• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cctype>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "hexagon-instrinfo"
36 
37 #define GET_INSTRINFO_CTOR_DTOR
38 #define GET_INSTRMAP_INFO
39 #include "HexagonGenInstrInfo.inc"
40 #include "HexagonGenDFAPacketizer.inc"
41 
42 using namespace llvm;
43 
44 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
45   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
46                             "packetization boundary."));
47 
48 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
49   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
50 
51 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
52   cl::Hidden, cl::ZeroOrMore, cl::init(false),
53   cl::desc("Disable schedule adjustment for new value stores."));
54 
55 static cl::opt<bool> EnableTimingClassLatency(
56   "enable-timing-class-latency", cl::Hidden, cl::init(false),
57   cl::desc("Enable timing class latency"));
58 
59 static cl::opt<bool> EnableALUForwarding(
60   "enable-alu-forwarding", cl::Hidden, cl::init(true),
61   cl::desc("Enable vec alu forwarding"));
62 
63 static cl::opt<bool> EnableACCForwarding(
64   "enable-acc-forwarding", cl::Hidden, cl::init(true),
65   cl::desc("Enable vec acc forwarding"));
66 
67 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
68   cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
69 
70 ///
71 /// Constants for Hexagon instructions.
72 ///
73 const int Hexagon_MEMV_OFFSET_MAX_128B = 896;   // #s4: -8*128...7*128
74 const int Hexagon_MEMV_OFFSET_MIN_128B = -1024; // #s4
75 const int Hexagon_MEMV_OFFSET_MAX = 448;  // #s4: -8*64...7*64
76 const int Hexagon_MEMV_OFFSET_MIN = -512; // #s4
77 const int Hexagon_MEMW_OFFSET_MAX = 4095;
78 const int Hexagon_MEMW_OFFSET_MIN = -4096;
79 const int Hexagon_MEMD_OFFSET_MAX = 8191;
80 const int Hexagon_MEMD_OFFSET_MIN = -8192;
81 const int Hexagon_MEMH_OFFSET_MAX = 2047;
82 const int Hexagon_MEMH_OFFSET_MIN = -2048;
83 const int Hexagon_MEMB_OFFSET_MAX = 1023;
84 const int Hexagon_MEMB_OFFSET_MIN = -1024;
85 const int Hexagon_ADDI_OFFSET_MAX = 32767;
86 const int Hexagon_ADDI_OFFSET_MIN = -32768;
87 const int Hexagon_MEMD_AUTOINC_MAX = 56;
88 const int Hexagon_MEMD_AUTOINC_MIN = -64;
89 const int Hexagon_MEMW_AUTOINC_MAX = 28;
90 const int Hexagon_MEMW_AUTOINC_MIN = -32;
91 const int Hexagon_MEMH_AUTOINC_MAX = 14;
92 const int Hexagon_MEMH_AUTOINC_MIN = -16;
93 const int Hexagon_MEMB_AUTOINC_MAX = 7;
94 const int Hexagon_MEMB_AUTOINC_MIN = -8;
95 const int Hexagon_MEMV_AUTOINC_MAX = 192;   // #s3
96 const int Hexagon_MEMV_AUTOINC_MIN = -256;  // #s3
97 const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;  // #s3
98 const int Hexagon_MEMV_AUTOINC_MIN_128B = -512; // #s3
99 
100 // Pin the vtable to this file.
anchor()101 void HexagonInstrInfo::anchor() {}
102 
HexagonInstrInfo(HexagonSubtarget & ST)103 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
104     : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
105       RI() {}
106 
107 
isIntRegForSubInst(unsigned Reg)108 static bool isIntRegForSubInst(unsigned Reg) {
109   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
110          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
111 }
112 
113 
isDblRegForSubInst(unsigned Reg,const HexagonRegisterInfo & HRI)114 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
115   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
116          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
117 }
118 
119 
120 /// Calculate number of instructions excluding the debug instructions.
nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,MachineBasicBlock::const_instr_iterator MIE)121 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
122                               MachineBasicBlock::const_instr_iterator MIE) {
123   unsigned Count = 0;
124   for (; MIB != MIE; ++MIB) {
125     if (!MIB->isDebugValue())
126       ++Count;
127   }
128   return Count;
129 }
130 
131 
132 /// Find the hardware loop instruction used to set-up the specified loop.
133 /// On Hexagon, we have two instructions used to set-up the hardware loop
134 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
135 /// to indicate the end of a loop.
findLoopInstr(MachineBasicBlock * BB,int EndLoopOp,SmallPtrSet<MachineBasicBlock *,8> & Visited)136 static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
137       SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
138   int LOOPi;
139   int LOOPr;
140   if (EndLoopOp == Hexagon::ENDLOOP0) {
141     LOOPi = Hexagon::J2_loop0i;
142     LOOPr = Hexagon::J2_loop0r;
143   } else { // EndLoopOp == Hexagon::EndLOOP1
144     LOOPi = Hexagon::J2_loop1i;
145     LOOPr = Hexagon::J2_loop1r;
146   }
147 
148   // The loop set-up instruction will be in a predecessor block
149   for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
150          PE = BB->pred_end(); PB != PE; ++PB) {
151     // If this has been visited, already skip it.
152     if (!Visited.insert(*PB).second)
153       continue;
154     if (*PB == BB)
155       continue;
156     for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
157            E = (*PB)->instr_rend(); I != E; ++I) {
158       int Opc = I->getOpcode();
159       if (Opc == LOOPi || Opc == LOOPr)
160         return &*I;
161       // We've reached a different loop, which means the loop0 has been removed.
162       if (Opc == EndLoopOp)
163         return 0;
164     }
165     // Check the predecessors for the LOOP instruction.
166     MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
167     if (loop)
168       return loop;
169   }
170   return 0;
171 }
172 
173 
174 /// Gather register def/uses from MI.
175 /// This treats possible (predicated) defs as actually happening ones
176 /// (conservatively).
parseOperands(const MachineInstr * MI,SmallVector<unsigned,4> & Defs,SmallVector<unsigned,8> & Uses)177 static inline void parseOperands(const MachineInstr *MI,
178       SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
179   Defs.clear();
180   Uses.clear();
181 
182   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
183     const MachineOperand &MO = MI->getOperand(i);
184 
185     if (!MO.isReg())
186       continue;
187 
188     unsigned Reg = MO.getReg();
189     if (!Reg)
190       continue;
191 
192     if (MO.isUse())
193       Uses.push_back(MO.getReg());
194 
195     if (MO.isDef())
196       Defs.push_back(MO.getReg());
197   }
198 }
199 
200 
201 // Position dependent, so check twice for swap.
isDuplexPairMatch(unsigned Ga,unsigned Gb)202 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
203   switch (Ga) {
204   case HexagonII::HSIG_None:
205   default:
206     return false;
207   case HexagonII::HSIG_L1:
208     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
209   case HexagonII::HSIG_L2:
210     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
211             Gb == HexagonII::HSIG_A);
212   case HexagonII::HSIG_S1:
213     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
214             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
215   case HexagonII::HSIG_S2:
216     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
217             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
218             Gb == HexagonII::HSIG_A);
219   case HexagonII::HSIG_A:
220     return (Gb == HexagonII::HSIG_A);
221   case HexagonII::HSIG_Compound:
222     return (Gb == HexagonII::HSIG_Compound);
223   }
224   return false;
225 }
226 
227 
228 
229 /// isLoadFromStackSlot - If the specified machine instruction is a direct
230 /// load from a stack slot, return the virtual or physical register number of
231 /// the destination along with the FrameIndex of the loaded stack slot.  If
232 /// not, return 0.  This predicate must return 0 if the instruction has
233 /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const234 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
235                                                int &FrameIndex) const {
236   switch (MI.getOpcode()) {
237   default:
238     break;
239   case Hexagon::L2_loadrb_io:
240   case Hexagon::L2_loadrub_io:
241   case Hexagon::L2_loadrh_io:
242   case Hexagon::L2_loadruh_io:
243   case Hexagon::L2_loadri_io:
244   case Hexagon::L2_loadrd_io:
245   case Hexagon::V6_vL32b_ai:
246   case Hexagon::V6_vL32b_ai_128B:
247   case Hexagon::V6_vL32Ub_ai:
248   case Hexagon::V6_vL32Ub_ai_128B:
249   case Hexagon::LDriw_pred:
250   case Hexagon::LDriw_mod:
251   case Hexagon::LDriq_pred_V6:
252   case Hexagon::LDriq_pred_vec_V6:
253   case Hexagon::LDriv_pseudo_V6:
254   case Hexagon::LDrivv_pseudo_V6:
255   case Hexagon::LDriq_pred_V6_128B:
256   case Hexagon::LDriq_pred_vec_V6_128B:
257   case Hexagon::LDriv_pseudo_V6_128B:
258   case Hexagon::LDrivv_pseudo_V6_128B: {
259     const MachineOperand OpFI = MI.getOperand(1);
260     if (!OpFI.isFI())
261       return 0;
262     const MachineOperand OpOff = MI.getOperand(2);
263     if (!OpOff.isImm() || OpOff.getImm() != 0)
264       return 0;
265     FrameIndex = OpFI.getIndex();
266     return MI.getOperand(0).getReg();
267   }
268 
269   case Hexagon::L2_ploadrbt_io:
270   case Hexagon::L2_ploadrbf_io:
271   case Hexagon::L2_ploadrubt_io:
272   case Hexagon::L2_ploadrubf_io:
273   case Hexagon::L2_ploadrht_io:
274   case Hexagon::L2_ploadrhf_io:
275   case Hexagon::L2_ploadruht_io:
276   case Hexagon::L2_ploadruhf_io:
277   case Hexagon::L2_ploadrit_io:
278   case Hexagon::L2_ploadrif_io:
279   case Hexagon::L2_ploadrdt_io:
280   case Hexagon::L2_ploadrdf_io: {
281     const MachineOperand OpFI = MI.getOperand(2);
282     if (!OpFI.isFI())
283       return 0;
284     const MachineOperand OpOff = MI.getOperand(3);
285     if (!OpOff.isImm() || OpOff.getImm() != 0)
286       return 0;
287     FrameIndex = OpFI.getIndex();
288     return MI.getOperand(0).getReg();
289   }
290   }
291 
292   return 0;
293 }
294 
295 
296 /// isStoreToStackSlot - If the specified machine instruction is a direct
297 /// store to a stack slot, return the virtual or physical register number of
298 /// the source reg along with the FrameIndex of the loaded stack slot.  If
299 /// not, return 0.  This predicate must return 0 if the instruction has
300 /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const301 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
302                                               int &FrameIndex) const {
303   switch (MI.getOpcode()) {
304   default:
305     break;
306   case Hexagon::S2_storerb_io:
307   case Hexagon::S2_storerh_io:
308   case Hexagon::S2_storeri_io:
309   case Hexagon::S2_storerd_io:
310   case Hexagon::V6_vS32b_ai:
311   case Hexagon::V6_vS32b_ai_128B:
312   case Hexagon::V6_vS32Ub_ai:
313   case Hexagon::V6_vS32Ub_ai_128B:
314   case Hexagon::STriw_pred:
315   case Hexagon::STriw_mod:
316   case Hexagon::STriq_pred_V6:
317   case Hexagon::STriq_pred_vec_V6:
318   case Hexagon::STriv_pseudo_V6:
319   case Hexagon::STrivv_pseudo_V6:
320   case Hexagon::STriq_pred_V6_128B:
321   case Hexagon::STriq_pred_vec_V6_128B:
322   case Hexagon::STriv_pseudo_V6_128B:
323   case Hexagon::STrivv_pseudo_V6_128B: {
324     const MachineOperand &OpFI = MI.getOperand(0);
325     if (!OpFI.isFI())
326       return 0;
327     const MachineOperand &OpOff = MI.getOperand(1);
328     if (!OpOff.isImm() || OpOff.getImm() != 0)
329       return 0;
330     FrameIndex = OpFI.getIndex();
331     return MI.getOperand(2).getReg();
332   }
333 
334   case Hexagon::S2_pstorerbt_io:
335   case Hexagon::S2_pstorerbf_io:
336   case Hexagon::S2_pstorerht_io:
337   case Hexagon::S2_pstorerhf_io:
338   case Hexagon::S2_pstorerit_io:
339   case Hexagon::S2_pstorerif_io:
340   case Hexagon::S2_pstorerdt_io:
341   case Hexagon::S2_pstorerdf_io: {
342     const MachineOperand &OpFI = MI.getOperand(1);
343     if (!OpFI.isFI())
344       return 0;
345     const MachineOperand &OpOff = MI.getOperand(2);
346     if (!OpOff.isImm() || OpOff.getImm() != 0)
347       return 0;
348     FrameIndex = OpFI.getIndex();
349     return MI.getOperand(3).getReg();
350   }
351   }
352 
353   return 0;
354 }
355 
356 
357 /// This function can analyze one/two way branching only and should (mostly) be
358 /// called by target independent side.
359 /// First entry is always the opcode of the branching instruction, except when
360 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
361 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
362 /// e.g. Jump_c p will have
363 /// Cond[0] = Jump_c
364 /// Cond[1] = p
365 /// HW-loop ENDLOOP:
366 /// Cond[0] = ENDLOOP
367 /// Cond[1] = MBB
368 /// New value jump:
369 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
370 /// Cond[1] = R
371 /// Cond[2] = Imm
372 ///
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const373 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
374                                      MachineBasicBlock *&TBB,
375                                      MachineBasicBlock *&FBB,
376                                      SmallVectorImpl<MachineOperand> &Cond,
377                                      bool AllowModify) const {
378   TBB = nullptr;
379   FBB = nullptr;
380   Cond.clear();
381 
382   // If the block has no terminators, it just falls into the block after it.
383   MachineBasicBlock::instr_iterator I = MBB.instr_end();
384   if (I == MBB.instr_begin())
385     return false;
386 
387   // A basic block may looks like this:
388   //
389   //  [   insn
390   //     EH_LABEL
391   //      insn
392   //      insn
393   //      insn
394   //     EH_LABEL
395   //      insn     ]
396   //
397   // It has two succs but does not have a terminator
398   // Don't know how to handle it.
399   do {
400     --I;
401     if (I->isEHLabel())
402       // Don't analyze EH branches.
403       return true;
404   } while (I != MBB.instr_begin());
405 
406   I = MBB.instr_end();
407   --I;
408 
409   while (I->isDebugValue()) {
410     if (I == MBB.instr_begin())
411       return false;
412     --I;
413   }
414 
415   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
416                      I->getOperand(0).isMBB();
417   // Delete the J2_jump if it's equivalent to a fall-through.
418   if (AllowModify && JumpToBlock &&
419       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
420     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
421     I->eraseFromParent();
422     I = MBB.instr_end();
423     if (I == MBB.instr_begin())
424       return false;
425     --I;
426   }
427   if (!isUnpredicatedTerminator(*I))
428     return false;
429 
430   // Get the last instruction in the block.
431   MachineInstr *LastInst = &*I;
432   MachineInstr *SecondLastInst = nullptr;
433   // Find one more terminator if present.
434   for (;;) {
435     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
436       if (!SecondLastInst)
437         SecondLastInst = &*I;
438       else
439         // This is a third branch.
440         return true;
441     }
442     if (I == MBB.instr_begin())
443       break;
444     --I;
445   }
446 
447   int LastOpcode = LastInst->getOpcode();
448   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
449   // If the branch target is not a basic block, it could be a tail call.
450   // (It is, if the target is a function.)
451   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
452     return true;
453   if (SecLastOpcode == Hexagon::J2_jump &&
454       !SecondLastInst->getOperand(0).isMBB())
455     return true;
456 
457   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
458   bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
459 
460   if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
461     return true;
462 
463   // If there is only one terminator instruction, process it.
464   if (LastInst && !SecondLastInst) {
465     if (LastOpcode == Hexagon::J2_jump) {
466       TBB = LastInst->getOperand(0).getMBB();
467       return false;
468     }
469     if (isEndLoopN(LastOpcode)) {
470       TBB = LastInst->getOperand(0).getMBB();
471       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
472       Cond.push_back(LastInst->getOperand(0));
473       return false;
474     }
475     if (LastOpcodeHasJMP_c) {
476       TBB = LastInst->getOperand(1).getMBB();
477       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
478       Cond.push_back(LastInst->getOperand(0));
479       return false;
480     }
481     // Only supporting rr/ri versions of new-value jumps.
482     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
483       TBB = LastInst->getOperand(2).getMBB();
484       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
485       Cond.push_back(LastInst->getOperand(0));
486       Cond.push_back(LastInst->getOperand(1));
487       return false;
488     }
489     DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
490                  << " with one jump\n";);
491     // Otherwise, don't know what this is.
492     return true;
493   }
494 
495   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
496   bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
497   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
498     if (!SecondLastInst->getOperand(1).isMBB())
499       return true;
500     TBB =  SecondLastInst->getOperand(1).getMBB();
501     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
502     Cond.push_back(SecondLastInst->getOperand(0));
503     FBB = LastInst->getOperand(0).getMBB();
504     return false;
505   }
506 
507   // Only supporting rr/ri versions of new-value jumps.
508   if (SecLastOpcodeHasNVJump &&
509       (SecondLastInst->getNumExplicitOperands() == 3) &&
510       (LastOpcode == Hexagon::J2_jump)) {
511     TBB = SecondLastInst->getOperand(2).getMBB();
512     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
513     Cond.push_back(SecondLastInst->getOperand(0));
514     Cond.push_back(SecondLastInst->getOperand(1));
515     FBB = LastInst->getOperand(0).getMBB();
516     return false;
517   }
518 
519   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
520   // executed, so remove it.
521   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
522     TBB = SecondLastInst->getOperand(0).getMBB();
523     I = LastInst->getIterator();
524     if (AllowModify)
525       I->eraseFromParent();
526     return false;
527   }
528 
529   // If the block ends with an ENDLOOP, and J2_jump, handle it.
530   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
531     TBB = SecondLastInst->getOperand(0).getMBB();
532     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
533     Cond.push_back(SecondLastInst->getOperand(0));
534     FBB = LastInst->getOperand(0).getMBB();
535     return false;
536   }
537   DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
538                << " with two jumps";);
539   // Otherwise, can't handle this.
540   return true;
541 }
542 
543 
RemoveBranch(MachineBasicBlock & MBB) const544 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
545   DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
546   MachineBasicBlock::iterator I = MBB.end();
547   unsigned Count = 0;
548   while (I != MBB.begin()) {
549     --I;
550     if (I->isDebugValue())
551       continue;
552     // Only removing branches from end of MBB.
553     if (!I->isBranch())
554       return Count;
555     if (Count && (I->getOpcode() == Hexagon::J2_jump))
556       llvm_unreachable("Malformed basic block: unconditional branch not last");
557     MBB.erase(&MBB.back());
558     I = MBB.end();
559     ++Count;
560   }
561   return Count;
562 }
563 
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const564 unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
565                                         MachineBasicBlock *TBB,
566                                         MachineBasicBlock *FBB,
567                                         ArrayRef<MachineOperand> Cond,
568                                         const DebugLoc &DL) const {
569   unsigned BOpc   = Hexagon::J2_jump;
570   unsigned BccOpc = Hexagon::J2_jumpt;
571   assert(validateBranchCond(Cond) && "Invalid branching condition");
572   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
573 
574   // Check if ReverseBranchCondition has asked to reverse this branch
575   // If we want to reverse the branch an odd number of times, we want
576   // J2_jumpf.
577   if (!Cond.empty() && Cond[0].isImm())
578     BccOpc = Cond[0].getImm();
579 
580   if (!FBB) {
581     if (Cond.empty()) {
582       // Due to a bug in TailMerging/CFG Optimization, we need to add a
583       // special case handling of a predicated jump followed by an
584       // unconditional jump. If not, Tail Merging and CFG Optimization go
585       // into an infinite loop.
