1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.net; 28 29 import java.io.IOException; 30 import java.io.InvalidObjectException; 31 import java.io.ObjectInputStream; 32 import java.io.ObjectOutputStream; 33 import java.io.Serializable; 34 import java.nio.ByteBuffer; 35 import java.nio.CharBuffer; 36 import java.nio.charset.CharsetDecoder; 37 import java.nio.charset.CoderResult; 38 import java.nio.charset.CodingErrorAction; 39 import java.nio.charset.CharacterCodingException; 40 import java.text.Normalizer; 41 import sun.nio.cs.ThreadLocalCoders; 42 43 import java.lang.Character; // for javadoc 44 import java.lang.NullPointerException; // for javadoc 45 46 47 /** 48 * Represents a Uniform Resource Identifier (URI) reference. 49 * 50 * <p> Aside from some minor deviations noted below, an instance of this 51 * class represents a URI reference as defined by 52 * <a href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC 2396: Uniform 53 * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a 54 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC 2732: Format for 55 * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format 56 * also supports scope_ids. The syntax and usage of scope_ids is described 57 * <a href="Inet6Address.html#scoped">here</a>. 58 * This class provides constructors for creating URI instances from 59 * their components or by parsing their string forms, methods for accessing the 60 * various components of an instance, and methods for normalizing, resolving, 61 * and relativizing URI instances. Instances of this class are immutable. 62 * 63 * 64 * <h3> URI syntax and components </h3> 65 * 66 * At the highest level a URI reference (hereinafter simply "URI") in string 67 * form has the syntax 68 * 69 * <blockquote> 70 * [<i>scheme</i><b>{@code :}</b>]<i>scheme-specific-part</i>[<b>{@code #}</b><i>fragment</i>] 71 * </blockquote> 72 * 73 * where square brackets [...] delineate optional components and the characters 74 * <b>{@code :}</b> and <b>{@code #}</b> stand for themselves. 75 * 76 * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is 77 * said to be <i>relative</i>. URIs are also classified according to whether 78 * they are <i>opaque</i> or <i>hierarchical</i>. 79 * 80 * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does 81 * not begin with a slash character ({@code '/'}). Opaque URIs are not 82 * subject to further parsing. Some examples of opaque URIs are: 83 * 84 * <blockquote><table cellpadding=0 cellspacing=0 summary="layout"> 85 * <tr><td>{@code mailto:java-net@java.sun.com}<td></tr> 86 * <tr><td>{@code news:comp.lang.java}<td></tr> 87 * <tr><td>{@code urn:isbn:096139210x}</td></tr> 88 * </table></blockquote> 89 * 90 * <p> A <i>hierarchical</i> URI is either an absolute URI whose 91 * scheme-specific part begins with a slash character, or a relative URI, that 92 * is, a URI that does not specify a scheme. Some examples of hierarchical 93 * URIs are: 94 * 95 * <blockquote> 96 * {@code http://java.sun.com/j2se/1.3/}<br> 97 * {@code docs/guide/collections/designfaq.html#28}<br> 98 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java}<br> 99 * {@code file:///~/calendar} 100 * </blockquote> 101 * 102 * <p> A hierarchical URI is subject to further parsing according to the syntax 103 * 104 * <blockquote> 105 * [<i>scheme</i><b>{@code :}</b>][<b>{@code //}</b><i>authority</i>][<i>path</i>][<b>{@code ?}</b><i>query</i>][<b>{@code #}</b><i>fragment</i>] 106 * </blockquote> 107 * 108 * where the characters <b>{@code :}</b>, <b>{@code /}</b>, 109 * <b>{@code ?}</b>, and <b>{@code #}</b> stand for themselves. The 110 * scheme-specific part of a hierarchical URI consists of the characters 111 * between the scheme and fragment components. 112 * 113 * <p> The authority component of a hierarchical URI is, if specified, either 114 * <i>server-based</i> or <i>registry-based</i>. A server-based authority 115 * parses according to the familiar syntax 116 * 117 * <blockquote> 118 * [<i>user-info</i><b>{@code @}</b>]<i>host</i>[<b>{@code :}</b><i>port</i>] 119 * </blockquote> 120 * 121 * where the characters <b>{@code @}</b> and <b>{@code :}</b> stand for 122 * themselves. Nearly all URI schemes currently in use are server-based. An 123 * authority component that does not parse in this way is considered to be 124 * registry-based. 125 * 126 * <p> The path component of a hierarchical URI is itself said to be absolute 127 * if it begins with a slash character ({@code '/'}); otherwise it is 128 * relative. The path of a hierarchical URI that is either absolute or 129 * specifies an authority is always absolute. 130 * 131 * <p> All told, then, a URI instance has the following nine components: 132 * 133 * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment"> 134 * <tr><th><i>Component</i></th><th><i>Type</i></th></tr> 135 * <tr><td>scheme</td><td>{@code String}</td></tr> 136 * <tr><td>scheme-specific-part </td><td>{@code String}</td></tr> 137 * <tr><td>authority</td><td>{@code String}</td></tr> 138 * <tr><td>user-info</td><td>{@code String}</td></tr> 139 * <tr><td>host</td><td>{@code String}</td></tr> 140 * <tr><td>port</td><td>{@code int}</td></tr> 141 * <tr><td>path</td><td>{@code String}</td></tr> 142 * <tr><td>query</td><td>{@code String}</td></tr> 143 * <tr><td>fragment</td><td>{@code String}</td></tr> 144 * </table></blockquote> 145 * 146 * In a given instance any particular component is either <i>undefined</i> or 147 * <i>defined</i> with a distinct value. Undefined string components are 148 * represented by {@code null}, while undefined integer components are 149 * represented by {@code -1}. A string component may be defined to have the 150 * empty string as its value; this is not equivalent to that component being 151 * undefined. 152 * 153 * <p> Whether a particular component is or is not defined in an instance 154 * depends upon the type of the URI being represented. An absolute URI has a 155 * scheme component. An opaque URI has a scheme, a scheme-specific part, and 156 * possibly a fragment, but has no other components. A hierarchical URI always 157 * has a path (though it may be empty) and a scheme-specific-part (which at 158 * least contains the path), and may have any of the other components. If the 159 * authority component is present and is server-based then the host component 160 * will be defined and the user-information and port components may be defined. 161 * 162 * 163 * <h4> Operations on URI instances </h4> 164 * 165 * The key operations supported by this class are those of 166 * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>. 167 * 168 * <p> <i>Normalization</i> is the process of removing unnecessary {@code "."} 169 * and {@code ".."} segments from the path component of a hierarchical URI. 170 * Each {@code "."} segment is simply removed. A {@code ".."} segment is 171 * removed only if it is preceded by a non-{@code ".."} segment. 172 * Normalization has no effect upon opaque URIs. 173 * 174 * <p> <i>Resolution</i> is the process of resolving one URI against another, 175 * <i>base</i> URI. The resulting URI is constructed from components of both 176 * URIs in the manner specified by RFC 2396, taking components from the 177 * base URI for those not specified in the original. For hierarchical URIs, 178 * the path of the original is resolved against the path of the base and then 179 * normalized. The result, for example, of resolving 180 * 181 * <blockquote> 182 * {@code docs/guide/collections/designfaq.html#28} 183 * 184 * (1) 185 * </blockquote> 186 * 187 * against the base URI {@code http://java.sun.com/j2se/1.3/} is the result 188 * URI 189 * 190 * <blockquote> 191 * {@code http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28} 192 * </blockquote> 193 * 194 * Resolving the relative URI 195 * 196 * <blockquote> 197 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java }(2) 198 * </blockquote> 199 * 200 * against this result yields, in turn, 201 * 202 * <blockquote> 203 * {@code http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java} 204 * </blockquote> 205 * 206 * Resolution of both absolute and relative URIs, and of both absolute and 207 * relative paths in the case of hierarchical URIs, is supported. Resolving 208 * the URI {@code file:///~calendar} against any other URI simply yields the 209 * original URI, since it is absolute. Resolving the relative URI (2) above 210 * against the relative base URI (1) yields the normalized, but still relative, 211 * URI 212 * 213 * <blockquote> 214 * {@code demo/jfc/SwingSet2/src/SwingSet2.java} 215 * </blockquote> 216 * 217 * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any 218 * two normalized URIs <i>u</i> and <i>v</i>, 219 * 220 * <blockquote> 221 * <i>u</i>{@code .relativize(}<i>u</i>{@code .resolve(}<i>v</i>{@code )).equals(}<i>v</i>{@code )} and<br> 222 * <i>u</i>{@code .resolve(}<i>u</i>{@code .relativize(}<i>v</i>{@code )).equals(}<i>v</i>{@code )} .<br> 223 * </blockquote> 224 * 225 * This operation is often useful when constructing a document containing URIs 226 * that must be made relative to the base URI of the document wherever 227 * possible. For example, relativizing the URI 228 * 229 * <blockquote> 230 * {@code http://java.sun.com/j2se/1.3/docs/guide/index.html} 231 * </blockquote> 232 * 233 * against the base URI 234 * 235 * <blockquote> 236 * {@code http://java.sun.com/j2se/1.3} 237 * </blockquote> 238 * 239 * yields the relative URI {@code docs/guide/index.html}. 240 * 241 * 242 * <h4> Character categories </h4> 243 * 244 * RFC 2396 specifies precisely which characters are permitted in the 245 * various components of a URI reference. The following categories, most of 246 * which are taken from that specification, are used below to describe these 247 * constraints: 248 * 249 * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other"> 250 * <tr><th valign=top><i>alpha</i></th> 251 * <td>The US-ASCII alphabetic characters, 252 * {@code 'A'} through {@code 'Z'} 253 * and {@code 'a'} through {@code 'z'}</td></tr> 254 * <tr><th valign=top><i>digit</i></th> 255 * <td>The US-ASCII decimal digit characters, 256 * {@code '0'} through {@code '9'}</td></tr> 257 * <tr><th valign=top><i>alphanum</i></th> 258 * <td>All <i>alpha</i> and <i>digit</i> characters</td></tr> 259 * <tr><th valign=top><i>unreserved</i> </th> 260 * <td>All <i>alphanum</i> characters together with those in the string 261 * {@code "_-!.~'()*"}</td></tr> 262 * <tr><th valign=top><i>punct</i></th> 263 * <td>The characters in the string {@code ",;:$&+="}</td></tr> 264 * <tr><th valign=top><i>reserved</i></th> 265 * <td>All <i>punct</i> characters together with those in the string 266 * {@code "?/[]@"}</td></tr> 267 * <tr><th valign=top><i>escaped</i></th> 268 * <td>Escaped octets, that is, triplets consisting of the percent 269 * character ({@code '%'}) followed by two hexadecimal digits 270 * ({@code '0'}-{@code '9'}, {@code 'A'}-{@code 'F'}, and 271 * {@code 'a'}-{@code 'f'})</td></tr> 272 * <tr><th valign=top><i>other</i></th> 273 * <td>The Unicode characters that are not in the US-ASCII character set, 274 * are not control characters (according to the {@link 275 * java.lang.Character#isISOControl(char) Character.isISOControl} 276 * method), and are not space characters (according to the {@link 277 * java.lang.Character#isSpaceChar(char) Character.isSpaceChar} 278 * method) <i>(<b>Deviation from RFC 2396</b>, which is 279 * limited to US-ASCII)</i></td></tr> 280 * </table></blockquote> 281 * 282 * <p><a name="legal-chars"></a> The set of all legal URI characters consists of 283 * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i> 284 * characters. 285 * 286 * 287 * <h4> Escaped octets, quotation, encoding, and decoding </h4> 288 * 289 * RFC 2396 allows escaped octets to appear in the user-info, path, query, and 290 * fragment components. Escaping serves two purposes in URIs: 291 * 292 * <ul> 293 * 294 * <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to 295 * conform strictly to RFC 2396 by not containing any <i>other</i> 296 * characters. </p></li> 297 * 298 * <li><p> To <i>quote</i> characters that are otherwise illegal in a 299 * component. The user-info, path, query, and fragment components differ 300 * slightly in terms of which characters are considered legal and illegal. 301 * </p></li> 302 * 303 * </ul> 304 * 305 * These purposes are served in this class by three related operations: 306 * 307 * <ul> 308 * 309 * <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it 310 * with the sequence of escaped octets that represent that character in the 311 * UTF-8 character set. The Euro currency symbol ({@code '\u20AC'}), 312 * for example, is encoded as {@code "%E2%82%AC"}. <i>(<b>Deviation from 313 * RFC 2396</b>, which does not specify any particular character 314 * set.)</i> </p></li> 315 * 316 * <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by 317 * encoding it. The space character, for example, is quoted by replacing it 318 * with {@code "%20"}. UTF-8 contains US-ASCII, hence for US-ASCII 319 * characters this transformation has exactly the effect required by 320 * RFC 2396. </p></li> 321 * 322 * <li><p><a name="decode"></a> 323 * A sequence of escaped octets is <i>decoded</i> by 324 * replacing it with the sequence of characters that it represents in the 325 * UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the 326 * effect of de-quoting any quoted US-ASCII characters as well as that of 327 * decoding any encoded non-US-ASCII characters. If a <a 328 * href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs 329 * when decoding the escaped octets then the erroneous octets are replaced by 330 * {@code '\uFFFD'}, the Unicode replacement character. </p></li> 331 * 332 * </ul> 333 * 334 * These operations are exposed in the constructors and methods of this class 335 * as follows: 336 * 337 * <ul> 338 * 339 * <li><p> The {@linkplain #URI(java.lang.String) single-argument 340 * constructor} requires any illegal characters in its argument to be 341 * quoted and preserves any escaped octets and <i>other</i> characters that 342 * are present. </p></li> 343 * 344 * <li><p> The {@linkplain 345 * #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String) 346 * multi-argument constructors} quote illegal characters as 347 * required by the components in which they appear. The percent character 348 * ({@code '%'}) is always quoted by these constructors. Any <i>other</i> 349 * characters are preserved. </p></li> 350 * 351 * <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath() 352 * getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment() 353 * getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link 354 * #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the 355 * values of their corresponding components in raw form, without interpreting 356 * any escaped octets. The strings returned by these methods may contain 357 * both escaped octets and <i>other</i> characters, and will not contain any 358 * illegal characters. </p></li> 359 * 360 * <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath() 361 * getPath}, {@link #getQuery() getQuery}, {@link #getFragment() 362 * getFragment}, {@link #getAuthority() getAuthority}, and {@link 363 * #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped 364 * octets in their corresponding components. The strings returned by these 365 * methods may contain both <i>other</i> characters and illegal characters, 366 * and will not contain any escaped octets. </p></li> 367 * 368 * <li><p> The {@link #toString() toString} method returns a URI string with 369 * all necessary quotation but which may contain <i>other</i> characters. 