
2 #include <fcntl.h>
3 #include <string.h>
4 #include <signal.h>
5 #include <time.h>
6 #include <assert.h>
7
8 #include "fio.h"
9 #include "hash.h"
10 #include "verify.h"
11 #include "trim.h"
12 #include "lib/rand.h"
13 #include "lib/axmap.h"
14 #include "err.h"
15 #include "lib/pow2.h"
16 #include "minmax.h"
17
18 struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timeval time; /* output */
24 };
25
26 /*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
random_map_free(struct fio_file * f,const uint64_t block)30 static bool random_map_free(struct fio_file *f, const uint64_t block)
31 {
32 return !axmap_isset(f->io_axmap, block);
33 }
34
35 /*
36 * Mark a given offset as used in the map.
37 */
mark_random_map(struct thread_data * td,struct io_u * io_u)38 static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39 {
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53 }
54
last_block(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir)55 static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57 {
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82 }
83
84 struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87 };
88
__get_next_rand_offset(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b,uint64_t lastb)89 static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92 {
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132 ret:
133 return 0;
134 }
135
__get_next_rand_offset_zipf(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)136 static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139 {
140 *b = zipf_next(&f->zipf);
141 return 0;
142 }
143
__get_next_rand_offset_pareto(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)144 static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147 {
148 *b = pareto_next(&f->zipf);
149 return 0;
150 }
151
__get_next_rand_offset_gauss(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)152 static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155 {
156 *b = gauss_next(&f->gauss);
157 return 0;
158 }
159
__get_next_rand_offset_zoned(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)160 static int __get_next_rand_offset_zoned(struct thread_data *td,
161 struct fio_file *f, enum fio_ddir ddir,
162 uint64_t *b)
163 {
164 unsigned int v, send, stotal;
165 uint64_t offset, lastb;
166 static int warned;
167 struct zone_split_index *zsi;
168
169 lastb = last_block(td, f, ddir);
170 if (!lastb)
171 return 1;
172
173 if (!td->o.zone_split_nr[ddir]) {
174 bail:
175 return __get_next_rand_offset(td, f, ddir, b, lastb);
176 }
177
178 /*
179 * Generate a value, v, between 1 and 100, both inclusive
180 */
181 v = rand32_between(&td->zone_state, 1, 100);
182
183 zsi = &td->zone_state_index[ddir][v - 1];
184 stotal = zsi->size_perc_prev;
185 send = zsi->size_perc;
186
187 /*
188 * Should never happen
189 */
190 if (send == -1U) {
191 if (!warned) {
192 log_err("fio: bug in zoned generation\n");
193 warned = 1;
194 }
195 goto bail;
196 }
197
198 /*
199 * 'send' is some percentage below or equal to 100 that
200 * marks the end of the current IO range. 'stotal' marks
201 * the start, in percent.
202 */
203 if (stotal)
204 offset = stotal * lastb / 100ULL;
205 else
206 offset = 0;
207
208 lastb = lastb * (send - stotal) / 100ULL;
209
210 /*
211 * Generate index from 0..send-of-lastb
212 */
213 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
214 return 1;
215
216 /*
217 * Add our start offset, if any
218 */
219 if (offset)
220 *b += offset;
221
222 return 0;
223 }
224
flist_cmp(void * data,struct flist_head * a,struct flist_head * b)225 static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
226 {
227 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
228 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
229
230 return r1->off - r2->off;
231 }
232
get_off_from_method(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)233 static int get_off_from_method(struct thread_data *td, struct fio_file *f,
234 enum fio_ddir ddir, uint64_t *b)
235 {
236 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
237 uint64_t lastb;
238
239 lastb = last_block(td, f, ddir);
240 if (!lastb)
241 return 1;
242
243 return __get_next_rand_offset(td, f, ddir, b, lastb);
244 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
245 return __get_next_rand_offset_zipf(td, f, ddir, b);
246 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
247 return __get_next_rand_offset_pareto(td, f, ddir, b);
248 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
249 return __get_next_rand_offset_gauss(td, f, ddir, b);
250 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
251 return __get_next_rand_offset_zoned(td, f, ddir, b);
252
253 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
254 return 1;
255 }
256
257 /*
258 * Sort the reads for a verify phase in batches of verifysort_nr, if
259 * specified.
260 */
should_sort_io(struct thread_data * td)261 static inline bool should_sort_io(struct thread_data *td)
262 {
263 if (!td->o.verifysort_nr || !td->o.do_verify)
264 return false;
265 if (!td_random(td))
266 return false;
267 if (td->runstate != TD_VERIFYING)
268 return false;
269 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
270 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
271 return false;
272
273 return true;
274 }
275
should_do_random(struct thread_data * td,enum fio_ddir ddir)276 static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
277 {
278 unsigned int v;
279
280 if (td->o.perc_rand[ddir] == 100)
281 return true;
282
283 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
284
285 return v <= td->o.perc_rand[ddir];
286 }
287
get_next_rand_offset(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)288 static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
289 enum fio_ddir ddir, uint64_t *b)
290 {
291 struct rand_off *r;
292 int i, ret = 1;
293
294 if (!should_sort_io(td))
295 return get_off_from_method(td, f, ddir, b);
296
297 if (!flist_empty(&td->next_rand_list)) {
298 fetch:
299 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
300 flist_del(&r->list);
301 *b = r->off;
302 free(r);
303 return 0;
304 }
305
306 for (i = 0; i < td->o.verifysort_nr; i++) {
307 r = malloc(sizeof(*r));
308
309 ret = get_off_from_method(td, f, ddir, &r->off);
310 if (ret) {
311 free(r);
312 break;
313 }
314
315 flist_add(&r->list, &td->next_rand_list);
316 }
317
318 if (ret && !i)
319 return ret;
320
321 assert(!flist_empty(&td->next_rand_list));
322 flist_sort(NULL, &td->next_rand_list, flist_cmp);
323 goto fetch;
324 }
325
get_next_rand_block(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)326 static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
327 enum fio_ddir ddir, uint64_t *b)
328 {
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331
332 if (td->o.time_based ||
333 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
334 fio_file_reset(td, f);
335 if (!get_next_rand_offset(td, f, ddir, b))
336 return 0;
337 }
338
339 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
340 f->file_name, (unsigned long long) f->last_pos[ddir],
341 (unsigned long long) f->real_file_size);
342 return 1;
343 }
344
get_next_seq_offset(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * offset)345 static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
346 enum fio_ddir ddir, uint64_t *offset)
347 {
348 struct thread_options *o = &td->o;
349
350 assert(ddir_rw(ddir));
351
352 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
353 o->time_based) {
354 struct thread_options *o = &td->o;
355 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
356
357 if (io_size > f->last_pos[ddir])
358 f->last_pos[ddir] = 0;
359 else
360 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
361 }
362
363 if (f->last_pos[ddir] < f->real_file_size) {
364 uint64_t pos;
365
366 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
367 if (f->real_file_size > f->io_size)
368 f->last_pos[ddir] = f->io_size;
369 else
370 f->last_pos[ddir] = f->real_file_size;
371 }
372
373 pos = f->last_pos[ddir] - f->file_offset;
374 if (pos && o->ddir_seq_add) {
375 pos += o->ddir_seq_add;
376
377 /*
378 * If we reach beyond the end of the file
379 * with holed IO, wrap around to the
380 * beginning again. If we're doing backwards IO,
381 * wrap to the end.
