• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
~TargetInstrInfo()41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
getRegClass(const MCInstrDesc & MCID,unsigned OpNum,const TargetRegisterInfo * TRI,const MachineFunction & MF) const45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
getInlineAsmLength(const char * Str,const MCAsmInfo & MAI) const78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned InstCount = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0) {
86       atInsnStart = true;
87     } else if (strncmp(Str, MAI.getCommentString(),
88                        strlen(MAI.getCommentString())) == 0) {
89       // Stop counting as an instruction after a comment until the next
90       // separator.
91       atInsnStart = false;
92     }
93 
94     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
95       ++InstCount;
96       atInsnStart = false;
97     }
98   }
99 
100   return InstCount * MAI.getMaxInstLength();
101 }
102 
103 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
104 /// after it, replacing it with an unconditional branch to NewDest.
105 void
ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,MachineBasicBlock * NewDest) const106 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
107                                          MachineBasicBlock *NewDest) const {
108   MachineBasicBlock *MBB = Tail->getParent();
109 
110   // Remove all the old successors of MBB from the CFG.
111   while (!MBB->succ_empty())
112     MBB->removeSuccessor(MBB->succ_begin());
113 
114   // Save off the debug loc before erasing the instruction.
115   DebugLoc DL = Tail->getDebugLoc();
116 
117   // Remove all the dead instructions from the end of MBB.
118   MBB->erase(Tail, MBB->end());
119 
120   // If MBB isn't immediately before MBB, insert a branch to it.
121   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
122     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
123   MBB->addSuccessor(NewDest);
124 }
125 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned Idx1,unsigned Idx2) const126 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
127                                                       bool NewMI, unsigned Idx1,
128                                                       unsigned Idx2) const {
129   const MCInstrDesc &MCID = MI.getDesc();
130   bool HasDef = MCID.getNumDefs();
131   if (HasDef && !MI.getOperand(0).isReg())
132     // No idea how to commute this instruction. Target should implement its own.
133     return nullptr;
134 
135   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
136   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
137   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
138          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
139          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
140   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
141          "This only knows how to commute register operands so far");
142 
143   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
144   unsigned Reg1 = MI.getOperand(Idx1).getReg();
145   unsigned Reg2 = MI.getOperand(Idx2).getReg();
146   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
147   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
148   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
149   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
150   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
151   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
152   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
153   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
154   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
155   // If destination is tied to either of the commuted source register, then
156   // it must be updated.
157   if (HasDef && Reg0 == Reg1 &&
158       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
159     Reg2IsKill = false;
160     Reg0 = Reg2;
161     SubReg0 = SubReg2;
162   } else if (HasDef && Reg0 == Reg2 &&
163              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
164     Reg1IsKill = false;
165     Reg0 = Reg1;
166     SubReg0 = SubReg1;
167   }
168 
169   MachineInstr *CommutedMI = nullptr;
170   if (NewMI) {
171     // Create a new instruction.
172     MachineFunction &MF = *MI.getParent()->getParent();
173     CommutedMI = MF.CloneMachineInstr(&MI);
174   } else {
175     CommutedMI = &MI;
176   }
177 
178   if (HasDef) {
179     CommutedMI->getOperand(0).setReg(Reg0);
180     CommutedMI->getOperand(0).setSubReg(SubReg0);
181   }
182   CommutedMI->getOperand(Idx2).setReg(Reg1);
183   CommutedMI->getOperand(Idx1).setReg(Reg2);
184   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
185   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
186   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
187   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
188   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
189   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
190   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
191   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
192   return CommutedMI;
193 }
194 
commuteInstruction(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const195 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
196                                                   unsigned OpIdx1,
197                                                   unsigned OpIdx2) const {
198   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
199   // any commutable operand, which is done in findCommutedOpIndices() method
200   // called below.
201   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
202       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
203     assert(MI.isCommutable() &&
204            "Precondition violation: MI must be commutable.");
205     return nullptr;
206   }
207   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
208 }
209 
fixCommutedOpIndices(unsigned & ResultIdx1,unsigned & ResultIdx2,unsigned CommutableOpIdx1,unsigned CommutableOpIdx2)210 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
211                                            unsigned &ResultIdx2,
212                                            unsigned CommutableOpIdx1,
213                                            unsigned CommutableOpIdx2) {
214   if (ResultIdx1 == CommuteAnyOperandIndex &&
215       ResultIdx2 == CommuteAnyOperandIndex) {
216     ResultIdx1 = CommutableOpIdx1;
217     ResultIdx2 = CommutableOpIdx2;
218   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
219     if (ResultIdx2 == CommutableOpIdx1)
220       ResultIdx1 = CommutableOpIdx2;
221     else if (ResultIdx2 == CommutableOpIdx2)
222       ResultIdx1 = CommutableOpIdx1;
223     else
224       return false;
225   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
226     if (ResultIdx1 == CommutableOpIdx1)
227       ResultIdx2 = CommutableOpIdx2;
228     else if (ResultIdx1 == CommutableOpIdx2)
229       ResultIdx2 = CommutableOpIdx1;
230     else
231       return false;
232   } else
233     // Check that the result operand indices match the given commutable
234     // operand indices.