370 * </p></li> 371 * 372 * <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully 373 * quoted and encoded URI string that does not contain any <i>other</i> 374 * characters. </p></li> 375 * 376 * </ul> 377 * 378 * 379 * <h4> Identities </h4> 380 * 381 * For any URI <i>u</i>, it is always the case that 382 * 383 * <blockquote> 384 * {@code new URI(}<i>u</i>{@code .toString()).equals(}<i>u</i>{@code )} . 385 * </blockquote> 386 * 387 * For any URI <i>u</i> that does not contain redundant syntax such as two 388 * slashes before an empty authority (as in {@code file:///tmp/} ) or a 389 * colon following a host name but no port (as in 390 * {@code http://java.sun.com:} ), and that does not encode characters 391 * except those that must be quoted, the following identities also hold: 392 * <pre> 393 * new URI(<i>u</i>.getScheme(), 394 * <i>u</i>.getSchemeSpecificPart(), 395 * <i>u</i>.getFragment()) 396 * .equals(<i>u</i>)</pre> 397 * in all cases, 398 * <pre> 399 * new URI(<i>u</i>.getScheme(), 400 * <i>u</i>.getUserInfo(), <i>u</i>.getAuthority(), 401 * <i>u</i>.getPath(), <i>u</i>.getQuery(), 402 * <i>u</i>.getFragment()) 403 * .equals(<i>u</i>)</pre> 404 * if <i>u</i> is hierarchical, and 405 * <pre> 406 * new URI(<i>u</i>.getScheme(), 407 * <i>u</i>.getUserInfo(), <i>u</i>.getHost(), <i>u</i>.getPort(), 408 * <i>u</i>.getPath(), <i>u</i>.getQuery(), 409 * <i>u</i>.getFragment()) 410 * .equals(<i>u</i>)</pre> 411 * if <i>u</i> is hierarchical and has either no authority or a server-based 412 * authority. 413 * 414 * 415 * <h4> URIs, URLs, and URNs </h4> 416 * 417 * A URI is a uniform resource <i>identifier</i> while a URL is a uniform 418 * resource <i>locator</i>. Hence every URL is a URI, abstractly speaking, but 419 * not every URI is a URL. This is because there is another subcategory of 420 * URIs, uniform resource <i>names</i> (URNs), which name resources but do not 421 * specify how to locate them. The {@code mailto}, {@code news}, and 422 * {@code isbn} URIs shown above are examples of URNs. 423 * 424 * <p> The conceptual distinction between URIs and URLs is reflected in the 425 * differences between this class and the {@link URL} class. 426 * 427 * <p> An instance of this class represents a URI reference in the syntactic 428 * sense defined by RFC 2396. A URI may be either absolute or relative. 429 * A URI string is parsed according to the generic syntax without regard to the 430 * scheme, if any, that it specifies. No lookup of the host, if any, is 431 * performed, and no scheme-dependent stream handler is constructed. Equality, 432 * hashing, and comparison are defined strictly in terms of the character 433 * content of the instance. In other words, a URI instance is little more than 434 * a structured string that supports the syntactic, scheme-independent 435 * operations of comparison, normalization, resolution, and relativization. 436 * 437 * <p> An instance of the {@link URL} class, by contrast, represents the 438 * syntactic components of a URL together with some of the information required 439 * to access the resource that it describes. A URL must be absolute, that is, 440 * it must always specify a scheme. A URL string is parsed according to its 441 * scheme. A stream handler is always established for a URL, and in fact it is 442 * impossible to create a URL instance for a scheme for which no handler is 443 * available. Equality and hashing depend upon both the scheme and the 444 * Internet address of the host, if any; comparison is not defined. In other 445 * words, a URL is a structured string that supports the syntactic operation of 446 * resolution as well as the network I/O operations of looking up the host and 447 * opening a connection to the specified resource. 448 * 449 * 450 * @author Mark Reinhold 451 * @since 1.4 452 * 453 * @see <a href="http://www.ietf.org/rfc/rfc2279.txt">RFC 2279: UTF-8, a transformation format of ISO 10646</a> 454 * @see <a href="http://www.ietf.org/rfc/rfc2373.txt">RFC 2373: IPv6 Addressing Architecture</a> 455 * @see <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax</a> 456 * @see <a href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732: Format for Literal IPv6 Addresses in URLs</a> 457 */ 458 // Android-changed: Reformat @see links. 459 public final class URI 460 implements Comparable<URI>, Serializable 461 { 462 463 // Note: Comments containing the word "ASSERT" indicate places where a 464 // throw of an InternalError should be replaced by an appropriate assertion 465 // statement once asserts are enabled in the build. 466 467 static final long serialVersionUID = -6052424284110960213L; 468 469 470 // -- Properties and components of this instance -- 471 472 // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>] 473 private transient String scheme; // null ==> relative URI 474 private transient String fragment; 475 476 // Hierarchical URI components: [//<authority>]<path>[?<query>] 477 private transient String authority; // Registry or server 478 479 // Server-based authority: [<userInfo>@]<host>[:<port>] 480 private transient String userInfo; 481 private transient String host; // null ==> registry-based 482 private transient int port = -1; // -1 ==> undefined 483 484 // Remaining components of hierarchical URIs 485 private transient String path; // null ==> opaque 486 private transient String query; 487 488 // The remaining fields may be computed on demand 489 490 private volatile transient String schemeSpecificPart; 491 private volatile transient int hash; // Zero ==> undefined 492 493 private volatile transient String decodedUserInfo = null; 494 private volatile transient String decodedAuthority = null; 495 private volatile transient String decodedPath = null; 496 private volatile transient String decodedQuery = null; 497 private volatile transient String decodedFragment = null; 498 private volatile transient String decodedSchemeSpecificPart = null; 499 500 /** 501 * The string form of this URI. 502 * 503 * @serial 504 */ 505 private volatile String string; // The only serializable field 506 507 508 509 // -- Constructors and factories -- 510 URI()511 private URI() { } // Used internally 512 513 /** 514 * Constructs a URI by parsing the given string. 515 * 516 * <p> This constructor parses the given string exactly as specified by the 517 * grammar in <a 518 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 519 * Appendix A, <b><i>except for the following deviations:</i></b> </p> 520 * 521 * <ul> 522 * 523 * <li><p> An empty authority component is permitted as long as it is 524 * followed by a non-empty path, a query component, or a fragment 525 * component. This allows the parsing of URIs such as 526 * {@code "file:///foo/bar"}, which seems to be the intent of 527 * RFC 2396 although the grammar does not permit it. If the 528 * authority component is empty then the user-information, host, and port 529 * components are undefined. </p></li> 530 * 531 * <li><p> Empty relative paths are permitted; this seems to be the 532 * intent of RFC 2396 although the grammar does not permit it. The 533 * primary consequence of this deviation is that a standalone fragment 534 * such as {@code "#foo"} parses as a relative URI with an empty path 535 * and the given fragment, and can be usefully <a 536 * href="#resolve-frag">resolved</a> against a base URI. 537 * 538 * <li><p> IPv4 addresses in host components are parsed rigorously, as 539 * specified by <a 540 * href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>: Each 541 * element of a dotted-quad address must contain no more than three 542 * decimal digits. Each element is further constrained to have a value 543 * no greater than 255. </p></li> 544 * 545 * <li> <p> Hostnames in host components that comprise only a single 546 * domain label are permitted to start with an <i>alphanum</i> 547 * character. This seems to be the intent of <a 548 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a> 549 * section 3.2.2 although the grammar does not permit it. The 550 * consequence of this deviation is that the authority component of a 551 * hierarchical URI such as {@code s://123}, will parse as a server-based 552 * authority. </p></li> 553 * 554 * <li><p> IPv6 addresses are permitted for the host component. An IPv6 555 * address must be enclosed in square brackets ({@code '['} and 556 * {@code ']'}) as specified by <a 557 * href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>. The 558 * IPv6 address itself must parse according to <a 559 * href="http://www.ietf.org/rfc/rfc2373.txt">RFC 2373</a>. IPv6 560 * addresses are further constrained to describe no more than sixteen 561 * bytes of address information, a constraint implicit in RFC 2373 562 * but not expressible in the grammar. </p></li> 563 * 564 * <li><p> Characters in the <i>other</i> category are permitted wherever 565 * RFC 2396 permits <i>escaped</i> octets, that is, in the 566 * user-information, path, query, and fragment components, as well as in 567 * the authority component if the authority is registry-based. This 568 * allows URIs to contain Unicode characters beyond those in the US-ASCII 569 * character set. </p></li> 570 * 571 * </ul> 572 * 573 * @param str The string to be parsed into a URI 574 * 575 * @throws NullPointerException 576 * If {@code str} is {@code null} 577 * 578 * @throws URISyntaxException 579 * If the given string violates RFC 2396, as augmented 580 * by the above deviations 581 */ URI(String str)582 public URI(String str) throws URISyntaxException { 583 new Parser(str).parse(false); 584 } 585 586 /** 587 * Constructs a hierarchical URI from the given components. 588 * 589 * <p> If a scheme is given then the path, if also given, must either be 590 * empty or begin with a slash character ({@code '/'}). Otherwise a 591 * component of the new URI may be left undefined by passing {@code null} 592 * for the corresponding parameter or, in the case of the {@code port} 593 * parameter, by passing {@code -1}. 594 * 595 * <p> This constructor first builds a URI string from the given components 596 * according to the rules specified in <a 597 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 598 * section 5.2, step 7: </p> 599 * 600 * <ol> 601 * 602 * <li><p> Initially, the result string is empty. </p></li> 603 * 604 * <li><p> If a scheme is given then it is appended to the result, 605 * followed by a colon character ({@code ':'}). </p></li> 606 * 607 * <li><p> If user information, a host, or a port are given then the 608 * string {@code "//"} is appended. </p></li> 609 * 610 * <li><p> If user information is given then it is appended, followed by 611 * a commercial-at character ({@code '@'}). Any character not in the 612 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 613 * categories is <a href="#quote">quoted</a>. </p></li> 614 * 615 * <li><p> If a host is given then it is appended. If the host is a 616 * literal IPv6 address but is not enclosed in square brackets 617 * ({@code '['} and {@code ']'}) then the square brackets are added. 618 * </p></li> 619 * 620 * <li><p> If a port number is given then a colon character 621 * ({@code ':'}) is appended, followed by the port number in decimal. 622 * </p></li> 623 * 624 * <li><p> If a path is given then it is appended. Any character not in 625 * the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 626 * categories, and not equal to the slash character ({@code '/'}) or the 627 * commercial-at character ({@code '@'}), is quoted. </p></li> 628 * 629 * <li><p> If a query is given then a question-mark character 630 * ({@code '?'}) is appended, followed by the query. Any character that 631 * is not a <a href="#legal-chars">legal URI character</a> is quoted. 632 * </p></li> 633 * 634 * <li><p> Finally, if a fragment is given then a hash character 635 * ({@code '#'}) is appended, followed by the fragment. Any character 636 * that is not a legal URI character is quoted. </p></li> 637 * 638 * </ol> 639 * 640 * <p> The resulting URI string is then parsed as if by invoking the {@link 641 * #URI(String)} constructor and then invoking the {@link 642 * #parseServerAuthority()} method upon the result; this may cause a {@link 643 * URISyntaxException} to be thrown. </p> 644 * 645 * @param scheme Scheme name 646 * @param userInfo User name and authorization information 647 * @param host Host name 648 * @param port Port number 649 * @param path Path 650 * @param query Query 651 * @param fragment Fragment 652 * 653 * @throws URISyntaxException 654 * If both a scheme and a path are given but the path is relative, 655 * if the URI string constructed from the given components violates 656 * RFC 2396, or if the authority component of the string is 657 * present but cannot be parsed as a server-based authority 658 */ URI(String scheme, String userInfo, String host, int port, String path, String query, String fragment)659 public URI(String scheme, 660 String userInfo, String host, int port, 661 String path, String query, String fragment) 662 throws URISyntaxException 663 { 664 String s = toString(scheme, null, 665 null, userInfo, host, port, 666 path, query, fragment); 667 checkPath(s, scheme, path); 668 new Parser(s).parse(true); 669 } 670 671 /** 672 * Constructs a hierarchical URI from the given components. 673 * 674 * <p> If a scheme is given then the path, if also given, must either be 675 * empty or begin with a slash character ({@code '/'}). Otherwise a 676 * component of the new URI may be left undefined by passing {@code null} 677 * for the corresponding parameter. 678 * 679 * <p> This constructor first builds a URI string from the given components 680 * according to the rules specified in <a 681 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 682 * section 5.2, step 7: </p> 683 * 684 * <ol> 685 * 686 * <li><p> Initially, the result string is empty. </p></li> 687 * 688 * <li><p> If a scheme is given then it is appended to the result, 689 * followed by a colon character ({@code ':'}). </p></li> 690 * 691 * <li><p> If an authority is given then the string {@code "//"} is 692 * appended, followed by the authority. If the authority contains a 693 * literal IPv6 address then the address must be enclosed in square 694 * brackets ({@code '['} and {@code ']'}). Any character not in the 695 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 696 * categories, and not equal to the commercial-at character 697 * ({@code '@'}), is <a href="#quote">quoted</a>. </p></li> 698 * 699 * <li><p> If a path is given then it is appended. Any character not in 700 * the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 701 * categories, and not equal to the slash character ({@code '/'}) or the 702 * commercial-at character ({@code '@'}), is quoted. </p></li> 703 * 704 * <li><p> If a query is given then a question-mark character 705 * ({@code '?'}) is appended, followed by the query. Any character that 706 * is not a <a href="#legal-chars">legal URI character</a> is quoted. 