382 */
383 if (pos >= f->real_file_size) {
384 if (o->ddir_seq_add > 0)
385 pos = f->file_offset;
386 else {
387 if (f->real_file_size > f->io_size)
388 pos = f->io_size;
389 else
390 pos = f->real_file_size;
391
392 pos += o->ddir_seq_add;
393 }
394 }
395 }
396
397 *offset = pos;
398 return 0;
399 }
400
401 return 1;
402 }
403
get_next_block(struct thread_data * td,struct io_u * io_u,enum fio_ddir ddir,int rw_seq,unsigned int * is_random)404 static int get_next_block(struct thread_data *td, struct io_u *io_u,
405 enum fio_ddir ddir, int rw_seq,
406 unsigned int *is_random)
407 {
408 struct fio_file *f = io_u->file;
409 uint64_t b, offset;
410 int ret;
411
412 assert(ddir_rw(ddir));
413
414 b = offset = -1ULL;
415
416 if (rw_seq) {
417 if (td_random(td)) {
418 if (should_do_random(td, ddir)) {
419 ret = get_next_rand_block(td, f, ddir, &b);
420 *is_random = 1;
421 } else {
422 *is_random = 0;
423 io_u_set(td, io_u, IO_U_F_BUSY_OK);
424 ret = get_next_seq_offset(td, f, ddir, &offset);
425 if (ret)
426 ret = get_next_rand_block(td, f, ddir, &b);
427 }
428 } else {
429 *is_random = 0;
430 ret = get_next_seq_offset(td, f, ddir, &offset);
431 }
432 } else {
433 io_u_set(td, io_u, IO_U_F_BUSY_OK);
434 *is_random = 0;
435
436 if (td->o.rw_seq == RW_SEQ_SEQ) {
437 ret = get_next_seq_offset(td, f, ddir, &offset);
438 if (ret) {
439 ret = get_next_rand_block(td, f, ddir, &b);
440 *is_random = 0;
441 }
442 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
443 if (f->last_start[ddir] != -1ULL)
444 offset = f->last_start[ddir] - f->file_offset;
445 else
446 offset = 0;
447 ret = 0;
448 } else {
449 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
450 ret = 1;
451 }
452 }
453
454 if (!ret) {
455 if (offset != -1ULL)
456 io_u->offset = offset;
457 else if (b != -1ULL)
458 io_u->offset = b * td->o.ba[ddir];
459 else {
460 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
461 ret = 1;
462 }
463 }
464
465 return ret;
466 }
467
468 /*
469 * For random io, generate a random new block and see if it's used. Repeat
470 * until we find a free one. For sequential io, just return the end of
471 * the last io issued.
472 */
__get_next_offset(struct thread_data * td,struct io_u * io_u,unsigned int * is_random)473 static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
474 unsigned int *is_random)
475 {
476 struct fio_file *f = io_u->file;
477 enum fio_ddir ddir = io_u->ddir;
478 int rw_seq_hit = 0;
479
480 assert(ddir_rw(ddir));
481
482 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
483 rw_seq_hit = 1;
484 td->ddir_seq_nr = td->o.ddir_seq_nr;
485 }
486
487 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
488 return 1;
489
490 if (io_u->offset >= f->io_size) {
491 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
492 (unsigned long long) io_u->offset,
493 (unsigned long long) f->io_size);
494 return 1;
495 }
496
497 io_u->offset += f->file_offset;
498 if (io_u->offset >= f->real_file_size) {
499 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
500 (unsigned long long) io_u->offset,
501 (unsigned long long) f->real_file_size);
502 return 1;
503 }
504
505 return 0;
506 }
507
get_next_offset(struct thread_data * td,struct io_u * io_u,unsigned int * is_random)508 static int get_next_offset(struct thread_data *td, struct io_u *io_u,
509 unsigned int *is_random)
510 {
511 if (td->flags & TD_F_PROFILE_OPS) {
512 struct prof_io_ops *ops = &td->prof_io_ops;
513
514 if (ops->fill_io_u_off)
515 return ops->fill_io_u_off(td, io_u, is_random);
516 }
517
518 return __get_next_offset(td, io_u, is_random);
519 }
520
io_u_fits(struct thread_data * td,struct io_u * io_u,unsigned int buflen)521 static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
522 unsigned int buflen)
523 {
524 struct fio_file *f = io_u->file;
525
526 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
527 }
528
__get_next_buflen(struct thread_data * td,struct io_u * io_u,unsigned int is_random)529 static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
530 unsigned int is_random)
531 {
532 int ddir = io_u->ddir;
533 unsigned int buflen = 0;
534 unsigned int minbs, maxbs;
535 uint64_t frand_max, r;
536 bool power_2;
537
538 assert(ddir_rw(ddir));
539
540 if (td->o.bs_is_seq_rand)
541 ddir = is_random ? DDIR_WRITE: DDIR_READ;
542
543 minbs = td->o.min_bs[ddir];
544 maxbs = td->o.max_bs[ddir];
545
546 if (minbs == maxbs)
547 return minbs;
548
549 /*
550 * If we can't satisfy the min block size from here, then fail
551 */
552 if (!io_u_fits(td, io_u, minbs))
553 return 0;
554
555 frand_max = rand_max(&td->bsrange_state);
556 do {
557 r = __rand(&td->bsrange_state);
558
559 if (!td->o.bssplit_nr[ddir]) {
560 buflen = 1 + (unsigned int) ((double) maxbs *
561 (r / (frand_max + 1.0)));
562 if (buflen < minbs)
563 buflen = minbs;
564 } else {
565 long long perc = 0;
566 unsigned int i;
567
568 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
569 struct bssplit *bsp = &td->o.bssplit[ddir][i];
570
571 buflen = bsp->bs;
572 perc += bsp->perc;
573 if (!perc)
574 break;
575 if ((r / perc <= frand_max / 100ULL) &&
576 io_u_fits(td, io_u, buflen))
577 break;
578 }
579 }
580
581 power_2 = is_power_of_2(minbs);
582 if (!td->o.bs_unaligned && power_2)
583 buflen &= ~(minbs - 1);
584 else if (!td->o.bs_unaligned && !power_2)
585 buflen -= buflen % minbs;
586 } while (!io_u_fits(td, io_u, buflen));
587
588 return buflen;
589 }
590
get_next_buflen(struct thread_data * td,struct io_u * io_u,unsigned int is_random)591 static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
592 unsigned int is_random)
593 {
594 if (td->flags & TD_F_PROFILE_OPS) {
595 struct prof_io_ops *ops = &td->prof_io_ops;
596
597 if (ops->fill_io_u_size)
598 return ops->fill_io_u_size(td, io_u, is_random);
599 }
600
601 return __get_next_buflen(td, io_u, is_random);
602 }
603
set_rwmix_bytes(struct thread_data * td)604 static void set_rwmix_bytes(struct thread_data *td)
605 {
606 unsigned int diff;
607
608 /*
609 * we do time or byte based switch. this is needed because
610 * buffered writes may issue a lot quicker than they complete,
611 * whereas reads do not.
612 */
613 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
614 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
615 }
616
get_rand_ddir(struct thread_data * td)617 static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
618 {
619 unsigned int v;
620
621 v = rand32_between(&td->rwmix_state, 1, 100);
622
623 if (v <= td->o.rwmix[DDIR_READ])
624 return DDIR_READ;
625
626 return DDIR_WRITE;
627 }
628
io_u_quiesce(struct thread_data * td)629 int io_u_quiesce(struct thread_data *td)
630 {
631 int completed = 0;
632
633 /*
634 * We are going to sleep, ensure that we flush anything pending as
635 * not to skew our latency numbers.
