1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_GLOBALS_H_
6 #define V8_GLOBALS_H_
7
8 #include <stddef.h>
9 #include <stdint.h>
10
11 #include <ostream>
12
13 #include "src/base/build_config.h"
14 #include "src/base/flags.h"
15 #include "src/base/logging.h"
16 #include "src/base/macros.h"
17
18 #ifdef V8_OS_WIN
19
20 // Setup for Windows shared library export.
21 #ifdef BUILDING_V8_SHARED
22 #define V8_EXPORT_PRIVATE __declspec(dllexport)
23 #elif USING_V8_SHARED
24 #define V8_EXPORT_PRIVATE __declspec(dllimport)
25 #else
26 #define V8_EXPORT_PRIVATE
27 #endif // BUILDING_V8_SHARED
28
29 #else // V8_OS_WIN
30
31 // Setup for Linux shared library export.
32 #if V8_HAS_ATTRIBUTE_VISIBILITY
33 #ifdef BUILDING_V8_SHARED
34 #define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
35 #else
36 #define V8_EXPORT_PRIVATE
37 #endif
38 #else
39 #define V8_EXPORT_PRIVATE
40 #endif
41
42 #endif // V8_OS_WIN
43
44 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
45 // warning flag and certain versions of GCC due to a bug:
46 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
47 // For now, we use the more involved template-based version from <limits>, but
48 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
49 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
50 # include <limits> // NOLINT
51 # define V8_INFINITY std::numeric_limits<double>::infinity()
52 #elif V8_LIBC_MSVCRT
53 # define V8_INFINITY HUGE_VAL
54 #elif V8_OS_AIX
55 #define V8_INFINITY (__builtin_inff())
56 #else
57 # define V8_INFINITY INFINITY
58 #endif
59
60 namespace v8 {
61
62 namespace base {
63 class Mutex;
64 class RecursiveMutex;
65 class VirtualMemory;
66 }
67
68 namespace internal {
69
70 // Determine whether we are running in a simulated environment.
71 // Setting USE_SIMULATOR explicitly from the build script will force
72 // the use of a simulated environment.
73 #if !defined(USE_SIMULATOR)
74 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
75 #define USE_SIMULATOR 1
76 #endif
77 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
78 #define USE_SIMULATOR 1
79 #endif
80 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
81 #define USE_SIMULATOR 1
82 #endif
83 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
84 #define USE_SIMULATOR 1
85 #endif
86 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
87 #define USE_SIMULATOR 1
88 #endif
89 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
90 #define USE_SIMULATOR 1
91 #endif
92 #endif
93
94 // Determine whether the architecture uses an embedded constant pool
95 // (contiguous constant pool embedded in code object).
96 #if V8_TARGET_ARCH_PPC
97 #define V8_EMBEDDED_CONSTANT_POOL 1
98 #else
99 #define V8_EMBEDDED_CONSTANT_POOL 0
100 #endif
101
102 #ifdef V8_TARGET_ARCH_ARM
103 // Set stack limit lower for ARM than for other architectures because
104 // stack allocating MacroAssembler takes 120K bytes.
105 // See issue crbug.com/405338
106 #define V8_DEFAULT_STACK_SIZE_KB 864
107 #else
108 // Slightly less than 1MB, since Windows' default stack size for
109 // the main execution thread is 1MB for both 32 and 64-bit.
110 #define V8_DEFAULT_STACK_SIZE_KB 984
111 #endif
112
113
114 // Determine whether double field unboxing feature is enabled.
115 #if V8_TARGET_ARCH_64_BIT
116 #define V8_DOUBLE_FIELDS_UNBOXING 1
117 #else
118 #define V8_DOUBLE_FIELDS_UNBOXING 0
119 #endif
120
121
122 typedef uint8_t byte;
123 typedef byte* Address;
124
125 // -----------------------------------------------------------------------------
126 // Constants
127
128 const int KB = 1024;
129 const int MB = KB * KB;
130 const int GB = KB * KB * KB;
131 const int kMaxInt = 0x7FFFFFFF;
132 const int kMinInt = -kMaxInt - 1;
133 const int kMaxInt8 = (1 << 7) - 1;
134 const int kMinInt8 = -(1 << 7);
135 const int kMaxUInt8 = (1 << 8) - 1;
136 const int kMinUInt8 = 0;
137 const int kMaxInt16 = (1 << 15) - 1;
138 const int kMinInt16 = -(1 << 15);
139 const int kMaxUInt16 = (1 << 16) - 1;
140 const int kMinUInt16 = 0;
141
142 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
143 const int kMinUInt32 = 0;
144
145 const int kCharSize = sizeof(char);
146 const int kShortSize = sizeof(short); // NOLINT
147 const int kIntSize = sizeof(int);
148 const int kInt32Size = sizeof(int32_t);
149 const int kInt64Size = sizeof(int64_t);
150 const int kSizetSize = sizeof(size_t);
151 const int kFloatSize = sizeof(float);
152 const int kDoubleSize = sizeof(double);
153 const int kIntptrSize = sizeof(intptr_t);
154 const int kPointerSize = sizeof(void*);
155 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
156 const int kRegisterSize = kPointerSize + kPointerSize;
157 #else
158 const int kRegisterSize = kPointerSize;
159 #endif
160 const int kPCOnStackSize = kRegisterSize;
161 const int kFPOnStackSize = kRegisterSize;
162
163 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
164 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
165 #else
166 const int kElidedFrameSlots = 0;
167 #endif
168
169 const int kDoubleSizeLog2 = 3;
170
171 #if V8_HOST_ARCH_64_BIT
172 const int kPointerSizeLog2 = 3;
173 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
174 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
175 const bool kRequiresCodeRange = true;
176 #if V8_TARGET_ARCH_MIPS64
177 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
178 // encoded immediate, the addresses have to be in range of 256MB aligned
179 // region. Used only for large object space.