707 * </p></li> 708 * 709 * <li><p> Finally, if a fragment is given then a hash character 710 * ({@code '#'}) is appended, followed by the fragment. Any character 711 * that is not a legal URI character is quoted. </p></li> 712 * 713 * </ol> 714 * 715 * <p> The resulting URI string is then parsed as if by invoking the {@link 716 * #URI(String)} constructor and then invoking the {@link 717 * #parseServerAuthority()} method upon the result; this may cause a {@link 718 * URISyntaxException} to be thrown. </p> 719 * 720 * @param scheme Scheme name 721 * @param authority Authority 722 * @param path Path 723 * @param query Query 724 * @param fragment Fragment 725 * 726 * @throws URISyntaxException 727 * If both a scheme and a path are given but the path is relative, 728 * if the URI string constructed from the given components violates 729 * RFC 2396, or if the authority component of the string is 730 * present but cannot be parsed as a server-based authority 731 */ URI(String scheme, String authority, String path, String query, String fragment)732 public URI(String scheme, 733 String authority, 734 String path, String query, String fragment) 735 throws URISyntaxException 736 { 737 String s = toString(scheme, null, 738 authority, null, null, -1, 739 path, query, fragment); 740 checkPath(s, scheme, path); 741 new Parser(s).parse(false); 742 } 743 744 /** 745 * Constructs a hierarchical URI from the given components. 746 * 747 * <p> A component may be left undefined by passing {@code null}. 748 * 749 * <p> This convenience constructor works as if by invoking the 750 * seven-argument constructor as follows: 751 * 752 * <blockquote> 753 * {@code new} {@link #URI(String, String, String, int, String, String, String) 754 * URI}{@code (scheme, null, host, -1, path, null, fragment);} 755 * </blockquote> 756 * 757 * @param scheme Scheme name 758 * @param host Host name 759 * @param path Path 760 * @param fragment Fragment 761 * 762 * @throws URISyntaxException 763 * If the URI string constructed from the given components 764 * violates RFC 2396 765 */ URI(String scheme, String host, String path, String fragment)766 public URI(String scheme, String host, String path, String fragment) 767 throws URISyntaxException 768 { 769 this(scheme, null, host, -1, path, null, fragment); 770 } 771 772 /** 773 * Constructs a URI from the given components. 774 * 775 * <p> A component may be left undefined by passing {@code null}. 776 * 777 * <p> This constructor first builds a URI in string form using the given 778 * components as follows: </p> 779 * 780 * <ol> 781 * 782 * <li><p> Initially, the result string is empty. </p></li> 783 * 784 * <li><p> If a scheme is given then it is appended to the result, 785 * followed by a colon character ({@code ':'}). </p></li> 786 * 787 * <li><p> If a scheme-specific part is given then it is appended. Any 788 * character that is not a <a href="#legal-chars">legal URI character</a> 789 * is <a href="#quote">quoted</a>. </p></li> 790 * 791 * <li><p> Finally, if a fragment is given then a hash character 792 * ({@code '#'}) is appended to the string, followed by the fragment. 793 * Any character that is not a legal URI character is quoted. </p></li> 794 * 795 * </ol> 796 * 797 * <p> The resulting URI string is then parsed in order to create the new 798 * URI instance as if by invoking the {@link #URI(String)} constructor; 799 * this may cause a {@link URISyntaxException} to be thrown. </p> 800 * 801 * @param scheme Scheme name 802 * @param ssp Scheme-specific part 803 * @param fragment Fragment 804 * 805 * @throws URISyntaxException 806 * If the URI string constructed from the given components 807 * violates RFC 2396 808 */ URI(String scheme, String ssp, String fragment)809 public URI(String scheme, String ssp, String fragment) 810 throws URISyntaxException 811 { 812 new Parser(toString(scheme, ssp, 813 null, null, null, -1, 814 null, null, fragment)) 815 .parse(false); 816 } 817 818 /** 819 * Creates a URI by parsing the given string. 820 * 821 * <p> This convenience factory method works as if by invoking the {@link 822 * #URI(String)} constructor; any {@link URISyntaxException} thrown by the 823 * constructor is caught and wrapped in a new {@link 824 * IllegalArgumentException} object, which is then thrown. 825 * 826 * <p> This method is provided for use in situations where it is known that 827 * the given string is a legal URI, for example for URI constants declared 828 * within in a program, and so it would be considered a programming error 829 * for the string not to parse as such. The constructors, which throw 830 * {@link URISyntaxException} directly, should be used situations where a 831 * URI is being constructed from user input or from some other source that 832 * may be prone to errors. </p> 833 * 834 * @param str The string to be parsed into a URI 835 * @return The new URI 836 * 837 * @throws NullPointerException 838 * If {@code str} is {@code null} 839 * 840 * @throws IllegalArgumentException 841 * If the given string violates RFC 2396 842 */ create(String str)843 public static URI create(String str) { 844 try { 845 return new URI(str); 846 } catch (URISyntaxException x) { 847 throw new IllegalArgumentException(x.getMessage(), x); 848 } 849 } 850 851 852 // -- Operations -- 853 854 /** 855 * Attempts to parse this URI's authority component, if defined, into 856 * user-information, host, and port components. 857 * 858 * <p> If this URI's authority component has already been recognized as 859 * being server-based then it will already have been parsed into 860 * user-information, host, and port components. In this case, or if this 861 * URI has no authority component, this method simply returns this URI. 862 * 863 * <p> Otherwise this method attempts once more to parse the authority 864 * component into user-information, host, and port components, and throws 865 * an exception describing why the authority component could not be parsed 866 * in that way. 867 * 868 * <p> This method is provided because the generic URI syntax specified in 869 * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a> 870 * cannot always distinguish a malformed server-based authority from a 871 * legitimate registry-based authority. It must therefore treat some 872 * instances of the former as instances of the latter. The authority 873 * component in the URI string {@code "//foo:bar"}, for example, is not a 874 * legal server-based authority but it is legal as a registry-based 875 * authority. 876 * 877 * <p> In many common situations, for example when working URIs that are 878 * known to be either URNs or URLs, the hierarchical URIs being used will 879 * always be server-based. They therefore must either be parsed as such or 880 * treated as an error. In these cases a statement such as 881 * 882 * <blockquote> 883 * {@code URI }<i>u</i>{@code = new URI(str).parseServerAuthority();} 884 * </blockquote> 885 * 886 * <p> can be used to ensure that <i>u</i> always refers to a URI that, if 887 * it has an authority component, has a server-based authority with proper 888 * user-information, host, and port components. Invoking this method also 889 * ensures that if the authority could not be parsed in that way then an 890 * appropriate diagnostic message can be issued based upon the exception 891 * that is thrown. </p> 892 * 893 * @return A URI whose authority field has been parsed 894 * as a server-based authority 895 * 896 * @throws URISyntaxException 897 * If the authority component of this URI is defined 898 * but cannot be parsed as a server-based authority 899 * according to RFC 2396 900 */ parseServerAuthority()901 public URI parseServerAuthority() 902 throws URISyntaxException 903 { 904 // We could be clever and cache the error message and index from the 905 // exception thrown during the original parse, but that would require 906 // either more fields or a more-obscure representation. 907 if ((host != null) || (authority == null)) 908 return this; 909 defineString(); 910 new Parser(string).parse(true); 911 return this; 912 } 913 914 /** 915 * Normalizes this URI's path. 916 * 917 * <p> If this URI is opaque, or if its path is already in normal form, 918 * then this URI is returned. Otherwise a new URI is constructed that is 919 * identical to this URI except that its path is computed by normalizing 920 * this URI's path in a manner consistent with <a 921 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 922 * section 5.2, step 6, sub-steps c through f; that is: 923 * </p> 924 * 925 * <ol> 926 * 927 * <li><p> All {@code "."} segments are removed. </p></li> 928 * 929 * <li><p> If a {@code ".."} segment is preceded by a non-{@code ".."} 930 * segment then both of these segments are removed. This step is 931 * repeated until it is no longer applicable. </p></li> 932 * 933 * <li><p> If the path is relative, and if its first segment contains a 934 * colon character ({@code ':'}), then a {@code "."} segment is 935 * prepended. This prevents a relative URI with a path such as 936 * {@code "a:b/c/d"} from later being re-parsed as an opaque URI with a 937 * scheme of {@code "a"} and a scheme-specific part of {@code "b/c/d"}. 938 * <b><i>(Deviation from RFC 2396)</i></b> </p></li> 939 * 940 * </ol> 941 * 942 * <p> A normalized path will begin with one or more {@code ".."} segments 943 * if there were insufficient non-{@code ".."} segments preceding them to 944 * allow their removal. A normalized path will begin with a {@code "."} 945 * segment if one was inserted by step 3 above. Otherwise, a normalized 946 * path will not contain any {@code "."} or {@code ".."} segments. </p> 947 * 948 * @return A URI equivalent to this URI, 949 * but whose path is in normal form 950 */ normalize()951 public URI normalize() { 952 return normalize(this); 953 } 954 955 /** 956 * Resolves the given URI against this URI. 957 * 958 * <p> If the given URI is already absolute, or if this URI is opaque, then 959 * the given URI is returned. 960 * 961 * <p><a name="resolve-frag"></a> If the given URI's fragment component is 962 * defined, its path component is empty, and its scheme, authority, and 963 * query components are undefined, then a URI with the given fragment but 964 * with all other components equal to those of this URI is returned. This 965 * allows a URI representing a standalone fragment reference, such as 966 * {@code "#foo"}, to be usefully resolved against a base URI. 967 * 968 * <p> Otherwise this method constructs a new hierarchical URI in a manner 969 * consistent with <a 970 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 971 * section 5.2; that is: </p> 972 * 973 * <ol> 974 * 975 * <li><p> A new URI is constructed with this URI's scheme and the given 976 * URI's query and fragment components. </p></li> 977 * 978 * <li><p> If the given URI has an authority component then the new URI's 979 * authority and path are taken from the given URI. </p></li> 980 * 981 * <li><p> Otherwise the new URI's authority component is copied from 982 * this URI, and its path is computed as follows: </p> 983 * 984 * <ol> 985 * 986 * <li><p> If the given URI's path is absolute then the new URI's path 987 * is taken from the given URI. </p></li> 988 * 989 * <li><p> Otherwise the given URI's path is relative, and so the new 990 * URI's path is computed by resolving the path of the given URI 991 * against the path of this URI. This is done by concatenating all but 992 * the last segment of this URI's path, if any, with the given URI's 993 * path and then normalizing the result as if by invoking the {@link 994 * #normalize() normalize} method. </p></li> 995 * 996 * </ol></li> 997 * 998 * </ol> 999 * 1000 * <p> The result of this method is absolute if, and only if, either this 1001 * URI is absolute or the given URI is absolute. </p> 1002 * 1003 * @param uri The URI to be resolved against this URI 1004 * @return The resulting URI 1005 * 1006 * @throws NullPointerException 1007 * If {@code uri} is {@code null} 1008 */ resolve(URI uri)1009 public URI resolve(URI uri) { 1010 return resolve(this, uri); 1011 } 1012 1013 /** 1014 * Constructs a new URI by parsing the given string and then resolving it 1015 * against this URI. 1016 * 1017 * <p> This convenience method works as if invoking it were equivalent to 1018 * evaluating the expression {@link #resolve(java.net.URI) 1019 * resolve}{@code (URI.}{@link #create(String) create}{@code (str))}. </p> 1020 * 1021 * @param str The string to be parsed into a URI 1022 * @return The resulting URI 1023 * 1024 * @throws NullPointerException 1025 * If {@code str} is {@code null} 1026 * 1027 * @throws IllegalArgumentException 1028 * If the given string violates RFC 2396 1029 */ resolve(String str)1030 public URI resolve(String str) { 1031 return resolve(URI.create(str)); 1032 } 1033 1034 /** 1035 * Relativizes the given URI against this URI. 1036 * 1037 * <p> The relativization of the given URI against this URI is computed as 1038 * follows: </p> 1039 * 1040 * <ol> 1041 * 1042 * <li><p> If either this URI or the given URI are opaque, or if the 1043 * scheme and authority components of the two URIs are not identical, or 1044 * if the path of this URI is not a prefix of the path of the given URI, 1045 * then the given URI is returned. </p></li> 1046 * 1047 * <li><p> Otherwise a new relative hierarchical URI is constructed with 1048 * query and fragment components taken from the given URI and with a path 1049 * component computed by removing this URI's path from the beginning of 1050 * the given URI's path. </p></li> 1051 * 1052 * </ol> 1053 * 1054 * @param uri The URI to be relativized against this URI 1055 * @return The resulting URI 1056 * 1057 * @throws NullPointerException 1058 * If {@code uri} is {@code null} 1059 */ relativize(URI uri)1060 public URI relativize(URI uri) { 1061 return relativize(this, uri); 1062 } 1063 1064 /** 1065 * Constructs a URL from this URI. 1066 * 1067 * <p> This convenience method works as if invoking it were equivalent to 1068 * evaluating the expression {@code new URL(this.toString())} after 1069 * first checking that this URI is absolute. </p> 1070 * 1071 * @return A URL constructed from this URI 1072 * 1073 * @throws IllegalArgumentException 1074 * If this URL is not absolute 1075 * 1076 * @throws MalformedURLException 1077 * If a protocol handler for the URL could not be found, 1078 * or if some other error occurred while constructing the URL 1079 */ toURL()1080 public URL toURL() 1081 throws MalformedURLException { 1082 if (!isAbsolute()) 1083 throw new IllegalArgumentException("URI is not absolute"); 1084 return new URL(toString()); 1085 } 1086 1087 // -- Component access methods -- 1088 1089 /** 1090 * Returns the scheme component of this URI. 1091 * 1092 * <p> The scheme component of a URI, if defined, only contains characters 1093 * in the <i>alphanum</i> category and in the string {@code "-.+"}. A 1094 * scheme always starts with an <i>alpha</i> character. <p> 1095 * 1096 * The scheme component of a URI cannot contain escaped octets, hence this 1097 * method does not perform any decoding. 1098 * 1099 * @return The scheme component of this URI, 1100 * or {@code null} if the scheme is undefined 1101 */ getScheme()1102 public String getScheme() { 1103 return scheme; 1104 } 1105 1106 /** 1107 * Tells whether or not this URI is absolute. 1108 * 1109 * <p> A URI is absolute if, and only if, it has a scheme component. </p> 1110 * 1111 * @return {@code true} if, and only if, this URI is absolute 1112 */ isAbsolute()1113 public boolean isAbsolute() { 1114 return scheme != null; 1115 } 1116 1117 /** 1118 * Tells whether or not this URI is opaque. 1119 * 1120 * <p> A URI is opaque if, and only if, it is absolute and its 1121 * scheme-specific part does not begin with a slash character ('/'). 1122 * An opaque URI has a scheme, a scheme-specific part, and possibly 1123 * a fragment; all other components are undefined. </p> 1124 * 1125 * @return {@code true} if, and only if, this URI is opaque 1126 */ isOpaque()1127 public boolean isOpaque() { 1128 return path == null; 1129 } 1130 1131 /** 1132 * Returns the raw scheme-specific part of this URI. The scheme-specific 1133 * part is never undefined, though it may be empty. 