586       MachineBasicBlock *NewTBB, *NewFBB;
587       SmallVector<MachineOperand, 4> Cond;
588       auto Term = MBB.getFirstTerminator();
589       if (Term != MBB.end() && isPredicated(*Term) &&
590           !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
591         MachineBasicBlock *NextBB = &*++MBB.getIterator();
592         if (NewTBB == NextBB) {
593           ReverseBranchCondition(Cond);
594           RemoveBranch(MBB);
595           return InsertBranch(MBB, TBB, nullptr, Cond, DL);
596         }
597       }
598       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
599     } else if (isEndLoopN(Cond[0].getImm())) {
600       int EndLoopOp = Cond[0].getImm();
601       assert(Cond[1].isMBB());
602       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
603       // Check for it, and change the BB target if needed.
604       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
605       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
606       assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
607       Loop->getOperand(0).setMBB(TBB);
608       // Add the ENDLOOP after the finding the LOOP0.
609       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
610     } else if (isNewValueJump(Cond[0].getImm())) {
611       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
612       // New value jump
613       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
614       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
615       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
616       DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
617       if (Cond[2].isReg()) {
618         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
619         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
620           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
621       } else if(Cond[2].isImm()) {
622         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
623           addImm(Cond[2].getImm()).addMBB(TBB);
624       } else
625         llvm_unreachable("Invalid condition for branching");
626     } else {
627       assert((Cond.size() == 2) && "Malformed cond vector");
628       const MachineOperand &RO = Cond[1];
629       unsigned Flags = getUndefRegState(RO.isUndef());
630       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
631     }
632     return 1;
633   }
634   assert((!Cond.empty()) &&
635          "Cond. cannot be empty when multiple branchings are required");
636   assert((!isNewValueJump(Cond[0].getImm())) &&
637          "NV-jump cannot be inserted with another branch");
638   // Special case for hardware loops.  The condition is a basic block.
639   if (isEndLoopN(Cond[0].getImm())) {
640     int EndLoopOp = Cond[0].getImm();
641     assert(Cond[1].isMBB());
642     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
643     // Check for it, and change the BB target if needed.
644     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
645     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
646     assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
647     Loop->getOperand(0).setMBB(TBB);
648     // Add the ENDLOOP after the finding the LOOP0.
649     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
650   } else {
651     const MachineOperand &RO = Cond[1];
652     unsigned Flags = getUndefRegState(RO.isUndef());
653     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
654   }
655   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
656 
657   return 2;
658 }
659 
660 /// Analyze the loop code to find the loop induction variable and compare used
661 /// to compute the number of iterations. Currently, we analyze loop that are
662 /// controlled using hardware loops.  In this case, the induction variable
663 /// instruction is null.  For all other cases, this function returns true, which
664 /// means we're unable to analyze it.
analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst) const665 bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
666                                    MachineInstr *&IndVarInst,
667                                    MachineInstr *&CmpInst) const {
668 
669   MachineBasicBlock *LoopEnd = L.getBottomBlock();
670   MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
671   // We really "analyze" only hardware loops right now.
672   if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
673     IndVarInst = nullptr;
674     CmpInst = &*I;
675     return false;
676   }
677   return true;
678 }
679 
680 /// Generate code to reduce the loop iteration by one and check if the loop is
681 /// finished. Return the value/register of the new loop count. this function
682 /// assumes the nth iteration is peeled first.
reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr * Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter) const683 unsigned HexagonInstrInfo::reduceLoopCount(MachineBasicBlock &MBB,
684       MachineInstr *IndVar, MachineInstr *Cmp,
685       SmallVectorImpl<MachineOperand> &Cond,
686       SmallVectorImpl<MachineInstr *> &PrevInsts,
687       unsigned Iter, unsigned MaxIter) const {
688   // We expect a hardware loop currently. This means that IndVar is set
689   // to null, and the compare is the ENDLOOP instruction.
690   assert((!IndVar) && isEndLoopN(Cmp->getOpcode())
691                    && "Expecting a hardware loop");
692   MachineFunction *MF = MBB.getParent();
693   DebugLoc DL = Cmp->getDebugLoc();
694   SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
695   MachineInstr *Loop = findLoopInstr(&MBB, Cmp->getOpcode(), VisitedBBs);
696   if (!Loop)
697     return 0;
698   // If the loop trip count is a compile-time value, then just change the
699   // value.
700   if (Loop->getOpcode() == Hexagon::J2_loop0i ||
701       Loop->getOpcode() == Hexagon::J2_loop1i) {
702     int64_t Offset = Loop->getOperand(1).getImm();
703     if (Offset <= 1)
704       Loop->eraseFromParent();
705     else
706       Loop->getOperand(1).setImm(Offset - 1);
707     return Offset - 1;
708   }
709   // The loop trip count is a run-time value. We generate code to subtract
710   // one from the trip count, and update the loop instruction.
711   assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
712   unsigned LoopCount = Loop->getOperand(1).getReg();
713   // Check if we're done with the loop.
714   unsigned LoopEnd = createVR(MF, MVT::i1);
715   MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
716     addReg(LoopCount).addImm(1);
717   unsigned NewLoopCount = createVR(MF, MVT::i32);
718   MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
719     addReg(LoopCount).addImm(-1);
720   // Update the previously generated instructions with the new loop counter.
721   for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
722          E = PrevInsts.end(); I != E; ++I)
723     (*I)->substituteRegister(LoopCount, NewLoopCount, 0, getRegisterInfo());
724   PrevInsts.clear();
725   PrevInsts.push_back(NewCmp);
726   PrevInsts.push_back(NewAdd);
727   // Insert the new loop instruction if this is the last time the loop is
728   // decremented.
729   if (Iter == MaxIter)
730     BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
731       addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
732   // Delete the old loop instruction.
733   if (Iter == 0)
734     Loop->eraseFromParent();
735   Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
736   Cond.push_back(NewCmp->getOperand(0));
737   return NewLoopCount;
738 }
739 
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const740 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
741       unsigned NumCycles, unsigned ExtraPredCycles,
742       BranchProbability Probability) const {
743   return nonDbgBBSize(&MBB) <= 3;
744 }
745 
746 
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability) const747 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
748       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
749       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
750       const {
751   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
752 }
753 
754 
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumInstrs,BranchProbability Probability) const755 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
756       unsigned NumInstrs, BranchProbability Probability) const {
757   return NumInstrs <= 4;
758 }
759 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const760 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
761                                    MachineBasicBlock::iterator I,
762                                    const DebugLoc &DL, unsigned DestReg,
763                                    unsigned SrcReg, bool KillSrc) const {
764   auto &HRI = getRegisterInfo();
765   unsigned KillFlag = getKillRegState(KillSrc);
766 
767   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
768     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
769       .addReg(SrcReg, KillFlag);
770     return;
771   }
772   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
773     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
774       .addReg(SrcReg, KillFlag);
775     return;
776   }
777   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
778     // Map Pd = Ps to Pd = or(Ps, Ps).
779     BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
780       .addReg(SrcReg).addReg(SrcReg, KillFlag);
781     return;
782   }
783   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
784       Hexagon::IntRegsRegClass.contains(SrcReg)) {
785     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
786       .addReg(SrcReg, KillFlag);
787     return;
788   }
789   if (Hexagon::IntRegsRegClass.contains(DestReg) &&
790       Hexagon::CtrRegsRegClass.contains(SrcReg)) {
791     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
792       .addReg(SrcReg, KillFlag);
793     return;
794   }
795   if (Hexagon::ModRegsRegClass.contains(DestReg) &&
796       Hexagon::IntRegsRegClass.contains(SrcReg)) {
797     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
798       .addReg(SrcReg, KillFlag);
799     return;
800   }
801   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
802       Hexagon::IntRegsRegClass.contains(DestReg)) {
803     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
804       .addReg(SrcReg, KillFlag);
805     return;
806   }
807   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
808       Hexagon::PredRegsRegClass.contains(DestReg)) {
809     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
810       .addReg(SrcReg, KillFlag);
811     return;
812   }
813   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
814       Hexagon::IntRegsRegClass.contains(DestReg)) {
815     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
816       .addReg(SrcReg, KillFlag);
817     return;
818   }
819   if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
820     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
821       addReg(SrcReg, KillFlag);
822     return;
823   }
824   if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
825     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
826       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg), KillFlag)
827       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg), KillFlag);
828     return;
829   }
830   if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
831     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
832       .addReg(SrcReg)
833       .addReg(SrcReg, KillFlag);
834     return;
835   }
836   if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
837       Hexagon::VectorRegsRegClass.contains(DestReg)) {
838     llvm_unreachable("Unimplemented pred to vec");
839     return;
840   }
841   if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
842       Hexagon::VectorRegsRegClass.contains(SrcReg)) {
843     llvm_unreachable("Unimplemented vec to pred");
844     return;
845   }
846   if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
847     unsigned DstHi = HRI.getSubReg(DestReg, Hexagon::subreg_hireg);
848     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DstHi)
849       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg), KillFlag);
850     unsigned DstLo = HRI.getSubReg(DestReg, Hexagon::subreg_loreg);
851     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DstLo)
852       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg), KillFlag);
853     return;
854   }
855 
856 #ifndef NDEBUG
857   // Show the invalid registers to ease debugging.
858   dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
859          << ": " << PrintReg(DestReg, &HRI)
860          << " = " << PrintReg(SrcReg, &HRI) << '\n';
861 #endif
862   llvm_unreachable("Unimplemented");
863 }
864 
865 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const866 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
867       MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
868       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
869   DebugLoc DL = MBB.findDebugLoc(I);
870   MachineFunction &MF = *MBB.getParent();
871   MachineFrameInfo &MFI = *MF.getFrameInfo();
872   unsigned Align = MFI.getObjectAlignment(FI);
873   unsigned KillFlag = getKillRegState(isKill);
874 
875   MachineMemOperand *MMO = MF.getMachineMemOperand(
876       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
877       MFI.getObjectSize(FI), Align);
878 
879   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
880     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
881       .addFrameIndex(FI).addImm(0)
882       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
883   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
884     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
885       .addFrameIndex(FI).addImm(0)
886       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
887   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
888     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
889       .addFrameIndex(FI).addImm(0)
890       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
891   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
892     BuildMI(MBB, I, DL, get(Hexagon::STriw_mod))
893       .addFrameIndex(FI).addImm(0)
894       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
895   } else if (Hexagon::VecPredRegs128BRegClass.hasSubClassEq(RC)) {
896     BuildMI(MBB, I, DL, get(Hexagon::STriq_pred_V6_128B))
897       .addFrameIndex(FI).addImm(0)
898       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
899   } else if (Hexagon::VecPredRegsRegClass.hasSubClassEq(RC)) {
900     BuildMI(MBB, I, DL, get(Hexagon::STriq_pred_V6))
901       .addFrameIndex(FI).addImm(0)
902       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
903   } else if (Hexagon::VectorRegs128BRegClass.hasSubClassEq(RC)) {
904     DEBUG(dbgs() << "++Generating 128B vector spill");
905     BuildMI(MBB, I, DL, get(Hexagon::STriv_pseudo_V6_128B))
906       .addFrameIndex(FI).addImm(0)
907       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
908   } else if (Hexagon::VectorRegsRegClass.hasSubClassEq(RC)) {
909     DEBUG(dbgs() << "++Generating vector spill");
910     BuildMI(MBB, I, DL, get(Hexagon::STriv_pseudo_V6))
911       .addFrameIndex(FI).addImm(0)
912       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
913   } else if (Hexagon::VecDblRegsRegClass.hasSubClassEq(RC)) {
914     DEBUG(dbgs() << "++Generating double vector spill");
915     BuildMI(MBB, I, DL, get(Hexagon::STrivv_pseudo_V6))
916       .addFrameIndex(FI).addImm(0)
917       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
918   } else if (Hexagon::VecDblRegs128BRegClass.hasSubClassEq(RC)) {
919     DEBUG(dbgs() << "++Generating 128B double vector spill");
920     BuildMI(MBB, I, DL, get(Hexagon::STrivv_pseudo_V6_128B))
921       .addFrameIndex(FI).addImm(0)
922       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
923   } else {
924     llvm_unreachable("Unimplemented");
925   }
926 }
927 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const928 void HexagonInstrInfo::loadRegFromStackSlot(
929     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
930     int FI, const TargetRegisterClass *RC,
931     const TargetRegisterInfo *TRI) const {
932   DebugLoc DL = MBB.findDebugLoc(I);
933   MachineFunction &MF = *MBB.getParent();
934   MachineFrameInfo &MFI = *MF.getFrameInfo();
935   unsigned Align = MFI.getObjectAlignment(FI);
936 
937   MachineMemOperand *MMO = MF.getMachineMemOperand(
938       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
939       MFI.getObjectSize(FI), Align);
940 
941   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
942     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
943       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
944   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
945     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
946       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
947   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
948     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
949       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
950   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
951     BuildMI(MBB, I, DL, get(Hexagon::LDriw_mod), DestReg)
952       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
953   } else if (Hexagon::VecPredRegs128BRegClass.hasSubClassEq(RC)) {
954     BuildMI(MBB, I, DL, get(Hexagon::LDriq_pred_V6_128B), DestReg)
955       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
956   } else if (Hexagon::VecPredRegsRegClass.hasSubClassEq(RC)) {
957     BuildMI(MBB, I, DL, get(Hexagon::LDriq_pred_V6), DestReg)
958       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
959   } else if (Hexagon::VecDblRegs128BRegClass.hasSubClassEq(RC)) {
960     DEBUG(dbgs() << "++Generating 128B double vector restore");
961     BuildMI(MBB, I, DL, get(Hexagon::LDrivv_pseudo_V6_128B), DestReg)
962       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
963   } else if (Hexagon::VectorRegs128BRegClass.hasSubClassEq(RC)) {
964     DEBUG(dbgs() << "++Generating 128B vector restore");
965     BuildMI(MBB, I, DL, get(Hexagon::LDriv_pseudo_V6_128B), DestReg)
966       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
967   } else if (Hexagon::VectorRegsRegClass.hasSubClassEq(RC)) {
968     DEBUG(dbgs() << "++Generating vector restore");
969     BuildMI(MBB, I, DL, get(Hexagon::LDriv_pseudo_V6), DestReg)
970       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
971   } else if (Hexagon::VecDblRegsRegClass.hasSubClassEq(RC)) {
972     DEBUG(dbgs() << "++Generating double vector restore");
973     BuildMI(MBB, I, DL, get(Hexagon::LDrivv_pseudo_V6), DestReg)
974       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
975   } else {
976     llvm_unreachable("Can't store this register to stack slot");
977   }
978 }
979 
980 
981 /// expandPostRAPseudo - This function is called for all pseudo instructions
982 /// that remain after register allocation. Many pseudo instructions are
983 /// created to help register allocation. This is the place to convert them
984 /// into real instructions. The target can edit MI in place, or it can insert
985 /// new instructions and erase MI. The function should return true if
986 /// anything was changed.
expandPostRAPseudo(MachineInstr & MI) const987 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
988   const HexagonRegisterInfo &HRI = getRegisterInfo();
989   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
990   MachineBasicBlock &MBB = *MI.getParent();
991   DebugLoc DL = MI.getDebugLoc();
992   unsigned Opc = MI.getOpcode();
993   const unsigned VecOffset = 1;
994   bool Is128B = false;
995 
996   switch (Opc) {
997     case TargetOpcode::COPY: {
998       MachineOperand &MD = MI.getOperand(0);
999       MachineOperand &MS = MI.getOperand(1);
1000       MachineBasicBlock::iterator MBBI = MI.getIterator();
1001       if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1002         copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1003         std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1004       }
1005       MBB.erase(MBBI);
1006       return true;
1007     }
1008     case Hexagon::ALIGNA:
1009       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1010           .addReg(HRI.getFrameRegister())
1011           .addImm(-MI.getOperand(1).getImm());
1012       MBB.erase(MI);
1013       return true;
1014     case Hexagon::HEXAGON_V6_vassignp_128B:
1015     case Hexagon::HEXAGON_V6_vassignp: {
1016       unsigned SrcReg = MI.getOperand(1).getReg();
1017       unsigned DstReg = MI.getOperand(0).getReg();
1018       if (SrcReg != DstReg)
1019         copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI.getOperand(1).isKill());
1020       MBB.erase(MI);
1021       return true;
1022     }
1023     case Hexagon::HEXAGON_V6_lo_128B:
1024     case Hexagon::HEXAGON_V6_lo: {
1025       unsigned SrcReg = MI.getOperand(1).getReg();
1026       unsigned DstReg = MI.getOperand(0).getReg();
1027       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
1028       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1029       MBB.erase(MI);
1030       MRI.clearKillFlags(SrcSubLo);
1031       return true;
1032     }
1033     case Hexagon::HEXAGON_V6_hi_128B:
1034     case Hexagon::HEXAGON_V6_hi: {
1035       unsigned SrcReg = MI.getOperand(1).getReg();
1036       unsigned DstReg = MI.getOperand(0).getReg();
1037       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
1038       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1039       MBB.erase(MI);
1040       MRI.clearKillFlags(SrcSubHi);
1041       return true;
1042     }
1043     case Hexagon::STrivv_indexed_128B:
1044       Is128B = true;
1045     case Hexagon::STrivv_indexed: {
1046       unsigned SrcReg = MI.getOperand(2).getReg();
1047       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
1048       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
1049       unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
1050                                 : Hexagon::V6_vS32b_ai;
1051       unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
1052       MachineInstr *MI1New =
1053           BuildMI(MBB, MI, DL, get(NewOpcd))
1054               .addOperand(MI.getOperand(0))
1055               .addImm(MI.getOperand(1).getImm())
1056               .addReg(SrcSubLo)
1057               .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1058       MI1New->getOperand(0).setIsKill(false);
1059       BuildMI(MBB, MI, DL, get(NewOpcd))
1060           .addOperand(MI.getOperand(0))
1061           // The Vectors are indexed in multiples of vector size.
1062           .addImm(MI.getOperand(1).getImm() + Offset)
1063           .addReg(SrcSubHi)
1064           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1065       MBB.erase(MI);
1066       return true;
1067     }
1068     case Hexagon::LDrivv_pseudo_V6_128B:
1069     case Hexagon::LDrivv_indexed_128B:
1070       Is128B = true;
1071     case Hexagon::LDrivv_pseudo_V6:
1072     case Hexagon::LDrivv_indexed: {
1073       unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
1074                                 : Hexagon::V6_vL32b_ai;
1075       unsigned DstReg = MI.getOperand(0).getReg();
1076       unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
1077       MachineInstr *MI1New =
1078           BuildMI(MBB, MI, DL, get(NewOpcd),
1079                   HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
1080               .addOperand(MI.getOperand(1))
1081               .addImm(MI.getOperand(2).getImm());
1082       MI1New->getOperand(1).setIsKill(false);
1083       BuildMI(MBB, MI, DL, get(NewOpcd),
1084               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
1085           .addOperand(MI.getOperand(1))
1086           // The Vectors are indexed in multiples of vector size.