235     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
236            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
237 
238   return true;
239 }
240 
findCommutedOpIndices(MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const241 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
242                                             unsigned &SrcOpIdx1,
243                                             unsigned &SrcOpIdx2) const {
244   assert(!MI.isBundle() &&
245          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
246 
247   const MCInstrDesc &MCID = MI.getDesc();
248   if (!MCID.isCommutable())
249     return false;
250 
251   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
252   // is not true, then the target must implement this.
253   unsigned CommutableOpIdx1 = MCID.getNumDefs();
254   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
255   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
256                             CommutableOpIdx1, CommutableOpIdx2))
257     return false;
258 
259   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
260     // No idea.
261     return false;
262   return true;
263 }
264 
isUnpredicatedTerminator(const MachineInstr & MI) const265 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
266   if (!MI.isTerminator()) return false;
267 
268   // Conditional branch is a special case.
269   if (MI.isBranch() && !MI.isBarrier())
270     return true;
271   if (!MI.isPredicable())
272     return true;
273   return !isPredicated(MI);
274 }
275 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const276 bool TargetInstrInfo::PredicateInstruction(
277     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
278   bool MadeChange = false;
279 
280   assert(!MI.isBundle() &&
281          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
282 
283   const MCInstrDesc &MCID = MI.getDesc();
284   if (!MI.isPredicable())
285     return false;
286 
287   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
288     if (MCID.OpInfo[i].isPredicate()) {
289       MachineOperand &MO = MI.getOperand(i);
290       if (MO.isReg()) {
291         MO.setReg(Pred[j].getReg());
292         MadeChange = true;
293       } else if (MO.isImm()) {
294         MO.setImm(Pred[j].getImm());
295         MadeChange = true;
296       } else if (MO.isMBB()) {
297         MO.setMBB(Pred[j].getMBB());
298         MadeChange = true;
299       }
300       ++j;
301     }
302   }
303   return MadeChange;
304 }
305 
hasLoadFromStackSlot(const MachineInstr & MI,const MachineMemOperand * & MMO,int & FrameIndex) const306 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
307                                            const MachineMemOperand *&MMO,
308                                            int &FrameIndex) const {
309   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
310                                   oe = MI.memoperands_end();
311        o != oe; ++o) {
312     if ((*o)->isLoad()) {
313       if (const FixedStackPseudoSourceValue *Value =
314           dyn_cast_or_null<FixedStackPseudoSourceValue>(
315               (*o)->getPseudoValue())) {
316         FrameIndex = Value->getFrameIndex();
317         MMO = *o;
318         return true;
319       }
320     }
321   }
322   return false;
323 }
324 
hasStoreToStackSlot(const MachineInstr & MI,const MachineMemOperand * & MMO,int & FrameIndex) const325 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
326                                           const MachineMemOperand *&MMO,
327                                           int &FrameIndex) const {
328   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
329                                   oe = MI.memoperands_end();
330        o != oe; ++o) {
331     if ((*o)->isStore()) {
332       if (const FixedStackPseudoSourceValue *Value =
333           dyn_cast_or_null<FixedStackPseudoSourceValue>(
334               (*o)->getPseudoValue())) {
335         FrameIndex = Value->getFrameIndex();
336         MMO = *o;
337         return true;
338       }
339     }
340   }
341   return false;
342 }
343 
getStackSlotRange(const TargetRegisterClass * RC,unsigned SubIdx,unsigned & Size,unsigned & Offset,const MachineFunction & MF) const344 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
345                                         unsigned SubIdx, unsigned &Size,
346                                         unsigned &Offset,
347                                         const MachineFunction &MF) const {
348   if (!SubIdx) {
349     Size = RC->getSize();
350     Offset = 0;
351     return true;
352   }
353   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
354   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
355   // Convert bit size to byte size to be consistent with
356   // MCRegisterClass::getSize().