1134 * 1135 * <p> The scheme-specific part of a URI only contains legal URI 1136 * characters. </p> 1137 * 1138 * @return The raw scheme-specific part of this URI 1139 * (never {@code null}) 1140 */ getRawSchemeSpecificPart()1141 public String getRawSchemeSpecificPart() { 1142 defineSchemeSpecificPart(); 1143 return schemeSpecificPart; 1144 } 1145 1146 /** 1147 * Returns the decoded scheme-specific part of this URI. 1148 * 1149 * <p> The string returned by this method is equal to that returned by the 1150 * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method 1151 * except that all sequences of escaped octets are <a 1152 * href="#decode">decoded</a>. </p> 1153 * 1154 * @return The decoded scheme-specific part of this URI 1155 * (never {@code null}) 1156 */ getSchemeSpecificPart()1157 public String getSchemeSpecificPart() { 1158 if (decodedSchemeSpecificPart == null) 1159 decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart()); 1160 return decodedSchemeSpecificPart; 1161 } 1162 1163 /** 1164 * Returns the raw authority component of this URI. 1165 * 1166 * <p> The authority component of a URI, if defined, only contains the 1167 * commercial-at character ({@code '@'}) and characters in the 1168 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i> 1169 * categories. If the authority is server-based then it is further 1170 * constrained to have valid user-information, host, and port 1171 * components. </p> 1172 * 1173 * @return The raw authority component of this URI, 1174 * or {@code null} if the authority is undefined 1175 */ getRawAuthority()1176 public String getRawAuthority() { 1177 return authority; 1178 } 1179 1180 /** 1181 * Returns the decoded authority component of this URI. 1182 * 1183 * <p> The string returned by this method is equal to that returned by the 1184 * {@link #getRawAuthority() getRawAuthority} method except that all 1185 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1186 * 1187 * @return The decoded authority component of this URI, 1188 * or {@code null} if the authority is undefined 1189 */ getAuthority()1190 public String getAuthority() { 1191 if (decodedAuthority == null) 1192 decodedAuthority = decode(authority); 1193 return decodedAuthority; 1194 } 1195 1196 /** 1197 * Returns the raw user-information component of this URI. 1198 * 1199 * <p> The user-information component of a URI, if defined, only contains 1200 * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and 1201 * <i>other</i> categories. </p> 1202 * 1203 * @return The raw user-information component of this URI, 1204 * or {@code null} if the user information is undefined 1205 */ getRawUserInfo()1206 public String getRawUserInfo() { 1207 return userInfo; 1208 } 1209 1210 /** 1211 * Returns the decoded user-information component of this URI. 1212 * 1213 * <p> The string returned by this method is equal to that returned by the 1214 * {@link #getRawUserInfo() getRawUserInfo} method except that all 1215 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1216 * 1217 * @return The decoded user-information component of this URI, 1218 * or {@code null} if the user information is undefined 1219 */ getUserInfo()1220 public String getUserInfo() { 1221 if ((decodedUserInfo == null) && (userInfo != null)) 1222 decodedUserInfo = decode(userInfo); 1223 return decodedUserInfo; 1224 } 1225 1226 /** 1227 * Returns the host component of this URI. 1228 * 1229 * <p> The host component of a URI, if defined, will have one of the 1230 * following forms: </p> 1231 * 1232 * <ul> 1233 * 1234 * <li><p> A domain name consisting of one or more <i>labels</i> 1235 * separated by period characters ({@code '.'}), optionally followed by 1236 * a period character. Each label consists of <i>alphanum</i> characters 1237 * as well as hyphen characters ({@code '-'}), though hyphens never 1238 * occur as the first or last characters in a label. The rightmost 1239 * label of a domain name consisting of two or more labels, begins 1240 * with an <i>alpha</i> character. </li> 1241 * 1242 * <li><p> A dotted-quad IPv4 address of the form 1243 * <i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +}, 1244 * where no <i>digit</i> sequence is longer than three characters and no 1245 * sequence has a value larger than 255. </p></li> 1246 * 1247 * <li><p> An IPv6 address enclosed in square brackets ({@code '['} and 1248 * {@code ']'}) and consisting of hexadecimal digits, colon characters 1249 * ({@code ':'}), and possibly an embedded IPv4 address. The full 1250 * syntax of IPv6 addresses is specified in <a 1251 * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC 2373: IPv6 1252 * Addressing Architecture</i></a>. </p></li> 1253 * 1254 * </ul> 1255 * 1256 * The host component of a URI cannot contain escaped octets, hence this 1257 * method does not perform any decoding. 1258 * 1259 * @return The host component of this URI, 1260 * or {@code null} if the host is undefined 1261 */ getHost()1262 public String getHost() { 1263 return host; 1264 } 1265 1266 /** 1267 * Returns the port number of this URI. 1268 * 1269 * <p> The port component of a URI, if defined, is a non-negative 1270 * integer. </p> 1271 * 1272 * @return The port component of this URI, 1273 * or {@code -1} if the port is undefined 1274 */ getPort()1275 public int getPort() { 1276 return port; 1277 } 1278 1279 /** 1280 * Returns the raw path component of this URI. 1281 * 1282 * <p> The path component of a URI, if defined, only contains the slash 1283 * character ({@code '/'}), the commercial-at character ({@code '@'}), 1284 * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, 1285 * and <i>other</i> categories. </p> 1286 * 1287 * @return The path component of this URI, 1288 * or {@code null} if the path is undefined 1289 */ getRawPath()1290 public String getRawPath() { 1291 return path; 1292 } 1293 1294 /** 1295 * Returns the decoded path component of this URI. 1296 * 1297 * <p> The string returned by this method is equal to that returned by the 1298 * {@link #getRawPath() getRawPath} method except that all sequences of 1299 * escaped octets are <a href="#decode">decoded</a>. </p> 1300 * 1301 * @return The decoded path component of this URI, 1302 * or {@code null} if the path is undefined 1303 */ getPath()1304 public String getPath() { 1305 if ((decodedPath == null) && (path != null)) 1306 decodedPath = decode(path); 1307 return decodedPath; 1308 } 1309 1310 /** 1311 * Returns the raw query component of this URI. 1312 * 1313 * <p> The query component of a URI, if defined, only contains legal URI 1314 * characters. </p> 1315 * 1316 * @return The raw query component of this URI, 1317 * or {@code null} if the query is undefined 1318 */ getRawQuery()1319 public String getRawQuery() { 1320 return query; 1321 } 1322 1323 /** 1324 * Returns the decoded query component of this URI. 1325 * 1326 * <p> The string returned by this method is equal to that returned by the 1327 * {@link #getRawQuery() getRawQuery} method except that all sequences of 1328 * escaped octets are <a href="#decode">decoded</a>. </p> 1329 * 1330 * @return The decoded query component of this URI, 1331 * or {@code null} if the query is undefined 1332 */ getQuery()1333 public String getQuery() { 1334 if ((decodedQuery == null) && (query != null)) 1335 decodedQuery = decode(query); 1336 return decodedQuery; 1337 } 1338 1339 /** 1340 * Returns the raw fragment component of this URI. 1341 * 1342 * <p> The fragment component of a URI, if defined, only contains legal URI 1343 * characters. </p> 1344 * 1345 * @return The raw fragment component of this URI, 1346 * or {@code null} if the fragment is undefined 1347 */ getRawFragment()1348 public String getRawFragment() { 1349 return fragment; 1350 } 1351 1352 /** 1353 * Returns the decoded fragment component of this URI. 1354 * 1355 * <p> The string returned by this method is equal to that returned by the 1356 * {@link #getRawFragment() getRawFragment} method except that all 1357 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1358 * 1359 * @return The decoded fragment component of this URI, 1360 * or {@code null} if the fragment is undefined 1361 */ getFragment()1362 public String getFragment() { 1363 if ((decodedFragment == null) && (fragment != null)) 1364 decodedFragment = decode(fragment); 1365 return decodedFragment; 1366 } 1367 1368 1369 // -- Equality, comparison, hash code, toString, and serialization -- 1370 1371 /** 1372 * Tests this URI for equality with another object. 1373 * 1374 * <p> If the given object is not a URI then this method immediately 1375 * returns {@code false}. 1376 * 1377 * <p> For two URIs to be considered equal requires that either both are 1378 * opaque or both are hierarchical. Their schemes must either both be 1379 * undefined or else be equal without regard to case. Their fragments 1380 * must either both be undefined or else be equal. 1381 * 1382 * <p> For two opaque URIs to be considered equal, their scheme-specific 1383 * parts must be equal. 1384 * 1385 * <p> For two hierarchical URIs to be considered equal, their paths must 1386 * be equal and their queries must either both be undefined or else be 1387 * equal. Their authorities must either both be undefined, or both be 1388 * registry-based, or both be server-based. If their authorities are 1389 * defined and are registry-based, then they must be equal. If their 1390 * authorities are defined and are server-based, then their hosts must be 1391 * equal without regard to case, their port numbers must be equal, and 1392 * their user-information components must be equal. 1393 * 1394 * <p> When testing the user-information, path, query, fragment, authority, 1395 * or scheme-specific parts of two URIs for equality, the raw forms rather 1396 * than the encoded forms of these components are compared and the 1397 * hexadecimal digits of escaped octets are compared without regard to 1398 * case. 1399 * 1400 * <p> This method satisfies the general contract of the {@link 1401 * java.lang.Object#equals(Object) Object.equals} method. </p> 1402 * 1403 * @param ob The object to which this object is to be compared 1404 * 1405 * @return {@code true} if, and only if, the given object is a URI that 1406 * is identical to this URI 1407 */ equals(Object ob)1408 public boolean equals(Object ob) { 1409 if (ob == this) 1410 return true; 1411 if (!(ob instanceof URI)) 1412 return false; 1413 URI that = (URI)ob; 1414 if (this.isOpaque() != that.isOpaque()) return false; 1415 if (!equalIgnoringCase(this.scheme, that.scheme)) return false; 1416 if (!equal(this.fragment, that.fragment)) return false; 1417 1418 // Opaque 1419 if (this.isOpaque()) 1420 return equal(this.schemeSpecificPart, that.schemeSpecificPart); 1421 1422 // Hierarchical 1423 if (!equal(this.path, that.path)) return false; 1424 if (!equal(this.query, that.query)) return false; 1425 1426 // Authorities 1427 if (this.authority == that.authority) return true; 1428 if (this.host != null) { 1429 // Server-based 1430 if (!equal(this.userInfo, that.userInfo)) return false; 1431 if (!equalIgnoringCase(this.host, that.host)) return false; 1432 if (this.port != that.port) return false; 1433 } else if (this.authority != null) { 1434 // Registry-based 1435 if (!equal(this.authority, that.authority)) return false; 1436 } else if (this.authority != that.authority) { 1437 return false; 1438 } 1439 1440 return true; 1441 } 1442 1443 /** 1444 * Returns a hash-code value for this URI. The hash code is based upon all 1445 * of the URI's components, and satisfies the general contract of the 1446 * {@link java.lang.Object#hashCode() Object.hashCode} method. 1447 * 1448 * @return A hash-code value for this URI 1449 */ hashCode()1450 public int hashCode() { 1451 if (hash != 0) 1452 return hash; 1453 int h = hashIgnoringCase(0, scheme); 1454 h = hash(h, fragment); 1455 if (isOpaque()) { 1456 h = hash(h, schemeSpecificPart); 1457 } else { 1458 h = hash(h, path); 1459 h = hash(h, query); 1460 if (host != null) { 1461 h = hash(h, userInfo); 1462 h = hashIgnoringCase(h, host); 1463 h += 1949 * port; 1464 } else { 1465 h = hash(h, authority); 1466 } 1467 } 1468 hash = h; 1469 return h; 1470 } 1471 1472 /** 1473 * Compares this URI to another object, which must be a URI. 1474 * 1475 * <p> When comparing corresponding components of two URIs, if one 1476 * component is undefined but the other is defined then the first is 1477 * considered to be less than the second. Unless otherwise noted, string 1478 * components are ordered according to their natural, case-sensitive 1479 * ordering as defined by the {@link java.lang.String#compareTo(Object) 1480 * String.compareTo} method. String components that are subject to 1481 * encoding are compared by comparing their raw forms rather than their 1482 * encoded forms. 1483 * 1484 * <p> The ordering of URIs is defined as follows: </p> 1485 * 1486 * <ul type=disc> 1487 * 1488 * <li><p> Two URIs with different schemes are ordered according the 1489 * ordering of their schemes, without regard to case. </p></li> 1490 * 1491 * <li><p> A hierarchical URI is considered to be less than an opaque URI 1492 * with an identical scheme. </p></li> 1493 * 1494 * <li><p> Two opaque URIs with identical schemes are ordered according 1495 * to the ordering of their scheme-specific parts. </p></li> 1496 * 1497 * <li><p> Two opaque URIs with identical schemes and scheme-specific 1498 * parts are ordered according to the ordering of their 1499 * fragments. </p></li> 1500 * 1501 * <li><p> Two hierarchical URIs with identical schemes are ordered 1502 * according to the ordering of their authority components: </p> 1503 * 1504 * <ul type=disc> 1505 * 1506 * <li><p> If both authority components are server-based then the URIs 1507 * are ordered according to their user-information components; if these 1508 * components are identical then the URIs are ordered according to the 1509 * ordering of their hosts, without regard to case; if the hosts are 1510 * identical then the URIs are ordered according to the ordering of 1511 * their ports. </p></li> 1512 * 1513 * <li><p> If one or both authority components are registry-based then 1514 * the URIs are ordered according to the ordering of their authority 1515 * components. </p></li> 1516 * 1517 * </ul></li> 1518 * 1519 * <li><p> Finally, two hierarchical URIs with identical schemes and 1520 * authority components are ordered according to the ordering of their 1521 * paths; if their paths are identical then they are ordered according to 1522 * the ordering of their queries; if the queries are identical then they 1523 * are ordered according to the order of their fragments. </p></li> 1524 * 1525 * </ul> 1526 * 1527 * <p> This method satisfies the general contract of the {@link 1528 * java.lang.Comparable#compareTo(Object) Comparable.compareTo} 1529 * method. </p> 1530 * 1531 * @param that 1532 * The object to which this URI is to be compared 1533 * 1534 * @return A negative integer, zero, or a positive integer as this URI is 1535 * less than, equal to, or greater than the given URI 1536 * 1537 * @throws ClassCastException 1538 * If the given object is not a URI 1539 */ compareTo(URI that)1540 public int compareTo(URI that) { 1541 int c; 1542 1543 if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0) 1544 return c; 1545 1546 if (this.isOpaque()) { 1547 if (that.isOpaque()) { 1548 // Both opaque 1549 if ((c = compare(this.schemeSpecificPart, 1550 that.schemeSpecificPart)) != 0) 1551 return c; 1552 return compare(this.fragment, that.fragment); 1553 } 1554 return +1; // Opaque > hierarchical 1555 } else if (that.isOpaque()) { 1556 return -1; // Hierarchical < opaque 1557 } 1558 1559 // Hierarchical 1560 if ((this.host != null) && (that.host != null)) { 1561 // Both server-based 1562 if ((c = compare(this.userInfo, that.userInfo)) != 0) 1563 return c; 1564 if ((c = compareIgnoringCase(this.host, that.host)) != 0) 1565 return c; 1566 if ((c = this.port - that.port) != 0) 1567 return c; 1568 } else { 1569 // If one or both authorities are registry-based then we simply 1570 // compare them in the usual, case-sensitive way. If one is 1571 // registry-based and one is server-based then the strings are 1572 // guaranteed to be unequal, hence the comparison will never return 1573 // zero and the compareTo and equals methods will remain 1574 // consistent. 