1087           .addImm(MI.getOperand(2).getImm() + Offset)
1088           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1089       MBB.erase(MI);
1090       return true;
1091     }
1092     case Hexagon::LDriv_pseudo_V6_128B:
1093       Is128B = true;
1094     case Hexagon::LDriv_pseudo_V6: {
1095       unsigned DstReg = MI.getOperand(0).getReg();
1096       unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
1097                                : Hexagon::V6_vL32b_ai;
1098       int32_t Off = MI.getOperand(2).getImm();
1099       BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1100           .addOperand(MI.getOperand(1))
1101           .addImm(Off)
1102           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1103       MBB.erase(MI);
1104       return true;
1105     }
1106     case Hexagon::STriv_pseudo_V6_128B:
1107       Is128B = true;
1108     case Hexagon::STriv_pseudo_V6: {
1109       unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
1110                                : Hexagon::V6_vS32b_ai;
1111       int32_t Off = MI.getOperand(1).getImm();
1112       BuildMI(MBB, MI, DL, get(NewOpc))
1113           .addOperand(MI.getOperand(0))
1114           .addImm(Off)
1115           .addOperand(MI.getOperand(2))
1116           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1117       MBB.erase(MI);
1118       return true;
1119     }
1120     case Hexagon::TFR_PdTrue: {
1121       unsigned Reg = MI.getOperand(0).getReg();
1122       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1123         .addReg(Reg, RegState::Undef)
1124         .addReg(Reg, RegState::Undef);
1125       MBB.erase(MI);
1126       return true;
1127     }
1128     case Hexagon::TFR_PdFalse: {
1129       unsigned Reg = MI.getOperand(0).getReg();
1130       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1131         .addReg(Reg, RegState::Undef)
1132         .addReg(Reg, RegState::Undef);
1133       MBB.erase(MI);
1134       return true;
1135     }
1136     case Hexagon::VMULW: {
1137       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1138       unsigned DstReg = MI.getOperand(0).getReg();
1139       unsigned Src1Reg = MI.getOperand(1).getReg();
1140       unsigned Src2Reg = MI.getOperand(2).getReg();
1141       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
1142       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
1143       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
1144       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
1145       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1146               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
1147           .addReg(Src1SubHi)
1148           .addReg(Src2SubHi);
1149       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1150               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
1151           .addReg(Src1SubLo)
1152           .addReg(Src2SubLo);
1153       MBB.erase(MI);
1154       MRI.clearKillFlags(Src1SubHi);
1155       MRI.clearKillFlags(Src1SubLo);
1156       MRI.clearKillFlags(Src2SubHi);
1157       MRI.clearKillFlags(Src2SubLo);
1158       return true;
1159     }
1160     case Hexagon::VMULW_ACC: {
1161       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1162       unsigned DstReg = MI.getOperand(0).getReg();
1163       unsigned Src1Reg = MI.getOperand(1).getReg();
1164       unsigned Src2Reg = MI.getOperand(2).getReg();
1165       unsigned Src3Reg = MI.getOperand(3).getReg();
1166       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
1167       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
1168       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
1169       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
1170       unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
1171       unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
1172       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1173               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
1174           .addReg(Src1SubHi)
1175           .addReg(Src2SubHi)
1176           .addReg(Src3SubHi);
1177       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1178               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
1179           .addReg(Src1SubLo)
1180           .addReg(Src2SubLo)
1181           .addReg(Src3SubLo);
1182       MBB.erase(MI);
1183       MRI.clearKillFlags(Src1SubHi);
1184       MRI.clearKillFlags(Src1SubLo);
1185       MRI.clearKillFlags(Src2SubHi);
1186       MRI.clearKillFlags(Src2SubLo);
1187       MRI.clearKillFlags(Src3SubHi);
1188       MRI.clearKillFlags(Src3SubLo);
1189       return true;
1190     }
1191     case Hexagon::Insert4: {
1192       unsigned DstReg = MI.getOperand(0).getReg();
1193       unsigned Src1Reg = MI.getOperand(1).getReg();
1194       unsigned Src2Reg = MI.getOperand(2).getReg();
1195       unsigned Src3Reg = MI.getOperand(3).getReg();
1196       unsigned Src4Reg = MI.getOperand(4).getReg();
1197       unsigned Src1RegIsKill = getKillRegState(MI.getOperand(1).isKill());
1198       unsigned Src2RegIsKill = getKillRegState(MI.getOperand(2).isKill());
1199       unsigned Src3RegIsKill = getKillRegState(MI.getOperand(3).isKill());
1200       unsigned Src4RegIsKill = getKillRegState(MI.getOperand(4).isKill());
1201       unsigned DstSubHi = HRI.getSubReg(DstReg, Hexagon::subreg_hireg);
1202       unsigned DstSubLo = HRI.getSubReg(DstReg, Hexagon::subreg_loreg);
1203       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
1204               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
1205           .addReg(DstSubLo)
1206           .addReg(Src1Reg, Src1RegIsKill)
1207           .addImm(16)
1208           .addImm(0);
1209       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
1210               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
1211           .addReg(DstSubLo)
1212           .addReg(Src2Reg, Src2RegIsKill)
1213           .addImm(16)
1214           .addImm(16);
1215       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
1216               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
1217           .addReg(DstSubHi)
1218           .addReg(Src3Reg, Src3RegIsKill)
1219           .addImm(16)
1220           .addImm(0);
1221       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
1222               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
1223           .addReg(DstSubHi)
1224           .addReg(Src4Reg, Src4RegIsKill)
1225           .addImm(16)
1226           .addImm(16);
1227       MBB.erase(MI);
1228       MRI.clearKillFlags(DstReg);
1229       MRI.clearKillFlags(DstSubHi);
1230       MRI.clearKillFlags(DstSubLo);
1231       return true;
1232     }
1233     case Hexagon::MUX64_rr: {
1234       const MachineOperand &Op0 = MI.getOperand(0);
1235       const MachineOperand &Op1 = MI.getOperand(1);
1236       const MachineOperand &Op2 = MI.getOperand(2);
1237       const MachineOperand &Op3 = MI.getOperand(3);
1238       unsigned Rd = Op0.getReg();
1239       unsigned Pu = Op1.getReg();
1240       unsigned Rs = Op2.getReg();
1241       unsigned Rt = Op3.getReg();
1242       DebugLoc DL = MI.getDebugLoc();
1243       unsigned K1 = getKillRegState(Op1.isKill());
1244       unsigned K2 = getKillRegState(Op2.isKill());
1245       unsigned K3 = getKillRegState(Op3.isKill());
1246       if (Rd != Rs)
1247         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1248           .addReg(Pu, (Rd == Rt) ? K1 : 0)
1249           .addReg(Rs, K2);
1250       if (Rd != Rt)
1251         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1252           .addReg(Pu, K1)
1253           .addReg(Rt, K3);
1254       MBB.erase(MI);
1255       return true;
1256     }
1257     case Hexagon::VSelectPseudo_V6: {
1258       const MachineOperand &Op0 = MI.getOperand(0);
1259       const MachineOperand &Op1 = MI.getOperand(1);
1260       const MachineOperand &Op2 = MI.getOperand(2);
1261       const MachineOperand &Op3 = MI.getOperand(3);
1262       BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1263         .addOperand(Op0)
1264         .addOperand(Op1)
1265         .addOperand(Op2);
1266       BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1267         .addOperand(Op0)
1268         .addOperand(Op1)
1269         .addOperand(Op3);
1270       MBB.erase(MI);
1271       return true;
1272     }
1273     case Hexagon::VSelectDblPseudo_V6: {
1274       MachineOperand &Op0 = MI.getOperand(0);
1275       MachineOperand &Op1 = MI.getOperand(1);
1276       MachineOperand &Op2 = MI.getOperand(2);
1277       MachineOperand &Op3 = MI.getOperand(3);
1278       unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::subreg_loreg);
1279       unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::subreg_hireg);
1280       BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1281         .addOperand(Op0)
1282         .addOperand(Op1)
1283         .addReg(SrcHi)
1284         .addReg(SrcLo);
1285       SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::subreg_loreg);
1286       SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::subreg_hireg);
1287       BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1288         .addOperand(Op0)
1289         .addOperand(Op1)
1290         .addReg(SrcHi)
1291         .addReg(SrcLo);
1292       MBB.erase(MI);
1293       return true;
1294     }
1295     case Hexagon::TCRETURNi:
1296       MI.setDesc(get(Hexagon::J2_jump));
1297       return true;
1298     case Hexagon::TCRETURNr:
1299       MI.setDesc(get(Hexagon::J2_jumpr));
1300       return true;
1301     case Hexagon::TFRI_f:
1302     case Hexagon::TFRI_cPt_f:
1303     case Hexagon::TFRI_cNotPt_f: {
1304       unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
1305       APFloat FVal = MI.getOperand(Opx).getFPImm()->getValueAPF();
1306       APInt IVal = FVal.bitcastToAPInt();
1307       MI.RemoveOperand(Opx);
1308       unsigned NewOpc = (Opc == Hexagon::TFRI_f)     ? Hexagon::A2_tfrsi   :
1309                         (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
1310                                                        Hexagon::C2_cmoveif;
1311       MI.setDesc(get(NewOpc));
1312       MI.addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
1313       return true;
1314     }
1315   }
1316 
1317   return false;
1318 }
1319 
1320 
1321 // We indicate that we want to reverse the branch by
1322 // inserting the reversed branching opcode.
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1323 bool HexagonInstrInfo::ReverseBranchCondition(
1324       SmallVectorImpl<MachineOperand> &Cond) const {
1325   if (Cond.empty())
1326     return true;
1327   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1328   unsigned opcode = Cond[0].getImm();
1329   //unsigned temp;
1330   assert(get(opcode).isBranch() && "Should be a branching condition.");
1331   if (isEndLoopN(opcode))
1332     return true;
1333   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1334   Cond[0].setImm(NewOpcode);
1335   return false;
1336 }
1337 
1338 
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const1339 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1340       MachineBasicBlock::iterator MI) const {
1341   DebugLoc DL;
1342   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1343 }
1344 
1345 
1346 // Returns true if an instruction is predicated irrespective of the predicate
1347 // sense. For example, all of the following will return true.
1348 // if (p0) R1 = add(R2, R3)
1349 // if (!p0) R1 = add(R2, R3)
1350 // if (p0.new) R1 = add(R2, R3)
1351 // if (!p0.new) R1 = add(R2, R3)
1352 // Note: New-value stores are not included here as in the current
1353 // implementation, we don't need to check their predicate sense.
isPredicated(const MachineInstr & MI) const1354 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1355   const uint64_t F = MI.getDesc().TSFlags;
1356   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1357 }
1358 
1359 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Cond) const1360 bool HexagonInstrInfo::PredicateInstruction(
1361     MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1362   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1363       isEndLoopN(Cond[0].getImm())) {
1364     DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1365     return false;
1366   }
1367   int Opc = MI.getOpcode();
1368   assert (isPredicable(MI) && "Expected predicable instruction");
1369   bool invertJump = predOpcodeHasNot(Cond);
1370 
1371   // We have to predicate MI "in place", i.e. after this function returns,
1372   // MI will need to be transformed into a predicated form. To avoid com-
1373   // plicated manipulations with the operands (handling tied operands,
1374   // etc.), build a new temporary instruction, then overwrite MI with it.
1375 
1376   MachineBasicBlock &B = *MI.getParent();
1377   DebugLoc DL = MI.getDebugLoc();
1378   unsigned PredOpc = getCondOpcode(Opc, invertJump);
1379   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1380   unsigned NOp = 0, NumOps = MI.getNumOperands();
1381   while (NOp < NumOps) {
1382     MachineOperand &Op = MI.getOperand(NOp);
1383     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1384       break;
1385     T.addOperand(Op);
1386     NOp++;
1387   }
1388 
1389   unsigned PredReg, PredRegPos, PredRegFlags;
1390   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1391   (void)GotPredReg;
1392   assert(GotPredReg);
1393   T.addReg(PredReg, PredRegFlags);
1394   while (NOp < NumOps)
1395     T.addOperand(MI.getOperand(NOp++));
1396 
1397   MI.setDesc(get(PredOpc));
1398   while (unsigned n = MI.getNumOperands())
1399     MI.RemoveOperand(n-1);
1400   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1401     MI.addOperand(T->getOperand(i));
1402 
1403   MachineBasicBlock::instr_iterator TI = T->getIterator();
1404   B.erase(TI);
1405 
1406   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1407   MRI.clearKillFlags(PredReg);
1408   return true;
1409 }
1410 
1411 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const1412 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1413       ArrayRef<MachineOperand> Pred2) const {
1414   // TODO: Fix this
1415   return false;
1416 }
1417 
1418 
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const1419 bool HexagonInstrInfo::DefinesPredicate(
1420     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
1421   auto &HRI = getRegisterInfo();
1422   for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1423     MachineOperand MO = MI.getOperand(oper);
1424     if (MO.isReg() && MO.isDef()) {
1425       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1426       if (RC == &Hexagon::PredRegsRegClass) {
1427         Pred.push_back(MO);
1428         return true;
1429       }
1430     }
1431   }
1432   return false;
1433 }
1434 
1435 
isPredicable(MachineInstr & MI) const1436 bool HexagonInstrInfo::isPredicable(MachineInstr &MI) const {
1437   return MI.getDesc().isPredicable();
1438 }
1439 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1440 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1441                                             const MachineBasicBlock *MBB,
1442                                             const MachineFunction &MF) const {
1443   // Debug info is never a scheduling boundary. It's necessary to be explicit
1444   // due to the special treatment of IT instructions below, otherwise a
1445   // dbg_value followed by an IT will result in the IT instruction being
1446   // considered a scheduling hazard, which is wrong. It should be the actual
1447   // instruction preceding the dbg_value instruction(s), just like it is
1448   // when debug info is not present.
1449   if (MI.isDebugValue())
1450     return false;
1451 
1452   // Throwing call is a boundary.
1453   if (MI.isCall()) {
1454     // If any of the block's successors is a landing pad, this could be a
1455     // throwing call.
1456     for (auto I : MBB->successors())
1457       if (I->isEHPad())
1458         return true;
1459   }
1460 
1461   // Don't mess around with no return calls.
1462   if (MI.getOpcode() == Hexagon::CALLv3nr)
1463     return true;
1464 
1465   // Terminators and labels can't be scheduled around.
1466   if (MI.getDesc().isTerminator() || MI.isPosition())
1467     return true;
1468 
1469   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1470     return true;
1471 
1472   return false;
1473 }
1474 
1475 
1476 /// Measure the specified inline asm to determine an approximation of its
1477 /// length.
1478 /// Comments (which run till the next SeparatorString or newline) do not
1479 /// count as an instruction.
1480 /// Any other non-whitespace text is considered an instruction, with
1481 /// multiple instructions separated by SeparatorString or newlines.
1482 /// Variable-length instructions are not handled here; this function
1483 /// may be overloaded in the target code to do that.
1484 /// Hexagon counts the number of ##'s and adjust for that many
1485 /// constant exenders.
getInlineAsmLength(const char * Str,const MCAsmInfo & MAI) const1486 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1487       const MCAsmInfo &MAI) const {
1488   StringRef AStr(Str);
1489   // Count the number of instructions in the asm.
1490   bool atInsnStart = true;
1491   unsigned Length = 0;
1492   for (; *Str; ++Str) {
1493     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1494                                 strlen(MAI.getSeparatorString())) == 0)
1495       atInsnStart = true;
1496     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1497       Length += MAI.getMaxInstLength();
1498       atInsnStart = false;
1499     }
1500     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
1501                                strlen(MAI.getCommentString())) == 0)
1502       atInsnStart = false;
1503   }
1504 
1505   // Add to size number of constant extenders seen * 4.
1506   StringRef Occ("##");
1507   Length += AStr.count(Occ)*4;
1508   return Length;
1509 }
1510 
1511 
1512 ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const1513 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1514       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1515   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1516 }
1517 
1518 
1519 /// \brief For a comparison instruction, return the source registers in
1520 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1521 /// compares against in CmpValue. Return true if the comparison instruction
1522 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const1523 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1524                                       unsigned &SrcReg2, int &Mask,
1525                                       int &Value) const {
1526   unsigned Opc = MI.getOpcode();
1527 
1528   // Set mask and the first source register.
1529   switch (Opc) {
1530     case Hexagon::C2_cmpeq:
1531     case Hexagon::C2_cmpeqp:
1532     case Hexagon::C2_cmpgt:
1533     case Hexagon::C2_cmpgtp:
1534     case Hexagon::C2_cmpgtu:
1535     case Hexagon::C2_cmpgtup:
1536     case Hexagon::C4_cmpneq:
1537     case Hexagon::C4_cmplte:
1538     case Hexagon::C4_cmplteu:
1539     case Hexagon::C2_cmpeqi:
1540     case Hexagon::C2_cmpgti:
1541     case Hexagon::C2_cmpgtui:
1542     case Hexagon::C4_cmpneqi:
1543     case Hexagon::C4_cmplteui:
1544     case Hexagon::C4_cmpltei:
1545       SrcReg = MI.getOperand(1).getReg();
1546       Mask = ~0;
1547       break;
1548     case Hexagon::A4_cmpbeq:
1549     case Hexagon::A4_cmpbgt:
1550     case Hexagon::A4_cmpbgtu:
1551     case Hexagon::A4_cmpbeqi:
1552     case Hexagon::A4_cmpbgti:
1553     case Hexagon::A4_cmpbgtui:
1554       SrcReg = MI.getOperand(1).getReg();
1555       Mask = 0xFF;
1556       break;
1557     case Hexagon::A4_cmpheq:
1558     case Hexagon::A4_cmphgt:
1559     case Hexagon::A4_cmphgtu:
1560     case Hexagon::A4_cmpheqi:
1561     case Hexagon::A4_cmphgti:
1562     case Hexagon::A4_cmphgtui:
1563       SrcReg = MI.getOperand(1).getReg();
1564       Mask = 0xFFFF;
1565       break;
1566   }
1567 
1568   // Set the value/second source register.
1569   switch (Opc) {
1570     case Hexagon::C2_cmpeq:
1571     case Hexagon::C2_cmpeqp:
1572     case Hexagon::C2_cmpgt:
1573     case Hexagon::C2_cmpgtp:
1574     case Hexagon::C2_cmpgtu:
1575     case Hexagon::C2_cmpgtup:
1576     case Hexagon::A4_cmpbeq:
1577     case Hexagon::A4_cmpbgt:
1578     case Hexagon::A4_cmpbgtu:
1579     case Hexagon::A4_cmpheq:
1580     case Hexagon::A4_cmphgt:
1581     case Hexagon::A4_cmphgtu:
1582     case Hexagon::C4_cmpneq:
1583     case Hexagon::C4_cmplte:
1584     case Hexagon::C4_cmplteu:
1585       SrcReg2 = MI.getOperand(2).getReg();
1586       return true;
1587 
1588     case Hexagon::C2_cmpeqi:
1589     case Hexagon::C2_cmpgtui:
1590     case Hexagon::C2_cmpgti:
1591     case Hexagon::C4_cmpneqi:
1592     case Hexagon::C4_cmplteui:
1593     case Hexagon::C4_cmpltei:
1594     case Hexagon::A4_cmpbeqi:
1595     case Hexagon::A4_cmpbgti:
1596     case Hexagon::A4_cmpbgtui:
1597     case Hexagon::A4_cmpheqi:
1598     case Hexagon::A4_cmphgti:
1599     case Hexagon::A4_cmphgtui:
1600       SrcReg2 = 0;
1601       Value = MI.getOperand(2).getImm();
1602       return true;
1603   }
1604 
1605   return false;
1606 }
1607 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const1608 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1609                                            const MachineInstr &MI,
1610                                            unsigned *PredCost) const {
1611   return getInstrTimingClassLatency(ItinData, &MI);
1612 }
1613 
1614 
CreateTargetScheduleState(const TargetSubtargetInfo & STI) const1615 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1616     const TargetSubtargetInfo &STI) const {
1617   const InstrItineraryData *II = STI.getInstrItineraryData();
1618   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1619 }
1620 
1621 
1622 // Inspired by this pair:
1623 //  %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
1624 //  S2_storeri_io %R29, 132, %R1<kill>; flags:  mem:ST4[FixedStack1]
1625 // Currently AA considers the addresses in these instructions to be aliasing.
areMemAccessesTriviallyDisjoint(MachineInstr & MIa,MachineInstr & MIb,AliasAnalysis * AA) const1626 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1627     MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const {
1628   int OffsetA = 0, OffsetB = 0;
1629   unsigned SizeA = 0, SizeB = 0;
1630 
1631   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1632       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1633     return false;
1634 
1635   // Instructions that are pure loads, not loads and stores like memops are not
1636   // dependent.
1637   if (MIa.mayLoad() && !isMemOp(&MIa) && MIb.mayLoad() && !isMemOp(&MIb))
1638     return true;
1639 
1640   // Get base, offset, and access size in MIa.