636 *
637 * Changed to only monitor 'in flight' requests here instead of the
638 * td->cur_depth, b/c td->cur_depth does not accurately represent
639 * io's that have been actually submitted to an async engine,
640 * and cur_depth is meaningless for sync engines.
641 */
642 if (td->io_u_queued || td->cur_depth) {
643 int fio_unused ret;
644
645 ret = td_io_commit(td);
646 }
647
648 while (td->io_u_in_flight) {
649 int ret;
650
651 ret = io_u_queued_complete(td, 1);
652 if (ret > 0)
653 completed += ret;
654 }
655
656 if (td->flags & TD_F_REGROW_LOGS)
657 regrow_logs(td);
658
659 return completed;
660 }
661
rate_ddir(struct thread_data * td,enum fio_ddir ddir)662 static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
663 {
664 enum fio_ddir odir = ddir ^ 1;
665 long usec;
666 uint64_t now;
667
668 assert(ddir_rw(ddir));
669 now = utime_since_now(&td->start);
670
671 /*
672 * if rate_next_io_time is in the past, need to catch up to rate
673 */
674 if (td->rate_next_io_time[ddir] <= now)
675 return ddir;
676
677 /*
678 * We are ahead of rate in this direction. See if we
679 * should switch.
680 */
681 if (td_rw(td) && td->o.rwmix[odir]) {
682 /*
683 * Other direction is behind rate, switch
684 */
685 if (td->rate_next_io_time[odir] <= now)
686 return odir;
687
688 /*
689 * Both directions are ahead of rate. sleep the min
690 * switch if necissary
691 */
692 if (td->rate_next_io_time[ddir] <=
693 td->rate_next_io_time[odir]) {
694 usec = td->rate_next_io_time[ddir] - now;
695 } else {
696 usec = td->rate_next_io_time[odir] - now;
697 ddir = odir;
698 }
699 } else
700 usec = td->rate_next_io_time[ddir] - now;
701
702 if (td->o.io_submit_mode == IO_MODE_INLINE)
703 io_u_quiesce(td);
704
705 usec = usec_sleep(td, usec);
706
707 return ddir;
708 }
709
710 /*
711 * Return the data direction for the next io_u. If the job is a
712 * mixed read/write workload, check the rwmix cycle and switch if
713 * necessary.
714 */
get_rw_ddir(struct thread_data * td)715 static enum fio_ddir get_rw_ddir(struct thread_data *td)
716 {
717 enum fio_ddir ddir;
718
719 /*
720 * See if it's time to fsync/fdatasync/sync_file_range first,
721 * and if not then move on to check regular I/Os.
722 */
723 if (should_fsync(td)) {
724 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
725 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
726 return DDIR_SYNC;
727
728 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
729 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
730 return DDIR_DATASYNC;
731
732 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
733 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
734 return DDIR_SYNC_FILE_RANGE;
735 }
736
737 if (td_rw(td)) {
738 /*
739 * Check if it's time to seed a new data direction.
740 */
741 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
742 /*
743 * Put a top limit on how many bytes we do for
744 * one data direction, to avoid overflowing the
745 * ranges too much
746 */
747 ddir = get_rand_ddir(td);
748
749 if (ddir != td->rwmix_ddir)
750 set_rwmix_bytes(td);
751
752 td->rwmix_ddir = ddir;
753 }
754 ddir = td->rwmix_ddir;
755 } else if (td_read(td))
756 ddir = DDIR_READ;
757 else if (td_write(td))
758 ddir = DDIR_WRITE;
759 else if (td_trim(td))
760 ddir = DDIR_TRIM;
761 else
762 ddir = DDIR_INVAL;
763
764 td->rwmix_ddir = rate_ddir(td, ddir);
765 return td->rwmix_ddir;
766 }
767
set_rw_ddir(struct thread_data * td,struct io_u * io_u)768 static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
769 {
770 enum fio_ddir ddir = get_rw_ddir(td);
771
772 if (td_trimwrite(td)) {
773 struct fio_file *f = io_u->file;
774 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
775 ddir = DDIR_TRIM;
776 else
777 ddir = DDIR_WRITE;
778 }
779
780 io_u->ddir = io_u->acct_ddir = ddir;
781
782 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
783 td->o.barrier_blocks &&
784 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
785 td->io_issues[DDIR_WRITE])
786 io_u_set(td, io_u, IO_U_F_BARRIER);
787 }
788
put_file_log(struct thread_data * td,struct fio_file * f)789 void put_file_log(struct thread_data *td, struct fio_file *f)
790 {
791 unsigned int ret = put_file(td, f);
792
793 if (ret)
794 td_verror(td, ret, "file close");
795 }
796
put_io_u(struct thread_data * td,struct io_u * io_u)797 void put_io_u(struct thread_data *td, struct io_u *io_u)
798 {
799 if (td->parent)
800 td = td->parent;
801
802 td_io_u_lock(td);
803
804 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
805 put_file_log(td, io_u->file);
806
807 io_u->file = NULL;
808 io_u_set(td, io_u, IO_U_F_FREE);
809
810 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
811 td->cur_depth--;
812 assert(!(td->flags & TD_F_CHILD));
813 }
814 io_u_qpush(&td->io_u_freelist, io_u);
815 td_io_u_unlock(td);
816 td_io_u_free_notify(td);
817 }
818
clear_io_u(struct thread_data * td,struct io_u * io_u)819 void clear_io_u(struct thread_data *td, struct io_u *io_u)
820 {
821 io_u_clear(td, io_u, IO_U_F_FLIGHT);
822 put_io_u(td, io_u);
823 }
824
requeue_io_u(struct thread_data * td,struct io_u ** io_u)825 void requeue_io_u(struct thread_data *td, struct io_u **io_u)
826 {
827 struct io_u *__io_u = *io_u;
828 enum fio_ddir ddir = acct_ddir(__io_u);
829
830 dprint(FD_IO, "requeue %p\n", __io_u);
831
832 if (td->parent)
833 td = td->parent;
834
835 td_io_u_lock(td);
836
837 io_u_set(td, __io_u, IO_U_F_FREE);
838 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
839 td->io_issues[ddir]--;
840
841 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
842 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
843 td->cur_depth--;
844 assert(!(td->flags & TD_F_CHILD));
845 }
846
847 io_u_rpush(&td->io_u_requeues, __io_u);
848 td_io_u_unlock(td);
849 td_io_u_free_notify(td);
850 *io_u = NULL;
851 }
852
fill_io_u(struct thread_data * td,struct io_u * io_u)853 static int fill_io_u(struct thread_data *td, struct io_u *io_u)
854 {
855 unsigned int is_random;
856
857 if (td_ioengine_flagged(td, FIO_NOIO))
858 goto out;
859
860 set_rw_ddir(td, io_u);
861
862 /*
863 * fsync() or fdatasync() or trim etc, we are done
864 */
865 if (!ddir_rw(io_u->ddir))
866 goto out;
867
868 /*
869 * See if it's time to switch to a new zone
870 */
871 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
872 struct fio_file *f = io_u->file;
873
874 td->zone_bytes = 0;
875 f->file_offset += td->o.zone_range + td->o.zone_skip;
876
877 /*
878 * Wrap from the beginning, if we exceed the file size
879 */
880 if (f->file_offset >= f->real_file_size)
881 f->file_offset = f->real_file_size - f->file_offset;
882 f->last_pos[io_u->ddir] = f->file_offset;
883 td->io_skip_bytes += td->o.zone_skip;
884 }
885
886 /*
887 * No log, let the seq/rand engine retrieve the next buflen and
888 * position.