1575 if ((c = compare(this.authority, that.authority)) != 0) return c; 1576 } 1577 1578 if ((c = compare(this.path, that.path)) != 0) return c; 1579 if ((c = compare(this.query, that.query)) != 0) return c; 1580 return compare(this.fragment, that.fragment); 1581 } 1582 1583 /** 1584 * Returns the content of this URI as a string. 1585 * 1586 * <p> If this URI was created by invoking one of the constructors in this 1587 * class then a string equivalent to the original input string, or to the 1588 * string computed from the originally-given components, as appropriate, is 1589 * returned. Otherwise this URI was created by normalization, resolution, 1590 * or relativization, and so a string is constructed from this URI's 1591 * components according to the rules specified in <a 1592 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 1593 * section 5.2, step 7. </p> 1594 * 1595 * @return The string form of this URI 1596 */ toString()1597 public String toString() { 1598 defineString(); 1599 return string; 1600 } 1601 1602 /** 1603 * Returns the content of this URI as a US-ASCII string. 1604 * 1605 * <p> If this URI does not contain any characters in the <i>other</i> 1606 * category then an invocation of this method will return the same value as 1607 * an invocation of the {@link #toString() toString} method. Otherwise 1608 * this method works as if by invoking that method and then <a 1609 * href="#encode">encoding</a> the result. </p> 1610 * 1611 * @return The string form of this URI, encoded as needed 1612 * so that it only contains characters in the US-ASCII 1613 * charset 1614 */ toASCIIString()1615 public String toASCIIString() { 1616 defineString(); 1617 return encode(string); 1618 } 1619 1620 1621 // -- Serialization support -- 1622 1623 /** 1624 * Saves the content of this URI to the given serial stream. 1625 * 1626 * <p> The only serializable field of a URI instance is its {@code string} 1627 * field. That field is given a value, if it does not have one already, 1628 * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()} 1629 * method of the given object-output stream is invoked. </p> 1630 * 1631 * @param os The object-output stream to which this object 1632 * is to be written 1633 */ writeObject(ObjectOutputStream os)1634 private void writeObject(ObjectOutputStream os) 1635 throws IOException 1636 { 1637 defineString(); 1638 os.defaultWriteObject(); // Writes the string field only 1639 } 1640 1641 /** 1642 * Reconstitutes a URI from the given serial stream. 1643 * 1644 * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is 1645 * invoked to read the value of the {@code string} field. The result is 1646 * then parsed in the usual way. 1647 * 1648 * @param is The object-input stream from which this object 1649 * is being read 1650 */ readObject(ObjectInputStream is)1651 private void readObject(ObjectInputStream is) 1652 throws ClassNotFoundException, IOException 1653 { 1654 port = -1; // Argh 1655 is.defaultReadObject(); 1656 try { 1657 new Parser(string).parse(false); 1658 } catch (URISyntaxException x) { 1659 IOException y = new InvalidObjectException("Invalid URI"); 1660 y.initCause(x); 1661 throw y; 1662 } 1663 } 1664 1665 1666 // -- End of public methods -- 1667 1668 1669 // -- Utility methods for string-field comparison and hashing -- 1670 1671 // These methods return appropriate values for null string arguments, 1672 // thereby simplifying the equals, hashCode, and compareTo methods. 1673 // 1674 // The case-ignoring methods should only be applied to strings whose 1675 // characters are all known to be US-ASCII. Because of this restriction, 1676 // these methods are faster than the similar methods in the String class. 1677 1678 // US-ASCII only toLower(char c)1679 private static int toLower(char c) { 1680 if ((c >= 'A') && (c <= 'Z')) 1681 return c + ('a' - 'A'); 1682 return c; 1683 } 1684 1685 // US-ASCII only toUpper(char c)1686 private static int toUpper(char c) { 1687 if ((c >= 'a') && (c <= 'z')) 1688 return c - ('a' - 'A'); 1689 return c; 1690 } 1691 equal(String s, String t)1692 private static boolean equal(String s, String t) { 1693 if (s == t) return true; 1694 if ((s != null) && (t != null)) { 1695 if (s.length() != t.length()) 1696 return false; 1697 if (s.indexOf('%') < 0) 1698 return s.equals(t); 1699 int n = s.length(); 1700 for (int i = 0; i < n;) { 1701 char c = s.charAt(i); 1702 char d = t.charAt(i); 1703 if (c != '%') { 1704 if (c != d) 1705 return false; 1706 i++; 1707 continue; 1708 } 1709 if (d != '%') 1710 return false; 1711 i++; 1712 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1713 return false; 1714 i++; 1715 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1716 return false; 1717 i++; 1718 } 1719 return true; 1720 } 1721 return false; 1722 } 1723 1724 // US-ASCII only equalIgnoringCase(String s, String t)1725 private static boolean equalIgnoringCase(String s, String t) { 1726 if (s == t) return true; 1727 if ((s != null) && (t != null)) { 1728 int n = s.length(); 1729 if (t.length() != n) 1730 return false; 1731 for (int i = 0; i < n; i++) { 1732 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1733 return false; 1734 } 1735 return true; 1736 } 1737 return false; 1738 } 1739 hash(int hash, String s)1740 private static int hash(int hash, String s) { 1741 if (s == null) return hash; 1742 return s.indexOf('%') < 0 ? hash * 127 + s.hashCode() 1743 : normalizedHash(hash, s); 1744 } 1745 1746 normalizedHash(int hash, String s)1747 private static int normalizedHash(int hash, String s) { 1748 int h = 0; 1749 for (int index = 0; index < s.length(); index++) { 1750 char ch = s.charAt(index); 1751 h = 31 * h + ch; 1752 if (ch == '%') { 1753 /* 1754 * Process the next two encoded characters 1755 */ 1756 for (int i = index + 1; i < index + 3; i++) 1757 h = 31 * h + toUpper(s.charAt(i)); 1758 index += 2; 1759 } 1760 } 1761 return hash * 127 + h; 1762 } 1763 1764 // US-ASCII only hashIgnoringCase(int hash, String s)1765 private static int hashIgnoringCase(int hash, String s) { 1766 if (s == null) return hash; 1767 int h = hash; 1768 int n = s.length(); 1769 for (int i = 0; i < n; i++) 1770 h = 31 * h + toLower(s.charAt(i)); 1771 return h; 1772 } 1773 compare(String s, String t)1774 private static int compare(String s, String t) { 1775 if (s == t) return 0; 1776 if (s != null) { 1777 if (t != null) 1778 return s.compareTo(t); 1779 else 1780 return +1; 1781 } else { 1782 return -1; 1783 } 1784 } 1785 1786 // US-ASCII only compareIgnoringCase(String s, String t)1787 private static int compareIgnoringCase(String s, String t) { 1788 if (s == t) return 0; 1789 if (s != null) { 1790 if (t != null) { 1791 int sn = s.length(); 1792 int tn = t.length(); 1793 int n = sn < tn ? sn : tn; 1794 for (int i = 0; i < n; i++) { 1795 int c = toLower(s.charAt(i)) - toLower(t.charAt(i)); 1796 if (c != 0) 1797 return c; 1798 } 1799 return sn - tn; 1800 } 1801 return +1; 1802 } else { 1803 return -1; 1804 } 1805 } 1806 1807 1808 // -- String construction -- 1809 1810 // If a scheme is given then the path, if given, must be absolute 1811 // 1812 private static void checkPath(String s, String scheme, String path) 1813 throws URISyntaxException 1814 { 1815 if (scheme != null) { 1816 if ((path != null) 1817 && ((path.length() > 0) && (path.charAt(0) != '/'))) 1818 throw new URISyntaxException(s, 1819 "Relative path in absolute URI"); 1820 } 1821 } 1822 1823 private void appendAuthority(StringBuffer sb, 1824 String authority, 1825 String userInfo, 1826 String host, 1827 int port) 1828 { 1829 if (host != null) { 1830 sb.append("//"); 1831 if (userInfo != null) { 1832 sb.append(quote(userInfo, L_USERINFO, H_USERINFO)); 1833 sb.append('@'); 1834 } 1835 boolean needBrackets = ((host.indexOf(':') >= 0) 1836 && !host.startsWith("[") 1837 && !host.endsWith("]")); 1838 if (needBrackets) sb.append('['); 1839 sb.append(host); 1840 if (needBrackets) sb.append(']'); 1841 if (port != -1) { 1842 sb.append(':'); 1843 sb.append(port); 1844 } 1845 } else if (authority != null) { 1846 sb.append("//"); 1847 if (authority.startsWith("[")) { 1848 // authority should (but may not) contain an embedded IPv6 address 1849 int end = authority.indexOf("]"); 1850 String doquote = authority, dontquote = ""; 1851 if (end != -1 && authority.indexOf(":") != -1) { 1852 // the authority contains an IPv6 address 1853 if (end == authority.length()) { 1854 dontquote = authority; 1855 doquote = ""; 1856 } else { 1857 dontquote = authority.substring(0 , end + 1); 1858 doquote = authority.substring(end + 1); 1859 } 1860 } 1861 sb.append(dontquote); 1862 sb.append(quote(doquote, 1863 L_REG_NAME | L_SERVER, 1864 H_REG_NAME | H_SERVER)); 1865 } else { 1866 sb.append(quote(authority, 1867 L_REG_NAME | L_SERVER, 1868 H_REG_NAME | H_SERVER)); 1869 } 1870 } 1871 } 1872 appendSchemeSpecificPart(StringBuffer sb, String opaquePart, String authority, String userInfo, String host, int port, String path, String query)1873 private void appendSchemeSpecificPart(StringBuffer sb, 1874 String opaquePart, 1875 String authority, 1876 String userInfo, 1877 String host, 1878 int port, 1879 String path, 1880 String query) 1881 { 1882 if (opaquePart != null) { 1883 /* check if SSP begins with an IPv6 address 1884 * because we must not quote a literal IPv6 address 1885 */ 1886 if (opaquePart.startsWith("//[")) { 1887 int end = opaquePart.indexOf("]"); 1888 if (end != -1 && opaquePart.indexOf(":")!=-1) { 1889 String doquote, dontquote; 1890 if (end == opaquePart.length()) { 1891 dontquote = opaquePart; 1892 doquote = ""; 1893 } else { 1894 dontquote = opaquePart.substring(0,end+1); 1895 doquote = opaquePart.substring(end+1); 1896 } 1897 sb.append (dontquote); 1898 sb.append(quote(doquote, L_URIC, H_URIC)); 1899 } 1900 } else { 1901 sb.append(quote(opaquePart, L_URIC, H_URIC)); 1902 } 1903 } else { 1904 appendAuthority(sb, authority, userInfo, host, port); 1905 if (path != null) 1906 sb.append(quote(path, L_PATH, H_PATH)); 1907 if (query != null) { 1908 sb.append('?'); 1909 sb.append(quote(query, L_URIC, H_URIC)); 1910 } 1911 } 1912 } 1913 appendFragment(StringBuffer sb, String fragment)1914 private void appendFragment(StringBuffer sb, String fragment) { 1915 if (fragment != null) { 1916 sb.append('#'); 1917 sb.append(quote(fragment, L_URIC, H_URIC)); 1918 } 1919 } 1920 toString(String scheme, String opaquePart, String authority, String userInfo, String host, int port, String path, String query, String fragment)1921 private String toString(String scheme, 1922 String opaquePart, 1923 String authority, 1924 String userInfo, 1925 String host, 1926 int port, 1927 String path, 1928 String query, 1929 String fragment) 1930 { 1931 StringBuffer sb = new StringBuffer(); 1932 if (scheme != null) { 1933 sb.append(scheme); 1934 sb.append(':'); 1935 } 1936 appendSchemeSpecificPart(sb, opaquePart, 1937 authority, userInfo, host, port, 1938 path, query); 1939 appendFragment(sb, fragment); 1940 return sb.toString(); 1941 } 1942 defineSchemeSpecificPart()1943 private void defineSchemeSpecificPart() { 1944 if (schemeSpecificPart != null) return; 1945 StringBuffer sb = new StringBuffer(); 1946 appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(), 1947 host, port, getPath(), getQuery()); 1948 if (sb.length() == 0) return; 1949 schemeSpecificPart = sb.toString(); 1950 } 1951 defineString()1952 private void defineString() { 1953 if (string != null) return; 1954 1955 StringBuffer sb = new StringBuffer(); 1956 if (scheme != null) { 1957 sb.append(scheme); 1958 sb.append(':'); 1959 } 1960 if (isOpaque()) { 1961 sb.append(schemeSpecificPart); 1962 } else { 1963 if (host != null) { 1964 sb.append("//"); 1965 if (userInfo != null) { 1966 sb.append(userInfo); 1967 sb.append('@'); 1968 } 1969 boolean needBrackets = ((host.indexOf(':') >= 0) 1970 && !host.startsWith("[") 1971 && !host.endsWith("]")); 1972 if (needBrackets) sb.append('['); 1973 sb.append(host); 1974 if (needBrackets) sb.append(']'); 1975 if (port != -1) { 1976 sb.append(':'); 1977 sb.append(port); 1978 } 1979 } else if (authority != null) { 1980 sb.append("//"); 1981 sb.append(authority); 1982 } 1983 if (path != null) 1984 sb.append(path); 1985 if (query != null) { 1986 sb.append('?'); 1987 sb.append(query); 1988 } 1989 } 1990 if (fragment != null) { 1991 sb.append('#'); 1992 sb.append(fragment); 1993 } 1994 string = sb.toString(); 1995 } 1996 1997 1998 // -- Normalization, resolution, and relativization -- 1999 2000 // RFC2396 5.2 (6) resolvePath(String base, String child, boolean absolute)2001 private static String resolvePath(String base, String child, 2002 boolean absolute) 2003 { 2004 int i = base.lastIndexOf('/'); 2005 int cn = child.length(); 2006 String path = ""; 2007 2008 if (cn == 0) { 2009 // 5.2 (6a) 2010 if (i >= 0) 2011 path = base.substring(0, i + 1); 2012 } else { 2013 StringBuffer sb = new StringBuffer(base.length() + cn); 2014 // 5.2 (6a) 2015 if (i >= 0) 2016 sb.append(base.substring(0, i + 1)); 2017 // 5.2 (6b) 2018 sb.append(child); 2019 path = sb.toString(); 2020 } 2021 2022 // 5.2 (6c-f) 2023 String np = normalize(path, true); 2024 2025 // 5.2 (6g): If the result is absolute but the path begins with "../", 2026 // then we simply leave the path as-is 2027 2028 return np; 2029 } 2030 2031 // RFC2396 5.2 resolve(URI base, URI child)2032 private static URI resolve(URI base, URI child) { 2033 // check if child if opaque first so that NPE is thrown 2034 // if child is null. 2035 if (child.isOpaque() || base.isOpaque()) 2036 return child; 2037 2038 // 5.2 (2): Reference to current document (lone fragment) 2039 if ((child.scheme == null) && (child.authority == null) 2040 && child.path.equals("") && (child.fragment != null) 2041 && (child.query == null)) { 2042 if ((base.fragment != null) 2043 && child.fragment.equals(base.fragment)) { 2044 return base; 2045 } 2046 URI ru = new URI(); 2047 ru.scheme = base.scheme; 2048 ru.authority = base.authority; 2049 ru.userInfo = base.userInfo; 2050 ru.host = base.host; 2051 ru.port = base.port; 2052 ru.path = base.path; 2053 ru.fragment = child.fragment; 2054 ru.query = base.query; 2055 return ru; 2056 } 2057 2058 // 5.2 (3): Child is absolute 2059 if (child.scheme != null) 2060 return child; 2061 2062 URI ru = new URI(); // Resolved URI 2063 ru.scheme = base.scheme; 2064 ru.query = child.query; 2065 ru.fragment = child.fragment; 2066 2067 // 5.2 (4): Authority 2068 if (child.authority == null) { 2069 ru.authority = base.authority; 2070 ru.host = base.host; 2071 ru.userInfo = base.userInfo; 2072 ru.port = base.port; 2073 2074 if (child.path == null || child.path.isEmpty()) { 2075 // This is an addtional path from RFC 3986 RI, which fixes following RFC 2396 2076 // "normal" examples: 2077 // Base: http://a/b/c/d;p?q 2078 // "?y" = "http://a/b/c/d;p?y" 2079 // "" = "http://a/b/c/d;p?q" 2080 // http://b/25897693 2081 ru.path = base.path; 2082 ru.query = child.query != null ? child.query : base.query; 2083 } else if ((child.path.length() > 0) && (child.path.charAt(0) == '/')) { 2084 // 5.2 (5): Child path is absolute 2085 // 2086 // There is an additional step from RFC 3986 RI, requiring to remove dots for 2087 // absolute path as well. 2088 // http://b/25897693 2089 ru.path = normalize(child.path, true); 2090 } else { 2091 // 5.2 (6): Resolve relative path 2092 ru.path = resolvePath(base.path, child.path, base.isAbsolute()); 2093 } 2094 } else { 2095 ru.authority = child.authority; 2096 ru.host = child.host; 2097 ru.userInfo = child.userInfo; 2098 ru.host = child.host; 2099 ru.port = child.port; 2100 ru.path = child.path; 2101 } 2102 2103 // 5.2 (7): Recombine (nothing to do here) 2104 return ru; 2105 } 2106 2107 // If the given URI's path is normal then return the URI; 2108 // o.w., return a new URI containing the normalized path. 2109 // normalize(URI u)2110 private static URI normalize(URI u) { 2111 if (u.isOpaque() || (u.path == null) || (u.path.length() == 0)) 2112 return u; 2113 2114 String np = normalize(u.path); 2115 if (np == u.path) 2116 return u; 2117 2118 URI v = new URI(); 2119 v.scheme = u.scheme; 2120 v.fragment = u.fragment; 2121 v.authority = u.authority; 2122 v.userInfo = u.userInfo; 2123 v.host = u.host; 2124 v.port = u.port; 2125 v.path = np; 2126 v.query = u.query; 2127 return v; 2128 } 2129 2130 // If both URIs are hierarchical, their scheme and authority components are 2131 // identical, and the base path is a prefix of the child's path, then 2132 // return a relative URI that, when resolved against the base, yields the 2133 // child; otherwise, return the child. 