180 const size_t kMaximalCodeRangeSize = 256 * MB;
181 const size_t kCodeRangeAreaAlignment = 256 * MB;
182 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
183 const size_t kMaximalCodeRangeSize = 512 * MB;
184 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
185 #else
186 const size_t kMaximalCodeRangeSize = 512 * MB;
187 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
188 #endif
189 #if V8_OS_WIN
190 const size_t kMinimumCodeRangeSize = 4 * MB;
191 const size_t kReservedCodeRangePages = 1;
192 #else
193 const size_t kMinimumCodeRangeSize = 3 * MB;
194 const size_t kReservedCodeRangePages = 0;
195 #endif
196 #else
197 const int kPointerSizeLog2 = 2;
198 const intptr_t kIntptrSignBit = 0x80000000;
199 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
200 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
201 // x32 port also requires code range.
202 const bool kRequiresCodeRange = true;
203 const size_t kMaximalCodeRangeSize = 256 * MB;
204 const size_t kMinimumCodeRangeSize = 3 * MB;
205 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
206 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
207 const bool kRequiresCodeRange = false;
208 const size_t kMaximalCodeRangeSize = 0 * MB;
209 const size_t kMinimumCodeRangeSize = 0 * MB;
210 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
211 #else
212 const bool kRequiresCodeRange = false;
213 const size_t kMaximalCodeRangeSize = 0 * MB;
214 const size_t kMinimumCodeRangeSize = 0 * MB;
215 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
216 #endif
217 const size_t kReservedCodeRangePages = 0;
218 #endif
219
220 // Trigger an incremental GCs once the external memory reaches this limit.
221 const int kExternalAllocationSoftLimit = 64 * MB;
222
223 // Maximum object size that gets allocated into regular pages. Objects larger
224 // than that size are allocated in large object space and are never moved in
225 // memory. This also applies to new space allocation, since objects are never
226 // migrated from new space to large object space. Takes double alignment into
227 // account.
228 //
229 // Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack).
230 const int kMaxRegularHeapObjectSize = 507136;
231
232 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
233
234 const int kBitsPerByte = 8;
235 const int kBitsPerByteLog2 = 3;
236 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
237 const int kBitsPerInt = kIntSize * kBitsPerByte;
238
239 // IEEE 754 single precision floating point number bit layout.
240 const uint32_t kBinary32SignMask = 0x80000000u;
241 const uint32_t kBinary32ExponentMask = 0x7f800000u;
242 const uint32_t kBinary32MantissaMask = 0x007fffffu;
243 const int kBinary32ExponentBias = 127;
244 const int kBinary32MaxExponent = 0xFE;
245 const int kBinary32MinExponent = 0x01;
246 const int kBinary32MantissaBits = 23;
247 const int kBinary32ExponentShift = 23;
248
249 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
250 // other bits set.
251 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
252
253 // Latin1/UTF-16 constants
254 // Code-point values in Unicode 4.0 are 21 bits wide.
255 // Code units in UTF-16 are 16 bits wide.
256 typedef uint16_t uc16;
257 typedef int32_t uc32;
258 const int kOneByteSize = kCharSize;
259 const int kUC16Size = sizeof(uc16); // NOLINT
260
261 // 128 bit SIMD value size.
262 const int kSimd128Size = 16;
263
264 // Round up n to be a multiple of sz, where sz is a power of 2.
265 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
266
267
268 // FUNCTION_ADDR(f) gets the address of a C function f.
269 #define FUNCTION_ADDR(f) \
270 (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
271
272
273 // FUNCTION_CAST<F>(addr) casts an address into a function
274 // of type F. Used to invoke generated code from within C.
275 template <typename F>
FUNCTION_CAST(Address addr)276 F FUNCTION_CAST(Address addr) {
277 return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
278 }
279
280
281 // Determine whether the architecture uses function descriptors
282 // which provide a level of indirection between the function pointer
283 // and the function entrypoint.
284 #if V8_HOST_ARCH_PPC && \
285 (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
286 #define USES_FUNCTION_DESCRIPTORS 1
287 #define FUNCTION_ENTRYPOINT_ADDRESS(f) \
288 (reinterpret_cast<v8::internal::Address*>( \
289 &(reinterpret_cast<intptr_t*>(f)[0])))
290 #else
291 #define USES_FUNCTION_DESCRIPTORS 0
292 #endif
293
294
295 // -----------------------------------------------------------------------------
296 // Forward declarations for frequently used classes
297 // (sorted alphabetically)
298
299 class FreeStoreAllocationPolicy;
300 template <typename T, class P = FreeStoreAllocationPolicy> class List;
301
302 // -----------------------------------------------------------------------------
303 // Declarations for use in both the preparser and the rest of V8.
304
305 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
306
307 enum LanguageMode : uint32_t { SLOPPY, STRICT, LANGUAGE_END };
308
309 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
310 switch (mode) {
311 case SLOPPY: return os << "sloppy";
312 case STRICT: return os << "strict";
313 default: UNREACHABLE();
314 }
315 return os;
316 }
317
is_sloppy(LanguageMode language_mode)318 inline bool is_sloppy(LanguageMode language_mode) {
319 return language_mode == SLOPPY;
320 }
321
is_strict(LanguageMode language_mode)322 inline bool is_strict(LanguageMode language_mode) {
323 return language_mode != SLOPPY;
324 }
325
is_valid_language_mode(int language_mode)326 inline bool is_valid_language_mode(int language_mode) {
327 return language_mode == SLOPPY || language_mode == STRICT;
328 }
329
construct_language_mode(bool strict_bit)330 inline LanguageMode construct_language_mode(bool strict_bit) {
331 return static_cast<LanguageMode>(strict_bit);
332 }
333
334 enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
335
336 // This constant is used as an undefined value when passing source positions.
