1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mutex.h"
18
19 #include <errno.h>
20 #include <sys/time.h>
21
22 #include "android-base/stringprintf.h"
23
24 #include "atomic.h"
25 #include "base/logging.h"
26 #include "base/time_utils.h"
27 #include "base/systrace.h"
28 #include "base/value_object.h"
29 #include "mutex-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "thread-inl.h"
32
33 namespace art {
34
35 using android::base::StringPrintf;
36
37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
38
39 Mutex* Locks::abort_lock_ = nullptr;
40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
45 Mutex* Locks::deoptimization_lock_ = nullptr;
46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
48 Mutex* Locks::intern_table_lock_ = nullptr;
49 Mutex* Locks::jni_function_table_lock_ = nullptr;
50 Mutex* Locks::jni_libraries_lock_ = nullptr;
51 Mutex* Locks::logging_lock_ = nullptr;
52 Mutex* Locks::modify_ldt_lock_ = nullptr;
53 MutatorMutex* Locks::mutator_lock_ = nullptr;
54 Mutex* Locks::profiler_lock_ = nullptr;
55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
58 Mutex* Locks::reference_processor_lock_ = nullptr;
59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
65 Mutex* Locks::cha_lock_ = nullptr;
66 Mutex* Locks::thread_list_lock_ = nullptr;
67 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
68 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
69 Mutex* Locks::trace_lock_ = nullptr;
70 Mutex* Locks::unexpected_signal_lock_ = nullptr;
71 Mutex* Locks::user_code_suspension_lock_ = nullptr;
72 Uninterruptible Roles::uninterruptible_;
73 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
74 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
75 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
76 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
77 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
78
79 struct AllMutexData {
80 // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
81 Atomic<const BaseMutex*> all_mutexes_guard;
82 // All created mutexes guarded by all_mutexes_guard_.
83 std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData84 AllMutexData() : all_mutexes(nullptr) {}
85 };
86 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
87
88 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)89 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
90 const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds.
91 result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
92 result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
93 if (result_ts->tv_nsec < 0) {
94 result_ts->tv_sec--;
95 result_ts->tv_nsec += one_sec;
96 } else if (result_ts->tv_nsec > one_sec) {
97 result_ts->tv_sec++;
98 result_ts->tv_nsec -= one_sec;
99 }
100 return result_ts->tv_sec < 0;
101 }
102 #endif
103
104 class ScopedAllMutexesLock FINAL {
105 public:
ScopedAllMutexesLock(const BaseMutex * mutex)106 explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
107 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
108 NanoSleep(100);
109 }
110 }
111
~ScopedAllMutexesLock()112 ~ScopedAllMutexesLock() {
113 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
114 NanoSleep(100);
115 }
116 }
117
118 private:
119 const BaseMutex* const mutex_;
120 };
121
122 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
123 public:
ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex * mutex)124 explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
125 while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakAcquire(0,
126 mutex)) {
127 NanoSleep(100);
128 }
129 }
130
~ScopedExpectedMutexesOnWeakRefAccessLock()131 ~ScopedExpectedMutexesOnWeakRefAccessLock() {
132 while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakRelease(mutex_,
133 0)) {
134 NanoSleep(100);
135 }
136 }
137
138 private:
139 const BaseMutex* const mutex_;
140 };
141
142 // Scoped class that generates events at the beginning and end of lock contention.
143 class ScopedContentionRecorder FINAL : public ValueObject {
144 public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)145 ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
146 : mutex_(kLogLockContentions ? mutex : nullptr),
147 blocked_tid_(kLogLockContentions ? blocked_tid : 0),
148 owner_tid_(kLogLockContentions ? owner_tid : 0),
149 start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
150 if (ATRACE_ENABLED()) {
151 std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
152 mutex->GetName(), owner_tid);
153 ATRACE_BEGIN(msg.c_str());
154 }
155 }
156
~ScopedContentionRecorder()157 ~ScopedContentionRecorder() {
158 ATRACE_END();
159 if (kLogLockContentions) {
160 uint64_t end_nano_time = NanoTime();
161 mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
162 }
163 }
164
165 private:
166 BaseMutex* const mutex_;
167 const uint64_t blocked_tid_;
168 const uint64_t owner_tid_;
169 const uint64_t start_nano_time_;
170 };
171
BaseMutex(const char * name,LockLevel level)172 BaseMutex::BaseMutex(const char* name, LockLevel level)
173 : level_(level),
174 name_(name),
175 should_respond_to_empty_checkpoint_request_(false) {
176 if (kLogLockContentions) {
177 ScopedAllMutexesLock mu(this);
178 std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
179 if (*all_mutexes_ptr == nullptr) {
180 // We leak the global set of all mutexes to avoid ordering issues in global variable
181 // construction/destruction.
182 *all_mutexes_ptr = new std::set<BaseMutex*>();
183 }
184 (*all_mutexes_ptr)->insert(this);
185 }
186 }
187
~BaseMutex()188 BaseMutex::~BaseMutex() {
189 if (kLogLockContentions) {
190 ScopedAllMutexesLock mu(this);
191 gAllMutexData->all_mutexes->erase(this);
192 }
193 }
194
DumpAll(std::ostream & os)195 void BaseMutex::DumpAll(std::ostream& os) {
196 if (kLogLockContentions) {
197 os << "Mutex logging:\n";
198 ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
199 std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
200 if (all_mutexes == nullptr) {
201 // No mutexes have been created yet during at startup.