2134 // relativize(URI base, URI child)2135 private static URI relativize(URI base, URI child) { 2136 // check if child if opaque first so that NPE is thrown 2137 // if child is null. 2138 if (child.isOpaque() || base.isOpaque()) 2139 return child; 2140 if (!equalIgnoringCase(base.scheme, child.scheme) 2141 || !equal(base.authority, child.authority)) 2142 return child; 2143 2144 String bp = normalize(base.path); 2145 String cp = normalize(child.path); 2146 if (!bp.equals(cp)) { 2147 // Android-changed: The original OpenJdk implementation would append a trailing slash 2148 // to paths like "/a/b" before relativizing them. This would relativize /a/b/c to 2149 // "/c" against "/a/b" the android implementation did not do this. It would assume that 2150 // "b" wasn't a directory and relativize the path to "/b/c". The spec is pretty vague 2151 // about this but this change is being made because we have several tests that expect 2152 // this behaviour. 2153 if (bp.indexOf('/') != -1) { 2154 bp = bp.substring(0, bp.lastIndexOf('/') + 1); 2155 } 2156 2157 if (!cp.startsWith(bp)) 2158 return child; 2159 } 2160 2161 URI v = new URI(); 2162 v.path = cp.substring(bp.length()); 2163 v.query = child.query; 2164 v.fragment = child.fragment; 2165 return v; 2166 } 2167 2168 2169 2170 // -- Path normalization -- 2171 2172 // The following algorithm for path normalization avoids the creation of a 2173 // string object for each segment, as well as the use of a string buffer to 2174 // compute the final result, by using a single char array and editing it in 2175 // place. The array is first split into segments, replacing each slash 2176 // with '\0' and creating a segment-index array, each element of which is 2177 // the index of the first char in the corresponding segment. We then walk 2178 // through both arrays, removing ".", "..", and other segments as necessary 2179 // by setting their entries in the index array to -1. Finally, the two 2180 // arrays are used to rejoin the segments and compute the final result. 2181 // 2182 // This code is based upon src/solaris/native/java/io/canonicalize_md.c 2183 2184 2185 // Check the given path to see if it might need normalization. A path 2186 // might need normalization if it contains duplicate slashes, a "." 2187 // segment, or a ".." segment. Return -1 if no further normalization is 2188 // possible, otherwise return the number of segments found. 2189 // 2190 // This method takes a string argument rather than a char array so that 2191 // this test can be performed without invoking path.toCharArray(). 2192 // needsNormalization(String path)2193 static private int needsNormalization(String path) { 2194 boolean normal = true; 2195 int ns = 0; // Number of segments 2196 int end = path.length() - 1; // Index of last char in path 2197 int p = 0; // Index of next char in path 2198 2199 // Skip initial slashes 2200 while (p <= end) { 2201 if (path.charAt(p) != '/') break; 2202 p++; 2203 } 2204 if (p > 1) normal = false; 2205 2206 // Scan segments 2207 while (p <= end) { 2208 2209 // Looking at "." or ".." ? 2210 if ((path.charAt(p) == '.') 2211 && ((p == end) 2212 || ((path.charAt(p + 1) == '/') 2213 || ((path.charAt(p + 1) == '.') 2214 && ((p + 1 == end) 2215 || (path.charAt(p + 2) == '/')))))) { 2216 normal = false; 2217 } 2218 ns++; 2219 2220 // Find beginning of next segment 2221 while (p <= end) { 2222 if (path.charAt(p++) != '/') 2223 continue; 2224 2225 // Skip redundant slashes 2226 while (p <= end) { 2227 if (path.charAt(p) != '/') break; 2228 normal = false; 2229 p++; 2230 } 2231 2232 break; 2233 } 2234 } 2235 2236 return normal ? -1 : ns; 2237 } 2238 2239 2240 // Split the given path into segments, replacing slashes with nulls and 2241 // filling in the given segment-index array. 2242 // 2243 // Preconditions: 2244 // segs.length == Number of segments in path 2245 // 2246 // Postconditions: 2247 // All slashes in path replaced by '\0' 2248 // segs[i] == Index of first char in segment i (0 <= i < segs.length) 2249 // split(char[] path, int[] segs)2250 static private void split(char[] path, int[] segs) { 2251 int end = path.length - 1; // Index of last char in path 2252 int p = 0; // Index of next char in path 2253 int i = 0; // Index of current segment 2254 2255 // Skip initial slashes 2256 while (p <= end) { 2257 if (path[p] != '/') break; 2258 path[p] = '\0'; 2259 p++; 2260 } 2261 2262 while (p <= end) { 2263 2264 // Note start of segment 2265 segs[i++] = p++; 2266 2267 // Find beginning of next segment 2268 while (p <= end) { 2269 if (path[p++] != '/') 2270 continue; 2271 path[p - 1] = '\0'; 2272 2273 // Skip redundant slashes 2274 while (p <= end) { 2275 if (path[p] != '/') break; 2276 path[p++] = '\0'; 2277 } 2278 break; 2279 } 2280 } 2281 2282 if (i != segs.length) 2283 throw new InternalError(); // ASSERT 2284 } 2285 2286 2287 // Join the segments in the given path according to the given segment-index 2288 // array, ignoring those segments whose index entries have been set to -1, 2289 // and inserting slashes as needed. Return the length of the resulting 2290 // path. 2291 // 2292 // Preconditions: 2293 // segs[i] == -1 implies segment i is to be ignored 2294 // path computed by split, as above, with '\0' having replaced '/' 2295 // 2296 // Postconditions: 2297 // path[0] .. path[return value] == Resulting path 2298 // join(char[] path, int[] segs)2299 static private int join(char[] path, int[] segs) { 2300 int ns = segs.length; // Number of segments 2301 int end = path.length - 1; // Index of last char in path 2302 int p = 0; // Index of next path char to write 2303 2304 if (path[p] == '\0') { 2305 // Restore initial slash for absolute paths 2306 path[p++] = '/'; 2307 } 2308 2309 for (int i = 0; i < ns; i++) { 2310 int q = segs[i]; // Current segment 2311 if (q == -1) 2312 // Ignore this segment 2313 continue; 2314 2315 if (p == q) { 2316 // We're already at this segment, so just skip to its end 2317 while ((p <= end) && (path[p] != '\0')) 2318 p++; 2319 if (p <= end) { 2320 // Preserve trailing slash 2321 path[p++] = '/'; 2322 } 2323 } else if (p < q) { 2324 // Copy q down to p 2325 while ((q <= end) && (path[q] != '\0')) 2326 path[p++] = path[q++]; 2327 if (q <= end) { 2328 // Preserve trailing slash 2329 path[p++] = '/'; 2330 } 2331 } else 2332 throw new InternalError(); // ASSERT false 2333 } 2334 2335 return p; 2336 } 2337 2338 2339 // Remove "." segments from the given path, and remove segment pairs 2340 // consisting of a non-".." segment followed by a ".." segment. 2341 // removeDots(char[] path, int[] segs, boolean removeLeading)2342 private static void removeDots(char[] path, int[] segs, boolean removeLeading) { 2343 int ns = segs.length; 2344 int end = path.length - 1; 2345 2346 for (int i = 0; i < ns; i++) { 2347 int dots = 0; // Number of dots found (0, 1, or 2) 2348 2349 // Find next occurrence of "." or ".." 2350 do { 2351 int p = segs[i]; 2352 if (path[p] == '.') { 2353 if (p == end) { 2354 dots = 1; 2355 break; 2356 } else if (path[p + 1] == '\0') { 2357 dots = 1; 2358 break; 2359 } else if ((path[p + 1] == '.') 2360 && ((p + 1 == end) 2361 || (path[p + 2] == '\0'))) { 2362 dots = 2; 2363 break; 2364 } 2365 } 2366 i++; 2367 } while (i < ns); 2368 if ((i > ns) || (dots == 0)) 2369 break; 2370 2371 if (dots == 1) { 2372 // Remove this occurrence of "." 2373 segs[i] = -1; 2374 } else { 2375 // If there is a preceding non-".." segment, remove both that 2376 // segment and this occurrence of ".." 2377 int j; 2378 for (j = i - 1; j >= 0; j--) { 2379 if (segs[j] != -1) break; 2380 } 2381 if (j >= 0) { 2382 int q = segs[j]; 2383 if (!((path[q] == '.') 2384 && (path[q + 1] == '.') 2385 && (path[q + 2] == '\0'))) { 2386 segs[i] = -1; 2387 segs[j] = -1; 2388 } 2389 } else if (removeLeading) { 2390 // This is a leading ".." segment. Per RFC 3986 RI, this should be removed as 2391 // well. This fixes RFC 2396 "abnormal" examples. 2392 // http://b/25897693 2393 segs[i] = -1; 2394 } 2395 } 2396 } 2397 } 2398 2399 2400 // DEVIATION: If the normalized path is relative, and if the first 2401 // segment could be parsed as a scheme name, then prepend a "." segment 2402 // maybeAddLeadingDot(char[] path, int[] segs)2403 private static void maybeAddLeadingDot(char[] path, int[] segs) { 2404 2405 if (path[0] == '\0') 2406 // The path is absolute 2407 return; 2408 2409 int ns = segs.length; 2410 int f = 0; // Index of first segment 2411 while (f < ns) { 2412 if (segs[f] >= 0) 2413 break; 2414 f++; 2415 } 2416 if ((f >= ns) || (f == 0)) 2417 // The path is empty, or else the original first segment survived, 2418 // in which case we already know that no leading "." is needed 2419 return; 2420 2421 int p = segs[f]; 2422 while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++; 2423 if (p >= path.length || path[p] == '\0') 2424 // No colon in first segment, so no "." needed 2425 return; 2426 2427 // At this point we know that the first segment is unused, 2428 // hence we can insert a "." segment at that position 2429 path[0] = '.'; 2430 path[1] = '\0'; 2431 segs[0] = 0; 2432 } 2433 2434 2435 // Normalize the given path string. A normal path string has no empty 2436 // segments (i.e., occurrences of "//"), no segments equal to ".", and no 2437 // segments equal to ".." that are preceded by a segment not equal to "..". 2438 // In contrast to Unix-style pathname normalization, for URI paths we 2439 // always retain trailing slashes. 2440 // normalize(String ps)2441 private static String normalize(String ps) { 2442 return normalize(ps, false); 2443 } 2444 normalize(String ps, boolean removeLeading)2445 private static String normalize(String ps, boolean removeLeading) { 2446 2447 // Does this path need normalization? 2448 int ns = needsNormalization(ps); // Number of segments 2449 if (ns < 0) 2450 // Nope -- just return it 2451 return ps; 2452 2453 char[] path = ps.toCharArray(); // Path in char-array form 2454 2455 // Split path into segments 2456 int[] segs = new int[ns]; // Segment-index array 2457 split(path, segs); 2458 2459 // Remove dots 2460 removeDots(path, segs, removeLeading); 2461 2462 // Prevent scheme-name confusion 2463 maybeAddLeadingDot(path, segs); 2464 2465 // Join the remaining segments and return the result 2466 String s = new String(path, 0, join(path, segs)); 2467 if (s.equals(ps)) { 2468 // string was already normalized 2469 return ps; 2470 } 2471 return s; 2472 } 2473 2474 2475 2476 // -- Character classes for parsing -- 2477 2478 // RFC2396 precisely specifies which characters in the US-ASCII charset are 2479 // permissible in the various components of a URI reference. We here 2480 // define a set of mask pairs to aid in enforcing these restrictions. Each 2481 // mask pair consists of two longs, a low mask and a high mask. Taken 2482 // together they represent a 128-bit mask, where bit i is set iff the 2483 // character with value i is permitted. 2484 // 2485 // This approach is more efficient than sequentially searching arrays of 2486 // permitted characters. It could be made still more efficient by 2487 // precompiling the mask information so that a character's presence in a 2488 // given mask could be determined by a single table lookup. 2489 2490 // Compute the low-order mask for the characters in the given string lowMask(String chars)2491 private static long lowMask(String chars) { 2492 int n = chars.length(); 2493 long m = 0; 2494 for (int i = 0; i < n; i++) { 2495 char c = chars.charAt(i); 2496 if (c < 64) 2497 m |= (1L << c); 2498 } 2499 return m; 2500 } 2501 2502 // Compute the high-order mask for the characters in the given string highMask(String chars)2503 private static long highMask(String chars) { 2504 int n = chars.length(); 2505 long m = 0; 2506 for (int i = 0; i < n; i++) { 2507 char c = chars.charAt(i); 2508 if ((c >= 64) && (c < 128)) 2509 m |= (1L << (c - 64)); 2510 } 2511 return m; 2512 } 2513 2514 // Compute a low-order mask for the characters 2515 // between first and last, inclusive lowMask(char first, char last)2516 private static long lowMask(char first, char last) { 2517 long m = 0; 2518 int f = Math.max(Math.min(first, 63), 0); 2519 int l = Math.max(Math.min(last, 63), 0); 2520 for (int i = f; i <= l; i++) 2521 m |= 1L << i; 2522 return m; 2523 } 2524 2525 // Compute a high-order mask for the characters 2526 // between first and last, inclusive highMask(char first, char last)2527 private static long highMask(char first, char last) { 2528 long m = 0; 2529 int f = Math.max(Math.min(first, 127), 64) - 64; 2530 int l = Math.max(Math.min(last, 127), 64) - 64; 2531 for (int i = f; i <= l; i++) 2532 m |= 1L << i; 2533 return m; 2534 } 2535 2536 // Tell whether the given character is permitted by the given mask pair match(char c, long lowMask, long highMask)2537 private static boolean match(char c, long lowMask, long highMask) { 2538 if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches. 2539 return false; 2540 if (c < 64) 2541 return ((1L << c) & lowMask) != 0; 2542 if (c < 128) 2543 return ((1L << (c - 64)) & highMask) != 0; 2544 return false; 2545 } 2546 2547 // Character-class masks, in reverse order from RFC2396 because 2548 // initializers for static fields cannot make forward references. 2549 2550 // digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 2551 // "8" | "9" 2552 private static final long L_DIGIT = lowMask('0', '9'); 2553 private static final long H_DIGIT = 0L; 2554 2555 // upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | 2556 // "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | 2557 // "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" 2558 private static final long L_UPALPHA = 0L; 2559 private static final long H_UPALPHA = highMask('A', 'Z'); 2560 2561 // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | 2562 // "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | 2563 // "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" 2564 private static final long L_LOWALPHA = 0L; 2565 private static final long H_LOWALPHA = highMask('a', 'z'); 2566 2567 // alpha = lowalpha | upalpha 2568 private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA; 2569 private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA; 2570 2571 // alphanum = alpha | digit 2572 private static final long L_ALPHANUM = L_DIGIT | L_ALPHA; 2573 private static final long H_ALPHANUM = H_DIGIT | H_ALPHA; 2574 2575 // hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 2576 // "a" | "b" | "c" | "d" | "e" | "f" 2577 private static final long L_HEX = L_DIGIT; 2578 private static final long H_HEX = highMask('A', 'F') | highMask('a', 'f'); 2579 2580 // mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | 2581 // "(" | ")" 2582 private static final long L_MARK = lowMask("-_.!