357   if (BitSize % 8)
358     return false;
359 
360   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
361   if (BitOffset < 0 || BitOffset % 8)
362     return false;
363 
364   Size = BitSize /= 8;
365   Offset = (unsigned)BitOffset / 8;
366 
367   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
368 
369   if (!MF.getDataLayout().isLittleEndian()) {
370     Offset = RC->getSize() - (Offset + Size);
371   }
372   return true;
373 }
374 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const375 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
376                                     MachineBasicBlock::iterator I,
377                                     unsigned DestReg, unsigned SubIdx,
378                                     const MachineInstr &Orig,
379                                     const TargetRegisterInfo &TRI) const {
380   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
381   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
382   MBB.insert(I, MI);
383 }
384 
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const385 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
386                                        const MachineInstr &MI1,
387                                        const MachineRegisterInfo *MRI) const {
388   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
389 }
390 
duplicate(MachineInstr & Orig,MachineFunction & MF) const391 MachineInstr *TargetInstrInfo::duplicate(MachineInstr &Orig,
392                                          MachineFunction &MF) const {
393   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
394   return MF.CloneMachineInstr(&Orig);
395 }
396 
397 // If the COPY instruction in MI can be folded to a stack operation, return
398 // the register class to use.
canFoldCopy(const MachineInstr & MI,unsigned FoldIdx)399 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
400                                               unsigned FoldIdx) {
401   assert(MI.isCopy() && "MI must be a COPY instruction");
402   if (MI.getNumOperands() != 2)
403     return nullptr;
404   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
405 
406   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
407   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
408 
409   if (FoldOp.getSubReg() || LiveOp.getSubReg())
410     return nullptr;
411 
412   unsigned FoldReg = FoldOp.getReg();
413   unsigned LiveReg = LiveOp.getReg();
414 
415   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
416          "Cannot fold physregs");
417 
418   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
419   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
420 
421   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
422     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
423 
424   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
425     return RC;
426 
427   // FIXME: Allow folding when register classes are memory compatible.
428   return nullptr;
429 }
430 
getNoopForMachoTarget(MCInst & NopInst) const431 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
432   llvm_unreachable("Not a MachO target");
433 }
434 
foldPatchpoint(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,int FrameIndex,const TargetInstrInfo & TII)435 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
436                                     ArrayRef<unsigned> Ops, int FrameIndex,
437                                     const TargetInstrInfo &TII) {
438   unsigned StartIdx = 0;
439   switch (MI.getOpcode()) {
440   case TargetOpcode::STACKMAP:
441     StartIdx = 2; // Skip ID, nShadowBytes.
442     break;
443   case TargetOpcode::PATCHPOINT: {
444     // For PatchPoint, the call args are not foldable.
445     PatchPointOpers opers(&MI);
446     StartIdx = opers.getVarIdx();
447     break;
448   }
449   default:
450     llvm_unreachable("unexpected stackmap opcode");
451   }
452 
453   // Return false if any operands requested for folding are not foldable (not
454   // part of the stackmap's live values).
455   for (unsigned Op : Ops) {
456     if (Op < StartIdx)
457       return nullptr;
458   }
459 
460   MachineInstr *NewMI =
461       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
462   MachineInstrBuilder MIB(MF, NewMI);
463 
464   // No need to fold return, the meta data, and function arguments
465   for (unsigned i = 0; i < StartIdx; ++i)
466     MIB.addOperand(MI.getOperand(i));
467 
468   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
469     MachineOperand &MO = MI.getOperand(i);
470     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
471       unsigned SpillSize;
472       unsigned SpillOffset;
473       // Compute the spill slot size and offset.
474       const TargetRegisterClass *RC =
475         MF.getRegInfo().getRegClass(MO.getReg());
476       bool Valid =
477           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
478       if (!Valid)
479         report_fatal_error("cannot spill patchpoint subregister operand");
480       MIB.addImm(StackMaps::IndirectMemRefOp);
481       MIB.addImm(SpillSize);
482       MIB.addFrameIndex(FrameIndex);
483       MIB.addImm(SpillOffset);
484     }
485     else
486       MIB.addOperand(MO);
487   }
488   return NewMI;
489 }
490 
491 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
492 /// slot into the specified machine instruction for the specified operand(s).
493 /// If this is possible, a new instruction is returned with the specified
494 /// operand folded, otherwise NULL is returned. The client is responsible for
495 /// removing the old instruction and adding the new one in the instruction
496 /// stream.
foldMemoryOperand(MachineInstr & MI,ArrayRef<unsigned> Ops,int FI,LiveIntervals * LIS) const497 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
498                                                  ArrayRef<unsigned> Ops, int FI,
499                                                  LiveIntervals *LIS) const {
500   unsigned Flags = 0;
501   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
502     if (MI.getOperand(Ops[i]).isDef())
503       Flags |= MachineMemOperand::MOStore;
504     else
505       Flags |= MachineMemOperand::MOLoad;
506 
507   MachineBasicBlock *MBB = MI.getParent();
508   assert(MBB && "foldMemoryOperand needs an inserted instruction");
509   MachineFunction &MF = *MBB->getParent();
510 
511   MachineInstr *NewMI = nullptr;
512 
513   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
514       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
515     // Fold stackmap/patchpoint.