202 return;
203 }
204 typedef std::set<BaseMutex*>::const_iterator It;
205 os << "(Contended)\n";
206 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
207 BaseMutex* mutex = *it;
208 if (mutex->HasEverContended()) {
209 mutex->Dump(os);
210 os << "\n";
211 }
212 }
213 os << "(Never contented)\n";
214 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
215 BaseMutex* mutex = *it;
216 if (!mutex->HasEverContended()) {
217 mutex->Dump(os);
218 os << "\n";
219 }
220 }
221 }
222 }
223
CheckSafeToWait(Thread * self)224 void BaseMutex::CheckSafeToWait(Thread* self) {
225 if (self == nullptr) {
226 CheckUnattachedThread(level_);
227 return;
228 }
229 if (kDebugLocking) {
230 CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
231 << "Waiting on unacquired mutex: " << name_;
232 bool bad_mutexes_held = false;
233 for (int i = kLockLevelCount - 1; i >= 0; --i) {
234 if (i != level_) {
235 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
236 // We allow the thread to wait even if the user_code_suspension_lock_ is held so long as we
237 // are some thread's resume_cond_ (level_ == kThreadSuspendCountLock). This just means that
238 // gc or some other internal process is suspending the thread while it is trying to suspend
239 // some other thread. So long as the current thread is not being suspended by a
240 // SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear) this is
241 // fine.
242 if (held_mutex == Locks::user_code_suspension_lock_ && level_ == kThreadSuspendCountLock) {
243 // No thread safety analysis is fine since we have both the user_code_suspension_lock_
244 // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
245 // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
246 auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
247 return self->GetUserCodeSuspendCount() != 0;
248 };
249 if (is_suspending_for_user_code()) {
250 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
251 << "(level " << LockLevel(i) << ") while performing wait on "
252 << "\"" << name_ << "\" (level " << level_ << ") "
253 << "with SuspendReason::kForUserCode pending suspensions";
254 bad_mutexes_held = true;
255 }
256 } else if (held_mutex != nullptr) {
257 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
258 << "(level " << LockLevel(i) << ") while performing wait on "
259 << "\"" << name_ << "\" (level " << level_ << ")";
260 bad_mutexes_held = true;
261 }
262 }
263 }
264 if (gAborting == 0) { // Avoid recursive aborts.
265 CHECK(!bad_mutexes_held) << this;
266 }
267 }
268 }
269
AddToWaitTime(uint64_t value)270 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
271 if (kLogLockContentions) {
272 // Atomically add value to wait_time.
273 wait_time.FetchAndAddSequentiallyConsistent(value);
274 }
275 }
276
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)277 void BaseMutex::RecordContention(uint64_t blocked_tid,
278 uint64_t owner_tid,
279 uint64_t nano_time_blocked) {
280 if (kLogLockContentions) {
281 ContentionLogData* data = contention_log_data_;
282 ++(data->contention_count);
283 data->AddToWaitTime(nano_time_blocked);
284 ContentionLogEntry* log = data->contention_log;
285 // This code is intentionally racy as it is only used for diagnostics.
286 uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
287 if (log[slot].blocked_tid == blocked_tid &&
288 log[slot].owner_tid == blocked_tid) {
289 ++log[slot].count;
290 } else {
291 uint32_t new_slot;
292 do {
293 slot = data->cur_content_log_entry.LoadRelaxed();
294 new_slot = (slot + 1) % kContentionLogSize;
295 } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
296 log[new_slot].blocked_tid = blocked_tid;
297 log[new_slot].owner_tid = owner_tid;
298 log[new_slot].count.StoreRelaxed(1);
299 }
300 }
301 }
302
DumpContention(std::ostream & os) const303 void BaseMutex::DumpContention(std::ostream& os) const {
304 if (kLogLockContentions) {
305 const ContentionLogData* data = contention_log_data_;
306 const ContentionLogEntry* log = data->contention_log;
307 uint64_t wait_time = data->wait_time.LoadRelaxed();
308 uint32_t contention_count = data->contention_count.LoadRelaxed();
309 if (contention_count == 0) {
310 os << "never contended";
311 } else {
312 os << "contended " << contention_count
313 << " total wait of contender " << PrettyDuration(wait_time)
314 << " average " << PrettyDuration(wait_time / contention_count);
315 SafeMap<uint64_t, size_t> most_common_blocker;
316 SafeMap<uint64_t, size_t> most_common_blocked;
317 for (size_t i = 0; i < kContentionLogSize; ++i) {
318 uint64_t blocked_tid = log[i].blocked_tid;
319 uint64_t owner_tid = log[i].owner_tid;
320 uint32_t count = log[i].count.LoadRelaxed();
321 if (count > 0) {
322 auto it = most_common_blocked.find(blocked_tid);
323 if (it != most_common_blocked.end()) {
324 most_common_blocked.Overwrite(blocked_tid, it->second + count);
325 } else {
326 most_common_blocked.Put(blocked_tid, count);
327 }
328 it = most_common_blocker.find(owner_tid);
329 if (it != most_common_blocker.end()) {
330 most_common_blocker.Overwrite(owner_tid, it->second + count);
331 } else {
332 most_common_blocker.Put(owner_tid, count);
333 }
334 }
335 }
336 uint64_t max_tid = 0;
337 size_t max_tid_count = 0;
338 for (const auto& pair : most_common_blocked) {
339 if (pair.second > max_tid_count) {
340 max_tid = pair.first;
341 max_tid_count = pair.second;
342 }
343 }
344 if (max_tid != 0) {
345 os << " sample shows most blocked tid=" << max_tid;