1641   unsigned BaseRegA = getBaseAndOffset(&MIa, OffsetA, SizeA);
1642   if (!BaseRegA || !SizeA)
1643     return false;
1644 
1645   // Get base, offset, and access size in MIb.
1646   unsigned BaseRegB = getBaseAndOffset(&MIb, OffsetB, SizeB);
1647   if (!BaseRegB || !SizeB)
1648     return false;
1649 
1650   if (BaseRegA != BaseRegB)
1651     return false;
1652 
1653   // This is a mem access with the same base register and known offsets from it.
1654   // Reason about it.
1655   if (OffsetA > OffsetB) {
1656     uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1657     return (SizeB <= offDiff);
1658   } else if (OffsetA < OffsetB) {
1659     uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1660     return (SizeA <= offDiff);
1661   }
1662 
1663   return false;
1664 }
1665 
1666 
1667 /// If the instruction is an increment of a constant value, return the amount.
getIncrementValue(const MachineInstr * MI,int & Value) const1668 bool HexagonInstrInfo::getIncrementValue(const MachineInstr *MI,
1669       int &Value) const {
1670   if (isPostIncrement(MI)) {
1671     unsigned AccessSize;
1672     return getBaseAndOffset(MI, Value, AccessSize);
1673   }
1674   if (MI->getOpcode() == Hexagon::A2_addi) {
1675     Value = MI->getOperand(2).getImm();
1676     return true;
1677   }
1678 
1679   return false;
1680 }
1681 
1682 
createVR(MachineFunction * MF,MVT VT) const1683 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
1684   MachineRegisterInfo &MRI = MF->getRegInfo();
1685   const TargetRegisterClass *TRC;
1686   if (VT == MVT::i1) {
1687     TRC = &Hexagon::PredRegsRegClass;
1688   } else if (VT == MVT::i32 || VT == MVT::f32) {
1689     TRC = &Hexagon::IntRegsRegClass;
1690   } else if (VT == MVT::i64 || VT == MVT::f64) {
1691     TRC = &Hexagon::DoubleRegsRegClass;
1692   } else {
1693     llvm_unreachable("Cannot handle this register class");
1694   }
1695 
1696   unsigned NewReg = MRI.createVirtualRegister(TRC);
1697   return NewReg;
1698 }
1699 
1700 
isAbsoluteSet(const MachineInstr * MI) const1701 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
1702   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1703 }
1704 
1705 
isAccumulator(const MachineInstr * MI) const1706 bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
1707   const uint64_t F = MI->getDesc().TSFlags;
1708   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1709 }
1710 
1711 
isComplex(const MachineInstr * MI) const1712 bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
1713   const MachineFunction *MF = MI->getParent()->getParent();
1714   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1715   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1716 
1717   if (!(isTC1(MI))
1718       && !(QII->isTC2Early(MI))
1719       && !(MI->getDesc().mayLoad())
1720       && !(MI->getDesc().mayStore())
1721       && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
1722       && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
1723       && !(QII->isMemOp(MI))
1724       && !(MI->isBranch())
1725       && !(MI->isReturn())
1726       && !MI->isCall())
1727     return true;
1728 
1729   return false;
1730 }
1731 
1732 
1733 // Return true if the instruction is a compund branch instruction.
isCompoundBranchInstr(const MachineInstr * MI) const1734 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
1735   return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
1736 }
1737 
1738 
isCondInst(const MachineInstr * MI) const1739 bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
1740   return (MI->isBranch() && isPredicated(*MI)) ||
1741          isConditionalTransfer(MI) ||
1742          isConditionalALU32(MI)    ||
1743          isConditionalLoad(MI)     ||
1744          // Predicated stores which don't have a .new on any operands.
1745          (MI->mayStore() && isPredicated(*MI) && !isNewValueStore(MI) &&
1746           !isPredicatedNew(*MI));
1747 }
1748 
1749 
isConditionalALU32(const MachineInstr * MI) const1750 bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
1751   switch (MI->getOpcode()) {
1752     case Hexagon::A2_paddf:
1753     case Hexagon::A2_paddfnew:
1754     case Hexagon::A2_paddif:
1755     case Hexagon::A2_paddifnew:
1756     case Hexagon::A2_paddit:
1757     case Hexagon::A2_padditnew:
1758     case Hexagon::A2_paddt:
1759     case Hexagon::A2_paddtnew:
1760     case Hexagon::A2_pandf:
1761     case Hexagon::A2_pandfnew:
1762     case Hexagon::A2_pandt:
1763     case Hexagon::A2_pandtnew:
1764     case Hexagon::A2_porf:
1765     case Hexagon::A2_porfnew:
1766     case Hexagon::A2_port:
1767     case Hexagon::A2_portnew:
1768     case Hexagon::A2_psubf:
1769     case Hexagon::A2_psubfnew:
1770     case Hexagon::A2_psubt:
1771     case Hexagon::A2_psubtnew:
1772     case Hexagon::A2_pxorf:
1773     case Hexagon::A2_pxorfnew:
1774     case Hexagon::A2_pxort:
1775     case Hexagon::A2_pxortnew:
1776     case Hexagon::A4_paslhf:
1777     case Hexagon::A4_paslhfnew:
1778     case Hexagon::A4_paslht:
1779     case Hexagon::A4_paslhtnew:
1780     case Hexagon::A4_pasrhf:
1781     case Hexagon::A4_pasrhfnew:
1782     case Hexagon::A4_pasrht:
1783     case Hexagon::A4_pasrhtnew:
1784     case Hexagon::A4_psxtbf:
1785     case Hexagon::A4_psxtbfnew:
1786     case Hexagon::A4_psxtbt:
1787     case Hexagon::A4_psxtbtnew:
1788     case Hexagon::A4_psxthf:
1789     case Hexagon::A4_psxthfnew:
1790     case Hexagon::A4_psxtht:
1791     case Hexagon::A4_psxthtnew:
1792     case Hexagon::A4_pzxtbf:
1793     case Hexagon::A4_pzxtbfnew:
1794     case Hexagon::A4_pzxtbt:
1795     case Hexagon::A4_pzxtbtnew:
1796     case Hexagon::A4_pzxthf:
1797     case Hexagon::A4_pzxthfnew:
1798     case Hexagon::A4_pzxtht:
1799     case Hexagon::A4_pzxthtnew:
1800     case Hexagon::C2_ccombinewf:
1801     case Hexagon::C2_ccombinewt:
1802       return true;
1803   }
1804   return false;
1805 }
1806 
1807 
1808 // FIXME - Function name and it's functionality don't match.
1809 // It should be renamed to hasPredNewOpcode()
isConditionalLoad(const MachineInstr * MI) const1810 bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
1811   if (!MI->getDesc().mayLoad() || !isPredicated(*MI))
1812     return false;
1813 
1814   int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1815   // Instruction with valid predicated-new opcode can be promoted to .new.
1816   return PNewOpcode >= 0;
1817 }
1818 
1819 
1820 // Returns true if an instruction is a conditional store.
1821 //
1822 // Note: It doesn't include conditional new-value stores as they can't be
1823 // converted to .new predicate.
isConditionalStore(const MachineInstr * MI) const1824 bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
1825   switch (MI->getOpcode()) {
1826     default: return false;
1827     case Hexagon::S4_storeirbt_io:
1828     case Hexagon::S4_storeirbf_io:
1829     case Hexagon::S4_pstorerbt_rr:
1830     case Hexagon::S4_pstorerbf_rr:
1831     case Hexagon::S2_pstorerbt_io:
1832     case Hexagon::S2_pstorerbf_io:
1833     case Hexagon::S2_pstorerbt_pi:
1834     case Hexagon::S2_pstorerbf_pi:
1835     case Hexagon::S2_pstorerdt_io:
1836     case Hexagon::S2_pstorerdf_io:
1837     case Hexagon::S4_pstorerdt_rr:
1838     case Hexagon::S4_pstorerdf_rr:
1839     case Hexagon::S2_pstorerdt_pi:
1840     case Hexagon::S2_pstorerdf_pi:
1841     case Hexagon::S2_pstorerht_io:
1842     case Hexagon::S2_pstorerhf_io:
1843     case Hexagon::S4_storeirht_io:
1844     case Hexagon::S4_storeirhf_io:
1845     case Hexagon::S4_pstorerht_rr:
1846     case Hexagon::S4_pstorerhf_rr:
1847     case Hexagon::S2_pstorerht_pi:
1848     case Hexagon::S2_pstorerhf_pi:
1849     case Hexagon::S2_pstorerit_io:
1850     case Hexagon::S2_pstorerif_io:
1851     case Hexagon::S4_storeirit_io:
1852     case Hexagon::S4_storeirif_io:
1853     case Hexagon::S4_pstorerit_rr:
1854     case Hexagon::S4_pstorerif_rr:
1855     case Hexagon::S2_pstorerit_pi:
1856     case Hexagon::S2_pstorerif_pi:
1857 
1858     // V4 global address store before promoting to dot new.
1859     case Hexagon::S4_pstorerdt_abs:
1860     case Hexagon::S4_pstorerdf_abs:
1861     case Hexagon::S4_pstorerbt_abs:
1862     case Hexagon::S4_pstorerbf_abs:
1863     case Hexagon::S4_pstorerht_abs:
1864     case Hexagon::S4_pstorerhf_abs:
1865     case Hexagon::S4_pstorerit_abs:
1866     case Hexagon::S4_pstorerif_abs:
1867       return true;
1868 
1869     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1870     // from the "Conditional Store" list. Because a predicated new value store
1871     // would NOT be promoted to a double dot new store.
1872     // This function returns yes for those stores that are predicated but not
1873     // yet promoted to predicate dot new instructions.
1874   }
1875 }
1876 
1877 
isConditionalTransfer(const MachineInstr * MI) const1878 bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
1879   switch (MI->getOpcode()) {
1880     case Hexagon::A2_tfrt:
1881     case Hexagon::A2_tfrf:
1882     case Hexagon::C2_cmoveit:
1883     case Hexagon::C2_cmoveif:
1884     case Hexagon::A2_tfrtnew:
1885     case Hexagon::A2_tfrfnew:
1886     case Hexagon::C2_cmovenewit:
1887     case Hexagon::C2_cmovenewif:
1888     case Hexagon::A2_tfrpt:
1889     case Hexagon::A2_tfrpf:
1890       return true;
1891 
1892     default:
1893       return false;
1894   }
1895   return false;
1896 }
1897 
1898 
1899 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1900 // isFPImm and later getFPImm as well.
isConstExtended(const MachineInstr * MI) const1901 bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
1902   const uint64_t F = MI->getDesc().TSFlags;
1903   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1904   if (isExtended) // Instruction must be extended.
1905     return true;
1906 
1907   unsigned isExtendable =
1908     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1909   if (!isExtendable)
1910     return false;
1911 
1912   if (MI->isCall())
1913     return false;
1914 
1915   short ExtOpNum = getCExtOpNum(MI);
1916   const MachineOperand &MO = MI->getOperand(ExtOpNum);
1917   // Use MO operand flags to determine if MO
1918   // has the HMOTF_ConstExtended flag set.
1919   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1920     return true;
1921   // If this is a Machine BB address we are talking about, and it is
1922   // not marked as extended, say so.
1923   if (MO.isMBB())
1924     return false;
1925 
1926   // We could be using an instruction with an extendable immediate and shoehorn
1927   // a global address into it. If it is a global address it will be constant
1928   // extended. We do this for COMBINE.
1929   // We currently only handle isGlobal() because it is the only kind of
1930   // object we are going to end up with here for now.
1931   // In the future we probably should add isSymbol(), etc.
1932   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
1933       MO.isJTI() || MO.isCPI())
1934     return true;
1935 
1936   // If the extendable operand is not 'Immediate' type, the instruction should
1937   // have 'isExtended' flag set.
1938   assert(MO.isImm() && "Extendable operand must be Immediate type");
1939 
1940   int MinValue = getMinValue(MI);
1941   int MaxValue = getMaxValue(MI);
1942   int ImmValue = MO.getImm();
1943 
1944   return (ImmValue < MinValue || ImmValue > MaxValue);
1945 }
1946 
1947 
isDeallocRet(const MachineInstr * MI) const1948 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1949   switch (MI->getOpcode()) {
1950   case Hexagon::L4_return :
1951   case Hexagon::L4_return_t :
1952   case Hexagon::L4_return_f :
1953   case Hexagon::L4_return_tnew_pnt :
1954   case Hexagon::L4_return_fnew_pnt :
1955   case Hexagon::L4_return_tnew_pt :
1956   case Hexagon::L4_return_fnew_pt :
1957    return true;
1958   }
1959   return false;
1960 }
1961 
1962 
1963 // Return true when ConsMI uses a register defined by ProdMI.
isDependent(const MachineInstr * ProdMI,const MachineInstr * ConsMI) const1964 bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
1965       const MachineInstr *ConsMI) const {
1966   const MCInstrDesc &ProdMCID = ProdMI->getDesc();
1967   if (!ProdMCID.getNumDefs())
1968     return false;
1969 
1970   auto &HRI = getRegisterInfo();
1971 
1972   SmallVector<unsigned, 4> DefsA;
1973   SmallVector<unsigned, 4> DefsB;
1974   SmallVector<unsigned, 8> UsesA;
1975   SmallVector<unsigned, 8> UsesB;
1976 
1977   parseOperands(ProdMI, DefsA, UsesA);
1978   parseOperands(ConsMI, DefsB, UsesB);
1979 
1980   for (auto &RegA : DefsA)
1981     for (auto &RegB : UsesB) {
1982       // True data dependency.
1983       if (RegA == RegB)
1984         return true;
1985 
1986       if (Hexagon::DoubleRegsRegClass.contains(RegA))
1987         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
1988           if (RegB == *SubRegs)
1989             return true;
1990 
1991       if (Hexagon::DoubleRegsRegClass.contains(RegB))
1992         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
1993           if (RegA == *SubRegs)
1994             return true;
1995     }
1996 
1997   return false;
1998 }
1999 
2000 
2001 // Returns true if the instruction is alread a .cur.
isDotCurInst(const MachineInstr * MI) const2002 bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
2003   switch (MI->getOpcode()) {
2004   case Hexagon::V6_vL32b_cur_pi:
2005   case Hexagon::V6_vL32b_cur_ai:
2006   case Hexagon::V6_vL32b_cur_pi_128B:
2007   case Hexagon::V6_vL32b_cur_ai_128B:
2008     return true;
2009   }
2010   return false;
2011 }
2012 
2013 
2014 // Returns true, if any one of the operands is a dot new
2015 // insn, whether it is predicated dot new or register dot new.
isDotNewInst(const MachineInstr * MI) const2016 bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
2017   if (isNewValueInst(MI) || (isPredicated(*MI) && isPredicatedNew(*MI)))
2018     return true;
2019 
2020   return false;
2021 }
2022 
2023 
2024 /// Symmetrical. See if these two instructions are fit for duplex pair.
isDuplexPair(const MachineInstr * MIa,const MachineInstr * MIb) const2025 bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
2026       const MachineInstr *MIb) const {
2027   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2028   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2029   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2030 }
2031 
2032 
isEarlySourceInstr(const MachineInstr * MI) const2033 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr *MI) const {
2034   if (!MI)
2035     return false;
2036 
2037   if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
2038     return true;
2039 
2040   // Multiply
2041   unsigned SchedClass = MI->getDesc().getSchedClass();
2042   if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
2043     return true;
2044   return false;
2045 }
2046 
2047 
isEndLoopN(unsigned Opcode) const2048 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2049   return (Opcode == Hexagon::ENDLOOP0 ||
2050           Opcode == Hexagon::ENDLOOP1);
2051 }
2052 
2053 
isExpr(unsigned OpType) const2054 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2055   switch(OpType) {
2056   case MachineOperand::MO_MachineBasicBlock:
2057   case MachineOperand::MO_GlobalAddress:
2058   case MachineOperand::MO_ExternalSymbol:
2059   case MachineOperand::MO_JumpTableIndex:
2060   case MachineOperand::MO_ConstantPoolIndex:
2061   case MachineOperand::MO_BlockAddress:
2062     return true;
2063   default:
2064     return false;
2065   }
2066 }
2067 
2068 
isExtendable(const MachineInstr * MI) const2069 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
2070   const MCInstrDesc &MID = MI->getDesc();
2071   const uint64_t F = MID.TSFlags;
2072   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2073     return true;
2074 
2075   // TODO: This is largely obsolete now. Will need to be removed
2076   // in consecutive patches.
2077   switch(MI->getOpcode()) {
2078     // TFR_FI Remains a special case.
2079     case Hexagon::TFR_FI:
2080       return true;
2081     default:
2082       return false;
2083   }
2084   return  false;
2085 }
2086 
2087 
2088 // This returns true in two cases:
2089 // - The OP code itself indicates that this is an extended instruction.
2090 // - One of MOs has been marked with HMOTF_ConstExtended flag.
isExtended(const MachineInstr * MI) const2091 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
2092   // First check if this is permanently extended op code.
2093   const uint64_t F = MI->getDesc().TSFlags;
2094   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2095     return true;
2096   // Use MO operand flags to determine if one of MI's operands
2097   // has HMOTF_ConstExtended flag set.
2098   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
2099        E = MI->operands_end(); I != E; ++I) {
2100     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
2101       return true;
2102   }
2103   return  false;
2104 }
2105 
2106 
isFloat(const MachineInstr * MI) const2107 bool HexagonInstrInfo::isFloat(const MachineInstr *MI) const {
2108   unsigned Opcode = MI->getOpcode();
2109   const uint64_t F = get(Opcode).TSFlags;
2110   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2111 }
2112 
2113 
2114 // No V60 HVX VMEM with A_INDIRECT.
isHVXMemWithAIndirect(const MachineInstr * I,const MachineInstr * J) const2115 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr *I,
2116       const MachineInstr *J) const {
2117   if (!isV60VectorInstruction(I))
2118     return false;
2119   if (!I->mayLoad() && !I->mayStore())
2120     return false;
2121   return J->isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2122 }
2123 
2124 
isIndirectCall(const MachineInstr * MI) const2125 bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
2126   switch (MI->getOpcode()) {
2127   case Hexagon::J2_callr :
2128   case Hexagon::J2_callrf :
2129   case Hexagon::J2_callrt :
2130     return true;
2131   }
2132   return false;
2133 }
2134 
2135 
isIndirectL4Return(const MachineInstr * MI) const2136 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
2137   switch (MI->getOpcode()) {
2138   case Hexagon::L4_return :
2139   case Hexagon::L4_return_t :
2140   case Hexagon::L4_return_f :
2141   case Hexagon::L4_return_fnew_pnt :
2142   case Hexagon::L4_return_fnew_pt :
2143   case Hexagon::L4_return_tnew_pnt :
2144   case Hexagon::L4_return_tnew_pt :
2145     return true;
2146   }
2147   return false;
2148 }
2149 
2150 
isJumpR(const MachineInstr * MI) const2151 bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
2152   switch (MI->getOpcode()) {
2153   case Hexagon::J2_jumpr :
2154   case Hexagon::J2_jumprt :
2155   case Hexagon::J2_jumprf :
2156   case Hexagon::J2_jumprtnewpt :
2157   case Hexagon::J2_jumprfnewpt  :
2158   case Hexagon::J2_jumprtnew :
2159   case Hexagon::J2_jumprfnew :
2160     return true;
2161   }
2162   return false;
2163 }
2164 
2165 
2166 // Return true if a given MI can accomodate given offset.
2167 // Use abs estimate as oppose to the exact number.
2168 // TODO: This will need to be changed to use MC level
2169 // definition of instruction extendable field size.
isJumpWithinBranchRange(const MachineInstr * MI,unsigned offset) const2170 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
2171       unsigned offset) const {
2172   // This selection of jump instructions matches to that what
2173   // AnalyzeBranch can parse, plus NVJ.
2174   if (isNewValueJump(MI)) // r9:2
2175     return isInt<11>(offset);
2176 
2177   switch (MI->getOpcode()) {
2178   // Still missing Jump to address condition on register value.