516     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
517     if (NewMI)
518       MBB->insert(MI, NewMI);
519   } else {
520     // Ask the target to do the actual folding.
521     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
522   }
523 
524   if (NewMI) {
525     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
526     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
527     assert((!(Flags & MachineMemOperand::MOStore) ||
528             NewMI->mayStore()) &&
529            "Folded a def to a non-store!");
530     assert((!(Flags & MachineMemOperand::MOLoad) ||
531             NewMI->mayLoad()) &&
532            "Folded a use to a non-load!");
533     const MachineFrameInfo &MFI = *MF.getFrameInfo();
534     assert(MFI.getObjectOffset(FI) != -1);
535     MachineMemOperand *MMO = MF.getMachineMemOperand(
536         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
537         MFI.getObjectAlignment(FI));
538     NewMI->addMemOperand(MF, MMO);
539 
540     return NewMI;
541   }
542 
543   // Straight COPY may fold as load/store.
544   if (!MI.isCopy() || Ops.size() != 1)
545     return nullptr;
546 
547   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
548   if (!RC)
549     return nullptr;
550 
551   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
552   MachineBasicBlock::iterator Pos = MI;
553   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
554 
555   if (Flags == MachineMemOperand::MOStore)
556     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
557   else
558     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
559   return &*--Pos;
560 }
561 
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const562 bool TargetInstrInfo::hasReassociableOperands(
563     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
564   const MachineOperand &Op1 = Inst.getOperand(1);
565   const MachineOperand &Op2 = Inst.getOperand(2);
566   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
567 
568   // We need virtual register definitions for the operands that we will
569   // reassociate.
570   MachineInstr *MI1 = nullptr;
571   MachineInstr *MI2 = nullptr;
572   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
573     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
574   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
575     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
576 
577   // And they need to be in the trace (otherwise, they won't have a depth).
578   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
579 }
580 
hasReassociableSibling(const MachineInstr & Inst,bool & Commuted) const581 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
582                                              bool &Commuted) const {
583   const MachineBasicBlock *MBB = Inst.getParent();
584   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
585   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
586   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
587   unsigned AssocOpcode = Inst.getOpcode();
588 
589   // If only one operand has the same opcode and it's the second source operand,
590   // the operands must be commuted.
591   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
592   if (Commuted)
593     std::swap(MI1, MI2);
594 
595   // 1. The previous instruction must be the same type as Inst.
596   // 2. The previous instruction must have virtual register definitions for its
597   //    operands in the same basic block as Inst.
598   // 3. The previous instruction's result must only be used by Inst.
599   return MI1->getOpcode() == AssocOpcode &&
600          hasReassociableOperands(*MI1, MBB) &&
601          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
602 }
603 
604 // 1. The operation must be associative and commutative.
605 // 2. The instruction must have virtual register definitions for its
606 //    operands in the same basic block.
607 // 3. The instruction must have a reassociable sibling.
isReassociationCandidate(const MachineInstr & Inst,bool & Commuted) const608 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
609                                                bool &Commuted) const {
610   return isAssociativeAndCommutative(Inst) &&
611          hasReassociableOperands(Inst, Inst.getParent()) &&
612          hasReassociableSibling(Inst, Commuted);
613 }
614 
615 // The concept of the reassociation pass is that these operations can benefit
616 // from this kind of transformation:
617 //
618 // A = ? op ?
619 // B = A op X (Prev)
620 // C = B op Y (Root)
621 // -->
622 // A = ? op ?
623 // B = X op Y
624 // C = A op B
625 //
626 // breaking the dependency between A and B, allowing them to be executed in
627 // parallel (or back-to-back in a pipeline) instead of depending on each other.
628 
629 // FIXME: This has the potential to be expensive (compile time) while not
630 // improving the code at all. Some ways to limit the overhead:
631 // 1. Track successful transforms; bail out if hit rate gets too low.
632 // 2. Only enable at -O3 or some other non-default optimization level.
633 // 3. Pre-screen pattern candidates here: if an operand of the previous
634 //    instruction is known to not increase the critical path, then don't match
635 //    that pattern.
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns) const636 bool TargetInstrInfo::getMachineCombinerPatterns(
637     MachineInstr &Root,
638     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
639   bool Commute;
640   if (isReassociationCandidate(Root, Commute)) {
641     // We found a sequence of instructions that may be suitable for a
642     // reassociation of operands to increase ILP. Specify each commutation
643     // possibility for the Prev instruction in the sequence and let the
644     // machine combiner decide if changing the operands is worthwhile.