337 const int kNoSourcePosition = -1;
338
339 // This constant is used to indicate missing deoptimization information.
340 const int kNoDeoptimizationId = -1;
341
342 // Deoptimize bailout kind.
343 enum class DeoptimizeKind : uint8_t { kEager, kSoft };
hash_value(DeoptimizeKind kind)344 inline size_t hash_value(DeoptimizeKind kind) {
345 return static_cast<size_t>(kind);
346 }
347 inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
348 switch (kind) {
349 case DeoptimizeKind::kEager:
350 return os << "Eager";
351 case DeoptimizeKind::kSoft:
352 return os << "Soft";
353 }
354 UNREACHABLE();
355 return os;
356 }
357
358 // Mask for the sign bit in a smi.
359 const intptr_t kSmiSignMask = kIntptrSignBit;
360
361 const int kObjectAlignmentBits = kPointerSizeLog2;
362 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
363 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
364
365 // Desired alignment for pointers.
366 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
367 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
368
369 // Desired alignment for double values.
370 const intptr_t kDoubleAlignment = 8;
371 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
372
373 // Desired alignment for generated code is 32 bytes (to improve cache line
374 // utilization).
375 const int kCodeAlignmentBits = 5;
376 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
377 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
378
379 // The owner field of a page is tagged with the page header tag. We need that
380 // to find out if a slot is part of a large object. If we mask out the lower
381 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
382 // is tagged with the page header tag, we can just look up the owner.
383 // Otherwise, we know that we are somewhere (not within the first 1M) in a
384 // large object.
385 const int kPageHeaderTag = 3;
386 const int kPageHeaderTagSize = 2;
387 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
388
389
390 // Zap-value: The value used for zapping dead objects.
391 // Should be a recognizable hex value tagged as a failure.
392 #ifdef V8_HOST_ARCH_64_BIT
393 const Address kZapValue =
394 reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
395 const Address kHandleZapValue =
396 reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
397 const Address kGlobalHandleZapValue =
398 reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
399 const Address kFromSpaceZapValue =
400 reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
401 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
402 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
403 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
404 #else
405 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
406 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
407 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
408 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
409 const uint32_t kSlotsZapValue = 0xbeefdeef;
410 const uint32_t kDebugZapValue = 0xbadbaddb;
411 const uint32_t kFreeListZapValue = 0xfeed1eaf;
412 #endif
413
414 const int kCodeZapValue = 0xbadc0de;
415 const uint32_t kPhantomReferenceZap = 0xca11bac;
416
417 // On Intel architecture, cache line size is 64 bytes.
418 // On ARM it may be less (32 bytes), but as far this constant is
419 // used for aligning data, it doesn't hurt to align on a greater value.
420 #define PROCESSOR_CACHE_LINE_SIZE 64
421
422 // Constants relevant to double precision floating point numbers.
423 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
424 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
425
426
427 // -----------------------------------------------------------------------------
428 // Forward declarations for frequently used classes
429
430 class AccessorInfo;
431 class Allocation;
432 class Arguments;
433 class Assembler;
434 class Code;
435 class CodeGenerator;
436 class CodeStub;
437 class Context;
438 class Debug;
439 class DebugInfo;
440 class Descriptor;
441 class DescriptorArray;
442 class TransitionArray;
443 class ExternalReference;
444 class FixedArray;
445 class FunctionTemplateInfo;
446 class MemoryChunk;
447 class SeededNumberDictionary;
448 class UnseededNumberDictionary;
449 class NameDictionary;
450 class GlobalDictionary;
451 template <typename T> class MaybeHandle;
452 template <typename T> class Handle;
453 class Heap;
454 class HeapObject;
455 class IC;
456 class InterceptorInfo;
457 class Isolate;
458 class JSReceiver;
459 class JSArray;
460 class JSFunction;
461 class JSObject;
462 class LargeObjectSpace;
463 class MacroAssembler;
464 class Map;
465 class MapSpace;
466 class MarkCompactCollector;
467 class NewSpace;
468 class Object;
469 class OldSpace;
470 class ParameterCount;
471 class Foreign;
472 class Scope;
473 class DeclarationScope;
474 class ModuleScope;
475 class ScopeInfo;
476 class Script;
477 class Smi;
478 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
479 class SplayTree;
480 class String;
481 class Symbol;
482 class Name;
483 class Struct;
484 class FeedbackVector;
485 class Variable;
486 class RelocInfo;
487 class Deserializer;
488 class MessageLocation;
489
490 typedef bool (*WeakSlotCallback)(Object** pointer);
491
492 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
493
494 // -----------------------------------------------------------------------------
495 // Miscellaneous
496
497 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
498 // consecutive.
499 // Keep this enum in sync with the ObjectSpace enum in v8.h
500 enum AllocationSpace {
501 NEW_SPACE, // Semispaces collected with copying collector.
502 OLD_SPACE, // May contain pointers to new space.
503 CODE_SPACE, // No pointers to new space, marked executable.
504 MAP_SPACE, // Only and all map objects.
505 LO_SPACE, // Promoted large objects.
506
507 FIRST_SPACE = NEW_SPACE,
508 LAST_SPACE = LO_SPACE,
509 FIRST_PAGED_SPACE = OLD_SPACE,
510 LAST_PAGED_SPACE = MAP_SPACE
511 };
512 const int kSpaceTagSize = 3;
513 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
514
515 enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
516
517 // Possible outcomes for decisions.