~*'()"); 2583 private static final long H_MARK = highMask("-_.!~*'()"); 2584 2585 // unreserved = alphanum | mark 2586 private static final long L_UNRESERVED = L_ALPHANUM | L_MARK; 2587 private static final long H_UNRESERVED = H_ALPHANUM | H_MARK; 2588 2589 // reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | 2590 // "$" | "," | "[" | "]" 2591 // Added per RFC2732: "[", "]" 2592 private static final long L_RESERVED = lowMask(";/?:@&=+$,[]"); 2593 private static final long H_RESERVED = highMask(";/?:@&=+$,[]"); 2594 2595 // The zero'th bit is used to indicate that escape pairs and non-US-ASCII 2596 // characters are allowed; this is handled by the scanEscape method below. 2597 private static final long L_ESCAPED = 1L; 2598 private static final long H_ESCAPED = 0L; 2599 2600 // uric = reserved | unreserved | escaped 2601 private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED; 2602 private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED; 2603 2604 // pchar = unreserved | escaped | 2605 // ":" | "@" | "&" | "=" | "+" | "$" | "," 2606 private static final long L_PCHAR 2607 = L_UNRESERVED | L_ESCAPED | lowMask(":@&=+$,"); 2608 private static final long H_PCHAR 2609 = H_UNRESERVED | H_ESCAPED | highMask(":@&=+$,"); 2610 2611 // All valid path characters 2612 private static final long L_PATH = L_PCHAR | lowMask(";/"); 2613 private static final long H_PATH = H_PCHAR | highMask(";/"); 2614 2615 // Dash, for use in domainlabel and toplabel 2616 private static final long L_DASH = lowMask("-"); 2617 private static final long H_DASH = highMask("-"); 2618 2619 // UNDERSCORE, for use in domainlabel and toplabel 2620 private static final long L_UNDERSCORE = lowMask("_"); 2621 private static final long H_UNDERSCORE = highMask("_"); 2622 2623 // Dot, for use in hostnames 2624 private static final long L_DOT = lowMask("."); 2625 private static final long H_DOT = highMask("."); 2626 2627 // userinfo = *( unreserved | escaped | 2628 // ";" | ":" | "&" | "=" | "+" | "$" | "," ) 2629 private static final long L_USERINFO 2630 = L_UNRESERVED | L_ESCAPED | lowMask(";:&=+$,"); 2631 private static final long H_USERINFO 2632 = H_UNRESERVED | H_ESCAPED | highMask(";:&=+$,"); 2633 2634 // reg_name = 1*( unreserved | escaped | "$" | "," | 2635 // ";" | ":" | "@" | "&" | "=" | "+" ) 2636 private static final long L_REG_NAME 2637 = L_UNRESERVED | L_ESCAPED | lowMask("$,;:@&=+"); 2638 private static final long H_REG_NAME 2639 = H_UNRESERVED | H_ESCAPED | highMask("$,;:@&=+"); 2640 2641 // All valid characters for server-based authorities 2642 private static final long L_SERVER 2643 = L_USERINFO | L_ALPHANUM | L_DASH | lowMask(".:@[]"); 2644 private static final long H_SERVER 2645 = H_USERINFO | H_ALPHANUM | H_DASH | highMask(".:@[]"); 2646 2647 // Special case of server authority that represents an IPv6 address 2648 // In this case, a % does not signify an escape sequence 2649 private static final long L_SERVER_PERCENT 2650 = L_SERVER | lowMask("%"); 2651 private static final long H_SERVER_PERCENT 2652 = H_SERVER | highMask("%"); 2653 private static final long L_LEFT_BRACKET = lowMask("["); 2654 private static final long H_LEFT_BRACKET = highMask("["); 2655 2656 // scheme = alpha *( alpha | digit | "+" | "-" | "." ) 2657 private static final long L_SCHEME = L_ALPHA | L_DIGIT | lowMask("+-."); 2658 private static final long H_SCHEME = H_ALPHA | H_DIGIT | highMask("+-."); 2659 2660 // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" | 2661 // "&" | "=" | "+" | "$" | "," 2662 private static final long L_URIC_NO_SLASH 2663 = L_UNRESERVED | L_ESCAPED | lowMask(";?:@&=+$,"); 2664 private static final long H_URIC_NO_SLASH 2665 = H_UNRESERVED | H_ESCAPED | highMask(";?:@&=+$,"); 2666 2667 2668 // -- Escaping and encoding -- 2669 2670 private final static char[] hexDigits = { 2671 '0', '1', '2', '3', '4', '5', '6', '7', 2672 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 2673 }; 2674 appendEscape(StringBuffer sb, byte b)2675 private static void appendEscape(StringBuffer sb, byte b) { 2676 sb.append('%'); 2677 sb.append(hexDigits[(b >> 4) & 0x0f]); 2678 sb.append(hexDigits[(b >> 0) & 0x0f]); 2679 } 2680 appendEncoded(StringBuffer sb, char c)2681 private static void appendEncoded(StringBuffer sb, char c) { 2682 ByteBuffer bb = null; 2683 try { 2684 bb = ThreadLocalCoders.encoderFor("UTF-8") 2685 .encode(CharBuffer.wrap("" + c)); 2686 } catch (CharacterCodingException x) { 2687 assert false; 2688 } 2689 while (bb.hasRemaining()) { 2690 int b = bb.get() & 0xff; 2691 if (b >= 0x80) 2692 appendEscape(sb, (byte)b); 2693 else 2694 sb.append((char)b); 2695 } 2696 } 2697 2698 // Quote any characters in s that are not permitted 2699 // by the given mask pair 2700 // quote(String s, long lowMask, long highMask)2701 private static String quote(String s, long lowMask, long highMask) { 2702 int n = s.length(); 2703 StringBuffer sb = null; 2704 boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0); 2705 for (int i = 0; i < s.length(); i++) { 2706 char c = s.charAt(i); 2707 if (c < '\u0080') { 2708 if (!match(c, lowMask, highMask)) { 2709 if (sb == null) { 2710 sb = new StringBuffer(); 2711 sb.append(s.substring(0, i)); 2712 } 2713 appendEscape(sb, (byte)c); 2714 } else { 2715 if (sb != null) 2716 sb.append(c); 2717 } 2718 } else if (allowNonASCII 2719 && (Character.isSpaceChar(c) 2720 || Character.isISOControl(c))) { 2721 if (sb == null) { 2722 sb = new StringBuffer(); 2723 sb.append(s.substring(0, i)); 2724 } 2725 appendEncoded(sb, c); 2726 } else { 2727 if (sb != null) 2728 sb.append(c); 2729 } 2730 } 2731 return (sb == null) ? s : sb.toString(); 2732 } 2733 2734 // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets, 2735 // assuming that s is otherwise legal 2736 // encode(String s)2737 private static String encode(String s) { 2738 int n = s.length(); 2739 if (n == 0) 2740 return s; 2741 2742 // First check whether we actually need to encode 2743 for (int i = 0;;) { 2744 if (s.charAt(i) >= '\u0080') 2745 break; 2746 if (++i >= n) 2747 return s; 2748 } 2749 2750 String ns = Normalizer.normalize(s, Normalizer.Form.NFC); 2751 ByteBuffer bb = null; 2752 try { 2753 bb = ThreadLocalCoders.encoderFor("UTF-8") 2754 .encode(CharBuffer.wrap(ns)); 2755 } catch (CharacterCodingException x) { 2756 assert false; 2757 } 2758 2759 StringBuffer sb = new StringBuffer(); 2760 while (bb.hasRemaining()) { 2761 int b = bb.get() & 0xff; 2762 if (b >= 0x80) 2763 appendEscape(sb, (byte)b); 2764 else 2765 sb.append((char)b); 2766 } 2767 return sb.toString(); 2768 } 2769 decode(char c)2770 private static int decode(char c) { 2771 if ((c >= '0') && (c <= '9')) 2772 return c - '0'; 2773 if ((c >= 'a') && (c <= 'f')) 2774 return c - 'a' + 10; 2775 if ((c >= 'A') && (c <= 'F')) 2776 return c - 'A' + 10; 2777 assert false; 2778 return -1; 2779 } 2780 decode(char c1, char c2)2781 private static byte decode(char c1, char c2) { 2782 return (byte)( ((decode(c1) & 0xf) << 4) 2783 | ((decode(c2) & 0xf) << 0)); 2784 } 2785 2786 // Evaluates all escapes in s, applying UTF-8 decoding if needed. Assumes 2787 // that escapes are well-formed syntactically, i.e., of the form %XX. If a 2788 // sequence of escaped octets is not valid UTF-8 then the erroneous octets 2789 // are replaced with '\uFFFD'. 2790 // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal 2791 // with a scope_id 2792 // decode(String s)2793 private static String decode(String s) { 2794 if (s == null) 2795 return s; 2796 int n = s.length(); 2797 if (n == 0) 2798 return s; 2799 if (s.indexOf('%') < 0) 2800 return s; 2801 2802 StringBuffer sb = new StringBuffer(n); 2803 ByteBuffer bb = ByteBuffer.allocate(n); 2804 CharBuffer cb = CharBuffer.allocate(n); 2805 CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8") 2806 .onMalformedInput(CodingErrorAction.REPLACE) 2807 .onUnmappableCharacter(CodingErrorAction.REPLACE); 2808 2809 // This is not horribly efficient, but it will do for now 2810 char c = s.charAt(0); 2811 boolean betweenBrackets = false; 2812 2813 for (int i = 0; i < n;) { 2814 assert c == s.charAt(i); // Loop invariant 2815 if (c == '[') { 2816 betweenBrackets = true; 2817 } else if (betweenBrackets && c == ']') { 2818 betweenBrackets = false; 2819 } 2820 if (c != '%' || betweenBrackets) { 2821 sb.append(c); 2822 if (++i >= n) 2823 break; 2824 c = s.charAt(i); 2825 continue; 2826 } 2827 bb.clear(); 2828 int ui = i; 2829 for (;;) { 2830 assert (n - i >= 2); 2831 bb.put(decode(s.charAt(++i), s.charAt(++i))); 2832 if (++i >= n) 2833 break; 2834 c = s.charAt(i); 2835 if (c != '%') 2836 break; 2837 } 2838 bb.flip(); 2839 cb.clear(); 2840 dec.reset(); 2841 CoderResult cr = dec.decode(bb, cb, true); 2842 assert cr.isUnderflow(); 2843 cr = dec.flush(cb); 2844 assert cr.isUnderflow(); 2845 sb.append(cb.flip().toString()); 2846 } 2847 2848 return sb.toString(); 2849 } 2850 2851 2852 // -- Parsing -- 2853 2854 // For convenience we wrap the input URI string in a new instance of the 2855 // following internal class. This saves always having to pass the input 2856 // string as an argument to each internal scan/parse method. 2857 2858 private class Parser { 2859 2860 private String input; // URI input string 2861 private boolean requireServerAuthority = false; 2862 Parser(String s)2863 Parser(String s) { 2864 input = s; 2865 string = s; 2866 } 2867 2868 // -- Methods for throwing URISyntaxException in various ways -- 2869 fail(String reason)2870 private void fail(String reason) throws URISyntaxException { 2871 throw new URISyntaxException(input, reason); 2872 } 2873 fail(String reason, int p)2874 private void fail(String reason, int p) throws URISyntaxException { 2875 throw new URISyntaxException(input, reason, p); 2876 } 2877 failExpecting(String expected, int p)2878 private void failExpecting(String expected, int p) 2879 throws URISyntaxException 2880 { 2881 fail("Expected " + expected, p); 2882 } 2883 failExpecting(String expected, String prior, int p)2884 private void failExpecting(String expected, String prior, int p) 2885 throws URISyntaxException 2886 { 2887 fail("Expected " + expected + " following " + prior, p); 2888 } 2889 2890 2891 // -- Simple access to the input string -- 2892 2893 // Return a substring of the input string 2894 // substring(int start, int end)2895 private String substring(int start, int end) { 2896 return input.substring(start, end); 2897 } 2898 2899 // Return the char at position p, 2900 // assuming that p < input.length() 2901 // charAt(int p)2902 private char charAt(int p) { 2903 return input.charAt(p); 2904 } 2905 2906 // Tells whether start < end and, if so, whether charAt(start) == c 2907 // at(int start, int end, char c)2908 private boolean at(int start, int end, char c) { 2909 return (start < end) && (charAt(start) == c); 2910 } 2911 2912 // Tells whether start + s.length() < end and, if so, 2913 // whether the chars at the start position match s exactly 2914 // at(int start, int end, String s)2915 private boolean at(int start, int end, String s) { 2916 int p = start; 2917 int sn = s.length(); 2918 if (sn > end - p) 2919 return false; 2920 int i = 0; 2921 while (i < sn) { 2922 if (charAt(p++) != s.charAt(i)) { 2923 break; 2924 } 2925 i++; 2926 } 2927 return (i == sn); 2928 } 2929 2930 2931 // -- Scanning -- 2932 2933 // The various scan and parse methods that follow use a uniform 2934 // convention of taking the current start position and end index as 2935 // their first two arguments. The start is inclusive while the end is 2936 // exclusive, just as in the String class, i.e., a start/end pair 2937 // denotes the left-open interval [start, end) of the input string. 2938 // 2939 // These methods never proceed past the end position. They may return 2940 // -1 to indicate outright failure, but more often they simply return 2941 // the position of the first char after the last char scanned. Thus 2942 // a typical idiom is 2943 // 2944 // int p = start; 2945 // int q = scan(p, end, ...); 2946 // if (q > p) 2947 // // We scanned something 2948 // ...; 2949 // else if (q == p) 2950 // // We scanned nothing 2951 // ...; 2952 // else if (q == -1) 2953 // // Something went wrong 2954 // ...; 2955 2956 2957 // Scan a specific char: If the char at the given start position is 2958 // equal to c, return the index of the next char; otherwise, return the 2959 // start position. 2960 // scan(int start, int end, char c)2961 private int scan(int start, int end, char c) { 2962 if ((start < end) && (charAt(start) == c)) 2963 return start + 1; 2964 return start; 2965 } 2966 2967 // Scan forward from the given start position. Stop at the first char 2968 // in the err string (in which case -1 is returned), or the first char 2969 // in the stop string (in which case the index of the preceding char is 2970 // returned), or the end of the input string (in which case the length 2971 // of the input string is returned). May return the start position if 2972 // nothing matches. 2973 // scan(int start, int end, String err, String stop)2974 private int scan(int start, int end, String err, String stop) { 2975 int p = start; 2976 while (p < end) { 2977 char c = charAt(p); 2978 if (err.indexOf(c) >= 0) 2979 return -1; 2980 if (stop.indexOf(c) >= 0) 2981 break; 2982 p++; 2983 } 2984 return p; 2985 } 2986 2987 // Scan a potential escape sequence, starting at the given position, 2988 // with the given first char (i.e., charAt(start) == c). 2989 // 2990 // This method assumes that if escapes are allowed then visible 2991 // non-US-ASCII chars are also allowed. 2992 // scanEscape(int start, int n, char first)2993 private int scanEscape(int start, int n, char first) 2994 throws URISyntaxException 2995 { 2996 int p = start; 2997 char c = first; 2998 if (c == '%') { 2999 // Process escape pair 3000 if ((p + 3 <= n) 3001 && match(charAt(p + 1), L_HEX, H_HEX) 3002 && match(charAt(p + 2), L_HEX, H_HEX)) { 3003 return p + 3; 3004 } 3005 fail("Malformed escape pair", p); 3006 } else if ((c > 128) 3007 && !Character.isSpaceChar(c) 3008 && !Character.isISOControl(c)) { 3009 // Allow unescaped but visible non-US-ASCII chars 3010 return p + 1; 3011 } 3012 return p; 3013 } 3014 3015 // Scan chars that match the given mask pair 3016 // scan(int start, int n, long lowMask, long highMask)3017 private int scan(int start, int n, long lowMask, long highMask) 3018 throws URISyntaxException 3019 { 3020 int p = start; 3021 while (p < n) { 3022 char c = charAt(p); 3023 if (match(c, lowMask, highMask)) { 3024 p++; 3025 continue; 3026 } 3027 if ((lowMask & L_ESCAPED) != 0) { 3028 int q = scanEscape(p, n, c); 3029 if (q > p) { 3030 p = q; 3031 continue; 3032 } 3033 } 3034 break; 3035 } 3036 return p; 3037 } 3038 3039 // Check that each of the chars in [start, end) matches the given mask 3040 // checkChars(int start, int end, long lowMask, long highMask, String what)3041 private void checkChars(int start, int end, 3042 long lowMask, long highMask, 3043 String what) 3044 throws URISyntaxException 3045 { 3046 int p = scan(start, end, lowMask, highMask); 3047 if (p < end) 3048 fail("Illegal character in " + what, p); 3049 } 3050 3051 // Check that the char at position p matches the given mask 3052 // checkChar(int p, long lowMask, long highMask, String what)3053 private void checkChar(int p, 3054 long lowMask, long highMask, 3055 String what) 3056 throws URISyntaxException 3057 { 3058 checkChars(p, p + 1, lowMask, highMask, what); 3059 } 3060 3061 3062 // -- Parsing -- 3063 3064 // [<scheme>:]<scheme-specific-part>[#<fragment>] 3065 // parse(boolean rsa)3066 void parse(boolean rsa) throws URISyntaxException { 3067 requireServerAuthority = rsa; 3068 int ssp; // Start of scheme-specific part 3069 int n = input.length(); 3070 int p = scan(0, n, "/?