1 //===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines parts of the type test lowering pass implementation that 11 // may be usefully unit tested. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H 16 #define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Module.h" 21 #include "llvm/IR/PassManager.h" 22 23 #include <cstdint> 24 #include <cstring> 25 #include <limits> 26 #include <set> 27 #include <vector> 28 29 namespace llvm { 30 31 class DataLayout; 32 class GlobalObject; 33 class Value; 34 class raw_ostream; 35 36 namespace lowertypetests { 37 38 struct BitSetInfo { 39 // The indices of the set bits in the bitset. 40 std::set<uint64_t> Bits; 41 42 // The byte offset into the combined global represented by the bitset. 43 uint64_t ByteOffset; 44 45 // The size of the bitset in bits. 46 uint64_t BitSize; 47 48 // Log2 alignment of the bit set relative to the combined global. 49 // For example, a log2 alignment of 3 means that bits in the bitset 50 // represent addresses 8 bytes apart. 51 unsigned AlignLog2; 52 isSingleOffsetBitSetInfo53 bool isSingleOffset() const { 54 return Bits.size() == 1; 55 } 56 isAllOnesBitSetInfo57 bool isAllOnes() const { 58 return Bits.size() == BitSize; 59 } 60 61 bool containsGlobalOffset(uint64_t Offset) const; 62 63 bool containsValue(const DataLayout &DL, 64 const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, 65 Value *V, uint64_t COffset = 0) const; 66 67 void print(raw_ostream &OS) const; 68 }; 69 70 struct BitSetBuilder { 71 SmallVector<uint64_t, 16> Offsets; 72 uint64_t Min, Max; 73 BitSetBuilderBitSetBuilder74 BitSetBuilder() : Min(std::numeric_limits<uint64_t>::max()), Max(0) {} 75 addOffsetBitSetBuilder76 void addOffset(uint64_t Offset) { 77 if (Min > Offset) 78 Min = Offset; 79 if (Max < Offset) 80 Max = Offset; 81 82 Offsets.push_back(Offset); 83 } 84 85 BitSetInfo build(); 86 }; 87 88 /// This class implements a layout algorithm for globals referenced by bit sets 89 /// that tries to keep members of small bit sets together. This can 90 /// significantly reduce bit set sizes in many cases. 91 /// 92 /// It works by assembling fragments of layout from sets of referenced globals. 93 /// Each set of referenced globals causes the algorithm to create a new 94 /// fragment, which is assembled by appending each referenced global in the set 95 /// into the fragment. If a referenced global has already been referenced by an 96 /// fragment created earlier, we instead delete that fragment and append its 97 /// contents into the fragment we are assembling. 98 /// 99 /// By starting with the smallest fragments, we minimize the size of the 100 /// fragments that are copied into larger fragments. This is most intuitively 101 /// thought about when considering the case where the globals are virtual tables 102 /// and the bit sets represent their derived classes: in a single inheritance 103 /// hierarchy, the optimum layout would involve a depth-first search of the 104 /// class hierarchy (and in fact the computed layout ends up looking a lot like 105 /// a DFS), but a naive DFS would not work well in the presence of multiple 106 /// inheritance. This aspect of the algorithm ends up fitting smaller 107 /// hierarchies inside larger ones where that would be beneficial. 108 /// 109 /// For example, consider this class hierarchy: 110 /// 111 /// A B 112 /// \ / | \ 113 /// C D E 114 /// 115 /// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and 116 /// bsE (E). If we laid out our objects by DFS traversing B followed by A, our 117 /// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to 118 /// cover the only 4 objects in its hierarchy, but not for bsA as it needs to 119 /// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows: 120 /// 121 /// Add bsC, fragments {{C}} 122 /// Add bsD, fragments {{C}, {D}} 123 /// Add bsE, fragments {{C}, {D}, {E}} 124 /// Add bsA, fragments {{A, C}, {D}, {E}} 125 /// Add bsB, fragments {{B, A, C, D, E}} 126 /// 127 /// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3 128 /// fewer) objects, at the cost of bsB needing to cover 1 more object. 129 /// 130 /// The bit set lowering pass assigns an object index to each object that needs 131 /// to be laid out, and calls addFragment for each bit set passing the object 132 /// indices of its referenced globals. It then assembles a layout from the 133 /// computed layout in the Fragments field. 134 struct GlobalLayoutBuilder { 135 /// The computed layout. Each element of this vector contains a fragment of 136 /// layout (which may be empty) consisting of object indices. 137 std::vector<std::vector<uint64_t>> Fragments; 138 139 /// Mapping from object index to fragment index. 140 std::vector<uint64_t> FragmentMap; 141 GlobalLayoutBuilderGlobalLayoutBuilder142 GlobalLayoutBuilder(uint64_t NumObjects) 143 : Fragments(1), FragmentMap(NumObjects) {} 144 145 /// Add F to the layout while trying to keep its indices contiguous. 146 /// If a previously seen fragment uses any of F's indices, that 147 /// fragment will be laid out inside F. 148 void addFragment(const std::set<uint64_t> &F); 149 }; 150 151 /// This class is used to build a byte array containing overlapping bit sets. By 152 /// loading from indexed offsets into the byte array and applying a mask, a 153 /// program can test bits from the bit set with a relatively short instruction 154 /// sequence. For example, suppose we have 15 bit sets to lay out: 155 /// 156 /// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits), 157 /// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits), 158 /// L (4 bits), M (3 bits), N (2 bits), O (1 bit) 159 /// 160 /// These bits can be laid out in a 16-byte array like this: 161 /// 162 /// Byte Offset 163 /// 0123456789ABCDEF 164 /// Bit 165 /// 7 HHHHHHHHHIIIIIII 166 /// 6 GGGGGGGGGGJJJJJJ 167 /// 5 FFFFFFFFFFFKKKKK 168 /// 4 EEEEEEEEEEEELLLL 169 /// 3 DDDDDDDDDDDDDMMM 170 /// 2 CCCCCCCCCCCCCCNN 171 /// 1 BBBBBBBBBBBBBBBO 172 /// 0 AAAAAAAAAAAAAAAA 173 /// 174 /// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to 175 /// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done 176 /// in 1-2 machine instructions on x86, or 4-6 instructions on ARM. 177 /// 178 /// This is a byte array, rather than (say) a 2-byte array or a 4-byte array, 179 /// because for one thing it gives us better packing (the more bins there are, 180 /// the less evenly they will be filled), and for another, the instruction 181 /// sequences can be slightly shorter, both on x86 and ARM. 182 struct ByteArrayBuilder { 183 /// The byte array built so far. 184 std::vector<uint8_t> Bytes; 185 186 enum { BitsPerByte = 8 }; 187 188 /// The number of bytes allocated so far for each of the bits. 189 uint64_t BitAllocs[BitsPerByte]; 190 ByteArrayBuilderByteArrayBuilder191 ByteArrayBuilder() { 192 memset(BitAllocs, 0, sizeof(BitAllocs)); 193 } 194 195 /// Allocate BitSize bits in the byte array where Bits contains the bits to 196 /// set. AllocByteOffset is set to the offset within the byte array and 197 /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest 198 /// Processing Time) multiprocessor scheduling algorithm to lay out the bits 199 /// efficiently; the pass allocates bit sets in decreasing size order. 200 void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize, 201 uint64_t &AllocByteOffset, uint8_t &AllocMask); 202 }; 203 204 } // end namespace lowertypetests 205 206 class LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> { 207 public: 208 PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM); 209 }; 210 211 } // end namespace llvm 212 213 #endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H 214