518 enum class Decision : uint8_t { kUnknown, kTrue, kFalse };
519
hash_value(Decision decision)520 inline size_t hash_value(Decision decision) {
521 return static_cast<uint8_t>(decision);
522 }
523
524 inline std::ostream& operator<<(std::ostream& os, Decision decision) {
525 switch (decision) {
526 case Decision::kUnknown:
527 return os << "Unknown";
528 case Decision::kTrue:
529 return os << "True";
530 case Decision::kFalse:
531 return os << "False";
532 }
533 UNREACHABLE();
534 return os;
535 }
536
537 // Supported write barrier modes.
538 enum WriteBarrierKind : uint8_t {
539 kNoWriteBarrier,
540 kMapWriteBarrier,
541 kPointerWriteBarrier,
542 kFullWriteBarrier
543 };
544
hash_value(WriteBarrierKind kind)545 inline size_t hash_value(WriteBarrierKind kind) {
546 return static_cast<uint8_t>(kind);
547 }
548
549 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
550 switch (kind) {
551 case kNoWriteBarrier:
552 return os << "NoWriteBarrier";
553 case kMapWriteBarrier:
554 return os << "MapWriteBarrier";
555 case kPointerWriteBarrier:
556 return os << "PointerWriteBarrier";
557 case kFullWriteBarrier:
558 return os << "FullWriteBarrier";
559 }
560 UNREACHABLE();
561 return os;
562 }
563
564 // A flag that indicates whether objects should be pretenured when
565 // allocated (allocated directly into the old generation) or not
566 // (allocated in the young generation if the object size and type
567 // allows).
568 enum PretenureFlag { NOT_TENURED, TENURED };
569
570 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
571 switch (flag) {
572 case NOT_TENURED:
573 return os << "NotTenured";
574 case TENURED:
575 return os << "Tenured";
576 }
577 UNREACHABLE();
578 return os;
579 }
580
581 enum MinimumCapacity {
582 USE_DEFAULT_MINIMUM_CAPACITY,
583 USE_CUSTOM_MINIMUM_CAPACITY
584 };
585
586 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
587
588 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
589
590 enum VisitMode {
591 VISIT_ALL,
592 VISIT_ALL_IN_SCAVENGE,
593 VISIT_ALL_IN_SWEEP_NEWSPACE,
594 VISIT_ONLY_STRONG,
595 VISIT_ONLY_STRONG_FOR_SERIALIZATION,
596 VISIT_ONLY_STRONG_ROOT_LIST,
597 };
598
599 // Flag indicating whether code is built into the VM (one of the natives files).
600 enum NativesFlag {
601 NOT_NATIVES_CODE,
602 EXTENSION_CODE,
603 NATIVES_CODE,
604 INSPECTOR_CODE
605 };
606
607 // JavaScript defines two kinds of 'nil'.
608 enum NilValue { kNullValue, kUndefinedValue };
609
610 // ParseRestriction is used to restrict the set of valid statements in a
611 // unit of compilation. Restriction violations cause a syntax error.
612 enum ParseRestriction {
613 NO_PARSE_RESTRICTION, // All expressions are allowed.
614 ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
615 };
616
617 // A CodeDesc describes a buffer holding instructions and relocation
618 // information. The instructions start at the beginning of the buffer
619 // and grow forward, the relocation information starts at the end of
620 // the buffer and grows backward. A constant pool may exist at the
621 // end of the instructions.
622 //
623 // |<--------------- buffer_size ----------------------------------->|
624 // |<------------- instr_size ---------->| |<-- reloc_size -->|
625 // | |<- const_pool_size ->| |
626 // +=====================================+========+==================+
627 // | instructions | data | free | reloc info |
628 // +=====================================+========+==================+
629 // ^
630 // |
631 // buffer
632
633 struct CodeDesc {
634 byte* buffer;
635 int buffer_size;
636 int instr_size;
637 int reloc_size;
638 int constant_pool_size;
639 byte* unwinding_info;
640 int unwinding_info_size;
641 Assembler* origin;
642 };
643
644
645 // Callback function used for checking constraints when copying/relocating
646 // objects. Returns true if an object can be copied/relocated from its
647 // old_addr to a new_addr.
648 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
649
650
651 // Callback function on inline caches, used for iterating over inline caches
652 // in compiled code.
653 typedef void (*InlineCacheCallback)(Code* code, Address ic);
654
655
656 // State for inline cache call sites. Aliased as IC::State.
657 enum InlineCacheState {
658 // Has never been executed.
659 UNINITIALIZED,
660 // Has been executed but monomorhic state has been delayed.
661 PREMONOMORPHIC,
662 // Has been executed and only one receiver type has been seen.
663 MONOMORPHIC,
664 // Check failed due to prototype (or map deprecation).
665 RECOMPUTE_HANDLER,
666 // Multiple receiver types have been seen.
667 POLYMORPHIC,
668 // Many receiver types have been seen.
669 MEGAMORPHIC,
670 // A generic handler is installed and no extra typefeedback is recorded.
671 GENERIC,
672 };
673
674 enum CacheHolderFlag {
675 kCacheOnPrototype,
676 kCacheOnPrototypeReceiverIsDictionary,
677 kCacheOnPrototypeReceiverIsPrimitive,
678 kCacheOnReceiver
679 };
680
681 enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
682
683 // The Store Buffer (GC).
