• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- RDFDeadCode.cpp --------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // RDF-based generic dead code elimination.
11 
12 #include "RDFGraph.h"
13 #include "RDFLiveness.h"
14 #include "RDFDeadCode.h"
15 
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 
21 #include <queue>
22 
23 using namespace llvm;
24 using namespace rdf;
25 
26 // This drastically improves execution time in "collect" over using
27 // SetVector as a work queue, and popping the first element from it.
28 template<typename T> struct DeadCodeElimination::SetQueue {
SetQueueDeadCodeElimination::SetQueue29   SetQueue() : Set(), Queue() {}
30 
emptyDeadCodeElimination::SetQueue31   bool empty() const {
32     return Queue.empty();
33   }
pop_frontDeadCodeElimination::SetQueue34   T pop_front() {
35     T V = Queue.front();
36     Queue.pop();
37     Set.erase(V);
38     return V;
39   }
push_backDeadCodeElimination::SetQueue40   void push_back(T V) {
41     if (Set.count(V))
42       return;
43     Queue.push(V);
44     Set.insert(V);
45   }
46 
47 private:
48   DenseSet<T> Set;
49   std::queue<T> Queue;
50 };
51 
52 
53 // Check if the given instruction has observable side-effects, i.e. if
54 // it should be considered "live". It is safe for this function to be
55 // overly conservative (i.e. return "true" for all instructions), but it
56 // is not safe to return "false" for an instruction that should not be
57 // considered removable.
isLiveInstr(const MachineInstr * MI) const58 bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
59   if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
60     return true;
61   if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects())
62     return true;
63   if (MI->isPHI())
64     return false;
65   for (auto &Op : MI->operands())
66     if (Op.isReg() && MRI.isReserved(Op.getReg()))
67       return true;
68   return false;
69 }
70 
scanInstr(NodeAddr<InstrNode * > IA,SetQueue<NodeId> & WorkQ)71 void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
72       SetQueue<NodeId> &WorkQ) {
73   if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
74     return;
75   if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
76     return;
77   for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
78     if (!LiveNodes.count(RA.Id))
79       WorkQ.push_back(RA.Id);
80   }
81 }
82 
processDef(NodeAddr<DefNode * > DA,SetQueue<NodeId> & WorkQ)83 void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
84       SetQueue<NodeId> &WorkQ) {
85   NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
86   for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
87     if (!LiveNodes.count(UA.Id))
88       WorkQ.push_back(UA.Id);
89   }
90   for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
91     LiveNodes.insert(TA.Id);
92 }
93 
processUse(NodeAddr<UseNode * > UA,SetQueue<NodeId> & WorkQ)94 void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
95       SetQueue<NodeId> &WorkQ) {
96   for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
97     if (!LiveNodes.count(DA.Id))
98       WorkQ.push_back(DA.Id);
99   }
100 }
101 
102 // Traverse the DFG and collect the set dead RefNodes and the set of
103 // dead instructions. Return "true" if any of these sets is non-empty,
104 // "false" otherwise.
collect()105 bool DeadCodeElimination::collect() {
106   // This function works by first finding all live nodes. The dead nodes
107   // are then the complement of the set of live nodes.
108   //
109   // Assume that all nodes are dead. Identify instructions which must be
110   // considered live, i.e. instructions with observable side-effects, such
111   // as calls and stores. All arguments of such instructions are considered
112   // live. For each live def, all operands used in the corresponding
113   // instruction are considered live. For each live use, all its reaching
114   // defs are considered live.
115   LiveNodes.clear();
116   SetQueue<NodeId> WorkQ;
117   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
118     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
119       scanInstr(IA, WorkQ);
120 
121   while (!WorkQ.empty()) {
122     NodeId N = WorkQ.pop_front();
123     LiveNodes.insert(N);
124     auto RA = DFG.addr<RefNode*>(N);
125     if (DFG.IsDef(RA))
126       processDef(RA, WorkQ);
127     else
128       processUse(RA, WorkQ);
129   }
130 
131   if (trace()) {
132     dbgs() << "Live nodes:\n";
133     for (NodeId N : LiveNodes) {
134       auto RA = DFG.addr<RefNode*>(N);
135       dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
136     }
137   }
138 
139   auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
140     for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
141       if (LiveNodes.count(DA.Id))
142         return false;
143     return true;
144   };
145 
146   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
147     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
148       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
149         if (!LiveNodes.count(RA.Id))
150           DeadNodes.insert(RA.Id);
151       if (DFG.IsCode<NodeAttrs::Stmt>(IA))
152         if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
153           continue;
154       if (IsDead(IA)) {
155         DeadInstrs.insert(IA.Id);
156         if (trace())
157           dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
158       }
159     }
160   }
161 
162   return !DeadNodes.empty();
163 }
164 
165 // Erase the nodes given in the Nodes set from DFG. In addition to removing
166 // them from the DFG, if a node corresponds to a statement, the corresponding
167 // machine instruction is erased from the function.
erase(const SetVector<NodeId> & Nodes)168 bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
169   if (Nodes.empty())
170     return false;
171 
172   // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
173   // are included directly, for each InstrNode in Nodes, include the set
174   // of all RefNodes from it.
175   NodeList DRNs, DINs;
176   for (auto I : Nodes) {
177     auto BA = DFG.addr<NodeBase*>(I);
178     uint16_t Type = BA.Addr->getType();
179     if (Type == NodeAttrs::Ref) {
180       DRNs.push_back(DFG.addr<RefNode*>(I));
181       continue;
182     }
183 
184     // If it's a code node, add all ref nodes from it.
185     uint16_t Kind = BA.Addr->getKind();
186     if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
187       for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
188         DRNs.push_back(N);
189       DINs.push_back(DFG.addr<InstrNode*>(I));
190     } else {
191       llvm_unreachable("Unexpected code node");
192       return false;
193     }
194   }
195 
196   // Sort the list so that use nodes are removed first. This makes the
197   // "unlink" functions a bit faster.
198   auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
199     uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
200     if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
201       return true;
202     if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
203       return false;
204     return A.Id < B.Id;
205   };
206   std::sort(DRNs.begin(), DRNs.end(), UsesFirst);
207 
208   if (trace())
209     dbgs() << "Removing dead ref nodes:\n";
210   for (NodeAddr<RefNode*> RA : DRNs) {
211     if (trace())
212       dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
213     if (DFG.IsUse(RA))
214       DFG.unlinkUse(RA, true);
215     else if (DFG.IsDef(RA))
216       DFG.unlinkDef(RA, true);
217   }
218 
219   // Now, remove all dead instruction nodes.
220   for (NodeAddr<InstrNode*> IA : DINs) {
221     NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
222     BA.Addr->removeMember(IA, DFG);
223     if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
224       continue;
225 
226     MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
227     if (trace())
228       dbgs() << "erasing: " << *MI;
229     MI->eraseFromParent();
230   }
231   return true;
232 }
233