2179   default:
2180     return false;
2181   case Hexagon::J2_jump: // bits<24> dst; // r22:2
2182   case Hexagon::J2_call:
2183   case Hexagon::CALLv3nr:
2184     return isInt<24>(offset);
2185   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2186   case Hexagon::J2_jumpf:
2187   case Hexagon::J2_jumptnew:
2188   case Hexagon::J2_jumptnewpt:
2189   case Hexagon::J2_jumpfnew:
2190   case Hexagon::J2_jumpfnewpt:
2191   case Hexagon::J2_callt:
2192   case Hexagon::J2_callf:
2193     return isInt<17>(offset);
2194   case Hexagon::J2_loop0i:
2195   case Hexagon::J2_loop0iext:
2196   case Hexagon::J2_loop0r:
2197   case Hexagon::J2_loop0rext:
2198   case Hexagon::J2_loop1i:
2199   case Hexagon::J2_loop1iext:
2200   case Hexagon::J2_loop1r:
2201   case Hexagon::J2_loop1rext:
2202     return isInt<9>(offset);
2203   // TODO: Add all the compound branches here. Can we do this in Relation model?
2204   case Hexagon::J4_cmpeqi_tp0_jump_nt:
2205   case Hexagon::J4_cmpeqi_tp1_jump_nt:
2206     return isInt<11>(offset);
2207   }
2208 }
2209 
2210 
isLateInstrFeedsEarlyInstr(const MachineInstr * LRMI,const MachineInstr * ESMI) const2211 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
2212       const MachineInstr *ESMI) const {
2213   if (!LRMI || !ESMI)
2214     return false;
2215 
2216   bool isLate = isLateResultInstr(LRMI);
2217   bool isEarly = isEarlySourceInstr(ESMI);
2218 
2219   DEBUG(dbgs() << "V60" <<  (isLate ? "-LR  " : " --  "));
2220   DEBUG(LRMI->dump());
2221   DEBUG(dbgs() << "V60" <<  (isEarly ? "-ES  " : " --  "));
2222   DEBUG(ESMI->dump());
2223 
2224   if (isLate && isEarly) {
2225     DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2226     return true;
2227   }
2228 
2229   return false;
2230 }
2231 
2232 
isLateResultInstr(const MachineInstr * MI) const2233 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr *MI) const {
2234   if (!MI)
2235     return false;
2236 
2237   switch (MI->getOpcode()) {
2238   case TargetOpcode::EXTRACT_SUBREG:
2239   case TargetOpcode::INSERT_SUBREG:
2240   case TargetOpcode::SUBREG_TO_REG:
2241   case TargetOpcode::REG_SEQUENCE:
2242   case TargetOpcode::IMPLICIT_DEF:
2243   case TargetOpcode::COPY:
2244   case TargetOpcode::INLINEASM:
2245   case TargetOpcode::PHI:
2246     return false;
2247   default:
2248     break;
2249   }
2250 
2251   unsigned SchedClass = MI->getDesc().getSchedClass();
2252 
2253   switch (SchedClass) {
2254   case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2255   case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2256   case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2257   case Hexagon::Sched::ALU64_tc_1_SLOT23:
2258   case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2259   case Hexagon::Sched::S_2op_tc_1_SLOT23:
2260   case Hexagon::Sched::S_3op_tc_1_SLOT23:
2261   case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
2262   case Hexagon::Sched::V2LDST_tc_st_SLOT0:
2263   case Hexagon::Sched::V2LDST_tc_st_SLOT01:
2264   case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
2265   case Hexagon::Sched::V4LDST_tc_st_SLOT0:
2266   case Hexagon::Sched::V4LDST_tc_st_SLOT01:
2267     return false;
2268   }
2269   return true;
2270 }
2271 
2272 
isLateSourceInstr(const MachineInstr * MI) const2273 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
2274   if (!MI)
2275     return false;
2276 
2277   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2278   // resource, but all operands can be received late like an ALU instruction.
2279   return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
2280 }
2281 
2282 
isLoopN(const MachineInstr * MI) const2283 bool HexagonInstrInfo::isLoopN(const MachineInstr *MI) const {
2284   unsigned Opcode = MI->getOpcode();
2285   return Opcode == Hexagon::J2_loop0i    ||
2286          Opcode == Hexagon::J2_loop0r    ||
2287          Opcode == Hexagon::J2_loop0iext ||
2288          Opcode == Hexagon::J2_loop0rext ||
2289          Opcode == Hexagon::J2_loop1i    ||
2290          Opcode == Hexagon::J2_loop1r    ||
2291          Opcode == Hexagon::J2_loop1iext ||
2292          Opcode == Hexagon::J2_loop1rext;
2293 }
2294 
2295 
isMemOp(const MachineInstr * MI) const2296 bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
2297   switch (MI->getOpcode()) {
2298     default: return false;
2299     case Hexagon::L4_iadd_memopw_io :
2300     case Hexagon::L4_isub_memopw_io :
2301     case Hexagon::L4_add_memopw_io :
2302     case Hexagon::L4_sub_memopw_io :
2303     case Hexagon::L4_and_memopw_io :
2304     case Hexagon::L4_or_memopw_io :
2305     case Hexagon::L4_iadd_memoph_io :
2306     case Hexagon::L4_isub_memoph_io :
2307     case Hexagon::L4_add_memoph_io :
2308     case Hexagon::L4_sub_memoph_io :
2309     case Hexagon::L4_and_memoph_io :
2310     case Hexagon::L4_or_memoph_io :
2311     case Hexagon::L4_iadd_memopb_io :
2312     case Hexagon::L4_isub_memopb_io :
2313     case Hexagon::L4_add_memopb_io :
2314     case Hexagon::L4_sub_memopb_io :
2315     case Hexagon::L4_and_memopb_io :
2316     case Hexagon::L4_or_memopb_io :
2317     case Hexagon::L4_ior_memopb_io:
2318     case Hexagon::L4_ior_memoph_io:
2319     case Hexagon::L4_ior_memopw_io:
2320     case Hexagon::L4_iand_memopb_io:
2321     case Hexagon::L4_iand_memoph_io:
2322     case Hexagon::L4_iand_memopw_io:
2323     return true;
2324   }
2325   return false;
2326 }
2327 
2328 
isNewValue(const MachineInstr * MI) const2329 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
2330   const uint64_t F = MI->getDesc().TSFlags;
2331   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2332 }
2333 
2334 
isNewValue(unsigned Opcode) const2335 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2336   const uint64_t F = get(Opcode).TSFlags;
2337   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2338 }
2339 
2340 
isNewValueInst(const MachineInstr * MI) const2341 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
2342   return isNewValueJump(MI) || isNewValueStore(MI);
2343 }
2344 
2345 
isNewValueJump(const MachineInstr * MI) const2346 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
2347   return isNewValue(MI) && MI->isBranch();
2348 }
2349 
2350 
isNewValueJump(unsigned Opcode) const2351 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2352   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2353 }
2354 
2355 
isNewValueStore(const MachineInstr * MI) const2356 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
2357   const uint64_t F = MI->getDesc().TSFlags;
2358   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2359 }
2360 
2361 
isNewValueStore(unsigned Opcode) const2362 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2363   const uint64_t F = get(Opcode).TSFlags;
2364   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2365 }
2366 
2367 
2368 // Returns true if a particular operand is extendable for an instruction.
isOperandExtended(const MachineInstr * MI,unsigned OperandNum) const2369 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
2370     unsigned OperandNum) const {
2371   const uint64_t F = MI->getDesc().TSFlags;
2372   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2373           == OperandNum;
2374 }
2375 
2376 
isPostIncrement(const MachineInstr * MI) const2377 bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
2378   return getAddrMode(MI) == HexagonII::PostInc;
2379 }
2380 
2381 
isPredicatedNew(const MachineInstr & MI) const2382 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2383   const uint64_t F = MI.getDesc().TSFlags;
2384   assert(isPredicated(MI));
2385   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2386 }
2387 
2388 
isPredicatedNew(unsigned Opcode) const2389 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2390   const uint64_t F = get(Opcode).TSFlags;
2391   assert(isPredicated(Opcode));
2392   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2393 }
2394 
2395 
isPredicatedTrue(const MachineInstr & MI) const2396 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2397   const uint64_t F = MI.getDesc().TSFlags;
2398   return !((F >> HexagonII::PredicatedFalsePos) &
2399            HexagonII::PredicatedFalseMask);
2400 }
2401 
2402 
isPredicatedTrue(unsigned Opcode) const2403 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2404   const uint64_t F = get(Opcode).TSFlags;
2405   // Make sure that the instruction is predicated.
2406   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2407   return !((F >> HexagonII::PredicatedFalsePos) &
2408            HexagonII::PredicatedFalseMask);
2409 }
2410 
2411 
isPredicated(unsigned Opcode) const2412 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2413   const uint64_t F = get(Opcode).TSFlags;
2414   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2415 }
2416 
2417 
isPredicateLate(unsigned Opcode) const2418 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2419   const uint64_t F = get(Opcode).TSFlags;
2420   return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2421 }
2422 
2423 
isPredictedTaken(unsigned Opcode) const2424 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2425   const uint64_t F = get(Opcode).TSFlags;
2426   assert(get(Opcode).isBranch() &&
2427          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2428   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2429 }
2430 
2431 
isSaveCalleeSavedRegsCall(const MachineInstr * MI) const2432 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
2433   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2434          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2435          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2436          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2437 }
2438 
isSignExtendingLoad(const MachineInstr & MI) const2439 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2440   switch (MI.getOpcode()) {
2441   // Byte
2442   case Hexagon::L2_loadrb_io:
2443   case Hexagon::L4_loadrb_ur:
2444   case Hexagon::L4_loadrb_ap:
2445   case Hexagon::L2_loadrb_pr:
2446   case Hexagon::L2_loadrb_pbr:
2447   case Hexagon::L2_loadrb_pi:
2448   case Hexagon::L2_loadrb_pci:
2449   case Hexagon::L2_loadrb_pcr:
2450   case Hexagon::L2_loadbsw2_io:
2451   case Hexagon::L4_loadbsw2_ur:
2452   case Hexagon::L4_loadbsw2_ap:
2453   case Hexagon::L2_loadbsw2_pr:
2454   case Hexagon::L2_loadbsw2_pbr:
2455   case Hexagon::L2_loadbsw2_pi:
2456   case Hexagon::L2_loadbsw2_pci:
2457   case Hexagon::L2_loadbsw2_pcr:
2458   case Hexagon::L2_loadbsw4_io:
2459   case Hexagon::L4_loadbsw4_ur:
2460   case Hexagon::L4_loadbsw4_ap:
2461   case Hexagon::L2_loadbsw4_pr:
2462   case Hexagon::L2_loadbsw4_pbr:
2463   case Hexagon::L2_loadbsw4_pi:
2464   case Hexagon::L2_loadbsw4_pci:
2465   case Hexagon::L2_loadbsw4_pcr:
2466   case Hexagon::L4_loadrb_rr:
2467   case Hexagon::L2_ploadrbt_io:
2468   case Hexagon::L2_ploadrbt_pi:
2469   case Hexagon::L2_ploadrbf_io:
2470   case Hexagon::L2_ploadrbf_pi:
2471   case Hexagon::L2_ploadrbtnew_io:
2472   case Hexagon::L2_ploadrbfnew_io:
2473   case Hexagon::L4_ploadrbt_rr:
2474   case Hexagon::L4_ploadrbf_rr:
2475   case Hexagon::L4_ploadrbtnew_rr:
2476   case Hexagon::L4_ploadrbfnew_rr:
2477   case Hexagon::L2_ploadrbtnew_pi:
2478   case Hexagon::L2_ploadrbfnew_pi:
2479   case Hexagon::L4_ploadrbt_abs:
2480   case Hexagon::L4_ploadrbf_abs:
2481   case Hexagon::L4_ploadrbtnew_abs:
2482   case Hexagon::L4_ploadrbfnew_abs:
2483   case Hexagon::L2_loadrbgp:
2484   // Half
2485   case Hexagon::L2_loadrh_io:
2486   case Hexagon::L4_loadrh_ur:
2487   case Hexagon::L4_loadrh_ap:
2488   case Hexagon::L2_loadrh_pr:
2489   case Hexagon::L2_loadrh_pbr:
2490   case Hexagon::L2_loadrh_pi:
2491   case Hexagon::L2_loadrh_pci:
2492   case Hexagon::L2_loadrh_pcr:
2493   case Hexagon::L4_loadrh_rr:
2494   case Hexagon::L2_ploadrht_io:
2495   case Hexagon::L2_ploadrht_pi:
2496   case Hexagon::L2_ploadrhf_io:
2497   case Hexagon::L2_ploadrhf_pi:
2498   case Hexagon::L2_ploadrhtnew_io:
2499   case Hexagon::L2_ploadrhfnew_io:
2500   case Hexagon::L4_ploadrht_rr:
2501   case Hexagon::L4_ploadrhf_rr:
2502   case Hexagon::L4_ploadrhtnew_rr:
2503   case Hexagon::L4_ploadrhfnew_rr:
2504   case Hexagon::L2_ploadrhtnew_pi:
2505   case Hexagon::L2_ploadrhfnew_pi:
2506   case Hexagon::L4_ploadrht_abs:
2507   case Hexagon::L4_ploadrhf_abs:
2508   case Hexagon::L4_ploadrhtnew_abs:
2509   case Hexagon::L4_ploadrhfnew_abs:
2510   case Hexagon::L2_loadrhgp:
2511     return true;
2512   default:
2513     return false;
2514   }
2515 }
2516 
2517 
isSolo(const MachineInstr * MI) const2518 bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
2519   const uint64_t F = MI->getDesc().TSFlags;
2520   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2521 }
2522 
2523 
isSpillPredRegOp(const MachineInstr * MI) const2524 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
2525   switch (MI->getOpcode()) {
2526   case Hexagon::STriw_pred :
2527   case Hexagon::LDriw_pred :
2528     return true;
2529   default:
2530     return false;
2531   }
2532 }
2533 
2534 
isTailCall(const MachineInstr * MI) const2535 bool HexagonInstrInfo::isTailCall(const MachineInstr *MI) const {
2536   if (!MI->isBranch())
2537     return false;
2538 
2539   for (auto &Op : MI->operands())
2540     if (Op.isGlobal() || Op.isSymbol())
2541       return true;
2542   return false;
2543 }
2544 
2545 
2546 // Returns true when SU has a timing class TC1.
isTC1(const MachineInstr * MI) const2547 bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
2548   unsigned SchedClass = MI->getDesc().getSchedClass();
2549   switch (SchedClass) {
2550   case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2551   case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2552   case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2553   case Hexagon::Sched::ALU64_tc_1_SLOT23:
2554   case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2555   //case Hexagon::Sched::M_tc_1_SLOT23:
2556   case Hexagon::Sched::S_2op_tc_1_SLOT23:
2557   case Hexagon::Sched::S_3op_tc_1_SLOT23:
2558     return true;
2559 
2560   default:
2561     return false;
2562   }
2563 }
2564 
2565 
isTC2(const MachineInstr * MI) const2566 bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
2567   unsigned SchedClass = MI->getDesc().getSchedClass();
2568   switch (SchedClass) {
2569   case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
2570   case Hexagon::Sched::ALU64_tc_2_SLOT23:
2571   case Hexagon::Sched::CR_tc_2_SLOT3:
2572   case Hexagon::Sched::M_tc_2_SLOT23:
2573   case Hexagon::Sched::S_2op_tc_2_SLOT23:
2574   case Hexagon::Sched::S_3op_tc_2_SLOT23:
2575     return true;
2576 
2577   default:
2578     return false;
2579   }
2580 }
2581 
2582 
isTC2Early(const MachineInstr * MI) const2583 bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
2584   unsigned SchedClass = MI->getDesc().getSchedClass();
2585   switch (SchedClass) {
2586   case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
2587   case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
2588   case Hexagon::Sched::ALU64_tc_2early_SLOT23:
2589   case Hexagon::Sched::CR_tc_2early_SLOT23:
2590   case Hexagon::Sched::CR_tc_2early_SLOT3:
2591   case Hexagon::Sched::J_tc_2early_SLOT0123:
2592   case Hexagon::Sched::J_tc_2early_SLOT2:
2593   case Hexagon::Sched::J_tc_2early_SLOT23:
2594   case Hexagon::Sched::S_2op_tc_2early_SLOT23:
2595   case Hexagon::Sched::S_3op_tc_2early_SLOT23:
2596     return true;
2597 
2598   default:
2599     return false;
2600   }
2601 }
2602 
2603 
isTC4x(const MachineInstr * MI) const2604 bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
2605   if (!MI)
2606     return false;
2607 
2608   unsigned SchedClass = MI->getDesc().getSchedClass();
2609   return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
2610 }
2611 
2612 
isV60VectorInstruction(const MachineInstr * MI) const2613 bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
2614   if (!MI)
2615     return false;
2616 
2617   const uint64_t V = getType(MI);
2618   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2619 }
2620 
2621 
2622 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2623 //
isValidAutoIncImm(const EVT VT,const int Offset) const2624 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
2625   if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
2626       VT == MVT::v32i16 || VT == MVT::v64i8) {
2627       return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
2628               Offset <= Hexagon_MEMV_AUTOINC_MAX &&
2629               (Offset & 0x3f) == 0);
2630   }
2631   // 128B
2632   if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
2633       VT == MVT::v64i16 || VT == MVT::v128i8) {
2634       return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
2635               Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
2636               (Offset & 0x7f) == 0);
2637   }
2638   if (VT == MVT::i64) {
2639       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2640               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2641               (Offset & 0x7) == 0);
2642   }
2643   if (VT == MVT::i32) {
2644       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2645               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2646               (Offset & 0x3) == 0);
2647   }
2648   if (VT == MVT::i16) {
2649       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2650               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2651               (Offset & 0x1) == 0);
2652   }
2653   if (VT == MVT::i8) {
2654       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2655               Offset <= Hexagon_MEMB_AUTOINC_MAX);
2656   }
2657   llvm_unreachable("Not an auto-inc opc!");
2658 }
2659 
2660 
isValidOffset(unsigned Opcode,int Offset,bool Extend) const2661 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2662       bool Extend) const {
2663   // This function is to check whether the "Offset" is in the correct range of
2664   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2665   // inserted to calculate the final address. Due to this reason, the function
2666   // assumes that the "Offset" has correct alignment.
2667   // We used to assert if the offset was not properly aligned, however,
2668   // there are cases where a misaligned pointer recast can cause this
2669   // problem, and we need to allow for it. The front end warns of such
2670   // misaligns with respect to load size.