684 typedef enum {
685 kStoreBufferFullEvent,
686 kStoreBufferStartScanningPagesEvent,
687 kStoreBufferScanningPageEvent
688 } StoreBufferEvent;
689
690
691 typedef void (*StoreBufferCallback)(Heap* heap,
692 MemoryChunk* page,
693 StoreBufferEvent event);
694
695 // Union used for customized checking of the IEEE double types
696 // inlined within v8 runtime, rather than going to the underlying
697 // platform headers and libraries
698 union IeeeDoubleLittleEndianArchType {
699 double d;
700 struct {
701 unsigned int man_low :32;
702 unsigned int man_high :20;
703 unsigned int exp :11;
704 unsigned int sign :1;
705 } bits;
706 };
707
708
709 union IeeeDoubleBigEndianArchType {
710 double d;
711 struct {
712 unsigned int sign :1;
713 unsigned int exp :11;
714 unsigned int man_high :20;
715 unsigned int man_low :32;
716 } bits;
717 };
718
719 #if V8_TARGET_LITTLE_ENDIAN
720 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
721 const int kIeeeDoubleMantissaWordOffset = 0;
722 const int kIeeeDoubleExponentWordOffset = 4;
723 #else
724 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
725 const int kIeeeDoubleMantissaWordOffset = 4;
726 const int kIeeeDoubleExponentWordOffset = 0;
727 #endif
728
729 // AccessorCallback
730 struct AccessorDescriptor {
731 Object* (*getter)(Isolate* isolate, Object* object, void* data);
732 Object* (*setter)(
733 Isolate* isolate, JSObject* object, Object* value, void* data);
734 void* data;
735 };
736
737
738 // -----------------------------------------------------------------------------
739 // Macros
740
741 // Testers for test.
742
743 #define HAS_SMI_TAG(value) \
744 ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
745
746 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
747 #define OBJECT_POINTER_ALIGN(value) \
748 (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
749
750 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
751 #define POINTER_SIZE_ALIGN(value) \
752 (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
753
754 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
755 #define CODE_POINTER_ALIGN(value) \
756 (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
757
758 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
759 #define DOUBLE_POINTER_ALIGN(value) \
760 (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
761
762
763 // CPU feature flags.
764 enum CpuFeature {
765 // x86
766 SSE4_1,
767 SSSE3,
768 SSE3,
769 SAHF,
770 AVX,
771 FMA3,
772 BMI1,
773 BMI2,
774 LZCNT,
775 POPCNT,
776 ATOM,
777 // ARM
778 // - Standard configurations. The baseline is ARMv6+VFPv2.
779 ARMv7, // ARMv7-A + VFPv3-D32 + NEON
780 ARMv7_SUDIV, // ARMv7-A + VFPv4-D32 + NEON + SUDIV
781 ARMv8, // ARMv8-A (+ all of the above)
782 // MIPS, MIPS64
783 FPU,
784 FP64FPU,
785 MIPSr1,
786 MIPSr2,
787 MIPSr6,
788 // ARM64
789 ALWAYS_ALIGN_CSP,
790 // PPC
791 FPR_GPR_MOV,
792 LWSYNC,
793 ISELECT,
794 VSX,
795 MODULO,
796 // S390
797 DISTINCT_OPS,
798 GENERAL_INSTR_EXT,
799 FLOATING_POINT_EXT,
800 VECTOR_FACILITY,
801 MISC_INSTR_EXT2,
802
803 NUMBER_OF_CPU_FEATURES,
804
805 // ARM feature aliases (based on the standard configurations above).
806 VFPv3 = ARMv7,
807 NEON = ARMv7,
808 VFP32DREGS = ARMv7,
809 SUDIV = ARMv7_SUDIV
810 };
811
812 // Defines hints about receiver values based on structural knowledge.
813 enum class ConvertReceiverMode : unsigned {
814 kNullOrUndefined, // Guaranteed to be null or undefined.
815 kNotNullOrUndefined, // Guaranteed to never be null or undefined.
816 kAny // No specific knowledge about receiver.
817 };
818
hash_value(ConvertReceiverMode mode)819 inline size_t hash_value(ConvertReceiverMode mode) {
820 return bit_cast<unsigned>(mode);
821 }
822
823 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
824 switch (mode) {
825 case ConvertReceiverMode::kNullOrUndefined:
826 return os << "NULL_OR_UNDEFINED";
827 case ConvertReceiverMode::kNotNullOrUndefined:
828 return os << "NOT_NULL_OR_UNDEFINED";
829 case ConvertReceiverMode::kAny:
830 return os << "ANY";
831 }
832 UNREACHABLE();
833 return os;
834 }
835
836 // Defines whether tail call optimization is allowed.
837 enum class TailCallMode : unsigned { kAllow, kDisallow };
838
hash_value(TailCallMode mode)839 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); }
840
841 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) {
842 switch (mode) {
843 case TailCallMode::kAllow:
844 return os << "ALLOW_TAIL_CALLS";
845 case TailCallMode::kDisallow:
846 return os << "DISALLOW_TAIL_CALLS";
847 }
848 UNREACHABLE();
849 return os;
850 }
851
852 // Valid hints for the abstract operation OrdinaryToPrimitive,
853 // implemented according to ES6, section 7.1.1.
854 enum class OrdinaryToPrimitiveHint { kNumber, kString };
855
856 // Valid hints for the abstract operation ToPrimitive,
857 // implemented according to ES6, section 7.1.1.
858 enum class ToPrimitiveHint { kDefault, kNumber, kString };
859
860 // Defines specifics about arguments object or rest parameter creation.