645     if (Commute) {
646       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
647       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
648     } else {
649       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
650       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
651     }
652     return true;
653   }
654 
655   return false;
656 }
657 /// Return true when a code sequence can improve loop throughput.
658 bool
isThroughputPattern(MachineCombinerPattern Pattern) const659 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
660   return false;
661 }
662 /// Attempt the reassociation transformation to reduce critical path length.
663 /// See the above comments before getMachineCombinerPatterns().
reassociateOps(MachineInstr & Root,MachineInstr & Prev,MachineCombinerPattern Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg) const664 void TargetInstrInfo::reassociateOps(
665     MachineInstr &Root, MachineInstr &Prev,
666     MachineCombinerPattern Pattern,
667     SmallVectorImpl<MachineInstr *> &InsInstrs,
668     SmallVectorImpl<MachineInstr *> &DelInstrs,
669     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
670   MachineFunction *MF = Root.getParent()->getParent();
671   MachineRegisterInfo &MRI = MF->getRegInfo();
672   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
673   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
674   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
675 
676   // This array encodes the operand index for each parameter because the
677   // operands may be commuted. Each row corresponds to a pattern value,
678   // and each column specifies the index of A, B, X, Y.
679   unsigned OpIdx[4][4] = {
680     { 1, 1, 2, 2 },
681     { 1, 2, 2, 1 },
682     { 2, 1, 1, 2 },
683     { 2, 2, 1, 1 }
684   };
685 
686   int Row;
687   switch (Pattern) {
688   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
689   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
690   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
691   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
692   default: llvm_unreachable("unexpected MachineCombinerPattern");
693   }
694 
695   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
696   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
697   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
698   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
699   MachineOperand &OpC = Root.getOperand(0);
700 
701   unsigned RegA = OpA.getReg();
702   unsigned RegB = OpB.getReg();
703   unsigned RegX = OpX.getReg();
704   unsigned RegY = OpY.getReg();
705   unsigned RegC = OpC.getReg();
706 
707   if (TargetRegisterInfo::isVirtualRegister(RegA))
708     MRI.constrainRegClass(RegA, RC);
709   if (TargetRegisterInfo::isVirtualRegister(RegB))
710     MRI.constrainRegClass(RegB, RC);
711   if (TargetRegisterInfo::isVirtualRegister(RegX))
712     MRI.constrainRegClass(RegX, RC);
713   if (TargetRegisterInfo::isVirtualRegister(RegY))
714     MRI.constrainRegClass(RegY, RC);
715   if (TargetRegisterInfo::isVirtualRegister(RegC))
716     MRI.constrainRegClass(RegC, RC);
717 
718   // Create a new virtual register for the result of (X op Y) instead of
719   // recycling RegB because the MachineCombiner's computation of the critical
720   // path requires a new register definition rather than an existing one.
721   unsigned NewVR = MRI.createVirtualRegister(RC);
722   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
723 
724   unsigned Opcode = Root.getOpcode();
725   bool KillA = OpA.isKill();
726   bool KillX = OpX.isKill();
727   bool KillY = OpY.isKill();
728 
729   // Create new instructions for insertion.
730   MachineInstrBuilder MIB1 =
731       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
732           .addReg(RegX, getKillRegState(KillX))
733           .addReg(RegY, getKillRegState(KillY));
734   MachineInstrBuilder MIB2 =
735       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
736           .addReg(RegA, getKillRegState(KillA))
737           .addReg(NewVR, getKillRegState(true));
738 
739   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
740 
741   // Record new instructions for insertion and old instructions for deletion.
742   InsInstrs.push_back(MIB1);
743   InsInstrs.push_back(MIB2);
744   DelInstrs.push_back(&Prev);
745   DelInstrs.push_back(&Root);
746 }
747 
genAlternativeCodeSequence(MachineInstr & Root,MachineCombinerPattern Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstIdxForVirtReg) const748 void TargetInstrInfo::genAlternativeCodeSequence(
749     MachineInstr &Root, MachineCombinerPattern Pattern,
750     SmallVectorImpl<MachineInstr *> &InsInstrs,
751     SmallVectorImpl<MachineInstr *> &DelInstrs,
752     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
753   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
754 
755   // Select the previous instruction in the sequence based on the input pattern.