2671 
2672   switch (Opcode) {
2673   case Hexagon::STriq_pred_V6:
2674   case Hexagon::STriq_pred_vec_V6:
2675   case Hexagon::STriv_pseudo_V6:
2676   case Hexagon::STrivv_pseudo_V6:
2677   case Hexagon::LDriq_pred_V6:
2678   case Hexagon::LDriq_pred_vec_V6:
2679   case Hexagon::LDriv_pseudo_V6:
2680   case Hexagon::LDrivv_pseudo_V6:
2681   case Hexagon::LDrivv_indexed:
2682   case Hexagon::STrivv_indexed:
2683   case Hexagon::V6_vL32b_ai:
2684   case Hexagon::V6_vS32b_ai:
2685   case Hexagon::V6_vL32Ub_ai:
2686   case Hexagon::V6_vS32Ub_ai:
2687     return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
2688       (Offset <= Hexagon_MEMV_OFFSET_MAX);
2689 
2690   case Hexagon::STriq_pred_V6_128B:
2691   case Hexagon::STriq_pred_vec_V6_128B:
2692   case Hexagon::STriv_pseudo_V6_128B:
2693   case Hexagon::STrivv_pseudo_V6_128B:
2694   case Hexagon::LDriq_pred_V6_128B:
2695   case Hexagon::LDriq_pred_vec_V6_128B:
2696   case Hexagon::LDriv_pseudo_V6_128B:
2697   case Hexagon::LDrivv_pseudo_V6_128B:
2698   case Hexagon::LDrivv_indexed_128B:
2699   case Hexagon::STrivv_indexed_128B:
2700   case Hexagon::V6_vL32b_ai_128B:
2701   case Hexagon::V6_vS32b_ai_128B:
2702   case Hexagon::V6_vL32Ub_ai_128B:
2703   case Hexagon::V6_vS32Ub_ai_128B:
2704     return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
2705       (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
2706 
2707   case Hexagon::J2_loop0i:
2708   case Hexagon::J2_loop1i:
2709     return isUInt<10>(Offset);
2710   }
2711 
2712   if (Extend)
2713     return true;
2714 
2715   switch (Opcode) {
2716   case Hexagon::L2_loadri_io:
2717   case Hexagon::S2_storeri_io:
2718     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2719       (Offset <= Hexagon_MEMW_OFFSET_MAX);
2720 
2721   case Hexagon::L2_loadrd_io:
2722   case Hexagon::S2_storerd_io:
2723     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2724       (Offset <= Hexagon_MEMD_OFFSET_MAX);
2725 
2726   case Hexagon::L2_loadrh_io:
2727   case Hexagon::L2_loadruh_io:
2728   case Hexagon::S2_storerh_io:
2729     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2730       (Offset <= Hexagon_MEMH_OFFSET_MAX);
2731 
2732   case Hexagon::L2_loadrb_io:
2733   case Hexagon::L2_loadrub_io:
2734   case Hexagon::S2_storerb_io:
2735     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2736       (Offset <= Hexagon_MEMB_OFFSET_MAX);
2737 
2738   case Hexagon::A2_addi:
2739     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2740       (Offset <= Hexagon_ADDI_OFFSET_MAX);
2741 
2742   case Hexagon::L4_iadd_memopw_io :
2743   case Hexagon::L4_isub_memopw_io :
2744   case Hexagon::L4_add_memopw_io :
2745   case Hexagon::L4_sub_memopw_io :
2746   case Hexagon::L4_and_memopw_io :
2747   case Hexagon::L4_or_memopw_io :
2748     return (0 <= Offset && Offset <= 255);
2749 
2750   case Hexagon::L4_iadd_memoph_io :
2751   case Hexagon::L4_isub_memoph_io :
2752   case Hexagon::L4_add_memoph_io :
2753   case Hexagon::L4_sub_memoph_io :
2754   case Hexagon::L4_and_memoph_io :
2755   case Hexagon::L4_or_memoph_io :
2756     return (0 <= Offset && Offset <= 127);
2757 
2758   case Hexagon::L4_iadd_memopb_io :
2759   case Hexagon::L4_isub_memopb_io :
2760   case Hexagon::L4_add_memopb_io :
2761   case Hexagon::L4_sub_memopb_io :
2762   case Hexagon::L4_and_memopb_io :
2763   case Hexagon::L4_or_memopb_io :
2764     return (0 <= Offset && Offset <= 63);
2765 
2766   // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2767   // any size. Later pass knows how to handle it.
2768   case Hexagon::STriw_pred:
2769   case Hexagon::LDriw_pred:
2770   case Hexagon::STriw_mod:
2771   case Hexagon::LDriw_mod:
2772     return true;
2773 
2774   case Hexagon::TFR_FI:
2775   case Hexagon::TFR_FIA:
2776   case Hexagon::INLINEASM:
2777     return true;
2778 
2779   case Hexagon::L2_ploadrbt_io:
2780   case Hexagon::L2_ploadrbf_io:
2781   case Hexagon::L2_ploadrubt_io:
2782   case Hexagon::L2_ploadrubf_io:
2783   case Hexagon::S2_pstorerbt_io:
2784   case Hexagon::S2_pstorerbf_io:
2785   case Hexagon::S4_storeirb_io:
2786   case Hexagon::S4_storeirbt_io:
2787   case Hexagon::S4_storeirbf_io:
2788     return isUInt<6>(Offset);
2789 
2790   case Hexagon::L2_ploadrht_io:
2791   case Hexagon::L2_ploadrhf_io:
2792   case Hexagon::L2_ploadruht_io:
2793   case Hexagon::L2_ploadruhf_io:
2794   case Hexagon::S2_pstorerht_io:
2795   case Hexagon::S2_pstorerhf_io:
2796   case Hexagon::S4_storeirh_io:
2797   case Hexagon::S4_storeirht_io:
2798   case Hexagon::S4_storeirhf_io:
2799     return isShiftedUInt<6,1>(Offset);
2800 
2801   case Hexagon::L2_ploadrit_io:
2802   case Hexagon::L2_ploadrif_io:
2803   case Hexagon::S2_pstorerit_io:
2804   case Hexagon::S2_pstorerif_io:
2805   case Hexagon::S4_storeiri_io:
2806   case Hexagon::S4_storeirit_io:
2807   case Hexagon::S4_storeirif_io:
2808     return isShiftedUInt<6,2>(Offset);
2809 
2810   case Hexagon::L2_ploadrdt_io:
2811   case Hexagon::L2_ploadrdf_io:
2812   case Hexagon::S2_pstorerdt_io:
2813   case Hexagon::S2_pstorerdf_io:
2814     return isShiftedUInt<6,3>(Offset);
2815   } // switch
2816 
2817   llvm_unreachable("No offset range is defined for this opcode. "
2818                    "Please define it in the above switch statement!");
2819 }
2820 
2821 
isVecAcc(const MachineInstr * MI) const2822 bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
2823   return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
2824 }
2825 
2826 
isVecALU(const MachineInstr * MI) const2827 bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
2828   if (!MI)
2829     return false;
2830   const uint64_t F = get(MI->getOpcode()).TSFlags;
2831   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2832   return
2833     V == HexagonII::TypeCVI_VA         ||
2834     V == HexagonII::TypeCVI_VA_DV;
2835 }
2836 
2837 
isVecUsableNextPacket(const MachineInstr * ProdMI,const MachineInstr * ConsMI) const2838 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
2839       const MachineInstr *ConsMI) const {
2840   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2841     return true;
2842 
2843   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2844     return true;
2845 
2846   if (mayBeNewStore(ConsMI))
2847     return true;
2848 
2849   return false;
2850 }
2851 
isZeroExtendingLoad(const MachineInstr & MI) const2852 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2853   switch (MI.getOpcode()) {
2854   // Byte
2855   case Hexagon::L2_loadrub_io:
2856   case Hexagon::L4_loadrub_ur:
2857   case Hexagon::L4_loadrub_ap:
2858   case Hexagon::L2_loadrub_pr:
2859   case Hexagon::L2_loadrub_pbr:
2860   case Hexagon::L2_loadrub_pi:
2861   case Hexagon::L2_loadrub_pci:
2862   case Hexagon::L2_loadrub_pcr:
2863   case Hexagon::L2_loadbzw2_io:
2864   case Hexagon::L4_loadbzw2_ur:
2865   case Hexagon::L4_loadbzw2_ap:
2866   case Hexagon::L2_loadbzw2_pr:
2867   case Hexagon::L2_loadbzw2_pbr:
2868   case Hexagon::L2_loadbzw2_pi:
2869   case Hexagon::L2_loadbzw2_pci:
2870   case Hexagon::L2_loadbzw2_pcr:
2871   case Hexagon::L2_loadbzw4_io:
2872   case Hexagon::L4_loadbzw4_ur:
2873   case Hexagon::L4_loadbzw4_ap:
2874   case Hexagon::L2_loadbzw4_pr:
2875   case Hexagon::L2_loadbzw4_pbr:
2876   case Hexagon::L2_loadbzw4_pi:
2877   case Hexagon::L2_loadbzw4_pci:
2878   case Hexagon::L2_loadbzw4_pcr:
2879   case Hexagon::L4_loadrub_rr:
2880   case Hexagon::L2_ploadrubt_io:
2881   case Hexagon::L2_ploadrubt_pi:
2882   case Hexagon::L2_ploadrubf_io:
2883   case Hexagon::L2_ploadrubf_pi:
2884   case Hexagon::L2_ploadrubtnew_io:
2885   case Hexagon::L2_ploadrubfnew_io:
2886   case Hexagon::L4_ploadrubt_rr:
2887   case Hexagon::L4_ploadrubf_rr:
2888   case Hexagon::L4_ploadrubtnew_rr:
2889   case Hexagon::L4_ploadrubfnew_rr:
2890   case Hexagon::L2_ploadrubtnew_pi:
2891   case Hexagon::L2_ploadrubfnew_pi:
2892   case Hexagon::L4_ploadrubt_abs:
2893   case Hexagon::L4_ploadrubf_abs:
2894   case Hexagon::L4_ploadrubtnew_abs:
2895   case Hexagon::L4_ploadrubfnew_abs:
2896   case Hexagon::L2_loadrubgp:
2897   // Half
2898   case Hexagon::L2_loadruh_io:
2899   case Hexagon::L4_loadruh_ur:
2900   case Hexagon::L4_loadruh_ap:
2901   case Hexagon::L2_loadruh_pr:
2902   case Hexagon::L2_loadruh_pbr:
2903   case Hexagon::L2_loadruh_pi:
2904   case Hexagon::L2_loadruh_pci:
2905   case Hexagon::L2_loadruh_pcr:
2906   case Hexagon::L4_loadruh_rr:
2907   case Hexagon::L2_ploadruht_io:
2908   case Hexagon::L2_ploadruht_pi:
2909   case Hexagon::L2_ploadruhf_io:
2910   case Hexagon::L2_ploadruhf_pi:
2911   case Hexagon::L2_ploadruhtnew_io:
2912   case Hexagon::L2_ploadruhfnew_io:
2913   case Hexagon::L4_ploadruht_rr:
2914   case Hexagon::L4_ploadruhf_rr:
2915   case Hexagon::L4_ploadruhtnew_rr:
2916   case Hexagon::L4_ploadruhfnew_rr:
2917   case Hexagon::L2_ploadruhtnew_pi:
2918   case Hexagon::L2_ploadruhfnew_pi:
2919   case Hexagon::L4_ploadruht_abs:
2920   case Hexagon::L4_ploadruhf_abs:
2921   case Hexagon::L4_ploadruhtnew_abs:
2922   case Hexagon::L4_ploadruhfnew_abs:
2923   case Hexagon::L2_loadruhgp:
2924     return true;
2925   default:
2926     return false;
2927   }
2928 }
2929 
2930 
2931 // Add latency to instruction.
addLatencyToSchedule(const MachineInstr * MI1,const MachineInstr * MI2) const2932 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr *MI1,
2933       const MachineInstr *MI2) const {
2934   if (isV60VectorInstruction(MI1) && isV60VectorInstruction(MI2))
2935     if (!isVecUsableNextPacket(MI1, MI2))
2936       return true;
2937   return false;
2938 }
2939 
2940 
2941 /// \brief Get the base register and byte offset of a load/store instr.
getMemOpBaseRegImmOfs(MachineInstr & LdSt,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI) const2942 bool HexagonInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt,
2943       unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI)
2944       const {
2945   unsigned AccessSize = 0;
2946   int OffsetVal = 0;
2947   BaseReg = getBaseAndOffset(&LdSt, OffsetVal, AccessSize);
2948   Offset = OffsetVal;
2949   return BaseReg != 0;
2950 }
2951 
2952 
2953 /// \brief Can these instructions execute at the same time in a bundle.
canExecuteInBundle(const MachineInstr * First,const MachineInstr * Second) const2954 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr *First,
2955       const MachineInstr *Second) const {
2956   if (DisableNVSchedule)
2957     return false;
2958   if (mayBeNewStore(Second)) {
2959     // Make sure the definition of the first instruction is the value being
2960     // stored.
2961     const MachineOperand &Stored =
2962       Second->getOperand(Second->getNumOperands() - 1);
2963     if (!Stored.isReg())
2964       return false;
2965     for (unsigned i = 0, e = First->getNumOperands(); i < e; ++i) {
2966       const MachineOperand &Op = First->getOperand(i);
2967       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2968         return true;
2969     }
2970   }
2971   return false;
2972 }
2973 
2974 
hasEHLabel(const MachineBasicBlock * B) const2975 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2976   for (auto &I : *B)
2977     if (I.isEHLabel())
2978       return true;
2979   return false;
2980 }
2981 
2982 
2983 // Returns true if an instruction can be converted into a non-extended
2984 // equivalent instruction.
hasNonExtEquivalent(const MachineInstr * MI) const2985 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
2986   short NonExtOpcode;
2987   // Check if the instruction has a register form that uses register in place
2988   // of the extended operand, if so return that as the non-extended form.
2989   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2990     return true;
2991 
2992   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
2993     // Check addressing mode and retrieve non-ext equivalent instruction.
2994 
2995     switch (getAddrMode(MI)) {
2996     case HexagonII::Absolute :
2997       // Load/store with absolute addressing mode can be converted into
2998       // base+offset mode.
2999       NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
3000       break;
3001     case HexagonII::BaseImmOffset :
3002       // Load/store with base+offset addressing mode can be converted into
3003       // base+register offset addressing mode. However left shift operand should
3004       // be set to 0.
3005       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
3006       break;
3007     case HexagonII::BaseLongOffset:
3008       NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
3009       break;
3010     default:
3011       return false;
3012     }
3013     if (NonExtOpcode < 0)
3014       return false;
3015     return true;
3016   }
3017   return false;
3018 }
3019 
3020 
hasPseudoInstrPair(const MachineInstr * MI) const3021 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr *MI) const {
3022   return Hexagon::getRealHWInstr(MI->getOpcode(),
3023                                  Hexagon::InstrType_Pseudo) >= 0;
3024 }
3025 
3026 
hasUncondBranch(const MachineBasicBlock * B) const3027 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3028       const {
3029   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3030   while (I != E) {
3031     if (I->isBarrier())
3032       return true;
3033     ++I;
3034   }
3035   return false;
3036 }
3037 
3038 
3039 // Returns true, if a LD insn can be promoted to a cur load.
mayBeCurLoad(const MachineInstr * MI) const3040 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
3041   auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
3042   const uint64_t F = MI->getDesc().TSFlags;
3043   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3044          HST.hasV60TOps();
3045 }
3046 
3047 
3048 // Returns true, if a ST insn can be promoted to a new-value store.
mayBeNewStore(const MachineInstr * MI) const3049 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
3050   const uint64_t F = MI->getDesc().TSFlags;
3051   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3052 }
3053 
3054 
producesStall(const MachineInstr * ProdMI,const MachineInstr * ConsMI) const3055 bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
3056       const MachineInstr *ConsMI) const {
3057   // There is no stall when ProdMI is not a V60 vector.
3058   if (!isV60VectorInstruction(ProdMI))
3059     return false;
3060 
3061   // There is no stall when ProdMI and ConsMI are not dependent.
3062   if (!isDependent(ProdMI, ConsMI))
3063     return false;
3064 
3065   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3066   // are scheduled in consecutive packets.
3067   if (isVecUsableNextPacket(ProdMI, ConsMI))
3068     return false;
3069 
3070   return true;
3071 }
3072 
3073 
producesStall(const MachineInstr * MI,MachineBasicBlock::const_instr_iterator BII) const3074 bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
3075       MachineBasicBlock::const_instr_iterator BII) const {
3076   // There is no stall when I is not a V60 vector.
3077   if (!isV60VectorInstruction(MI))
3078     return false;
3079 
3080   MachineBasicBlock::const_instr_iterator MII = BII;
3081   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3082 
3083   if (!(*MII).isBundle()) {
3084     const MachineInstr *J = &*MII;
3085     if (!isV60VectorInstruction(J))
3086       return false;
3087     else if (isVecUsableNextPacket(J, MI))
3088       return false;
3089     return true;
3090   }
3091 
3092   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3093     const MachineInstr *J = &*MII;
3094     if (producesStall(J, MI))
3095       return true;
3096   }
3097   return false;
3098 }
3099 
3100 
predCanBeUsedAsDotNew(const MachineInstr * MI,unsigned PredReg) const3101 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr *MI,
3102       unsigned PredReg) const {
3103   for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
3104     const MachineOperand &MO = MI->getOperand(opNum);
3105     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3106       return false; // Predicate register must be explicitly defined.
3107   }
3108 
3109   // Hexagon Programmer's Reference says that decbin, memw_locked, and
3110   // memd_locked cannot be used as .new as well,
3111   // but we don't seem to have these instructions defined.
3112   return MI->getOpcode() != Hexagon::A4_tlbmatch;
3113 }
3114 
3115 
PredOpcodeHasJMP_c(unsigned Opcode) const3116 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3117   return (Opcode == Hexagon::J2_jumpt)      ||
3118          (Opcode == Hexagon::J2_jumpf)      ||
3119          (Opcode == Hexagon::J2_jumptnew)   ||
3120          (Opcode == Hexagon::J2_jumpfnew)   ||
3121          (Opcode == Hexagon::J2_jumptnewpt) ||
3122          (Opcode == Hexagon::J2_jumpfnewpt);
3123 }
3124 
3125 
predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const3126 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3127   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3128     return false;
3129   return !isPredicatedTrue(Cond[0].getImm());
3130 }
3131 
3132 
getAbsoluteForm(const MachineInstr * MI) const3133 short HexagonInstrInfo::getAbsoluteForm(const MachineInstr *MI) const {
3134   return Hexagon::getAbsoluteForm(MI->getOpcode());
3135 }
3136 
3137 
getAddrMode(const MachineInstr * MI) const3138 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
3139   const uint64_t F = MI->getDesc().TSFlags;
3140   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3141 }
3142 
3143 
3144 // Returns the base register in a memory access (load/store). The offset is
3145 // returned in Offset and the access size is returned in AccessSize.
getBaseAndOffset(const MachineInstr * MI,int & Offset,unsigned & AccessSize) const3146 unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
3147       int &Offset, unsigned &AccessSize) const {
3148   // Return if it is not a base+offset type instruction or a MemOp.
3149   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3150       getAddrMode(MI) != HexagonII::BaseLongOffset &&
3151       !isMemOp(MI) && !isPostIncrement(MI))
3152     return 0;
3153 
3154   // Since it is a memory access instruction, getMemAccessSize() should never
3155   // return 0.
3156   assert (getMemAccessSize(MI) &&
3157           "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
3158 
3159   // Return Values of getMemAccessSize() are
3160   // 0 - Checked in the assert above.
3161   // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
3162   // MemAccessSize is represented as 1+log2(N) where N is size in bits.
3163   AccessSize = (1U << (getMemAccessSize(MI) - 1));
3164 
3165   unsigned basePos = 0, offsetPos = 0;
3166   if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
3167     return 0;
3168 
3169   // Post increment updates its EA after the mem access,
3170   // so we need to treat its offset as zero.
3171   if (isPostIncrement(MI))
3172     Offset = 0;
3173   else {
3174     Offset = MI->getOperand(offsetPos).getImm();
3175   }
3176 
3177   return MI->getOperand(basePos).getReg();
3178 }
3179 
3180 
3181 /// Return the position of the base and offset operands for this instruction.
getBaseAndOffsetPosition(const MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos) const3182 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
3183       unsigned &BasePos, unsigned &OffsetPos) const {
3184   // Deal with memops first.
3185   if (isMemOp(MI)) {
3186     assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
3187             "Bad Memop.");
3188     BasePos = 0;
3189     OffsetPos = 1;
3190   } else if (MI->mayStore()) {
3191     BasePos = 0;
3192     OffsetPos = 1;
3193   } else if (MI->mayLoad()) {
3194     BasePos = 1;
3195     OffsetPos = 2;
3196   } else
3197     return false;
3198 
3199   if (isPredicated(*MI)) {
3200     BasePos++;
3201     OffsetPos++;
3202   }
3203   if (isPostIncrement(MI)) {
3204     BasePos++;
3205     OffsetPos++;
3206   }
3207 
3208   if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
3209     return false;
3210 
3211   return true;
3212 }
3213 
3214 
3215 // Inserts branching instructions in reverse order of their occurence.