861 enum class CreateArgumentsType : uint8_t {
862 kMappedArguments,
863 kUnmappedArguments,
864 kRestParameter
865 };
866
hash_value(CreateArgumentsType type)867 inline size_t hash_value(CreateArgumentsType type) {
868 return bit_cast<uint8_t>(type);
869 }
870
871 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
872 switch (type) {
873 case CreateArgumentsType::kMappedArguments:
874 return os << "MAPPED_ARGUMENTS";
875 case CreateArgumentsType::kUnmappedArguments:
876 return os << "UNMAPPED_ARGUMENTS";
877 case CreateArgumentsType::kRestParameter:
878 return os << "REST_PARAMETER";
879 }
880 UNREACHABLE();
881 return os;
882 }
883
884 // Used to specify if a macro instruction must perform a smi check on tagged
885 // values.
886 enum SmiCheckType {
887 DONT_DO_SMI_CHECK,
888 DO_SMI_CHECK
889 };
890
891 enum ScopeType : uint8_t {
892 EVAL_SCOPE, // The top-level scope for an eval source.
893 FUNCTION_SCOPE, // The top-level scope for a function.
894 MODULE_SCOPE, // The scope introduced by a module literal
895 SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
896 CATCH_SCOPE, // The scope introduced by catch.
897 BLOCK_SCOPE, // The scope introduced by a new block.
898 WITH_SCOPE // The scope introduced by with.
899 };
900
901 // AllocationSiteMode controls whether allocations are tracked by an allocation
902 // site.
903 enum AllocationSiteMode {
904 DONT_TRACK_ALLOCATION_SITE,
905 TRACK_ALLOCATION_SITE,
906 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
907 };
908
909 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
910 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
911 // memmory.
912 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
913 // issue
914 // for some test cases.
915 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
916 (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
917 (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
918 (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
919 (V8_TARGET_ARCH_X87)
920 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
921 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
922 #else
923 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
924 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
925 #endif
926
927 const uint64_t kHoleNanInt64 =
928 (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
929
930
931 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
932 const double kMaxSafeInteger = 9007199254740991.0; // 2^53-1
933
934
935 // The order of this enum has to be kept in sync with the predicates below.
936 enum VariableMode : uint8_t {
937 // User declared variables:
938 VAR, // declared via 'var', and 'function' declarations
939
940 LET, // declared via 'let' declarations (first lexical)
941
942 CONST, // declared via 'const' declarations (last lexical)
943
944 // Variables introduced by the compiler:
945 TEMPORARY, // temporary variables (not user-visible), stack-allocated
946 // unless the scope as a whole has forced context allocation
947
948 DYNAMIC, // always require dynamic lookup (we don't know
949 // the declaration)
950
951 DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the
952 // variable is global unless it has been shadowed
953 // by an eval-introduced variable
954
955 DYNAMIC_LOCAL, // requires dynamic lookup, but we know that the
956 // variable is local and where it is unless it
957 // has been shadowed by an eval-introduced
958 // variable
959
960 kLastVariableMode = DYNAMIC_LOCAL
961 };
962
963 // Printing support
964 #ifdef DEBUG
VariableMode2String(VariableMode mode)965 inline const char* VariableMode2String(VariableMode mode) {
966 switch (mode) {
967 case VAR:
968 return "VAR";
969 case LET:
970 return "LET";
971 case CONST:
972 return "CONST";
973 case DYNAMIC:
974 return "DYNAMIC";
975 case DYNAMIC_GLOBAL:
976 return "DYNAMIC_GLOBAL";
977 case DYNAMIC_LOCAL:
978 return "DYNAMIC_LOCAL";
979 case TEMPORARY:
980 return "TEMPORARY";
981 }
982 UNREACHABLE();
983 return NULL;
984 }
985 #endif
986
987 enum VariableKind : uint8_t {
988 NORMAL_VARIABLE,
989 FUNCTION_VARIABLE,
990 THIS_VARIABLE,
991 SLOPPY_FUNCTION_NAME_VARIABLE,
992 kLastKind = SLOPPY_FUNCTION_NAME_VARIABLE
993 };
994
IsDynamicVariableMode(VariableMode mode)995 inline bool IsDynamicVariableMode(VariableMode mode) {
996 return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
997 }
998
999
IsDeclaredVariableMode(VariableMode mode)1000 inline bool IsDeclaredVariableMode(VariableMode mode) {
1001 STATIC_ASSERT(VAR == 0); // Implies that mode >= VAR.
1002 return mode <= CONST;
1003 }
1004
1005
IsLexicalVariableMode(VariableMode mode)1006 inline bool IsLexicalVariableMode(VariableMode mode) {
1007 return mode >= LET && mode <= CONST;
1008 }
1009
1010 enum VariableLocation : uint8_t {
1011 // Before and during variable allocation, a variable whose location is
1012 // not yet determined. After allocation, a variable looked up as a
1013 // property on the global object (and possibly absent). name() is the
1014 // variable name, index() is invalid.
1015 UNALLOCATED,
1016
1017 // A slot in the parameter section on the stack. index() is the
1018 // parameter index, counting left-to-right. The receiver is index -1;
1019 // the first parameter is index 0.
1020 PARAMETER,
1021
1022 // A slot in the local section on the stack. index() is the variable
1023 // index in the stack frame, starting at 0.
1024 LOCAL,
1025
1026 // An indexed slot in a heap context. index() is the variable index in
1027 // the context object on the heap, starting at 0. scope() is the
1028 // corresponding scope.
1029 CONTEXT,
1030
1031 // A named slot in a heap context. name() is the variable name in the
1032 // context object on the heap, with lookup starting at the current
1033 // context. index() is invalid.
1034 LOOKUP,
1035
1036 // A named slot in a module's export table.