756   MachineInstr *Prev = nullptr;
757   switch (Pattern) {
758   case MachineCombinerPattern::REASSOC_AX_BY:
759   case MachineCombinerPattern::REASSOC_XA_BY:
760     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
761     break;
762   case MachineCombinerPattern::REASSOC_AX_YB:
763   case MachineCombinerPattern::REASSOC_XA_YB:
764     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
765     break;
766   default:
767     break;
768   }
769 
770   assert(Prev && "Unknown pattern for machine combiner");
771 
772   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
773 }
774 
775 /// foldMemoryOperand - Same as the previous version except it allows folding
776 /// of any load and store from / to any address, not just from a specific
777 /// stack slot.
foldMemoryOperand(MachineInstr & MI,ArrayRef<unsigned> Ops,MachineInstr & LoadMI,LiveIntervals * LIS) const778 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
779                                                  ArrayRef<unsigned> Ops,
780                                                  MachineInstr &LoadMI,
781                                                  LiveIntervals *LIS) const {
782   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
783 #ifndef NDEBUG
784   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
785     assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!");
786 #endif
787   MachineBasicBlock &MBB = *MI.getParent();
788   MachineFunction &MF = *MBB.getParent();
789 
790   // Ask the target to do the actual folding.
791   MachineInstr *NewMI = nullptr;
792   int FrameIndex = 0;
793 
794   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
795        MI.getOpcode() == TargetOpcode::PATCHPOINT) &&
796       isLoadFromStackSlot(LoadMI, FrameIndex)) {
797     // Fold stackmap/patchpoint.
798     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
799     if (NewMI)
800       NewMI = &*MBB.insert(MI, NewMI);
801   } else {
802     // Ask the target to do the actual folding.
803     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
804   }
805 
806   if (!NewMI) return nullptr;
807 
808   // Copy the memoperands from the load to the folded instruction.
809   if (MI.memoperands_empty()) {
810     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
811   }
812   else {
813     // Handle the rare case of folding multiple loads.
814     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
815     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
816                                     E = LoadMI.memoperands_end();
817          I != E; ++I) {
818       NewMI->addMemOperand(MF, *I);
819     }
820   }
821   return NewMI;
822 }
823 
isReallyTriviallyReMaterializableGeneric(const MachineInstr & MI,AliasAnalysis * AA) const824 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
825     const MachineInstr &MI, AliasAnalysis *AA) const {
826   const MachineFunction &MF = *MI.getParent()->getParent();
827   const MachineRegisterInfo &MRI = MF.getRegInfo();
828 
829   // Remat clients assume operand 0 is the defined register.
830   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
831     return false;
832   unsigned DefReg = MI.getOperand(0).getReg();
833 
834   // A sub-register definition can only be rematerialized if the instruction
835   // doesn't read the other parts of the register.  Otherwise it is really a
836   // read-modify-write operation on the full virtual register which cannot be
837   // moved safely.
838   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
839       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
840     return false;
841 
842   // A load from a fixed stack slot can be rematerialized. This may be
843   // redundant with subsequent checks, but it's target-independent,
844   // simple, and a common case.
845   int FrameIdx = 0;
846   if (isLoadFromStackSlot(MI, FrameIdx) &&
847       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
848     return true;
849 
850   // Avoid instructions obviously unsafe for remat.
851   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
852     return false;
853 
854   // Don't remat inline asm. We have no idea how expensive it is
855   // even if it's side effect free.
856   if (MI.isInlineAsm())
857     return false;
858 
859   // Avoid instructions which load from potentially varying memory.
860   if (MI.mayLoad() && !MI.isInvariantLoad(AA))
861     return false;
862 
863   // If any of the registers accessed are non-constant, conservatively assume
864   // the instruction is not rematerializable.
865   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
866     const MachineOperand &MO = MI.getOperand(i);
867     if (!MO.isReg()) continue;
868     unsigned Reg = MO.getReg();
869     if (Reg == 0)
870       continue;
871 
872     // Check for a well-behaved physical register.
873     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
874       if (MO.isUse()) {
875         // If the physreg has no defs anywhere, it's just an ambient register
876         // and we can freely move its uses. Alternatively, if it's allocatable,
877         // it could get allocated to something with a def during allocation.
878         if (!MRI.isConstantPhysReg(Reg, MF))
879           return false;
880       } else {
881         // A physreg def. We can't remat it.
882         return false;
883       }
884       continue;
885     }
886 
887     // Only allow one virtual-register def.  There may be multiple defs of the
888     // same virtual register, though.
889     if (MO.isDef() && Reg != DefReg)
890       return false;
891 
892     // Don't allow any virtual-register uses. Rematting an instruction with
893     // virtual register uses would length the live ranges of the uses, which
894     // is not necessarily a good idea, certainly not "trivial".
895     if (MO.isUse())
896       return false;
897   }
898 
899   // Everything checked out.