3216 // e.g. jump_t t1 (i1)
3217 // jump t2        (i2)
3218 // Jumpers = {i2, i1}
getBranchingInstrs(MachineBasicBlock & MBB) const3219 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3220       MachineBasicBlock& MBB) const {
3221   SmallVector<MachineInstr*, 2> Jumpers;
3222   // If the block has no terminators, it just falls into the block after it.
3223   MachineBasicBlock::instr_iterator I = MBB.instr_end();
3224   if (I == MBB.instr_begin())
3225     return Jumpers;
3226 
3227   // A basic block may looks like this:
3228   //
3229   //  [   insn
3230   //     EH_LABEL
3231   //      insn
3232   //      insn
3233   //      insn
3234   //     EH_LABEL
3235   //      insn     ]
3236   //
3237   // It has two succs but does not have a terminator
3238   // Don't know how to handle it.
3239   do {
3240     --I;
3241     if (I->isEHLabel())
3242       return Jumpers;
3243   } while (I != MBB.instr_begin());
3244 
3245   I = MBB.instr_end();
3246   --I;
3247 
3248   while (I->isDebugValue()) {
3249     if (I == MBB.instr_begin())
3250       return Jumpers;
3251     --I;
3252   }
3253   if (!isUnpredicatedTerminator(*I))
3254     return Jumpers;
3255 
3256   // Get the last instruction in the block.
3257   MachineInstr *LastInst = &*I;
3258   Jumpers.push_back(LastInst);
3259   MachineInstr *SecondLastInst = nullptr;
3260   // Find one more terminator if present.
3261   do {
3262     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3263       if (!SecondLastInst) {
3264         SecondLastInst = &*I;
3265         Jumpers.push_back(SecondLastInst);
3266       } else // This is a third branch.
3267         return Jumpers;
3268     }
3269     if (I == MBB.instr_begin())
3270       break;
3271     --I;
3272   } while (true);
3273   return Jumpers;
3274 }
3275 
3276 
getBaseWithLongOffset(short Opcode) const3277 short HexagonInstrInfo::getBaseWithLongOffset(short Opcode) const {
3278   if (Opcode < 0)
3279     return -1;
3280   return Hexagon::getBaseWithLongOffset(Opcode);
3281 }
3282 
3283 
getBaseWithLongOffset(const MachineInstr * MI) const3284 short HexagonInstrInfo::getBaseWithLongOffset(const MachineInstr *MI) const {
3285   return Hexagon::getBaseWithLongOffset(MI->getOpcode());
3286 }
3287 
3288 
getBaseWithRegOffset(const MachineInstr * MI) const3289 short HexagonInstrInfo::getBaseWithRegOffset(const MachineInstr *MI) const {
3290   return Hexagon::getBaseWithRegOffset(MI->getOpcode());
3291 }
3292 
3293 
3294 // Returns Operand Index for the constant extended instruction.
getCExtOpNum(const MachineInstr * MI) const3295 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
3296   const uint64_t F = MI->getDesc().TSFlags;
3297   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3298 }
3299 
3300 // See if instruction could potentially be a duplex candidate.
3301 // If so, return its group. Zero otherwise.
getCompoundCandidateGroup(const MachineInstr * MI) const3302 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3303       const MachineInstr *MI) const {
3304   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3305 
3306   switch (MI->getOpcode()) {
3307   default:
3308     return HexagonII::HCG_None;
3309   //
3310   // Compound pairs.
3311   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3312   // "Rd16=#U6 ; jump #r9:2"
3313   // "Rd16=Rs16 ; jump #r9:2"
3314   //
3315   case Hexagon::C2_cmpeq:
3316   case Hexagon::C2_cmpgt:
3317   case Hexagon::C2_cmpgtu:
3318     DstReg = MI->getOperand(0).getReg();
3319     Src1Reg = MI->getOperand(1).getReg();
3320     Src2Reg = MI->getOperand(2).getReg();
3321     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3322         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3323         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3324       return HexagonII::HCG_A;
3325     break;
3326   case Hexagon::C2_cmpeqi:
3327   case Hexagon::C2_cmpgti:
3328   case Hexagon::C2_cmpgtui:
3329     // P0 = cmp.eq(Rs,#u2)
3330     DstReg = MI->getOperand(0).getReg();
3331     SrcReg = MI->getOperand(1).getReg();
3332     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3333         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3334         isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3335         ((isUInt<5>(MI->getOperand(2).getImm())) ||
3336          (MI->getOperand(2).getImm() == -1)))
3337       return HexagonII::HCG_A;
3338     break;
3339   case Hexagon::A2_tfr:
3340     // Rd = Rs
3341     DstReg = MI->getOperand(0).getReg();
3342     SrcReg = MI->getOperand(1).getReg();
3343     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3344       return HexagonII::HCG_A;
3345     break;
3346   case Hexagon::A2_tfrsi:
3347     // Rd = #u6
3348     // Do not test for #u6 size since the const is getting extended
3349     // regardless and compound could be formed.
3350     DstReg = MI->getOperand(0).getReg();
3351     if (isIntRegForSubInst(DstReg))
3352       return HexagonII::HCG_A;
3353     break;
3354   case Hexagon::S2_tstbit_i:
3355     DstReg = MI->getOperand(0).getReg();
3356     Src1Reg = MI->getOperand(1).getReg();
3357     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3358         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3359         MI->getOperand(2).isImm() &&
3360         isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
3361       return HexagonII::HCG_A;
3362     break;
3363   // The fact that .new form is used pretty much guarantees
3364   // that predicate register will match. Nevertheless,
3365   // there could be some false positives without additional
3366   // checking.
3367   case Hexagon::J2_jumptnew:
3368   case Hexagon::J2_jumpfnew:
3369   case Hexagon::J2_jumptnewpt:
3370   case Hexagon::J2_jumpfnewpt:
3371     Src1Reg = MI->getOperand(0).getReg();
3372     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3373         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3374       return HexagonII::HCG_B;
3375     break;
3376   // Transfer and jump:
3377   // Rd=#U6 ; jump #r9:2
3378   // Rd=Rs ; jump #r9:2
3379   // Do not test for jump range here.
3380   case Hexagon::J2_jump:
3381   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3382     return HexagonII::HCG_C;
3383     break;
3384   }
3385 
3386   return HexagonII::HCG_None;
3387 }
3388 
3389 
3390 // Returns -1 when there is no opcode found.
getCompoundOpcode(const MachineInstr * GA,const MachineInstr * GB) const3391 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
3392       const MachineInstr *GB) const {
3393   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3394   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3395   if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
3396       (GB->getOpcode() != Hexagon::J2_jumptnew))
3397     return -1;
3398   unsigned DestReg = GA->getOperand(0).getReg();
3399   if (!GB->readsRegister(DestReg))
3400     return -1;
3401   if (DestReg == Hexagon::P0)
3402     return Hexagon::J4_cmpeqi_tp0_jump_nt;
3403   if (DestReg == Hexagon::P1)
3404     return Hexagon::J4_cmpeqi_tp1_jump_nt;
3405   return -1;
3406 }
3407 
3408 
getCondOpcode(int Opc,bool invertPredicate) const3409 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3410   enum Hexagon::PredSense inPredSense;
3411   inPredSense = invertPredicate ? Hexagon::PredSense_false :
3412                                   Hexagon::PredSense_true;
3413   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3414   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3415     return CondOpcode;
3416 
3417   // This switch case will be removed once all the instructions have been
3418   // modified to use relation maps.
3419   switch(Opc) {
3420   case Hexagon::TFRI_f:
3421     return !invertPredicate ? Hexagon::TFRI_cPt_f :
3422                               Hexagon::TFRI_cNotPt_f;
3423   }
3424 
3425   llvm_unreachable("Unexpected predicable instruction");
3426 }
3427 
3428 
3429 // Return the cur value instruction for a given store.
getDotCurOp(const MachineInstr * MI) const3430 int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
3431   switch (MI->getOpcode()) {
3432   default: llvm_unreachable("Unknown .cur type");
3433   case Hexagon::V6_vL32b_pi:
3434     return Hexagon::V6_vL32b_cur_pi;
3435   case Hexagon::V6_vL32b_ai:
3436     return Hexagon::V6_vL32b_cur_ai;
3437   //128B
3438   case Hexagon::V6_vL32b_pi_128B:
3439     return Hexagon::V6_vL32b_cur_pi_128B;
3440   case Hexagon::V6_vL32b_ai_128B:
3441     return Hexagon::V6_vL32b_cur_ai_128B;
3442   }
3443   return 0;
3444 }
3445 
3446 
3447 
3448 // The diagram below shows the steps involved in the conversion of a predicated
3449 // store instruction to its .new predicated new-value form.
3450 //
3451 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3452 //                ^           ^
3453 //               /             \ (not OK. it will cause new-value store to be
3454 //              /               X conditional on p0.new while R2 producer is
3455 //             /                 \ on p0)
3456 //            /                   \.
3457 //     p.new store                 p.old NV store
3458 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
3459 //            ^                  ^
3460 //             \                /
3461 //              \              /
3462 //               \            /
3463 //                 p.old store
3464 //             [if (p0)memw(R0+#0)=R2]
3465 //
3466 //
3467 // The following set of instructions further explains the scenario where
3468 // conditional new-value store becomes invalid when promoted to .new predicate
3469 // form.
3470 //
3471 // { 1) if (p0) r0 = add(r1, r2)
3472 //   2) p0 = cmp.eq(r3, #0) }
3473 //
3474 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3475 // the first two instructions because in instr 1, r0 is conditional on old value
3476 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3477 // is not valid for new-value stores.
3478 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3479 // from the "Conditional Store" list. Because a predicated new value store
3480 // would NOT be promoted to a double dot new store. See diagram below:
3481 // This function returns yes for those stores that are predicated but not
3482 // yet promoted to predicate dot new instructions.
3483 //
3484 //                          +---------------------+
3485 //                    /-----| if (p0) memw(..)=r0 |---------\~
3486 //                   ||     +---------------------+         ||
3487 //          promote  ||       /\       /\                   ||  promote
3488 //                   ||      /||\     /||\                  ||
3489 //                  \||/    demote     ||                  \||/
3490 //                   \/       ||       ||                   \/
3491 //       +-------------------------+   ||   +-------------------------+
3492 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3493 //       +-------------------------+   ||   +-------------------------+
3494 //                        ||           ||         ||
3495 //                        ||         demote      \||/
3496 //                      promote        ||         \/ NOT possible
3497 //                        ||           ||         /\~
3498 //                       \||/          ||        /||\~
3499 //                        \/           ||         ||
3500 //                      +-----------------------------+
3501 //                      | if (p0.new) memw(..)=r0.new |
3502 //                      +-----------------------------+
3503 //                           Double Dot New Store
3504 //
3505 // Returns the most basic instruction for the .new predicated instructions and
3506 // new-value stores.
3507 // For example, all of the following instructions will be converted back to the
3508 // same instruction:
3509 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
3510 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3511 // 3) if (p0.new) memw(R0+#0) = R1      --->
3512 //
3513 // To understand the translation of instruction 1 to its original form, consider
3514 // a packet with 3 instructions.
3515 // { p0 = cmp.eq(R0,R1)
3516 //   if (p0.new) R2 = add(R3, R4)
3517 //   R5 = add (R3, R1)
3518 // }
3519 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3520 //
3521 // This instruction can be part of the previous packet only if both p0 and R2
3522 // are promoted to .new values. This promotion happens in steps, first
3523 // predicate register is promoted to .new and in the next iteration R2 is
3524 // promoted. Therefore, in case of dependence check failure (due to R5) during
3525 // next iteration, it should be converted back to its most basic form.
3526 
3527 
3528 // Return the new value instruction for a given store.
getDotNewOp(const MachineInstr * MI) const3529 int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
3530   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
3531   if (NVOpcode >= 0) // Valid new-value store instruction.
3532     return NVOpcode;
3533 
3534   switch (MI->getOpcode()) {
3535   default: llvm_unreachable("Unknown .new type");
3536   case Hexagon::S4_storerb_ur:
3537     return Hexagon::S4_storerbnew_ur;
3538 
3539   case Hexagon::S2_storerb_pci:
3540     return Hexagon::S2_storerb_pci;
3541 
3542   case Hexagon::S2_storeri_pci:
3543     return Hexagon::S2_storeri_pci;
3544 
3545   case Hexagon::S2_storerh_pci:
3546     return Hexagon::S2_storerh_pci;
3547 
3548   case Hexagon::S2_storerd_pci:
3549     return Hexagon::S2_storerd_pci;
3550 
3551   case Hexagon::S2_storerf_pci:
3552     return Hexagon::S2_storerf_pci;
3553 
3554   case Hexagon::V6_vS32b_ai:
3555     return Hexagon::V6_vS32b_new_ai;
3556 
3557   case Hexagon::V6_vS32b_pi:
3558     return Hexagon::V6_vS32b_new_pi;
3559 
3560   // 128B
3561   case Hexagon::V6_vS32b_ai_128B:
3562     return Hexagon::V6_vS32b_new_ai_128B;
3563 
3564   case Hexagon::V6_vS32b_pi_128B:
3565     return Hexagon::V6_vS32b_new_pi_128B;
3566   }
3567   return 0;
3568 }
3569 
3570 
3571 // Returns the opcode to use when converting MI, which is a conditional jump,
3572 // into a conditional instruction which uses the .new value of the predicate.
3573 // We also use branch probabilities to add a hint to the jump.
getDotNewPredJumpOp(const MachineInstr * MI,const MachineBranchProbabilityInfo * MBPI) const3574 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr *MI,
3575       const MachineBranchProbabilityInfo *MBPI) const {
3576   // We assume that block can have at most two successors.
3577   bool taken = false;
3578   const MachineBasicBlock *Src = MI->getParent();
3579   const MachineOperand *BrTarget = &MI->getOperand(1);
3580   const MachineBasicBlock *Dst = BrTarget->getMBB();
3581 
3582   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
3583   if (Prediction >= BranchProbability(1,2))
3584     taken = true;
3585 
3586   switch (MI->getOpcode()) {
3587   case Hexagon::J2_jumpt:
3588     return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3589   case Hexagon::J2_jumpf:
3590     return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3591 
3592   default:
3593     llvm_unreachable("Unexpected jump instruction.");
3594   }
3595 }
3596 
3597 
3598 // Return .new predicate version for an instruction.
getDotNewPredOp(const MachineInstr * MI,const MachineBranchProbabilityInfo * MBPI) const3599 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr *MI,
3600       const MachineBranchProbabilityInfo *MBPI) const {
3601   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
3602   if (NewOpcode >= 0) // Valid predicate new instruction
3603     return NewOpcode;
3604 
3605   switch (MI->getOpcode()) {
3606   // Condtional Jumps
3607   case Hexagon::J2_jumpt:
3608   case Hexagon::J2_jumpf:
3609     return getDotNewPredJumpOp(MI, MBPI);
3610 
3611   default:
3612     assert(0 && "Unknown .new type");
3613   }
3614   return 0;
3615 }
3616 
3617 
getDotOldOp(const int opc) const3618 int HexagonInstrInfo::getDotOldOp(const int opc) const {
3619   int NewOp = opc;
3620   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3621     NewOp = Hexagon::getPredOldOpcode(NewOp);
3622     assert(NewOp >= 0 &&
3623            "Couldn't change predicate new instruction to its old form.");
3624   }
3625 
3626   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3627     NewOp = Hexagon::getNonNVStore(NewOp);
3628     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3629   }
3630   return NewOp;
3631 }
3632 
3633 
3634 // See if instruction could potentially be a duplex candidate.
3635 // If so, return its group. Zero otherwise.
getDuplexCandidateGroup(const MachineInstr * MI) const3636 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3637       const MachineInstr *MI) const {
3638   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3639   auto &HRI = getRegisterInfo();
3640 
3641   switch (MI->getOpcode()) {
3642   default:
3643     return HexagonII::HSIG_None;
3644   //
3645   // Group L1:
3646   //
3647   // Rd = memw(Rs+#u4:2)
3648   // Rd = memub(Rs+#u4:0)
3649   case Hexagon::L2_loadri_io:
3650     DstReg = MI->getOperand(0).getReg();
3651     SrcReg = MI->getOperand(1).getReg();
3652     // Special case this one from Group L2.
3653     // Rd = memw(r29+#u5:2)
3654     if (isIntRegForSubInst(DstReg)) {
3655       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3656           HRI.getStackRegister() == SrcReg &&
3657           MI->getOperand(2).isImm() &&
3658           isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
3659         return HexagonII::HSIG_L2;
3660       // Rd = memw(Rs+#u4:2)
3661       if (isIntRegForSubInst(SrcReg) &&
3662           (MI->getOperand(2).isImm() &&
3663           isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
3664         return HexagonII::HSIG_L1;
3665     }
3666     break;
3667   case Hexagon::L2_loadrub_io:
3668     // Rd = memub(Rs+#u4:0)
3669     DstReg = MI->getOperand(0).getReg();
3670     SrcReg = MI->getOperand(1).getReg();
3671     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3672         MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
3673       return HexagonII::HSIG_L1;
3674     break;
3675   //
3676   // Group L2:
3677   //
3678   // Rd = memh/memuh(Rs+#u3:1)
3679   // Rd = memb(Rs+#u3:0)
3680   // Rd = memw(r29+#u5:2) - Handled above.
3681   // Rdd = memd(r29+#u5:3)
3682   // deallocframe
3683   // [if ([!]p0[.new])] dealloc_return
3684   // [if ([!]p0[.new])] jumpr r31
3685   case Hexagon::L2_loadrh_io:
3686   case Hexagon::L2_loadruh_io:
3687     // Rd = memh/memuh(Rs+#u3:1)
3688     DstReg = MI->getOperand(0).getReg();
3689     SrcReg = MI->getOperand(1).getReg();
3690     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3691         MI->getOperand(2).isImm() &&
3692         isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
3693       return HexagonII::HSIG_L2;
3694     break;
3695   case Hexagon::L2_loadrb_io:
3696     // Rd = memb(Rs+#u3:0)
3697     DstReg = MI->getOperand(0).getReg();
3698     SrcReg = MI->getOperand(1).getReg();
3699     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3700         MI->getOperand(2).isImm() &&
3701         isUInt<3>(MI->getOperand(2).getImm()))
3702       return HexagonII::HSIG_L2;
3703     break;
3704   case Hexagon::L2_loadrd_io:
3705     // Rdd = memd(r29+#u5:3)
3706     DstReg = MI->getOperand(0).getReg();
3707     SrcReg = MI->getOperand(1).getReg();
3708     if (isDblRegForSubInst(DstReg, HRI) &&
3709         Hexagon::IntRegsRegClass.contains(SrcReg) &&
3710         HRI.getStackRegister() == SrcReg &&
3711         MI->getOperand(2).isImm() &&
3712         isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
3713       return HexagonII::HSIG_L2;
3714     break;
3715   // dealloc_return is not documented in Hexagon Manual, but marked
3716   // with A_SUBINSN attribute in iset_v4classic.py.
3717   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3718   case Hexagon::L4_return:
3719   case Hexagon::L2_deallocframe:
3720     return HexagonII::HSIG_L2;
3721   case Hexagon::EH_RETURN_JMPR:
3722   case Hexagon::JMPret :
3723     // jumpr r31
3724     // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
3725     DstReg = MI->getOperand(0).getReg();
3726     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3727       return HexagonII::HSIG_L2;
3728     break;
3729   case Hexagon::JMPrett:
3730   case Hexagon::JMPretf:
3731   case Hexagon::JMPrettnewpt:
3732   case Hexagon::JMPretfnewpt :
3733   case Hexagon::JMPrettnew :
3734   case Hexagon::JMPretfnew :
3735     DstReg = MI->getOperand(1).getReg();
3736     SrcReg = MI->getOperand(0).getReg();
3737     // [if ([!]p0[.new])] jumpr r31
3738     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3739         (Hexagon::P0 == SrcReg)) &&
3740         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3741       return HexagonII::HSIG_L2;
3742      break;
3743   case Hexagon::L4_return_t :
3744   case Hexagon::L4_return_f :
3745   case Hexagon::L4_return_tnew_pnt :
3746   case Hexagon::L4_return_fnew_pnt :
3747   case Hexagon::L4_return_tnew_pt :
3748   case Hexagon::L4_return_fnew_pt :
3749     // [if ([!]p0[.new])] dealloc_return
3750     SrcReg = MI->getOperand(0).getReg();
3751     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3752       return HexagonII::HSIG_L2;
3753     break;
3754   //
3755   // Group S1:
3756   //
3757   // memw(Rs+#u4:2) = Rt
3758   // memb(Rs+#u4:0) = Rt
3759   case Hexagon::S2_storeri_io:
3760     // Special case this one from Group S2.