889 */
890 if (get_next_offset(td, io_u, &is_random)) {
891 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
892 return 1;
893 }
894
895 io_u->buflen = get_next_buflen(td, io_u, is_random);
896 if (!io_u->buflen) {
897 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
898 return 1;
899 }
900
901 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
902 dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
903 io_u);
904 dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
905 (unsigned long long) io_u->offset, io_u->buflen,
906 (unsigned long long) io_u->file->real_file_size);
907 return 1;
908 }
909
910 /*
911 * mark entry before potentially trimming io_u
912 */
913 if (td_random(td) && file_randommap(td, io_u->file))
914 mark_random_map(td, io_u);
915
916 out:
917 dprint_io_u(io_u, "fill_io_u");
918 td->zone_bytes += io_u->buflen;
919 return 0;
920 }
921
__io_u_mark_map(unsigned int * map,unsigned int nr)922 static void __io_u_mark_map(unsigned int *map, unsigned int nr)
923 {
924 int idx = 0;
925
926 switch (nr) {
927 default:
928 idx = 6;
929 break;
930 case 33 ... 64:
931 idx = 5;
932 break;
933 case 17 ... 32:
934 idx = 4;
935 break;
936 case 9 ... 16:
937 idx = 3;
938 break;
939 case 5 ... 8:
940 idx = 2;
941 break;
942 case 1 ... 4:
943 idx = 1;
944 case 0:
945 break;
946 }
947
948 map[idx]++;
949 }
950
io_u_mark_submit(struct thread_data * td,unsigned int nr)951 void io_u_mark_submit(struct thread_data *td, unsigned int nr)
952 {
953 __io_u_mark_map(td->ts.io_u_submit, nr);
954 td->ts.total_submit++;
955 }
956
io_u_mark_complete(struct thread_data * td,unsigned int nr)957 void io_u_mark_complete(struct thread_data *td, unsigned int nr)
958 {
959 __io_u_mark_map(td->ts.io_u_complete, nr);
960 td->ts.total_complete++;
961 }
962
io_u_mark_depth(struct thread_data * td,unsigned int nr)963 void io_u_mark_depth(struct thread_data *td, unsigned int nr)
964 {
965 int idx = 0;
966
967 switch (td->cur_depth) {
968 default:
969 idx = 6;
970 break;
971 case 32 ... 63:
972 idx = 5;
973 break;
974 case 16 ... 31:
975 idx = 4;
976 break;
977 case 8 ... 15:
978 idx = 3;
979 break;
980 case 4 ... 7:
981 idx = 2;
982 break;
983 case 2 ... 3:
984 idx = 1;
985 case 1:
986 break;
987 }
988
989 td->ts.io_u_map[idx] += nr;
990 }
991
io_u_mark_lat_usec(struct thread_data * td,unsigned long usec)992 static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
993 {
994 int idx = 0;
995
996 assert(usec < 1000);
997
998 switch (usec) {
999 case 750 ... 999:
1000 idx = 9;
1001 break;
1002 case 500 ... 749:
1003 idx = 8;
1004 break;
1005 case 250 ... 499:
1006 idx = 7;
1007 break;
1008 case 100 ... 249:
1009 idx = 6;
1010 break;
1011 case 50 ... 99:
1012 idx = 5;
1013 break;
1014 case 20 ... 49:
1015 idx = 4;
1016 break;
1017 case 10 ... 19:
1018 idx = 3;
1019 break;
1020 case 4 ... 9:
1021 idx = 2;
1022 break;
1023 case 2 ... 3:
1024 idx = 1;
1025 case 0 ... 1:
1026 break;
1027 }
1028
1029 assert(idx < FIO_IO_U_LAT_U_NR);
1030 td->ts.io_u_lat_u[idx]++;
1031 }
1032
io_u_mark_lat_msec(struct thread_data * td,unsigned long msec)1033 static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1034 {
1035 int idx = 0;
1036
1037 switch (msec) {
1038 default:
1039 idx = 11;
1040 break;
1041 case 1000 ... 1999:
1042 idx = 10;
1043 break;
1044 case 750 ... 999:
1045 idx = 9;
1046 break;
1047 case 500 ... 749:
1048 idx = 8;
1049 break;
1050 case 250 ... 499:
1051 idx = 7;
1052 break;
1053 case 100 ... 249:
1054 idx = 6;
1055 break;
1056 case 50 ... 99:
1057 idx = 5;
1058 break;
1059 case 20 ... 49:
1060 idx = 4;
1061 break;
1062 case 10 ... 19:
1063 idx = 3;
1064 break;
1065 case 4 ... 9:
1066 idx = 2;
1067 break;
1068 case 2 ... 3:
1069 idx = 1;
1070 case 0 ... 1:
1071 break;
1072 }
1073
1074 assert(idx < FIO_IO_U_LAT_M_NR);
1075 td->ts.io_u_lat_m[idx]++;
1076 }
1077
io_u_mark_latency(struct thread_data * td,unsigned long usec)1078 static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1079 {
1080 if (usec < 1000)
1081 io_u_mark_lat_usec(td, usec);
1082 else
1083 io_u_mark_lat_msec(td, usec / 1000);
1084 }
1085
__get_next_fileno_rand(struct thread_data * td)1086 static unsigned int __get_next_fileno_rand(struct thread_data *td)
1087 {
1088 unsigned long fileno;
1089
1090 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1091 uint64_t frand_max = rand_max(&td->next_file_state);
1092 unsigned long r;
1093
1094 r = __rand(&td->next_file_state);
1095 return (unsigned int) ((double) td->o.nr_files
1096 * (r / (frand_max + 1.0)));
1097 }
1098
1099 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1100 fileno = zipf_next(&td->next_file_zipf);
1101 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1102 fileno = pareto_next(&td->next_file_zipf);
1103 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1104 fileno = gauss_next(&td->next_file_gauss);
1105 else {
1106 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1107 assert(0);
1108 return 0;
1109 }
1110
1111 return fileno >> FIO_FSERVICE_SHIFT;
1112 }
1113
1114 /*
1115 * Get next file to service by choosing one at random
1116 */
get_next_file_rand(struct thread_data * td,enum fio_file_flags goodf,enum fio_file_flags badf)1117 static struct fio_file *get_next_file_rand(struct thread_data *td,
1118 enum fio_file_flags goodf,
1119 enum fio_file_flags badf)
1120 {
1121 struct fio_file *f;
1122 int fno;
1123
1124 do {
1125 int opened = 0;
1126
1127 fno = __get_next_fileno_rand(td);
1128
1129 f = td->files[fno];
1130 if (fio_file_done(f))
1131 continue;
1132
1133 if (!fio_file_open(f)) {
1134 int err;
1135
1136 if (td->nr_open_files >= td->o.open_files)
1137 return ERR_PTR(-EBUSY);
1138
1139 err = td_io_open_file(td, f);
1140 if (err)
1141 continue;
1142 opened = 1;
1143 }
1144
1145 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1146 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1147 return f;
1148 }
1149 if (opened)
1150 td_io_close_file(td, f);
1151 } while (1);
1152 }
1153
1154 /*
1155 * Get next file to service by doing round robin between all available ones
1156 */
get_next_file_rr(struct thread_data * td,int goodf,int badf)1157 static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1158 int badf)
1159 {
1160 unsigned int old_next_file = td->next_file;
1161 struct fio_file *f;
1162
1163 do {
1164 int opened = 0;
1165
1166 f = td->files[td->next_file];
1167
1168 td->next_file++;
1169 if (td->next_file >= td->o.nr_files)
1170 td->next_file = 0;
1171
1172 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1173 if (fio_file_done(f)) {
1174 f = NULL;
1175 continue;
1176 }
1177
1178 if (!fio_file_open(f)) {
1179 int err;
1180
1181 if (td->nr_open_files >= td->o.open_files)
1182 return ERR_PTR(-EBUSY);
1183
1184 err = td_io_open_file(td, f);
1185 if (err) {
1186 dprint(FD_FILE, "error %d on open of %s\n",
1187 err, f->file_name);
1188 f = NULL;
1189 continue;
1190 }
1191 opened = 1;
1192 }
1193
1194 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1195 f->flags);