900   return true;
901 }
902 
getSPAdjust(const MachineInstr & MI) const903 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
904   const MachineFunction *MF = MI.getParent()->getParent();
905   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
906   bool StackGrowsDown =
907     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
908 
909   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
910   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
911 
912   if (MI.getOpcode() != FrameSetupOpcode &&
913       MI.getOpcode() != FrameDestroyOpcode)
914     return 0;
915 
916   int SPAdj = MI.getOperand(0).getImm();
917   SPAdj = TFI->alignSPAdjust(SPAdj);
918 
919   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
920       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
921     SPAdj = -SPAdj;
922 
923   return SPAdj;
924 }
925 
926 /// isSchedulingBoundary - Test if the given instruction should be
927 /// considered a scheduling boundary. This primarily includes labels
928 /// and terminators.
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const929 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
930                                            const MachineBasicBlock *MBB,
931                                            const MachineFunction &MF) const {
932   // Terminators and labels can't be scheduled around.
933   if (MI.isTerminator() || MI.isPosition())
934     return true;
935 
936   // Don't attempt to schedule around any instruction that defines
937   // a stack-oriented pointer, as it's unlikely to be profitable. This
938   // saves compile time, because it doesn't require every single
939   // stack slot reference to depend on the instruction that does the
940   // modification.
941   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
942   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
943   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
944 }
945 
946 // Provide a global flag for disabling the PreRA hazard recognizer that targets
947 // may choose to honor.
usePreRAHazardRecognizer() const948 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
949   return !DisableHazardRecognizer;
950 }
951 
952 // Default implementation of CreateTargetRAHazardRecognizer.
953 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const954 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
955                              const ScheduleDAG *DAG) const {
956   // Dummy hazard recognizer allows all instructions to issue.
957   return new ScheduleHazardRecognizer();
958 }
959 
960 // Default implementation of CreateTargetMIHazardRecognizer.
961 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetMIHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const962 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
963                                const ScheduleDAG *DAG) const {
964   return (ScheduleHazardRecognizer *)
965     new ScoreboardHazardRecognizer(II, DAG, "misched");
966 }
967 
968 // Default implementation of CreateTargetPostRAHazardRecognizer.
969 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const970 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
971                                    const ScheduleDAG *DAG) const {
972   return (ScheduleHazardRecognizer *)
973     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
974 }
975 
976 //===----------------------------------------------------------------------===//
977 //  SelectionDAG latency interface.
978 //===----------------------------------------------------------------------===//
979 
980 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const981 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
982                                    SDNode *DefNode, unsigned DefIdx,
983                                    SDNode *UseNode, unsigned UseIdx) const {
984   if (!ItinData || ItinData->isEmpty())
985     return -1;
986 
987   if (!DefNode->isMachineOpcode())
988     return -1;
989 
990   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
991   if (!UseNode->isMachineOpcode())
992     return ItinData->getOperandCycle(DefClass, DefIdx);
993   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
994   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
995 }
996 
getInstrLatency(const InstrItineraryData * ItinData,SDNode * N) const997 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
998                                      SDNode *N) const {
999   if (!ItinData || ItinData->isEmpty())
1000     return 1;
1001 
1002   if (!N->isMachineOpcode())
1003     return 1;
1004 
1005   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1006 }
1007 
1008 //===----------------------------------------------------------------------===//
1009 //  MachineInstr latency interface.
1010 //===----------------------------------------------------------------------===//
1011 
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const1012 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1013                                          const MachineInstr &MI) const {
1014   if (!ItinData || ItinData->isEmpty())
1015     return 1;
1016 
1017   unsigned Class = MI.getDesc().getSchedClass();
1018   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1019   if (UOps >= 0)
1020     return UOps;
1021 
1022   // The # of u-ops is dynamically determined. The specific target should
1023   // override this function to return the right number.
1024   return 1;
1025 }
1026 
1027 /// Return the default expected latency for a def based on it's opcode.
defaultDefLatency(const MCSchedModel & SchedModel,const MachineInstr & DefMI) const1028 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1029                                             const MachineInstr &DefMI) const {
1030   if (DefMI.isTransient())
1031     return 0;
1032   if (DefMI.mayLoad())
1033     return SchedModel.LoadLatency;
1034   if (isHighLatencyDef(DefMI.getOpcode()))
1035     return SchedModel.HighLatency;
1036   return 1;
1037 }
1038 
getPredicationCost(const MachineInstr &) const1039 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1040   return 0;
1041 }
1042 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const1043 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1044                                           const MachineInstr &MI,
1045                                           unsigned *PredCost) const {
1046   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1047   // still have a MinLatency property, which getStageLatency checks.