346 }
347 max_tid = 0;
348 max_tid_count = 0;
349 for (const auto& pair : most_common_blocker) {
350 if (pair.second > max_tid_count) {
351 max_tid = pair.first;
352 max_tid_count = pair.second;
353 }
354 }
355 if (max_tid != 0) {
356 os << " sample shows tid=" << max_tid << " owning during this time";
357 }
358 }
359 }
360 }
361
362
Mutex(const char * name,LockLevel level,bool recursive)363 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
364 : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
365 #if ART_USE_FUTEXES
366 DCHECK_EQ(0, state_.LoadRelaxed());
367 DCHECK_EQ(0, num_contenders_.LoadRelaxed());
368 #else
369 CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
370 #endif
371 exclusive_owner_ = 0;
372 }
373
374 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()375 static bool IsSafeToCallAbortSafe() {
376 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
377 return Locks::IsSafeToCallAbortRacy();
378 }
379
~Mutex()380 Mutex::~Mutex() {
381 bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
382 #if ART_USE_FUTEXES
383 if (state_.LoadRelaxed() != 0) {
384 LOG(safe_to_call_abort ? FATAL : WARNING)
385 << "destroying mutex with owner: " << exclusive_owner_;
386 } else {
387 if (exclusive_owner_ != 0) {
388 LOG(safe_to_call_abort ? FATAL : WARNING)
389 << "unexpectedly found an owner on unlocked mutex " << name_;
390 }
391 if (num_contenders_.LoadSequentiallyConsistent() != 0) {
392 LOG(safe_to_call_abort ? FATAL : WARNING)
393 << "unexpectedly found a contender on mutex " << name_;
394 }
395 }
396 #else
397 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
398 // may still be using locks.
399 int rc = pthread_mutex_destroy(&mutex_);
400 if (rc != 0) {
401 errno = rc;
402 PLOG(safe_to_call_abort ? FATAL : WARNING)
403 << "pthread_mutex_destroy failed for " << name_;
404 }
405 #endif
406 }
407
ExclusiveLock(Thread * self)408 void Mutex::ExclusiveLock(Thread* self) {
409 DCHECK(self == nullptr || self == Thread::Current());
410 if (kDebugLocking && !recursive_) {
411 AssertNotHeld(self);
412 }
413 if (!recursive_ || !IsExclusiveHeld(self)) {
414 #if ART_USE_FUTEXES
415 bool done = false;
416 do {
417 int32_t cur_state = state_.LoadRelaxed();
418 if (LIKELY(cur_state == 0)) {
419 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
420 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
421 } else {
422 // Failed to acquire, hang up.
423 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
424 num_contenders_++;
425 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
426 self->CheckEmptyCheckpointFromMutex();
427 }
428 if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
429 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
430 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
431 if ((errno != EAGAIN) && (errno != EINTR)) {
432 PLOG(FATAL) << "futex wait failed for " << name_;
433 }
434 }
435 num_contenders_--;
436 }
437 } while (!done);
438 DCHECK_EQ(state_.LoadRelaxed(), 1);
439 #else
440 CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
441 #endif
442 DCHECK_EQ(exclusive_owner_, 0U);
443 exclusive_owner_ = SafeGetTid(self);
444 RegisterAsLocked(self);
445 }
446 recursion_count_++;
447 if (kDebugLocking) {
448 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
449 << name_ << " " << recursion_count_;
450 AssertHeld(self);
451 }
452 }
453
ExclusiveTryLock(Thread * self)454 bool Mutex::ExclusiveTryLock(Thread* self) {
455 DCHECK(self == nullptr || self == Thread::Current());
456 if (kDebugLocking && !recursive_) {
457 AssertNotHeld(self);
458 }
459 if (!recursive_ || !IsExclusiveHeld(self)) {
460 #if ART_USE_FUTEXES
461 bool done = false;
462 do {
463 int32_t cur_state = state_.LoadRelaxed();
464 if (cur_state == 0) {
465 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
466 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
467 } else {
468 return false;
469 }
470 } while (!done);
471 DCHECK_EQ(state_.LoadRelaxed(), 1);
472 #else
473 int result = pthread_mutex_trylock(&mutex_);
474 if (result == EBUSY) {
475 return false;
476 }
477 if (result != 0) {
478 errno = result;
479 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
480 }
481 #endif
482 DCHECK_EQ(exclusive_owner_, 0U);
483 exclusive_owner_ = SafeGetTid(self);
484 RegisterAsLocked(self);
485 }
486 recursion_count_++;
487 if (kDebugLocking) {
488 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
489 << name_ << " " << recursion_count_;
490 AssertHeld(self);
491 }
492 return true;
493 }
494
ExclusiveUnlock(Thread * self)495 void Mutex::ExclusiveUnlock(Thread* self) {
496 if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
497 std::string name1 = "<null>";
498 std::string name2 = "<null>";
499 if (self != nullptr) {
500 self->GetThreadName(name1);
501 }
502 if (Thread::Current() != nullptr) {
503 Thread::Current()->GetThreadName(name2);
504 }
505 LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
506 << " Thread::Current()=" << name2;
507 }
508 AssertHeld(self);
509 DCHECK_NE(exclusive_owner_, 0U);
510 recursion_count_--;
511 if (!recursive_ || recursion_count_ == 0) {
512 if (kDebugLocking) {
513 CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
514 << name_ << " " << recursion_count_;
515 }
516 RegisterAsUnlocked(self);
517 #if ART_USE_FUTEXES
518 bool done = false;
519 do {
520 int32_t cur_state = state_.LoadRelaxed();
521 if (LIKELY(cur_state == 1)) {
522 // We're no longer the owner.