1196 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1197 break;
1198
1199 if (opened)
1200 td_io_close_file(td, f);
1201
1202 f = NULL;
1203 } while (td->next_file != old_next_file);
1204
1205 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1206 return f;
1207 }
1208
__get_next_file(struct thread_data * td)1209 static struct fio_file *__get_next_file(struct thread_data *td)
1210 {
1211 struct fio_file *f;
1212
1213 assert(td->o.nr_files <= td->files_index);
1214
1215 if (td->nr_done_files >= td->o.nr_files) {
1216 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1217 " nr_files=%d\n", td->nr_open_files,
1218 td->nr_done_files,
1219 td->o.nr_files);
1220 return NULL;
1221 }
1222
1223 f = td->file_service_file;
1224 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1225 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1226 goto out;
1227 if (td->file_service_left--)
1228 goto out;
1229 }
1230
1231 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1232 td->o.file_service_type == FIO_FSERVICE_SEQ)
1233 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1234 else
1235 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1236
1237 if (IS_ERR(f))
1238 return f;
1239
1240 td->file_service_file = f;
1241 td->file_service_left = td->file_service_nr - 1;
1242 out:
1243 if (f)
1244 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1245 else
1246 dprint(FD_FILE, "get_next_file: NULL\n");
1247 return f;
1248 }
1249
get_next_file(struct thread_data * td)1250 static struct fio_file *get_next_file(struct thread_data *td)
1251 {
1252 if (td->flags & TD_F_PROFILE_OPS) {
1253 struct prof_io_ops *ops = &td->prof_io_ops;
1254
1255 if (ops->get_next_file)
1256 return ops->get_next_file(td);
1257 }
1258
1259 return __get_next_file(td);
1260 }
1261
set_io_u_file(struct thread_data * td,struct io_u * io_u)1262 static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1263 {
1264 struct fio_file *f;
1265
1266 do {
1267 f = get_next_file(td);
1268 if (IS_ERR_OR_NULL(f))
1269 return PTR_ERR(f);
1270
1271 io_u->file = f;
1272 get_file(f);
1273
1274 if (!fill_io_u(td, io_u))
1275 break;
1276
1277 put_file_log(td, f);
1278 td_io_close_file(td, f);
1279 io_u->file = NULL;
1280 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1281 fio_file_reset(td, f);
1282 else {
1283 fio_file_set_done(f);
1284 td->nr_done_files++;
1285 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1286 td->nr_done_files, td->o.nr_files);
1287 }
1288 } while (1);
1289
1290 return 0;
1291 }
1292
lat_fatal(struct thread_data * td,struct io_completion_data * icd,unsigned long tusec,unsigned long max_usec)1293 static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1294 unsigned long tusec, unsigned long max_usec)
1295 {
1296 if (!td->error)
1297 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1298 td_verror(td, ETIMEDOUT, "max latency exceeded");
1299 icd->error = ETIMEDOUT;
1300 }
1301
lat_new_cycle(struct thread_data * td)1302 static void lat_new_cycle(struct thread_data *td)
1303 {
1304 fio_gettime(&td->latency_ts, NULL);
1305 td->latency_ios = ddir_rw_sum(td->io_blocks);
1306 td->latency_failed = 0;
1307 }
1308
1309 /*
1310 * We had an IO outside the latency target. Reduce the queue depth. If we
1311 * are at QD=1, then it's time to give up.
1312 */
__lat_target_failed(struct thread_data * td)1313 static bool __lat_target_failed(struct thread_data *td)
1314 {
1315 if (td->latency_qd == 1)
1316 return true;
1317
1318 td->latency_qd_high = td->latency_qd;
1319
1320 if (td->latency_qd == td->latency_qd_low)
1321 td->latency_qd_low--;
1322
1323 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1324
1325 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1326
1327 /*
1328 * When we ramp QD down, quiesce existing IO to prevent
1329 * a storm of ramp downs due to pending higher depth.
1330 */
1331 io_u_quiesce(td);
1332 lat_new_cycle(td);
1333 return false;
1334 }
1335
lat_target_failed(struct thread_data * td)1336 static bool lat_target_failed(struct thread_data *td)
1337 {
1338 if (td->o.latency_percentile.u.f == 100.0)
1339 return __lat_target_failed(td);
1340
1341 td->latency_failed++;
1342 return false;
1343 }
1344
lat_target_init(struct thread_data * td)1345 void lat_target_init(struct thread_data *td)
1346 {
1347 td->latency_end_run = 0;
1348
1349 if (td->o.latency_target) {
1350 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1351 fio_gettime(&td->latency_ts, NULL);
1352 td->latency_qd = 1;
1353 td->latency_qd_high = td->o.iodepth;
1354 td->latency_qd_low = 1;
1355 td->latency_ios = ddir_rw_sum(td->io_blocks);
1356 } else
1357 td->latency_qd = td->o.iodepth;
1358 }
1359
lat_target_reset(struct thread_data * td)1360 void lat_target_reset(struct thread_data *td)
1361 {
1362 if (!td->latency_end_run)
1363 lat_target_init(td);
1364 }
1365
lat_target_success(struct thread_data * td)1366 static void lat_target_success(struct thread_data *td)
1367 {
1368 const unsigned int qd = td->latency_qd;
1369 struct thread_options *o = &td->o;
1370
1371 td->latency_qd_low = td->latency_qd;
1372
1373 /*
1374 * If we haven't failed yet, we double up to a failing value instead
1375 * of bisecting from highest possible queue depth. If we have set
1376 * a limit other than td->o.iodepth, bisect between that.
1377 */
1378 if (td->latency_qd_high != o->iodepth)
1379 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1380 else
1381 td->latency_qd *= 2;
1382
1383 if (td->latency_qd > o->iodepth)
1384 td->latency_qd = o->iodepth;
1385
1386 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1387
1388 /*
1389 * Same as last one, we are done. Let it run a latency cycle, so
1390 * we get only the results from the targeted depth.
1391 */
1392 if (td->latency_qd == qd) {
1393 if (td->latency_end_run) {
1394 dprint(FD_RATE, "We are done\n");
1395 td->done = 1;
1396 } else {
1397 dprint(FD_RATE, "Quiesce and final run\n");
1398 io_u_quiesce(td);
1399 td->latency_end_run = 1;
1400 reset_all_stats(td);
1401 reset_io_stats(td);
1402 }
1403 }
1404
1405 lat_new_cycle(td);
1406 }
1407
1408 /*
1409 * Check if we can bump the queue depth
1410 */
lat_target_check(struct thread_data * td)1411 void lat_target_check(struct thread_data *td)
1412 {
1413 uint64_t usec_window;
1414 uint64_t ios;
1415 double success_ios;
1416
1417 usec_window = utime_since_now(&td->latency_ts);
1418 if (usec_window < td->o.latency_window)
1419 return;
1420
1421 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1422 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1423 success_ios *= 100.0;
1424
1425 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1426
1427 if (success_ios >= td->o.latency_percentile.u.f)
1428 lat_target_success(td);
1429 else
1430 __lat_target_failed(td);
1431 }
1432
1433 /*
1434 * If latency target is enabled, we might be ramping up or down and not
1435 * using the full queue depth available.