1037 MODULE,
1038
1039 kLastVariableLocation = MODULE
1040 };
1041
1042 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
1043 // and immutable bindings that can be in two states: initialized and
1044 // uninitialized. In ES5 only immutable bindings have these two states. When
1045 // accessing a binding, it needs to be checked for initialization. However in
1046 // the following cases the binding is initialized immediately after creation
1047 // so the initialization check can always be skipped:
1048 // 1. Var declared local variables.
1049 // var foo;
1050 // 2. A local variable introduced by a function declaration.
1051 // function foo() {}
1052 // 3. Parameters
1053 // function x(foo) {}
1054 // 4. Catch bound variables.
1055 // try {} catch (foo) {}
1056 // 6. Function variables of named function expressions.
1057 // var x = function foo() {}
1058 // 7. Implicit binding of 'this'.
1059 // 8. Implicit binding of 'arguments' in functions.
1060 //
1061 // ES5 specified object environment records which are introduced by ES elements
1062 // such as Program and WithStatement that associate identifier bindings with the
1063 // properties of some object. In the specification only mutable bindings exist
1064 // (which may be non-writable) and have no distinct initialization step. However
1065 // V8 allows const declarations in global code with distinct creation and
1066 // initialization steps which are represented by non-writable properties in the
1067 // global object. As a result also these bindings need to be checked for
1068 // initialization.
1069 //
1070 // The following enum specifies a flag that indicates if the binding needs a
1071 // distinct initialization step (kNeedsInitialization) or if the binding is
1072 // immediately initialized upon creation (kCreatedInitialized).
1073 enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
1074
1075 enum class HoleCheckMode { kRequired, kElided };
1076
1077 enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
1078
1079 // Serialized in PreparseData, so numeric values should not be changed.
1080 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
1081
1082
1083 enum MinusZeroMode {
1084 TREAT_MINUS_ZERO_AS_ZERO,
1085 FAIL_ON_MINUS_ZERO
1086 };
1087
1088
1089 enum Signedness { kSigned, kUnsigned };
1090
1091 enum FunctionKind : uint16_t {
1092 kNormalFunction = 0,
1093 kArrowFunction = 1 << 0,
1094 kGeneratorFunction = 1 << 1,
1095 kConciseMethod = 1 << 2,
1096 kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
1097 kDefaultConstructor = 1 << 3,
1098 kDerivedConstructor = 1 << 4,
1099 kBaseConstructor = 1 << 5,
1100 kGetterFunction = 1 << 6,
1101 kSetterFunction = 1 << 7,
1102 kAsyncFunction = 1 << 8,
1103 kModule = 1 << 9,
1104 kAccessorFunction = kGetterFunction | kSetterFunction,
1105 kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
1106 kDefaultDerivedConstructor = kDefaultConstructor | kDerivedConstructor,
1107 kClassConstructor =
1108 kBaseConstructor | kDerivedConstructor | kDefaultConstructor,
1109 kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
1110 kAsyncConciseMethod = kAsyncFunction | kConciseMethod
1111 };
1112
IsValidFunctionKind(FunctionKind kind)1113 inline bool IsValidFunctionKind(FunctionKind kind) {
1114 return kind == FunctionKind::kNormalFunction ||
1115 kind == FunctionKind::kArrowFunction ||
1116 kind == FunctionKind::kGeneratorFunction ||
1117 kind == FunctionKind::kModule ||
1118 kind == FunctionKind::kConciseMethod ||
1119 kind == FunctionKind::kConciseGeneratorMethod ||
1120 kind == FunctionKind::kGetterFunction ||
1121 kind == FunctionKind::kSetterFunction ||
1122 kind == FunctionKind::kAccessorFunction ||
1123 kind == FunctionKind::kDefaultBaseConstructor ||
1124 kind == FunctionKind::kDefaultDerivedConstructor ||
1125 kind == FunctionKind::kBaseConstructor ||
1126 kind == FunctionKind::kDerivedConstructor ||
1127 kind == FunctionKind::kAsyncFunction ||
1128 kind == FunctionKind::kAsyncArrowFunction ||
1129 kind == FunctionKind::kAsyncConciseMethod;
1130 }
1131
1132
IsArrowFunction(FunctionKind kind)1133 inline bool IsArrowFunction(FunctionKind kind) {
1134 DCHECK(IsValidFunctionKind(kind));
1135 return kind & FunctionKind::kArrowFunction;
1136 }
1137
1138
IsGeneratorFunction(FunctionKind kind)1139 inline bool IsGeneratorFunction(FunctionKind kind) {
1140 DCHECK(IsValidFunctionKind(kind));
1141 return kind & FunctionKind::kGeneratorFunction;
1142 }
1143
IsModule(FunctionKind kind)1144 inline bool IsModule(FunctionKind kind) {
1145 DCHECK(IsValidFunctionKind(kind));
1146 return kind & FunctionKind::kModule;
1147 }
1148
IsAsyncFunction(FunctionKind kind)1149 inline bool IsAsyncFunction(FunctionKind kind) {
1150 DCHECK(IsValidFunctionKind(kind));
1151 return kind & FunctionKind::kAsyncFunction;
1152 }
1153
IsResumableFunction(FunctionKind kind)1154 inline bool IsResumableFunction(FunctionKind kind) {
1155 return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind);
1156 }
1157