523 exclusive_owner_ = 0;
524 // Change state to 0 and impose load/store ordering appropriate for lock release.
525 // Note, the relaxed loads below musn't reorder before the CompareExchange.
526 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
527 // a status bit into the state on contention.
528 done = state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
529 if (LIKELY(done)) { // Spurious fail?
530 // Wake a contender.
531 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
532 futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
533 }
534 }
535 } else {
536 // Logging acquires the logging lock, avoid infinite recursion in that case.
537 if (this != Locks::logging_lock_) {
538 LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
539 } else {
540 LogHelper::LogLineLowStack(__FILE__,
541 __LINE__,
542 ::android::base::FATAL_WITHOUT_ABORT,
543 StringPrintf("Unexpected state_ %d in unlock for %s",
544 cur_state, name_).c_str());
545 _exit(1);
546 }
547 }
548 } while (!done);
549 #else
550 exclusive_owner_ = 0;
551 CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
552 #endif
553 }
554 }
555
Dump(std::ostream & os) const556 void Mutex::Dump(std::ostream& os) const {
557 os << (recursive_ ? "recursive " : "non-recursive ")
558 << name_
559 << " level=" << static_cast<int>(level_)
560 << " rec=" << recursion_count_
561 << " owner=" << GetExclusiveOwnerTid() << " ";
562 DumpContention(os);
563 }
564
operator <<(std::ostream & os,const Mutex & mu)565 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
566 mu.Dump(os);
567 return os;
568 }
569
WakeupToRespondToEmptyCheckpoint()570 void Mutex::WakeupToRespondToEmptyCheckpoint() {
571 #if ART_USE_FUTEXES
572 // Wake up all the waiters so they will respond to the emtpy checkpoint.
573 DCHECK(should_respond_to_empty_checkpoint_request_);
574 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
575 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
576 }
577 #else
578 LOG(FATAL) << "Non futex case isn't supported.";
579 #endif
580 }
581
ReaderWriterMutex(const char * name,LockLevel level)582 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
583 : BaseMutex(name, level)
584 #if ART_USE_FUTEXES
585 , state_(0), num_pending_readers_(0), num_pending_writers_(0)
586 #endif
587 { // NOLINT(whitespace/braces)
588 #if !ART_USE_FUTEXES
589 CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
590 #endif
591 exclusive_owner_ = 0;
592 }
593
~ReaderWriterMutex()594 ReaderWriterMutex::~ReaderWriterMutex() {
595 #if ART_USE_FUTEXES
596 CHECK_EQ(state_.LoadRelaxed(), 0);
597 CHECK_EQ(exclusive_owner_, 0U);
598 CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
599 CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
600 #else
601 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
602 // may still be using locks.
603 int rc = pthread_rwlock_destroy(&rwlock_);
604 if (rc != 0) {
605 errno = rc;
606 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
607 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
608 }
609 #endif
610 }
611
ExclusiveLock(Thread * self)612 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
613 DCHECK(self == nullptr || self == Thread::Current());
614 AssertNotExclusiveHeld(self);
615 #if ART_USE_FUTEXES
616 bool done = false;
617 do {
618 int32_t cur_state = state_.LoadRelaxed();
619 if (LIKELY(cur_state == 0)) {
620 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
621 done = state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
622 } else {
623 // Failed to acquire, hang up.
624 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
625 ++num_pending_writers_;
626 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
627 self->CheckEmptyCheckpointFromMutex();
628 }
629 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
630 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
631 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
632 if ((errno != EAGAIN) && (errno != EINTR)) {
633 PLOG(FATAL) << "futex wait failed for " << name_;
634 }
635 }
636 --num_pending_writers_;
637 }
638 } while (!done);
639 DCHECK_EQ(state_.LoadRelaxed(), -1);
640 #else
641 CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
642 #endif
643 DCHECK_EQ(exclusive_owner_, 0U);
644 exclusive_owner_ = SafeGetTid(self);
645 RegisterAsLocked(self);
646 AssertExclusiveHeld(self);
647 }
648
ExclusiveUnlock(Thread * self)649 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
650 DCHECK(self == nullptr || self == Thread::Current());
651 AssertExclusiveHeld(self);
652 RegisterAsUnlocked(self);
653 DCHECK_NE(exclusive_owner_, 0U);
654 #if ART_USE_FUTEXES
655 bool done = false;
656 do {
657 int32_t cur_state = state_.LoadRelaxed();
658 if (LIKELY(cur_state == -1)) {
659 // We're no longer the owner.