1436 */
queue_full(const struct thread_data * td)1437 bool queue_full(const struct thread_data *td)
1438 {
1439 const int qempty = io_u_qempty(&td->io_u_freelist);
1440
1441 if (qempty)
1442 return true;
1443 if (!td->o.latency_target)
1444 return false;
1445
1446 return td->cur_depth >= td->latency_qd;
1447 }
1448
__get_io_u(struct thread_data * td)1449 struct io_u *__get_io_u(struct thread_data *td)
1450 {
1451 struct io_u *io_u = NULL;
1452
1453 if (td->stop_io)
1454 return NULL;
1455
1456 td_io_u_lock(td);
1457
1458 again:
1459 if (!io_u_rempty(&td->io_u_requeues))
1460 io_u = io_u_rpop(&td->io_u_requeues);
1461 else if (!queue_full(td)) {
1462 io_u = io_u_qpop(&td->io_u_freelist);
1463
1464 io_u->file = NULL;
1465 io_u->buflen = 0;
1466 io_u->resid = 0;
1467 io_u->end_io = NULL;
1468 }
1469
1470 if (io_u) {
1471 assert(io_u->flags & IO_U_F_FREE);
1472 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1473 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1474 IO_U_F_VER_LIST);
1475
1476 io_u->error = 0;
1477 io_u->acct_ddir = -1;
1478 td->cur_depth++;
1479 assert(!(td->flags & TD_F_CHILD));
1480 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1481 io_u->ipo = NULL;
1482 } else if (td_async_processing(td)) {
1483 /*
1484 * We ran out, wait for async verify threads to finish and
1485 * return one
1486 */
1487 assert(!(td->flags & TD_F_CHILD));
1488 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1489 goto again;
1490 }
1491
1492 td_io_u_unlock(td);
1493 return io_u;
1494 }
1495
check_get_trim(struct thread_data * td,struct io_u * io_u)1496 static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1497 {
1498 if (!(td->flags & TD_F_TRIM_BACKLOG))
1499 return false;
1500
1501 if (td->trim_entries) {
1502 int get_trim = 0;
1503
1504 if (td->trim_batch) {
1505 td->trim_batch--;
1506 get_trim = 1;
1507 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1508 td->last_ddir != DDIR_READ) {
1509 td->trim_batch = td->o.trim_batch;
1510 if (!td->trim_batch)
1511 td->trim_batch = td->o.trim_backlog;
1512 get_trim = 1;
1513 }
1514
1515 if (get_trim && get_next_trim(td, io_u))
1516 return true;
1517 }
1518
1519 return false;
1520 }
1521
check_get_verify(struct thread_data * td,struct io_u * io_u)1522 static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1523 {
1524 if (!(td->flags & TD_F_VER_BACKLOG))
1525 return false;
1526
1527 if (td->io_hist_len) {
1528 int get_verify = 0;
1529
1530 if (td->verify_batch)
1531 get_verify = 1;
1532 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1533 td->last_ddir != DDIR_READ) {
1534 td->verify_batch = td->o.verify_batch;
1535 if (!td->verify_batch)
1536 td->verify_batch = td->o.verify_backlog;
1537 get_verify = 1;
1538 }
1539
1540 if (get_verify && !get_next_verify(td, io_u)) {
1541 td->verify_batch--;
1542 return true;
1543 }
1544 }
1545
1546 return false;
1547 }
1548
1549 /*
1550 * Fill offset and start time into the buffer content, to prevent too
1551 * easy compressible data for simple de-dupe attempts. Do this for every
1552 * 512b block in the range, since that should be the smallest block size
1553 * we can expect from a device.
1554 */
small_content_scramble(struct io_u * io_u)1555 static void small_content_scramble(struct io_u *io_u)
1556 {
1557 unsigned int i, nr_blocks = io_u->buflen / 512;
1558 uint64_t boffset;
1559 unsigned int offset;
1560 void *p, *end;
1561
1562 if (!nr_blocks)
1563 return;
1564
1565 p = io_u->xfer_buf;
1566 boffset = io_u->offset;
1567 io_u->buf_filled_len = 0;
1568
1569 for (i = 0; i < nr_blocks; i++) {
1570 /*
1571 * Fill the byte offset into a "random" start offset of
1572 * the buffer, given by the product of the usec time
1573 * and the actual offset.
1574 */
1575 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1576 offset &= ~(sizeof(uint64_t) - 1);
1577 if (offset >= 512 - sizeof(uint64_t))
1578 offset -= sizeof(uint64_t);
1579 memcpy(p + offset, &boffset, sizeof(boffset));
1580
1581 end = p + 512 - sizeof(io_u->start_time);
1582 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1583 p += 512;
1584 boffset += 512;
1585 }
1586 }
1587
1588 /*
1589 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1590 * etc. The returned io_u is fully ready to be prepped and submitted.
1591 */
get_io_u(struct thread_data * td)1592 struct io_u *get_io_u(struct thread_data *td)
1593 {
1594 struct fio_file *f;
1595 struct io_u *io_u;
1596 int do_scramble = 0;
1597 long ret = 0;
1598
1599 io_u = __get_io_u(td);
1600 if (!io_u) {
1601 dprint(FD_IO, "__get_io_u failed\n");
1602 return NULL;
1603 }
1604
1605 if (check_get_verify(td, io_u))
1606 goto out;
1607 if (check_get_trim(td, io_u))
1608 goto out;
1609
1610 /*
1611 * from a requeue, io_u already setup
1612 */
1613 if (io_u->file)
1614 goto out;
1615
1616 /*
1617 * If using an iolog, grab next piece if any available.
1618 */
1619 if (td->flags & TD_F_READ_IOLOG) {
1620 if (read_iolog_get(td, io_u))
1621 goto err_put;
1622 } else if (set_io_u_file(td, io_u)) {
1623 ret = -EBUSY;
1624 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1625 goto err_put;
1626 }
1627
1628 f = io_u->file;
1629 if (!f) {
1630 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1631 goto err_put;
1632 }
1633
1634 assert(fio_file_open(f));
1635
1636 if (ddir_rw(io_u->ddir)) {
1637 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1638 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1639 goto err_put;
1640 }
1641
1642 f->last_start[io_u->ddir] = io_u->offset;
1643 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1644
1645 if (io_u->ddir == DDIR_WRITE) {
1646 if (td->flags & TD_F_REFILL_BUFFERS) {
1647 io_u_fill_buffer(td, io_u,
1648 td->o.min_bs[DDIR_WRITE],
1649 io_u->buflen);
1650 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1651 !(td->flags & TD_F_COMPRESS))
1652 do_scramble = 1;
1653 if (td->flags & TD_F_VER_NONE) {
1654 populate_verify_io_u(td, io_u);
1655 do_scramble = 0;
1656 }
1657 } else if (io_u->ddir == DDIR_READ) {
1658 /*
1659 * Reset the buf_filled parameters so next time if the
1660 * buffer is used for writes it is refilled.
1661 */
1662 io_u->buf_filled_len = 0;
1663 }
1664 }
1665
1666 /*
1667 * Set io data pointers.