1048   if (!ItinData)
1049     return MI.mayLoad() ? 2 : 1;
1050 
1051   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1052 }
1053 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const1054 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1055                                        const MachineInstr &DefMI,
1056                                        unsigned DefIdx) const {
1057   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1058   if (!ItinData || ItinData->isEmpty())
1059     return false;
1060 
1061   unsigned DefClass = DefMI.getDesc().getSchedClass();
1062   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1063   return (DefCycle != -1 && DefCycle <= 1);
1064 }
1065 
1066 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1067 /// itinerary. This may be overriden by the target.
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const1068 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1069                                        const MachineInstr &DefMI,
1070                                        unsigned DefIdx,
1071                                        const MachineInstr &UseMI,
1072                                        unsigned UseIdx) const {
1073   unsigned DefClass = DefMI.getDesc().getSchedClass();
1074   unsigned UseClass = UseMI.getDesc().getSchedClass();
1075   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1076 }
1077 
1078 /// If we can determine the operand latency from the def only, without itinerary
1079 /// lookup, do so. Otherwise return -1.
computeDefOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI) const1080 int TargetInstrInfo::computeDefOperandLatency(
1081     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1082 
1083   // Let the target hook getInstrLatency handle missing itineraries.
1084   if (!ItinData)
1085     return getInstrLatency(ItinData, DefMI);
1086 
1087   if(ItinData->isEmpty())
1088     return defaultDefLatency(ItinData->SchedModel, DefMI);
1089 
1090   // ...operand lookup required
1091   return -1;
1092 }
1093 
computeOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const1094 unsigned TargetInstrInfo::computeOperandLatency(
1095     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
1096     unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const {
1097 
1098   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1099   if (DefLatency >= 0)
1100     return DefLatency;
1101 
1102   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1103 
1104   int OperLatency = 0;
1105   if (UseMI)
1106     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, *UseMI, UseIdx);
1107   else {
1108     unsigned DefClass = DefMI.getDesc().getSchedClass();
1109     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1110   }
1111   if (OperLatency >= 0)
1112     return OperLatency;
1113 
1114   // No operand latency was found.
1115   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1116 
1117   // Expected latency is the max of the stage latency and itinerary props.
1118   InstrLatency = std::max(InstrLatency,
1119                           defaultDefLatency(ItinData->SchedModel, DefMI));
1120   return InstrLatency;
1121 }
1122 
getRegSequenceInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const1123 bool TargetInstrInfo::getRegSequenceInputs(
1124     const MachineInstr &MI, unsigned DefIdx,
1125     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1126   assert((MI.isRegSequence() ||
1127           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1128 
1129   if (!MI.isRegSequence())
1130     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1131 
1132   // We are looking at:
1133   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1134   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1135   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1136        OpIdx += 2) {
1137     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1138     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1139     assert(MOSubIdx.isImm() &&
1140            "One of the subindex of the reg_sequence is not an immediate");
1141     // Record Reg:SubReg, SubIdx.
1142     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1143                                             (unsigned)MOSubIdx.getImm()));
1144   }
1145   return true;
1146 }
1147 
getExtractSubregInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const1148 bool TargetInstrInfo::getExtractSubregInputs(
1149     const MachineInstr &MI, unsigned DefIdx,
1150     RegSubRegPairAndIdx &InputReg) const {
1151   assert((MI.isExtractSubreg() ||
1152       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1153 
1154   if (!MI.isExtractSubreg())
1155     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1156 
1157   // We are looking at:
1158   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1159   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1160   const MachineOperand &MOReg = MI.getOperand(1);
1161   const MachineOperand &MOSubIdx = MI.getOperand(2);
1162   assert(MOSubIdx.isImm() &&
1163          "The subindex of the extract_subreg is not an immediate");
1164 
1165   InputReg.Reg = MOReg.getReg();
1166   InputReg.SubReg = MOReg.getSubReg();
1167   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1168   return true;
1169 }
1170 
getInsertSubregInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const1171 bool TargetInstrInfo::getInsertSubregInputs(
1172     const MachineInstr &MI, unsigned DefIdx,
1173     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1174   assert((MI.isInsertSubreg() ||
1175       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1176 
1177   if (!MI.isInsertSubreg())
1178     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1179 
1180   // We are looking at:
1181   // Def = INSERT_SEQUENCE v0, v1, sub0.
1182   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1183   const MachineOperand &MOBaseReg = MI.getOperand(1);
1184   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1185   const MachineOperand &MOSubIdx = MI.getOperand(3);
1186   assert(MOSubIdx.isImm() &&
1187          "One of the subindex of the reg_sequence is not an immediate");
1188   BaseReg.Reg = MOBaseReg.getReg();
1189   BaseReg.SubReg = MOBaseReg.getSubReg();
1190 
1191   InsertedReg.Reg = MOInsertedReg.getReg();
1192   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1193   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1194   return true;
1195 }
1196