660 exclusive_owner_ = 0;
661 // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
662 // Note, the relaxed loads below musn't reorder before the CompareExchange.
663 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
664 // a status bit into the state on contention.
665 done = state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
666 if (LIKELY(done)) { // Weak CAS may fail spuriously.
667 // Wake any waiters.
668 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
669 num_pending_writers_.LoadRelaxed() > 0)) {
670 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
671 }
672 }
673 } else {
674 LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
675 }
676 } while (!done);
677 #else
678 exclusive_owner_ = 0;
679 CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
680 #endif
681 }
682
683 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)684 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
685 DCHECK(self == nullptr || self == Thread::Current());
686 #if ART_USE_FUTEXES
687 bool done = false;
688 timespec end_abs_ts;
689 InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
690 do {
691 int32_t cur_state = state_.LoadRelaxed();
692 if (cur_state == 0) {
693 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
694 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
695 } else {
696 // Failed to acquire, hang up.
697 timespec now_abs_ts;
698 InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
699 timespec rel_ts;
700 if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
701 return false; // Timed out.
702 }
703 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
704 ++num_pending_writers_;
705 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
706 self->CheckEmptyCheckpointFromMutex();
707 }
708 if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
709 if (errno == ETIMEDOUT) {
710 --num_pending_writers_;
711 return false; // Timed out.
712 } else if ((errno != EAGAIN) && (errno != EINTR)) {
713 // EAGAIN and EINTR both indicate a spurious failure,
714 // recompute the relative time out from now and try again.
715 // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
716 PLOG(FATAL) << "timed futex wait failed for " << name_;
717 }
718 }
719 --num_pending_writers_;
720 }
721 } while (!done);
722 #else
723 timespec ts;
724 InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
725 int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
726 if (result == ETIMEDOUT) {
727 return false;
728 }
729 if (result != 0) {
730 errno = result;
731 PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
732 }
733 #endif
734 exclusive_owner_ = SafeGetTid(self);
735 RegisterAsLocked(self);
736 AssertSharedHeld(self);
737 return true;
738 }
739 #endif
740
741 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)742 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
743 // Owner holds it exclusively, hang up.
744 ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
745 ++num_pending_readers_;
746 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
747 self->CheckEmptyCheckpointFromMutex();
748 }
749 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
750 if (errno != EAGAIN && errno != EINTR) {
751 PLOG(FATAL) << "futex wait failed for " << name_;
752 }
753 }
754 --num_pending_readers_;
755 }
756 #endif
757
SharedTryLock(Thread * self)758 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
759 DCHECK(self == nullptr || self == Thread::Current());
760 #if ART_USE_FUTEXES
761 bool done = false;
762 do {
763 int32_t cur_state = state_.LoadRelaxed();
764 if (cur_state >= 0) {
765 // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
766 done = state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
767 } else {
768 // Owner holds it exclusively.
769 return false;
770 }
771 } while (!done);
772 #else
773 int result = pthread_rwlock_tryrdlock(&rwlock_);
774 if (result == EBUSY) {
775 return false;
776 }
777 if (result != 0) {
778 errno = result;
779 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
780 }
781 #endif
782 RegisterAsLocked(self);
783 AssertSharedHeld(self);
784 return true;
785 }
786
IsSharedHeld(const Thread * self) const787 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
788 DCHECK(self == nullptr || self == Thread::Current());
789 bool result;
790 if (UNLIKELY(self == nullptr)) { // Handle unattached threads.
791 result = IsExclusiveHeld(self); // TODO: a better best effort here.
792 } else {
793 result = (self->GetHeldMutex(level_) == this);
794 }
795 return result;
796 }
797
Dump(std::ostream & os) const798 void ReaderWriterMutex::Dump(std::ostream& os) const {
799 os << name_
800 << " level=" << static_cast<int>(level_)
801 << " owner=" << GetExclusiveOwnerTid()
802 #if ART_USE_FUTEXES
803 << " state=" << state_.LoadSequentiallyConsistent()
804 << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
805 << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
806 #endif
807 << " ";
808 DumpContention(os);
809 }
810
operator <<(std::ostream & os,const ReaderWriterMutex & mu)811 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
812 mu.Dump(os);
813 return os;
814 }
815
operator <<(std::ostream & os,const MutatorMutex & mu)816 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
817 mu.Dump(os);
818 return os;
819 }
820
WakeupToRespondToEmptyCheckpoint()821 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
822 #if ART_USE_FUTEXES
823 // Wake up all the waiters so they will respond to the emtpy checkpoint.