3761     // memw(r29+#u5:2) = Rt
3762     Src1Reg = MI->getOperand(0).getReg();
3763     Src2Reg = MI->getOperand(2).getReg();
3764     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3765         isIntRegForSubInst(Src2Reg) &&
3766         HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3767         isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
3768       return HexagonII::HSIG_S2;
3769     // memw(Rs+#u4:2) = Rt
3770     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3771         MI->getOperand(1).isImm() &&
3772         isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
3773       return HexagonII::HSIG_S1;
3774     break;
3775   case Hexagon::S2_storerb_io:
3776     // memb(Rs+#u4:0) = Rt
3777     Src1Reg = MI->getOperand(0).getReg();
3778     Src2Reg = MI->getOperand(2).getReg();
3779     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3780         MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
3781       return HexagonII::HSIG_S1;
3782     break;
3783   //
3784   // Group S2:
3785   //
3786   // memh(Rs+#u3:1) = Rt
3787   // memw(r29+#u5:2) = Rt
3788   // memd(r29+#s6:3) = Rtt
3789   // memw(Rs+#u4:2) = #U1
3790   // memb(Rs+#u4) = #U1
3791   // allocframe(#u5:3)
3792   case Hexagon::S2_storerh_io:
3793     // memh(Rs+#u3:1) = Rt
3794     Src1Reg = MI->getOperand(0).getReg();
3795     Src2Reg = MI->getOperand(2).getReg();
3796     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3797         MI->getOperand(1).isImm() &&
3798         isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
3799       return HexagonII::HSIG_S1;
3800     break;
3801   case Hexagon::S2_storerd_io:
3802     // memd(r29+#s6:3) = Rtt
3803     Src1Reg = MI->getOperand(0).getReg();
3804     Src2Reg = MI->getOperand(2).getReg();
3805     if (isDblRegForSubInst(Src2Reg, HRI) &&
3806         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3807         HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3808         isShiftedInt<6,3>(MI->getOperand(1).getImm()))
3809       return HexagonII::HSIG_S2;
3810     break;
3811   case Hexagon::S4_storeiri_io:
3812     // memw(Rs+#u4:2) = #U1
3813     Src1Reg = MI->getOperand(0).getReg();
3814     if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3815         isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
3816         MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3817       return HexagonII::HSIG_S2;
3818     break;
3819   case Hexagon::S4_storeirb_io:
3820     // memb(Rs+#u4) = #U1
3821     Src1Reg = MI->getOperand(0).getReg();
3822     if (isIntRegForSubInst(Src1Reg) &&
3823         MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()) &&
3824         MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3825       return HexagonII::HSIG_S2;
3826     break;
3827   case Hexagon::S2_allocframe:
3828     if (MI->getOperand(0).isImm() &&
3829         isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
3830       return HexagonII::HSIG_S1;
3831     break;
3832   //
3833   // Group A:
3834   //
3835   // Rx = add(Rx,#s7)
3836   // Rd = Rs
3837   // Rd = #u6
3838   // Rd = #-1
3839   // if ([!]P0[.new]) Rd = #0
3840   // Rd = add(r29,#u6:2)
3841   // Rx = add(Rx,Rs)
3842   // P0 = cmp.eq(Rs,#u2)
3843   // Rdd = combine(#0,Rs)
3844   // Rdd = combine(Rs,#0)
3845   // Rdd = combine(#u2,#U2)
3846   // Rd = add(Rs,#1)
3847   // Rd = add(Rs,#-1)
3848   // Rd = sxth/sxtb/zxtb/zxth(Rs)
3849   // Rd = and(Rs,#1)
3850   case Hexagon::A2_addi:
3851     DstReg = MI->getOperand(0).getReg();
3852     SrcReg = MI->getOperand(1).getReg();
3853     if (isIntRegForSubInst(DstReg)) {
3854       // Rd = add(r29,#u6:2)
3855       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3856         HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
3857         isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
3858         return HexagonII::HSIG_A;
3859       // Rx = add(Rx,#s7)
3860       if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
3861           isInt<7>(MI->getOperand(2).getImm()))
3862         return HexagonII::HSIG_A;
3863       // Rd = add(Rs,#1)
3864       // Rd = add(Rs,#-1)
3865       if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3866           ((MI->getOperand(2).getImm() == 1) ||
3867           (MI->getOperand(2).getImm() == -1)))
3868         return HexagonII::HSIG_A;
3869     }
3870     break;
3871   case Hexagon::A2_add:
3872     // Rx = add(Rx,Rs)
3873     DstReg = MI->getOperand(0).getReg();
3874     Src1Reg = MI->getOperand(1).getReg();
3875     Src2Reg = MI->getOperand(2).getReg();
3876     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3877         isIntRegForSubInst(Src2Reg))
3878       return HexagonII::HSIG_A;
3879     break;
3880   case Hexagon::A2_andir:
3881     // Same as zxtb.
3882     // Rd16=and(Rs16,#255)
3883     // Rd16=and(Rs16,#1)
3884     DstReg = MI->getOperand(0).getReg();
3885     SrcReg = MI->getOperand(1).getReg();
3886     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3887         MI->getOperand(2).isImm() &&
3888         ((MI->getOperand(2).getImm() == 1) ||
3889         (MI->getOperand(2).getImm() == 255)))
3890       return HexagonII::HSIG_A;
3891     break;
3892   case Hexagon::A2_tfr:
3893     // Rd = Rs
3894     DstReg = MI->getOperand(0).getReg();
3895     SrcReg = MI->getOperand(1).getReg();
3896     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3897       return HexagonII::HSIG_A;
3898     break;
3899   case Hexagon::A2_tfrsi:
3900     // Rd = #u6
3901     // Do not test for #u6 size since the const is getting extended
3902     // regardless and compound could be formed.
3903     // Rd = #-1
3904     DstReg = MI->getOperand(0).getReg();
3905     if (isIntRegForSubInst(DstReg))
3906       return HexagonII::HSIG_A;
3907     break;
3908   case Hexagon::C2_cmoveit:
3909   case Hexagon::C2_cmovenewit:
3910   case Hexagon::C2_cmoveif:
3911   case Hexagon::C2_cmovenewif:
3912     // if ([!]P0[.new]) Rd = #0
3913     // Actual form:
3914     // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
3915     DstReg = MI->getOperand(0).getReg();
3916     SrcReg = MI->getOperand(1).getReg();
3917     if (isIntRegForSubInst(DstReg) &&
3918         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3919         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
3920       return HexagonII::HSIG_A;
3921     break;
3922   case Hexagon::C2_cmpeqi:
3923     // P0 = cmp.eq(Rs,#u2)
3924     DstReg = MI->getOperand(0).getReg();
3925     SrcReg = MI->getOperand(1).getReg();
3926     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3927         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3928         MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
3929       return HexagonII::HSIG_A;
3930     break;
3931   case Hexagon::A2_combineii:
3932   case Hexagon::A4_combineii:
3933     // Rdd = combine(#u2,#U2)
3934     DstReg = MI->getOperand(0).getReg();
3935     if (isDblRegForSubInst(DstReg, HRI) &&
3936         ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
3937         (MI->getOperand(1).isGlobal() &&
3938         isUInt<2>(MI->getOperand(1).getOffset()))) &&
3939         ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
3940         (MI->getOperand(2).isGlobal() &&
3941         isUInt<2>(MI->getOperand(2).getOffset()))))
3942       return HexagonII::HSIG_A;
3943     break;
3944   case Hexagon::A4_combineri:
3945     // Rdd = combine(Rs,#0)
3946     DstReg = MI->getOperand(0).getReg();
3947     SrcReg = MI->getOperand(1).getReg();
3948     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3949         ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
3950         (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
3951       return HexagonII::HSIG_A;
3952     break;
3953   case Hexagon::A4_combineir:
3954     // Rdd = combine(#0,Rs)
3955     DstReg = MI->getOperand(0).getReg();
3956     SrcReg = MI->getOperand(2).getReg();
3957     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3958         ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
3959         (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
3960       return HexagonII::HSIG_A;
3961     break;
3962   case Hexagon::A2_sxtb:
3963   case Hexagon::A2_sxth:
3964   case Hexagon::A2_zxtb:
3965   case Hexagon::A2_zxth:
3966     // Rd = sxth/sxtb/zxtb/zxth(Rs)
3967     DstReg = MI->getOperand(0).getReg();
3968     SrcReg = MI->getOperand(1).getReg();
3969     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3970       return HexagonII::HSIG_A;
3971     break;
3972   }
3973 
3974   return HexagonII::HSIG_None;
3975 }
3976 
3977 
getEquivalentHWInstr(const MachineInstr * MI) const3978 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr *MI) const {
3979   return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
3980 }
3981 
3982 
3983 // Return first non-debug instruction in the basic block.
getFirstNonDbgInst(MachineBasicBlock * BB) const3984 MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
3985       const {
3986   for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
3987     MachineInstr *MI = &*MII;
3988     if (MI->isDebugValue())
3989       continue;
3990     return MI;
3991   }
3992   return nullptr;
3993 }
3994 
3995 
getInstrTimingClassLatency(const InstrItineraryData * ItinData,const MachineInstr * MI) const3996 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
3997       const InstrItineraryData *ItinData, const MachineInstr *MI) const {
3998   // Default to one cycle for no itinerary. However, an "empty" itinerary may
3999   // still have a MinLatency property, which getStageLatency checks.
4000   if (!ItinData)
4001     return getInstrLatency(ItinData, *MI);
4002 
4003   // Get the latency embedded in the itinerary. If we're not using timing class
4004   // latencies or if we using BSB scheduling, then restrict the maximum latency
4005   // to 1 (that is, either 0 or 1).
4006   if (MI->isTransient())
4007     return 0;
4008   unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
4009   if (!EnableTimingClassLatency ||
4010       MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
4011       useBSBScheduling())
4012     if (Latency > 1)
4013       Latency = 1;
4014   return Latency;
4015 }
4016 
4017 
4018 // inverts the predication logic.
4019 // p -> NotP
4020 // NotP -> P
getInvertedPredSense(SmallVectorImpl<MachineOperand> & Cond) const4021 bool HexagonInstrInfo::getInvertedPredSense(
4022       SmallVectorImpl<MachineOperand> &Cond) const {
4023   if (Cond.empty())
4024     return false;
4025   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4026   Cond[0].setImm(Opc);
4027   return true;
4028 }
4029 
4030 
getInvertedPredicatedOpcode(const int Opc) const4031 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4032   int InvPredOpcode;
4033   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4034                                         : Hexagon::getTruePredOpcode(Opc);
4035   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4036     return InvPredOpcode;
4037 
4038   llvm_unreachable("Unexpected predicated instruction");
4039 }
4040 
4041 
4042 // Returns the max value that doesn't need to be extended.
getMaxValue(const MachineInstr * MI) const4043 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
4044   const uint64_t F = MI->getDesc().TSFlags;
4045   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4046                     & HexagonII::ExtentSignedMask;
4047   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4048                     & HexagonII::ExtentBitsMask;
4049 
4050   if (isSigned) // if value is signed
4051     return ~(-1U << (bits - 1));
4052   else
4053     return ~(-1U << bits);
4054 }
4055 
4056 
getMemAccessSize(const MachineInstr * MI) const4057 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
4058   const uint64_t F = MI->getDesc().TSFlags;
4059   return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
4060 }
4061 
4062 
4063 // Returns the min value that doesn't need to be extended.
getMinValue(const MachineInstr * MI) const4064 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
4065   const uint64_t F = MI->getDesc().TSFlags;
4066   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4067                     & HexagonII::ExtentSignedMask;
4068   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4069                     & HexagonII::ExtentBitsMask;
4070 
4071   if (isSigned) // if value is signed
4072     return -1U << (bits - 1);
4073   else
4074     return 0;
4075 }
4076 
4077 
4078 // Returns opcode of the non-extended equivalent instruction.
getNonExtOpcode(const MachineInstr * MI) const4079 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
4080   // Check if the instruction has a register form that uses register in place
4081   // of the extended operand, if so return that as the non-extended form.
4082   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
4083     if (NonExtOpcode >= 0)
4084       return NonExtOpcode;
4085 
4086   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
4087     // Check addressing mode and retrieve non-ext equivalent instruction.
4088     switch (getAddrMode(MI)) {
4089     case HexagonII::Absolute :
4090       return Hexagon::getBaseWithImmOffset(MI->getOpcode());
4091     case HexagonII::BaseImmOffset :
4092       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
4093     case HexagonII::BaseLongOffset:
4094       return Hexagon::getRegShlForm(MI->getOpcode());
4095 
4096     default:
4097       return -1;
4098     }
4099   }
4100   return -1;
4101 }
4102 
4103 
getPredReg(ArrayRef<MachineOperand> Cond,unsigned & PredReg,unsigned & PredRegPos,unsigned & PredRegFlags) const4104 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4105       unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4106   if (Cond.empty())
4107     return false;
4108   assert(Cond.size() == 2);
4109   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4110      DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4111      return false;
4112   }
4113   PredReg = Cond[1].getReg();
4114   PredRegPos = 1;
4115   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4116   PredRegFlags = 0;
4117   if (Cond[1].isImplicit())
4118     PredRegFlags = RegState::Implicit;
4119   if (Cond[1].isUndef())
4120     PredRegFlags |= RegState::Undef;
4121   return true;
4122 }
4123 
4124 
getPseudoInstrPair(const MachineInstr * MI) const4125 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr *MI) const {
4126   return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
4127 }
4128 
4129 
getRegForm(const MachineInstr * MI) const4130 short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
4131   return Hexagon::getRegForm(MI->getOpcode());
4132 }
4133 
4134 
4135 // Return the number of bytes required to encode the instruction.
4136 // Hexagon instructions are fixed length, 4 bytes, unless they
4137 // use a constant extender, which requires another 4 bytes.
4138 // For debug instructions and prolog labels, return 0.
getSize(const MachineInstr * MI) const4139 unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
4140   if (MI->isDebugValue() || MI->isPosition())
4141     return 0;
4142 
4143   unsigned Size = MI->getDesc().getSize();
4144   if (!Size)
4145     // Assume the default insn size in case it cannot be determined
4146     // for whatever reason.
4147     Size = HEXAGON_INSTR_SIZE;
4148 
4149   if (isConstExtended(MI) || isExtended(MI))
4150     Size += HEXAGON_INSTR_SIZE;
4151 
4152   // Try and compute number of instructions in asm.
4153   if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
4154     const MachineBasicBlock &MBB = *MI->getParent();
4155     const MachineFunction *MF = MBB.getParent();
4156     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4157 
4158     // Count the number of register definitions to find the asm string.
4159     unsigned NumDefs = 0;
4160     for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
4161          ++NumDefs)
4162       assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
4163 
4164     assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
4165     // Disassemble the AsmStr and approximate number of instructions.
4166     const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
4167     Size = getInlineAsmLength(AsmStr, *MAI);
4168   }
4169 
4170   return Size;
4171 }
4172 
4173 
getType(const MachineInstr * MI) const4174 uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
4175   const uint64_t F = MI->getDesc().TSFlags;
4176   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4177 }
4178 
4179 
getUnits(const MachineInstr * MI) const4180 unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
4181   const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
4182   const InstrItineraryData &II = *ST.getInstrItineraryData();
4183   const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
4184 
4185   return IS.getUnits();
4186 }
4187 
4188 
getValidSubTargets(const unsigned Opcode) const4189 unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
4190   const uint64_t F = get(Opcode).TSFlags;
4191   return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
4192 }
4193 
4194 
4195 // Calculate size of the basic block without debug instructions.
nonDbgBBSize(const MachineBasicBlock * BB) const4196 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4197   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4198 }
4199 
4200 
nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const4201 unsigned HexagonInstrInfo::nonDbgBundleSize(
4202       MachineBasicBlock::const_iterator BundleHead) const {
4203   assert(BundleHead->isBundle() && "Not a bundle header");
4204   auto MII = BundleHead.getInstrIterator();
4205   // Skip the bundle header.
4206   return nonDbgMICount(++MII, getBundleEnd(*BundleHead));
4207 }
4208 
4209 
4210 /// immediateExtend - Changes the instruction in place to one using an immediate
4211 /// extender.
immediateExtend(MachineInstr * MI) const4212 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
4213   assert((isExtendable(MI)||isConstExtended(MI)) &&
4214                                "Instruction must be extendable");
4215   // Find which operand is extendable.
4216   short ExtOpNum = getCExtOpNum(MI);
4217   MachineOperand &MO = MI->getOperand(ExtOpNum);
4218   // This needs to be something we understand.
4219   assert((MO.isMBB() || MO.isImm()) &&
4220          "Branch with unknown extendable field type");
4221   // Mark given operand as extended.
4222   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4223 }
4224 
4225 
invertAndChangeJumpTarget(MachineInstr * MI,MachineBasicBlock * NewTarget) const4226 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4227       MachineInstr* MI, MachineBasicBlock* NewTarget) const {
4228   DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
4229                << NewTarget->getNumber(); MI->dump(););
4230   assert(MI->isBranch());
4231   unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
4232   int TargetPos = MI->getNumOperands() - 1;
4233   // In general branch target is the last operand,
4234   // but some implicit defs added at the end might change it.
4235   while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
4236     --TargetPos;
4237   assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
4238   MI->getOperand(TargetPos).setMBB(NewTarget);
4239   if (EnableBranchPrediction && isPredicatedNew(*MI)) {
4240     NewOpcode = reversePrediction(NewOpcode);
4241   }
4242   MI->setDesc(get(NewOpcode));
4243   return true;
4244 }
4245 
4246 
genAllInsnTimingClasses(MachineFunction & MF) const4247 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4248   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4249   MachineFunction::iterator A = MF.begin();
4250   MachineBasicBlock &B = *A;
4251   MachineBasicBlock::iterator I = B.begin();
4252   MachineInstr *MI = &*I;
4253   DebugLoc DL = MI->getDebugLoc();
4254   MachineInstr *NewMI;
4255 
4256   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4257        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4258     NewMI = BuildMI(B, MI, DL, get(insn));
4259     DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
4260           "  Class: " << NewMI->getDesc().getSchedClass());
4261     NewMI->eraseFromParent();
4262   }
4263   /* --- The code above is used to generate complete set of Hexagon Insn --- */
4264 }
4265 
4266 
4267 // inverts the predication logic.
4268 // p -> NotP
4269 // NotP -> P
reversePredSense(MachineInstr * MI) const4270 bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
4271   DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
4272   MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
4273   return true;
4274 }
4275 
4276 
4277 // Reverse the branch prediction.
reversePrediction(unsigned Opcode) const4278 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4279   int PredRevOpcode = -1;
4280   if (isPredictedTaken(Opcode))
4281     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4282   else
4283     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4284   assert(PredRevOpcode > 0);
4285   return PredRevOpcode;
4286 }
4287 
4288 
4289 // TODO: Add more rigorous validation.
validateBranchCond(const ArrayRef<MachineOperand> & Cond) const4290 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4291       const {
4292   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4293 }
4294 
4295 
xformRegToImmOffset(const MachineInstr * MI) const4296 short HexagonInstrInfo::xformRegToImmOffset(const MachineInstr *MI) const {
4297   return Hexagon::xformRegToImmOffset(MI->getOpcode());
4298 }
4299