#", ":"); 3071 if ((p >= 0) && at(p, n, ':')) { 3072 if (p == 0) 3073 failExpecting("scheme name", 0); 3074 checkChar(0, L_ALPHA, H_ALPHA, "scheme name"); 3075 checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name"); 3076 scheme = substring(0, p); 3077 p++; // Skip ':' 3078 ssp = p; 3079 if (at(p, n, '/')) { 3080 p = parseHierarchical(p, n); 3081 } else { 3082 int q = scan(p, n, "", "#"); 3083 if (q <= p) 3084 failExpecting("scheme-specific part", p); 3085 checkChars(p, q, L_URIC, H_URIC, "opaque part"); 3086 p = q; 3087 } 3088 } else { 3089 ssp = 0; 3090 p = parseHierarchical(0, n); 3091 } 3092 schemeSpecificPart = substring(ssp, p); 3093 if (at(p, n, '#')) { 3094 checkChars(p + 1, n, L_URIC, H_URIC, "fragment"); 3095 fragment = substring(p + 1, n); 3096 p = n; 3097 } 3098 if (p < n) 3099 fail("end of URI", p); 3100 } 3101 3102 // [//authority]<path>[?<query>] 3103 // 3104 // DEVIATION from RFC2396: We allow an empty authority component as 3105 // long as it's followed by a non-empty path, query component, or 3106 // fragment component. This is so that URIs such as "file:///foo/bar" 3107 // will parse. This seems to be the intent of RFC2396, though the 3108 // grammar does not permit it. If the authority is empty then the 3109 // userInfo, host, and port components are undefined. 3110 // 3111 // DEVIATION from RFC2396: We allow empty relative paths. This seems 3112 // to be the intent of RFC2396, but the grammar does not permit it. 3113 // The primary consequence of this deviation is that "#f" parses as a 3114 // relative URI with an empty path. 3115 // parseHierarchical(int start, int n)3116 private int parseHierarchical(int start, int n) 3117 throws URISyntaxException 3118 { 3119 int p = start; 3120 if (at(p, n, '/') && at(p + 1, n, '/')) { 3121 p += 2; 3122 int q = scan(p, n, "", "/?#"); 3123 if (q > p) { 3124 p = parseAuthority(p, q); 3125 } else if (q < n) { 3126 // DEVIATION: Allow empty authority prior to non-empty 3127 // path, query component or fragment identifier 3128 } else 3129 failExpecting("authority", p); 3130 } 3131 int q = scan(p, n, "", "?#"); // DEVIATION: May be empty 3132 checkChars(p, q, L_PATH, H_PATH, "path"); 3133 path = substring(p, q); 3134 p = q; 3135 if (at(p, n, '?')) { 3136 p++; 3137 q = scan(p, n, "", "#"); 3138 checkChars(p, q, L_URIC, H_URIC, "query"); 3139 query = substring(p, q); 3140 p = q; 3141 } 3142 return p; 3143 } 3144 3145 // authority = server | reg_name 3146 // 3147 // Ambiguity: An authority that is a registry name rather than a server 3148 // might have a prefix that parses as a server. We use the fact that 3149 // the authority component is always followed by '/' or the end of the 3150 // input string to resolve this: If the complete authority did not 3151 // parse as a server then we try to parse it as a registry name. 3152 // parseAuthority(int start, int n)3153 private int parseAuthority(int start, int n) 3154 throws URISyntaxException 3155 { 3156 int p = start; 3157 int q = p; 3158 URISyntaxException ex = null; 3159 3160 boolean serverChars; 3161 boolean regChars; 3162 3163 if (scan(p, n, "", "]") > p) { 3164 // contains a literal IPv6 address, therefore % is allowed 3165 serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n); 3166 } else { 3167 serverChars = (scan(p, n, L_SERVER, H_SERVER) == n); 3168 } 3169 regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n); 3170 3171 if (regChars && !serverChars) { 3172 // Must be a registry-based authority 3173 authority = substring(p, n); 3174 return n; 3175 } 3176 3177 if (serverChars) { 3178 // Might be (probably is) a server-based authority, so attempt 3179 // to parse it as such. If the attempt fails, try to treat it 3180 // as a registry-based authority. 3181 try { 3182 q = parseServer(p, n); 3183 if (q < n) 3184 failExpecting("end of authority", q); 3185 authority = substring(p, n); 3186 } catch (URISyntaxException x) { 3187 // Undo results of failed parse 3188 userInfo = null; 3189 host = null; 3190 port = -1; 3191 if (requireServerAuthority) { 3192 // If we're insisting upon a server-based authority, 3193 // then just re-throw the exception 3194 throw x; 3195 } else { 3196 // Save the exception in case it doesn't parse as a 3197 // registry either 3198 ex = x; 3199 q = p; 3200 } 3201 } 3202 } 3203 3204 if (q < n) { 3205 if (regChars) { 3206 // Registry-based authority 3207 authority = substring(p, n); 3208 } else if (ex != null) { 3209 // Re-throw exception; it was probably due to 3210 // a malformed IPv6 address 3211 throw ex; 3212 } else { 3213 fail("Illegal character in authority", q); 3214 } 3215 } 3216 3217 return n; 3218 } 3219 3220 3221 // [<userinfo>@]<host>[:<port>] 3222 // parseServer(int start, int n)3223 private int parseServer(int start, int n) 3224 throws URISyntaxException 3225 { 3226 int p = start; 3227 int q; 3228 3229 // userinfo 3230 q = scan(p, n, "/?#", "@"); 3231 if ((q >= p) && at(q, n, '@')) { 3232 checkChars(p, q, L_USERINFO, H_USERINFO, "user info"); 3233 userInfo = substring(p, q); 3234 p = q + 1; // Skip '@' 3235 } 3236 3237 // hostname, IPv4 address, or IPv6 address 3238 if (at(p, n, '[')) { 3239 // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732 3240 p++; 3241 q = scan(p, n, "/?#", "]"); 3242 if ((q > p) && at(q, n, ']')) { 3243 // look for a "%" scope id 3244 int r = scan (p, q, "", "%"); 3245 if (r > p) { 3246 parseIPv6Reference(p, r); 3247 if (r+1 == q) { 3248 fail ("scope id expected"); 3249 } 3250 checkChars (r+1, q, L_ALPHANUM, H_ALPHANUM, 3251 "scope id"); 3252 } else { 3253 parseIPv6Reference(p, q); 3254 } 3255 host = substring(p-1, q+1); 3256 p = q + 1; 3257 } else { 3258 failExpecting("closing bracket for IPv6 address", q); 3259 } 3260 } else { 3261 q = parseIPv4Address(p, n); 3262 if (q <= p) 3263 q = parseHostname(p, n); 3264 p = q; 3265 } 3266 3267 // port 3268 if (at(p, n, ':')) { 3269 p++; 3270 q = scan(p, n, "", "/"); 3271 if (q > p) { 3272 checkChars(p, q, L_DIGIT, H_DIGIT, "port number"); 3273 try { 3274 port = Integer.parseInt(substring(p, q)); 3275 } catch (NumberFormatException x) { 3276 fail("Malformed port number", p); 3277 } 3278 p = q; 3279 } 3280 } 3281 if (p < n) 3282 failExpecting("port number", p); 3283 3284 return p; 3285 } 3286 3287 // Scan a string of decimal digits whose value fits in a byte 3288 // scanByte(int start, int n)3289 private int scanByte(int start, int n) 3290 throws URISyntaxException 3291 { 3292 int p = start; 3293 int q = scan(p, n, L_DIGIT, H_DIGIT); 3294 if (q <= p) return q; 3295 if (Integer.parseInt(substring(p, q)) > 255) return p; 3296 return q; 3297 } 3298 3299 // Scan an IPv4 address. 3300 // 3301 // If the strict argument is true then we require that the given 3302 // interval contain nothing besides an IPv4 address; if it is false 3303 // then we only require that it start with an IPv4 address. 3304 // 3305 // If the interval does not contain or start with (depending upon the 3306 // strict argument) a legal IPv4 address characters then we return -1 3307 // immediately; otherwise we insist that these characters parse as a 3308 // legal IPv4 address and throw an exception on failure. 3309 // 3310 // We assume that any string of decimal digits and dots must be an IPv4 3311 // address. It won't parse as a hostname anyway, so making that 3312 // assumption here allows more meaningful exceptions to be thrown. 3313 // scanIPv4Address(int start, int n, boolean strict)3314 private int scanIPv4Address(int start, int n, boolean strict) 3315 throws URISyntaxException 3316 { 3317 int p = start; 3318 int q; 3319 int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT); 3320 if ((m <= p) || (strict && (m != n))) 3321 return -1; 3322 for (;;) { 3323 // Per RFC2732: At most three digits per byte 3324 // Further constraint: Each element fits in a byte 3325 if ((q = scanByte(p, m)) <= p) break; p = q; 3326 if ((q = scan(p, m, '.')) <= p) break; p = q; 3327 if ((q = scanByte(p, m)) <= p) break; p = q; 3328 if ((q = scan(p, m, '.')) <= p) break; p = q; 3329 if ((q = scanByte(p, m)) <= p) break; p = q; 3330 if ((q = scan(p, m, '.')) <= p) break; p = q; 3331 if ((q = scanByte(p, m)) <= p) break; p = q; 3332 if (q < m) break; 3333 return q; 3334 } 3335 fail("Malformed IPv4 address", q); 3336 return -1; 3337 } 3338 3339 // Take an IPv4 address: Throw an exception if the given interval 3340 // contains anything except an IPv4 address 3341 // takeIPv4Address(int start, int n, String expected)3342 private int takeIPv4Address(int start, int n, String expected) 3343 throws URISyntaxException 3344 { 3345 int p = scanIPv4Address(start, n, true); 3346 if (p <= start) 3347 failExpecting(expected, start); 3348 return p; 3349 } 3350 3351 // Attempt to parse an IPv4 address, returning -1 on failure but 3352 // allowing the given interval to contain [:<characters>] after 3353 // the IPv4 address. 3354 // parseIPv4Address(int start, int n)3355 private int parseIPv4Address(int start, int n) { 3356 int p; 3357 3358 try { 3359 p = scanIPv4Address(start, n, false); 3360 } catch (URISyntaxException x) { 3361 return -1; 3362 } catch (NumberFormatException nfe) { 3363 return -1; 3364 } 3365 3366 if (p > start && p < n) { 3367 // IPv4 address is followed by something - check that 3368 // it's a ":" as this is the only valid character to 3369 // follow an address. 3370 if (charAt(p) != ':') { 3371 p = -1; 3372 } 3373 } 3374 3375 if (p > start) 3376 host = substring(start, p); 3377 3378 return p; 3379 } 3380 3381 // hostname = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] 3382 // domainlabel = alphanum | alphanum *( alphanum | "-" | "_" ) alphanum 3383 // toplabel = alpha | alpha *( alphanum | "-" | "_" ) alphanum 3384 // parseHostname(int start, int n)3385 private int parseHostname(int start, int n) 3386 throws URISyntaxException 3387 { 3388 int p = start; 3389 int q; 3390 int l = -1; // Start of last parsed label 3391 3392 do { 3393 // domainlabel = alphanum [ *( alphanum | "-" | "_" ) alphanum ] 3394 // 3395 // The RFCs don't permit underscores in hostnames, but URI has to because a certain 3396 // large website doesn't seem to care about standards and specs. 3397 // http://code.google.com/p/android/issues/detail?id=37577 3398 // http://b/17579865 3399 // http://b/18016625 3400 // http://b/18023709 3401 q = scan(p, n, L_ALPHANUM, H_ALPHANUM); 3402 if (q <= p) 3403 break; 3404 l = p; 3405 if (q > p) { 3406 p = q; 3407 q = scan(p, n, L_ALPHANUM | L_DASH | L_UNDERSCORE, H_ALPHANUM | H_DASH | H_UNDERSCORE); 3408 if (q > p) { 3409 if (charAt(q - 1) == '-') 3410 fail("Illegal character in hostname", q - 1); 3411 p = q; 3412 } 3413 } 3414 q = scan(p, n, '.'); 3415 if (q <= p) 3416 break; 3417 p = q; 3418 } while (p < n); 3419 3420 if ((p < n) && !at(p, n, ':')) 3421 fail("Illegal character in hostname", p); 3422 3423 if (l < 0) 3424 failExpecting("hostname", start); 3425 3426 // for a fully qualified hostname check that the rightmost 3427 // label starts with an alpha character. 3428 if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) { 3429 fail("Illegal character in hostname", l); 3430 } 3431 3432 host = substring(start, p); 3433 return p; 3434 } 3435 3436 3437 // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture 3438 // 3439 // Bug: The grammar in RFC2373 Appendix B does not allow addresses of 3440 // the form ::12.34.56.78, which are clearly shown in the examples 3441 // earlier in the document. Here is the original grammar: 3442 // 3443 // IPv6address = hexpart [ ":" IPv4address ] 3444 // hexpart = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ] 3445 // hexseq = hex4 *( ":" hex4) 3446 // hex4 = 1*4HEXDIG 3447 // 3448 // We therefore use the following revised grammar: 3449 // 3450 // IPv6address = hexseq [ ":" IPv4address ] 3451 // | hexseq [ "::" [ hexpost ] ] 3452 // | "::" [ hexpost ] 3453 // hexpost = hexseq | hexseq ":" IPv4address | IPv4address 3454 // hexseq = hex4 *( ":" hex4) 3455 // hex4 = 1*4HEXDIG 3456 // 3457 // This covers all and only the following cases: 3458 // 3459 // hexseq 3460 // hexseq : IPv4address 3461 // hexseq :: 3462 // hexseq :: hexseq 3463 // hexseq :: hexseq : IPv4address 3464 // hexseq :: IPv4address 3465 // :: hexseq 3466 // :: hexseq : IPv4address 3467 // :: IPv4address 3468 // :: 3469 // 3470 // Additionally we constrain the IPv6 address as follows :- 3471 // 3472 // i. IPv6 addresses without compressed zeros should contain 3473 // exactly 16 bytes. 3474 // 3475 // ii. IPv6 addresses with compressed zeros should contain 3476 // less than 16 bytes. 3477 3478 private int ipv6byteCount = 0; 3479 parseIPv6Reference(int start, int n)3480 private int parseIPv6Reference(int start, int n) 3481 throws URISyntaxException 3482 { 3483 int p = start; 3484 int q; 3485 boolean compressedZeros = false; 3486 3487 q = scanHexSeq(p, n); 3488 3489 if (q > p) { 3490 p = q; 3491 if (at(p, n, "::")) { 3492 compressedZeros = true; 3493 p = scanHexPost(p + 2, n); 3494 } else if (at(p, n, ':')) { 3495 p = takeIPv4Address(p + 1, n, "IPv4 address"); 3496 ipv6byteCount += 4; 3497 } 3498 } else if (at(p, n, "::")) { 3499 compressedZeros = true; 3500 p = scanHexPost(p + 2, n); 3501 } 3502 if (p < n) 3503 fail("Malformed IPv6 address", start); 3504 if (ipv6byteCount > 16) 3505 fail("IPv6 address too long", start); 3506 if (!compressedZeros && ipv6byteCount < 16) 3507 fail("IPv6 address too short", start); 3508 if (compressedZeros && ipv6byteCount == 16) 3509 fail("Malformed IPv6 address", start); 3510 3511 return p; 3512 } 3513 scanHexPost(int start, int n)3514 private int scanHexPost(int start, int n) 3515 throws URISyntaxException 3516 { 3517 int p = start; 3518 int q; 3519 3520 if (p == n) 3521 return p; 3522 3523 q = scanHexSeq(p, n); 3524 if (q > p) { 3525 p = q; 3526 if (at(p, n, ':')) { 3527 p++; 3528 p = takeIPv4Address(p, n, "hex digits or IPv4 address"); 3529 ipv6byteCount += 4; 3530 } 3531 } else { 3532 p = takeIPv4Address(p, n, "hex digits or IPv4 address"); 3533 ipv6byteCount += 4; 3534 } 3535 return p; 3536 } 3537 3538 // Scan a hex sequence; return -1 if one could not be scanned 3539 // scanHexSeq(int start, int n)3540 private int scanHexSeq(int start, int n) 3541 throws URISyntaxException 3542 { 3543 int p = start; 3544 int q; 3545 3546 q = scan(p, n, L_HEX, H_HEX); 3547 if (q <= p) 3548 return -1; 3549 if (at(q, n, '.')) // Beginning of IPv4 address 3550 return -1; 3551 if (q > p + 4) 3552 fail("IPv6 hexadecimal digit sequence too long", p); 3553 ipv6byteCount += 2; 3554 p = q; 3555 while (p < n) { 3556 if (!at(p, n, ':')) 3557 break; 3558 if (at(p + 1, n, ':')) 3559 break; // "::" 3560 p++; 3561 q = scan(p, n, L_HEX, H_HEX); 3562 if (q <= p) 3563 failExpecting("digits for an IPv6 address", p); 3564 if (at(q, n, '.')) { // Beginning of IPv4 address 3565 p--; 3566 break; 3567 } 3568 if (q > p + 4) 3569 fail("IPv6 hexadecimal digit sequence too long", p); 3570 ipv6byteCount += 2; 3571 p = q; 3572 } 3573 3574 return p; 3575 } 3576 3577 } 3578 3579 } 3580