824 DCHECK(should_respond_to_empty_checkpoint_request_);
825 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
826 num_pending_writers_.LoadRelaxed() > 0)) {
827 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
828 }
829 #else
830 LOG(FATAL) << "Non futex case isn't supported.";
831 #endif
832 }
833
ConditionVariable(const char * name,Mutex & guard)834 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
835 : name_(name), guard_(guard) {
836 #if ART_USE_FUTEXES
837 DCHECK_EQ(0, sequence_.LoadRelaxed());
838 num_waiters_ = 0;
839 #else
840 pthread_condattr_t cond_attrs;
841 CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
842 #if !defined(__APPLE__)
843 // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
844 CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
845 #endif
846 CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
847 #endif
848 }
849
~ConditionVariable()850 ConditionVariable::~ConditionVariable() {
851 #if ART_USE_FUTEXES
852 if (num_waiters_!= 0) {
853 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
854 LOG(is_safe_to_call_abort ? FATAL : WARNING)
855 << "ConditionVariable::~ConditionVariable for " << name_
856 << " called with " << num_waiters_ << " waiters.";
857 }
858 #else
859 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
860 // may still be using condition variables.
861 int rc = pthread_cond_destroy(&cond_);
862 if (rc != 0) {
863 errno = rc;
864 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
865 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
866 }
867 #endif
868 }
869
Broadcast(Thread * self)870 void ConditionVariable::Broadcast(Thread* self) {
871 DCHECK(self == nullptr || self == Thread::Current());
872 // TODO: enable below, there's a race in thread creation that causes false failures currently.
873 // guard_.AssertExclusiveHeld(self);
874 DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
875 #if ART_USE_FUTEXES
876 if (num_waiters_ > 0) {
877 sequence_++; // Indicate the broadcast occurred.
878 bool done = false;
879 do {
880 int32_t cur_sequence = sequence_.LoadRelaxed();
881 // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
882 // mutex unlocks will awaken the requeued waiter thread.
883 done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
884 reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
885 guard_.state_.Address(), cur_sequence) != -1;
886 if (!done) {
887 if (errno != EAGAIN && errno != EINTR) {
888 PLOG(FATAL) << "futex cmp requeue failed for " << name_;
889 }
890 }
891 } while (!done);
892 }
893 #else
894 CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
895 #endif
896 }
897
Signal(Thread * self)898 void ConditionVariable::Signal(Thread* self) {
899 DCHECK(self == nullptr || self == Thread::Current());
900 guard_.AssertExclusiveHeld(self);
901 #if ART_USE_FUTEXES
902 if (num_waiters_ > 0) {
903 sequence_++; // Indicate a signal occurred.
904 // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
905 // to avoid this, however, requeueing can only move all waiters.
906 int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
907 // Check something was woken or else we changed sequence_ before they had chance to wait.
908 CHECK((num_woken == 0) || (num_woken == 1));
909 }
910 #else
911 CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
912 #endif
913 }
914
Wait(Thread * self)915 void ConditionVariable::Wait(Thread* self) {
916 guard_.CheckSafeToWait(self);
917 WaitHoldingLocks(self);
918 }
919
WaitHoldingLocks(Thread * self)920 void ConditionVariable::WaitHoldingLocks(Thread* self) {
921 DCHECK(self == nullptr || self == Thread::Current());
922 guard_.AssertExclusiveHeld(self);
923 unsigned int old_recursion_count = guard_.recursion_count_;
924 #if ART_USE_FUTEXES
925 num_waiters_++;
926 // Ensure the Mutex is contended so that requeued threads are awoken.
927 guard_.num_contenders_++;
928 guard_.recursion_count_ = 1;
929 int32_t cur_sequence = sequence_.LoadRelaxed();
930 guard_.ExclusiveUnlock(self);
931 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
932 // Futex failed, check it is an expected error.
933 // EAGAIN == EWOULDBLK, so we let the caller try again.
934 // EINTR implies a signal was sent to this thread.
935 if ((errno != EINTR) && (errno != EAGAIN)) {
936 PLOG(FATAL) << "futex wait failed for " << name_;
937 }
938 }
939 if (self != nullptr) {
940 JNIEnvExt* const env = self->GetJniEnv();
941 if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
942 CHECK(self->IsDaemon());
943 // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
944 // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
945 // --host and --gdb.
946 // After we wake up, the runtime may have been shutdown, which means that this condition may
947 // have been deleted. It is not safe to retry the wait.
948 SleepForever();
949 }
950 }
951 guard_.ExclusiveLock(self);
952 CHECK_GE(num_waiters_, 0);
953 num_waiters_--;
954 // We awoke and so no longer require awakes from the guard_'s unlock.
955 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
956 guard_.num_contenders_--;
957 #else
958 uint64_t old_owner = guard_.exclusive_owner_;
959 guard_.exclusive_owner_ = 0;
960 guard_.recursion_count_ = 0;
961 CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
962 guard_.exclusive_owner_ = old_owner;
963 #endif
964 guard_.recursion_count_ = old_recursion_count;
965 }
966
TimedWait(Thread * self,int64_t ms,int32_t ns)967 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
968 DCHECK(self == nullptr || self == Thread::Current());
969 bool timed_out = false;
970 guard_.AssertExclusiveHeld(self);
971 guard_.CheckSafeToWait(self);
972 unsigned int old_recursion_count = guard_.recursion_count_;
973 #if ART_USE_FUTEXES
974 timespec rel_ts;
975 InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
976 num_waiters_++;
977 // Ensure the Mutex is contended so that requeued threads are awoken.