1668 */
1669 io_u->xfer_buf = io_u->buf;
1670 io_u->xfer_buflen = io_u->buflen;
1671
1672 out:
1673 assert(io_u->file);
1674 if (!td_io_prep(td, io_u)) {
1675 if (!td->o.disable_lat)
1676 fio_gettime(&io_u->start_time, NULL);
1677
1678 if (do_scramble)
1679 small_content_scramble(io_u);
1680
1681 return io_u;
1682 }
1683 err_put:
1684 dprint(FD_IO, "get_io_u failed\n");
1685 put_io_u(td, io_u);
1686 return ERR_PTR(ret);
1687 }
1688
__io_u_log_error(struct thread_data * td,struct io_u * io_u)1689 static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1690 {
1691 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1692
1693 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1694 return;
1695
1696 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1697 io_u->file ? " on file " : "",
1698 io_u->file ? io_u->file->file_name : "",
1699 strerror(io_u->error),
1700 io_ddir_name(io_u->ddir),
1701 io_u->offset, io_u->xfer_buflen);
1702
1703 if (td->io_ops->errdetails) {
1704 char *err = td->io_ops->errdetails(io_u);
1705
1706 log_err("fio: %s\n", err);
1707 free(err);
1708 }
1709
1710 if (!td->error)
1711 td_verror(td, io_u->error, "io_u error");
1712 }
1713
io_u_log_error(struct thread_data * td,struct io_u * io_u)1714 void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1715 {
1716 __io_u_log_error(td, io_u);
1717 if (td->parent)
1718 __io_u_log_error(td->parent, io_u);
1719 }
1720
gtod_reduce(struct thread_data * td)1721 static inline bool gtod_reduce(struct thread_data *td)
1722 {
1723 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1724 || td->o.gtod_reduce;
1725 }
1726
account_io_completion(struct thread_data * td,struct io_u * io_u,struct io_completion_data * icd,const enum fio_ddir idx,unsigned int bytes)1727 static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1728 struct io_completion_data *icd,
1729 const enum fio_ddir idx, unsigned int bytes)
1730 {
1731 const int no_reduce = !gtod_reduce(td);
1732 unsigned long lusec = 0;
1733
1734 if (td->parent)
1735 td = td->parent;
1736
1737 if (!td->o.stats)
1738 return;
1739
1740 if (no_reduce)
1741 lusec = utime_since(&io_u->issue_time, &icd->time);
1742
1743 if (!td->o.disable_lat) {
1744 unsigned long tusec;
1745
1746 tusec = utime_since(&io_u->start_time, &icd->time);
1747 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1748
1749 if (td->flags & TD_F_PROFILE_OPS) {
1750 struct prof_io_ops *ops = &td->prof_io_ops;
1751
1752 if (ops->io_u_lat)
1753 icd->error = ops->io_u_lat(td, tusec);
1754 }
1755
1756 if (td->o.max_latency && tusec > td->o.max_latency)
1757 lat_fatal(td, icd, tusec, td->o.max_latency);
1758 if (td->o.latency_target && tusec > td->o.latency_target) {
1759 if (lat_target_failed(td))
1760 lat_fatal(td, icd, tusec, td->o.latency_target);
1761 }
1762 }
1763
1764 if (ddir_rw(idx)) {
1765 if (!td->o.disable_clat) {
1766 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1767 io_u_mark_latency(td, lusec);
1768 }
1769
1770 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1771 add_bw_sample(td, io_u, bytes, lusec);
1772
1773 if (no_reduce && per_unit_log(td->iops_log))
1774 add_iops_sample(td, io_u, bytes);
1775 }
1776
1777 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1778 uint32_t *info = io_u_block_info(td, io_u);
1779 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1780 if (io_u->ddir == DDIR_TRIM) {
1781 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1782 BLOCK_INFO_TRIMS(*info) + 1);
1783 } else if (io_u->ddir == DDIR_WRITE) {
1784 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1785 *info);
1786 }
1787 }
1788 }
1789 }
1790
file_log_write_comp(const struct thread_data * td,struct fio_file * f,uint64_t offset,unsigned int bytes)1791 static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1792 uint64_t offset, unsigned int bytes)
1793 {
1794 int idx;
1795
1796 if (!f)
1797 return;
1798
1799 if (f->first_write == -1ULL || offset < f->first_write)
1800 f->first_write = offset;
1801 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1802 f->last_write = offset + bytes;
1803
1804 if (!f->last_write_comp)
1805 return;
1806
1807 idx = f->last_write_idx++;
1808 f->last_write_comp[idx] = offset;
1809 if (f->last_write_idx == td->o.iodepth)
1810 f->last_write_idx = 0;
1811 }
1812
io_completed(struct thread_data * td,struct io_u ** io_u_ptr,struct io_completion_data * icd)1813 static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1814 struct io_completion_data *icd)
1815 {
1816 struct io_u *io_u = *io_u_ptr;
1817 enum fio_ddir ddir = io_u->ddir;
1818 struct fio_file *f = io_u->file;
1819
1820 dprint_io_u(io_u, "io complete");
1821
1822 assert(io_u->flags & IO_U_F_FLIGHT);
1823 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1824
1825 /*
1826 * Mark IO ok to verify
1827 */
1828 if (io_u->ipo) {
1829 /*
1830 * Remove errored entry from the verification list
1831 */
1832 if (io_u->error)
1833 unlog_io_piece(td, io_u);
1834 else {
1835 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1836 write_barrier();
1837 }
1838 }
1839
1840 if (ddir_sync(ddir)) {
1841 td->last_was_sync = 1;
1842 if (f) {
1843 f->first_write = -1ULL;
1844 f->last_write = -1ULL;
1845 }
1846 return;
1847 }
1848
1849 td->last_was_sync = 0;
1850 td->last_ddir = ddir;
1851
1852 if (!io_u->error && ddir_rw(ddir)) {
1853 unsigned int bytes = io_u->buflen - io_u->resid;
1854 int ret;
1855
1856 td->io_blocks[ddir]++;
1857 td->this_io_blocks[ddir]++;
1858 td->io_bytes[ddir] += bytes;
1859
1860 if (!(io_u->flags & IO_U_F_VER_LIST))
1861 td->this_io_bytes[ddir] += bytes;
1862
1863 if (ddir == DDIR_WRITE)
1864 file_log_write_comp(td, f, io_u->offset, bytes);
1865
1866 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1867 td->runstate == TD_VERIFYING))
1868 account_io_completion(td, io_u, icd, ddir, bytes);
1869
1870 icd->bytes_done[ddir] += bytes;
1871
1872 if (io_u->end_io) {
1873 ret = io_u->end_io(td, io_u_ptr);
1874 io_u = *io_u_ptr;
1875 if (ret && !icd->error)
1876 icd->error = ret;
1877 }
1878 } else if (io_u->error) {
1879 icd->error = io_u->error;
1880 io_u_log_error(td, io_u);
1881 }
1882 if (icd->error) {
1883 enum error_type_bit eb = td_error_type(ddir, icd->error);
1884
1885 if (!td_non_fatal_error(td, eb, icd->error))
1886 return;
1887
1888 /*
1889 * If there is a non_fatal error, then add to the error count
1890 * and clear all the errors.
1891 */
1892 update_error_count(td, icd->error);
1893 td_clear_error(td);
1894 icd->error = 0;
1895 if (io_u)
1896 io_u->error = 0;
1897 }
1898 }
1899
init_icd(struct thread_data * td,struct io_completion_data * icd,int nr)1900 static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1901 int nr)
1902 {
1903 int ddir;
1904
1905 if (!gtod_reduce(td))
1906 fio_gettime(&icd->time, NULL);
1907
1908 icd->nr = nr;
1909
1910 icd->error = 0;
1911 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1912 icd->bytes_done[ddir] = 0;
1913 }
1914
ios_completed(struct thread_data * td,struct io_completion_data * icd)1915 static void ios_completed(struct thread_data *td,
1916 struct io_completion_data *icd)
1917 {
1918 struct io_u *io_u;
1919 int i;
1920
1921 for (i = 0; i < icd->nr; i++) {
1922 io_u = td->io_ops->event(td, i);
1923
1924 io_completed(td, &io_u, icd);
1925
1926 if (io_u)
1927 put_io_u(td, io_u);
1928 }
1929 }
1930
1931 /*
1932 * Complete a single io_u for the sync engines.
1933 */
io_u_sync_complete(struct thread_data * td,struct io_u * io_u)1934 int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1935 {
1936 struct io_completion_data icd;
1937 int ddir;
1938
1939 init_icd(td, &icd, 1);
1940 io_completed(td, &io_u, &icd);
1941
1942 if (io_u)
1943 put_io_u(td, io_u);
1944
1945 if (icd.error) {
1946 td_verror(td, icd.error, "io_u_sync_complete");
1947 return -1;
1948 }
1949
1950 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1951 td->bytes_done[ddir] += icd.bytes_done[ddir];
1952
1953 return 0;
1954 }
1955
1956 /*
1957 * Called to complete min_events number of io for the async engines.
1958 */
io_u_queued_complete(struct thread_data * td,int min_evts)1959 int io_u_queued_complete(struct thread_data *td, int min_evts)
1960 {
1961 struct io_completion_data icd;
1962 struct timespec *tvp = NULL;
1963 int ret, ddir;
1964 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1965
1966 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
1967
1968 if (!min_evts)
1969 tvp = &ts;
1970 else if (min_evts > td->cur_depth)
1971 min_evts = td->cur_depth;
1972
1973 /* No worries, td_io_getevents fixes min and max if they are
1974 * set incorrectly */
1975 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1976 if (ret < 0) {
1977 td_verror(td, -ret, "td_io_getevents");
1978 return ret;
1979 } else if (!ret)
1980 return ret;
1981
1982 init_icd(td, &icd, ret);
1983 ios_completed(td, &icd);
1984 if (icd.error) {
1985 td_verror(td, icd.error, "io_u_queued_complete");
1986 return -1;
1987 }
1988
1989 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1990 td->bytes_done[ddir] += icd.bytes_done[ddir];
1991
1992 return ret;
1993 }
1994
1995 /*
1996 * Call when io_u is really queued, to update the submission latency.
1997 */
io_u_queued(struct thread_data * td,struct io_u * io_u)1998 void io_u_queued(struct thread_data *td, struct io_u *io_u)
1999 {
2000 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2001 unsigned long slat_time;
2002
2003 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
2004
2005 if (td->parent)
2006 td = td->parent;
2007
2008 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2009 io_u->offset);
2010 }
2011 }
2012
2013 /*
2014 * See if we should reuse the last seed, if dedupe is enabled
2015 */
get_buf_state(struct thread_data * td)2016 static struct frand_state *get_buf_state(struct thread_data *td)
2017 {
2018 unsigned int v;
2019
2020 if (!td->o.dedupe_percentage)
2021 return &td->buf_state;
2022 else if (td->o.dedupe_percentage == 100) {
2023 frand_copy(&td->buf_state_prev, &td->buf_state);
2024 return &td->buf_state;
2025 }
2026
2027 v = rand32_between(&td->dedupe_state, 1, 100);
2028
2029 if (v <= td->o.dedupe_percentage)
2030 return &td->buf_state_prev;
2031
2032 return &td->buf_state;
2033 }
2034
save_buf_state(struct thread_data * td,struct frand_state * rs)2035 static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2036 {
2037 if (td->o.dedupe_percentage == 100)
2038 frand_copy(rs, &td->buf_state_prev);
2039 else if (rs == &td->buf_state)
2040 frand_copy(&td->buf_state_prev, rs);
2041 }
2042
fill_io_buffer(struct thread_data * td,void * buf,unsigned int min_write,unsigned int max_bs)2043 void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2044 unsigned int max_bs)
2045 {
2046 struct thread_options *o = &td->o;
2047
2048 if (o->mem_type == MEM_CUDA_MALLOC)
2049 return;
2050
2051 if (o->compress_percentage || o->dedupe_percentage) {
2052 unsigned int perc = td->o.compress_percentage;
2053 struct frand_state *rs;
2054 unsigned int left = max_bs;
2055 unsigned int this_write;
2056
2057 do {
2058 rs = get_buf_state(td);
2059
2060 min_write = min(min_write, left);
2061
2062 if (perc) {
2063 this_write = min_not_zero(min_write,
2064 td->o.compress_chunk);
2065
2066 fill_random_buf_percentage(rs, buf, perc,
2067 this_write, this_write,
2068 o->buffer_pattern,
2069 o->buffer_pattern_bytes);
2070 } else {
2071 fill_random_buf(rs, buf, min_write);
2072 this_write = min_write;
2073 }
2074
2075 buf += this_write;
2076 left -= this_write;
2077 save_buf_state(td, rs);
2078 } while (left);
2079 } else if (o->buffer_pattern_bytes)
2080 fill_buffer_pattern(td, buf, max_bs);
2081 else if (o->zero_buffers)
2082 memset(buf, 0, max_bs);
2083 else
2084 fill_random_buf(get_buf_state(td), buf, max_bs);
2085 }
2086
2087 /*
2088 * "randomly" fill the buffer contents
2089 */
io_u_fill_buffer(struct thread_data * td,struct io_u * io_u,unsigned int min_write,unsigned int max_bs)2090 void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2091 unsigned int min_write, unsigned int max_bs)
2092 {
2093 io_u->buf_filled_len = 0;
2094 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2095 }
2096
do_sync_file_range(const struct thread_data * td,struct fio_file * f)2097 static int do_sync_file_range(const struct thread_data *td,
2098 struct fio_file *f)
2099 {
2100 off64_t offset, nbytes;
2101
2102 offset = f->first_write;
2103 nbytes = f->last_write - f->first_write;
2104
2105 if (!nbytes)
2106 return 0;
2107
2108 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2109 }
2110
do_io_u_sync(const struct thread_data * td,struct io_u * io_u)2111 int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2112 {
2113 int ret;
2114
2115 if (io_u->ddir == DDIR_SYNC) {
2116 ret = fsync(io_u->file->fd);
2117 } else if (io_u->ddir == DDIR_DATASYNC) {
2118 #ifdef CONFIG_FDATASYNC
2119 ret = fdatasync(io_u->file->fd);
2120 #else
2121 ret = io_u->xfer_buflen;
2122 io_u->error = EINVAL;
2123 #endif
2124 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2125 ret = do_sync_file_range(td, io_u->file);
2126 else {
2127 ret = io_u->xfer_buflen;
2128 io_u->error = EINVAL;
2129 }
2130
2131 if (ret < 0)
2132 io_u->error = errno;
2133
2134 return ret;
2135 }
2136
do_io_u_trim(const struct thread_data * td,struct io_u * io_u)2137 int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2138 {
2139 #ifndef FIO_HAVE_TRIM
2140 io_u->error = EINVAL;
2141 return 0;
2142 #else
2143 struct fio_file *f = io_u->file;
2144 int ret;
2145
2146 ret = os_trim(f->fd, io_u->offset, io_u->xfer_buflen);
2147 if (!ret)
2148 return io_u->xfer_buflen;
2149
2150 io_u->error = ret;
2151 return 0;
2152 #endif
2153 }
2154