978 guard_.num_contenders_++;
979 guard_.recursion_count_ = 1;
980 int32_t cur_sequence = sequence_.LoadRelaxed();
981 guard_.ExclusiveUnlock(self);
982 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
983 if (errno == ETIMEDOUT) {
984 // Timed out we're done.
985 timed_out = true;
986 } else if ((errno == EAGAIN) || (errno == EINTR)) {
987 // A signal or ConditionVariable::Signal/Broadcast has come in.
988 } else {
989 PLOG(FATAL) << "timed futex wait failed for " << name_;
990 }
991 }
992 guard_.ExclusiveLock(self);
993 CHECK_GE(num_waiters_, 0);
994 num_waiters_--;
995 // We awoke and so no longer require awakes from the guard_'s unlock.
996 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
997 guard_.num_contenders_--;
998 #else
999 #if !defined(__APPLE__)
1000 int clock = CLOCK_MONOTONIC;
1001 #else
1002 int clock = CLOCK_REALTIME;
1003 #endif
1004 uint64_t old_owner = guard_.exclusive_owner_;
1005 guard_.exclusive_owner_ = 0;
1006 guard_.recursion_count_ = 0;
1007 timespec ts;
1008 InitTimeSpec(true, clock, ms, ns, &ts);
1009 int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
1010 if (rc == ETIMEDOUT) {
1011 timed_out = true;
1012 } else if (rc != 0) {
1013 errno = rc;
1014 PLOG(FATAL) << "TimedWait failed for " << name_;
1015 }
1016 guard_.exclusive_owner_ = old_owner;
1017 #endif
1018 guard_.recursion_count_ = old_recursion_count;
1019 return timed_out;
1020 }
1021
Init()1022 void Locks::Init() {
1023 if (logging_lock_ != nullptr) {
1024 // Already initialized.
1025 if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1026 DCHECK(modify_ldt_lock_ != nullptr);
1027 } else {
1028 DCHECK(modify_ldt_lock_ == nullptr);
1029 }
1030 DCHECK(abort_lock_ != nullptr);
1031 DCHECK(alloc_tracker_lock_ != nullptr);
1032 DCHECK(allocated_monitor_ids_lock_ != nullptr);
1033 DCHECK(allocated_thread_ids_lock_ != nullptr);
1034 DCHECK(breakpoint_lock_ != nullptr);
1035 DCHECK(classlinker_classes_lock_ != nullptr);
1036 DCHECK(deoptimization_lock_ != nullptr);
1037 DCHECK(heap_bitmap_lock_ != nullptr);
1038 DCHECK(oat_file_manager_lock_ != nullptr);
1039 DCHECK(verifier_deps_lock_ != nullptr);
1040 DCHECK(host_dlopen_handles_lock_ != nullptr);
1041 DCHECK(intern_table_lock_ != nullptr);
1042 DCHECK(jni_function_table_lock_ != nullptr);
1043 DCHECK(jni_libraries_lock_ != nullptr);
1044 DCHECK(logging_lock_ != nullptr);
1045 DCHECK(mutator_lock_ != nullptr);
1046 DCHECK(profiler_lock_ != nullptr);
1047 DCHECK(cha_lock_ != nullptr);
1048 DCHECK(thread_list_lock_ != nullptr);
1049 DCHECK(thread_suspend_count_lock_ != nullptr);
1050 DCHECK(trace_lock_ != nullptr);
1051 DCHECK(unexpected_signal_lock_ != nullptr);
1052 DCHECK(user_code_suspension_lock_ != nullptr);
1053 DCHECK(dex_lock_ != nullptr);
1054 } else {
1055 // Create global locks in level order from highest lock level to lowest.
1056 LockLevel current_lock_level = kInstrumentEntrypointsLock;
1057 DCHECK(instrument_entrypoints_lock_ == nullptr);
1058 instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
1059
1060 #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
1061 if ((new_level) >= current_lock_level) { \
1062 /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
1063 fprintf(stderr, "New local level %d is not less than current level %d\n", \
1064 new_level, current_lock_level); \
1065 exit(1); \
1066 } \
1067 current_lock_level = new_level;
1068
1069 UPDATE_CURRENT_LOCK_LEVEL(kUserCodeSuspensionLock);
1070 DCHECK(user_code_suspension_lock_ == nullptr);
1071 user_code_suspension_lock_ = new Mutex("user code suspension lock", current_lock_level);
1072
1073 UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
1074 DCHECK(mutator_lock_ == nullptr);
1075 mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
1076
1077 UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
1078 DCHECK(heap_bitmap_lock_ == nullptr);
1079 heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
1080
1081 UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
1082 DCHECK(trace_lock_ == nullptr);
1083 trace_lock_ = new Mutex("trace lock", current_lock_level);
1084
1085 UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
1086 DCHECK(runtime_shutdown_lock_ == nullptr);
1087 runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
1088
1089 UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
1090 DCHECK(profiler_lock_ == nullptr);
1091 profiler_lock_ = new Mutex("profiler lock", current_lock_level);
1092
1093 UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
1094 DCHECK(deoptimization_lock_ == nullptr);
1095 deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
1096
1097 UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
1098 DCHECK(alloc_tracker_lock_ == nullptr);
1099 alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
1100
1101 UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
1102 DCHECK(thread_list_lock_ == nullptr);
1103 thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
1104
1105 UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
1106 DCHECK(jni_libraries_lock_ == nullptr);
1107 jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
1108
1109 UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
1110 DCHECK(breakpoint_lock_ == nullptr);
1111 breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
1112
1113 UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
1114 DCHECK(cha_lock_ == nullptr);
1115 cha_lock_ = new Mutex("CHA lock", current_lock_level);
1116
1117 UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
1118 DCHECK(classlinker_classes_lock_ == nullptr);
1119 classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
1120 current_lock_level);
1121
1122 UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
1123 DCHECK(allocated_monitor_ids_lock_ == nullptr);
1124 allocated_monitor_ids_lock_ = new Mutex("allocated monitor ids lock", current_lock_level);
1125
1126 UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
1127 DCHECK(allocated_thread_ids_lock_ == nullptr);
1128 allocated_thread_ids_lock_ = new Mutex("allocated thread ids lock", current_lock_level);
1129
1130 if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1131 UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
1132 DCHECK(modify_ldt_lock_ == nullptr);
1133 modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
1134 }
1135
1136 UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
1137 DCHECK(dex_lock_ == nullptr);
1138 dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
1139
1140 UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
1141 DCHECK(oat_file_manager_lock_ == nullptr);
1142 oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
1143
1144 UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
1145 DCHECK(verifier_deps_lock_ == nullptr);
1146 verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
1147
1148 UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
1149 DCHECK(host_dlopen_handles_lock_ == nullptr);
1150 host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
1151
1152 UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
1153 DCHECK(intern_table_lock_ == nullptr);
1154 intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
1155
1156 UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
1157 DCHECK(reference_processor_lock_ == nullptr);
1158 reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
1159
1160 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
1161 DCHECK(reference_queue_cleared_references_lock_ == nullptr);
1162 reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1163
1164 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
1165 DCHECK(reference_queue_weak_references_lock_ == nullptr);
1166 reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1167
1168 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
1169 DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
1170 reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
1171
1172 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
1173 DCHECK(reference_queue_phantom_references_lock_ == nullptr);
1174 reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
1175
1176 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
1177 DCHECK(reference_queue_soft_references_lock_ == nullptr);
1178 reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
1179
1180 UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
1181 DCHECK(jni_globals_lock_ == nullptr);
1182 jni_globals_lock_ =
1183 new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
1184
1185 UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
1186 DCHECK(jni_weak_globals_lock_ == nullptr);
1187 jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
1188
1189 UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
1190 DCHECK(jni_function_table_lock_ == nullptr);
1191 jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
1192
1193 UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
1194 DCHECK(abort_lock_ == nullptr);
1195 abort_lock_ = new Mutex("abort lock", current_lock_level, true);
1196
1197 UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
1198 DCHECK(thread_suspend_count_lock_ == nullptr);
1199 thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
1200
1201 UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
1202 DCHECK(unexpected_signal_lock_ == nullptr);
1203 unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
1204
1205 UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
1206 DCHECK(logging_lock_ == nullptr);
1207 logging_lock_ = new Mutex("logging lock", current_lock_level, true);
1208
1209 #undef UPDATE_CURRENT_LOCK_LEVEL
1210
1211 // List of mutexes that we may hold when accessing a weak ref.
1212 AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
1213 AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
1214 AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
1215
1216 InitConditions();
1217 }
1218 }
1219
InitConditions()1220 void Locks::InitConditions() {
1221 thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
1222 }
1223
SetClientCallback(ClientCallback * safe_to_call_abort_cb)1224 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
1225 safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
1226 }
1227
1228 // Helper to allow checking shutdown while ignoring locking requirements.
IsSafeToCallAbortRacy()1229 bool Locks::IsSafeToCallAbortRacy() {
1230 Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
1231 return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
1232 }
1233
AddToExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1234 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1235 if (need_lock) {
1236 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1237 mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1238 expected_mutexes_on_weak_ref_access_.push_back(mutex);
1239 } else {
1240 mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1241 expected_mutexes_on_weak_ref_access_.push_back(mutex);
1242 }
1243 }
1244
RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1245 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1246 if (need_lock) {
1247 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1248 mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1249 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1250 auto it = std::find(list.begin(), list.end(), mutex);
1251 DCHECK(it != list.end());
1252 list.erase(it);
1253 } else {
1254 mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1255 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1256 auto it = std::find(list.begin(), list.end(), mutex);
1257 DCHECK(it != list.end());
1258 list.erase(it);
1259 }
1260 }
1261
IsExpectedOnWeakRefAccess(BaseMutex * mutex)1262 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
1263 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1264 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1265 return std::find(list.begin(), list.end(), mutex) != list.end();
1266 }
1267
1268 } // namespace art
1269