IsConciseMethod(FunctionKind kind)1158 inline bool IsConciseMethod(FunctionKind kind) {
1159 DCHECK(IsValidFunctionKind(kind));
1160 return kind & FunctionKind::kConciseMethod;
1161 }
1162
IsGetterFunction(FunctionKind kind)1163 inline bool IsGetterFunction(FunctionKind kind) {
1164 DCHECK(IsValidFunctionKind(kind));
1165 return kind & FunctionKind::kGetterFunction;
1166 }
1167
IsSetterFunction(FunctionKind kind)1168 inline bool IsSetterFunction(FunctionKind kind) {
1169 DCHECK(IsValidFunctionKind(kind));
1170 return kind & FunctionKind::kSetterFunction;
1171 }
1172
IsAccessorFunction(FunctionKind kind)1173 inline bool IsAccessorFunction(FunctionKind kind) {
1174 DCHECK(IsValidFunctionKind(kind));
1175 return kind & FunctionKind::kAccessorFunction;
1176 }
1177
1178
IsDefaultConstructor(FunctionKind kind)1179 inline bool IsDefaultConstructor(FunctionKind kind) {
1180 DCHECK(IsValidFunctionKind(kind));
1181 return kind & FunctionKind::kDefaultConstructor;
1182 }
1183
1184
IsBaseConstructor(FunctionKind kind)1185 inline bool IsBaseConstructor(FunctionKind kind) {
1186 DCHECK(IsValidFunctionKind(kind));
1187 return kind & FunctionKind::kBaseConstructor;
1188 }
1189
IsDerivedConstructor(FunctionKind kind)1190 inline bool IsDerivedConstructor(FunctionKind kind) {
1191 DCHECK(IsValidFunctionKind(kind));
1192 return kind & FunctionKind::kDerivedConstructor;
1193 }
1194
1195
IsClassConstructor(FunctionKind kind)1196 inline bool IsClassConstructor(FunctionKind kind) {
1197 DCHECK(IsValidFunctionKind(kind));
1198 return kind & FunctionKind::kClassConstructor;
1199 }
1200
1201
IsConstructable(FunctionKind kind,LanguageMode mode)1202 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) {
1203 if (IsAccessorFunction(kind)) return false;
1204 if (IsConciseMethod(kind)) return false;
1205 if (IsArrowFunction(kind)) return false;
1206 if (IsGeneratorFunction(kind)) return false;
1207 if (IsAsyncFunction(kind)) return false;
1208 return true;
1209 }
1210
1211 enum class InterpreterPushArgsMode : unsigned {
1212 kJSFunction,
1213 kWithFinalSpread,
1214 kOther
1215 };
1216
hash_value(InterpreterPushArgsMode mode)1217 inline size_t hash_value(InterpreterPushArgsMode mode) {
1218 return bit_cast<unsigned>(mode);
1219 }
1220
1221 inline std::ostream& operator<<(std::ostream& os,
1222 InterpreterPushArgsMode mode) {
1223 switch (mode) {
1224 case InterpreterPushArgsMode::kJSFunction:
1225 return os << "JSFunction";
1226 case InterpreterPushArgsMode::kWithFinalSpread:
1227 return os << "WithFinalSpread";
1228 case InterpreterPushArgsMode::kOther:
1229 return os << "Other";
1230 }
1231 UNREACHABLE();
1232 return os;
1233 }
1234
ObjectHash(Address address)1235 inline uint32_t ObjectHash(Address address) {
1236 // All objects are at least pointer aligned, so we can remove the trailing
1237 // zeros.
1238 return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
1239 kPointerSizeLog2);
1240 }
1241
1242 // Type feedback is encoded in such a way that, we can combine the feedback
1243 // at different points by performing an 'OR' operation. Type feedback moves
1244 // to a more generic type when we combine feedback.
1245 // kSignedSmall -> kNumber -> kNumberOrOddball -> kAny
1246 // kString -> kAny
1247 // TODO(mythria): Remove kNumber type when crankshaft can handle Oddballs
1248 // similar to Numbers. We don't need kNumber feedback for Turbofan. Extra
1249 // information about Number might reduce few instructions but causes more
1250 // deopts. We collect Number only because crankshaft does not handle all
1251 // cases of oddballs.
1252 class BinaryOperationFeedback {
1253 public:
1254 enum {
1255 kNone = 0x0,
1256 kSignedSmall = 0x1,
1257 kNumber = 0x3,
1258 kNumberOrOddball = 0x7,
1259 kString = 0x8,
1260 kAny = 0x1F
1261 };
1262 };
1263
1264 // Type feedback is encoded in such a way that, we can combine the feedback
1265 // at different points by performing an 'OR' operation. Type feedback moves
1266 // to a more generic type when we combine feedback.
1267 // kSignedSmall -> kNumber -> kAny
1268 // kInternalizedString -> kString -> kAny
1269 // kReceiver -> kAny
1270 // TODO(epertoso): consider unifying this with BinaryOperationFeedback.
1271 class CompareOperationFeedback {
1272 public:
1273 enum {
1274 kNone = 0x00,
1275 kSignedSmall = 0x01,
1276 kNumber = 0x3,
1277 kNumberOrOddball = 0x7,
1278 kInternalizedString = 0x8,
1279 kString = 0x18,
1280 kReceiver = 0x20,
1281 kAny = 0x7F
1282 };
1283 };
1284
1285 enum class UnicodeEncoding : uint8_t {
1286 // Different unicode encodings in a |word32|:
1287 UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
1288 UTF32, // full UTF32 code unit / Unicode codepoint
1289 };
1290
hash_value(UnicodeEncoding encoding)1291 inline size_t hash_value(UnicodeEncoding encoding) {
1292 return static_cast<uint8_t>(encoding);
1293 }
1294
1295 inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
1296 switch (encoding) {
1297 case UnicodeEncoding::UTF16:
1298 return os << "UTF16";
1299 case UnicodeEncoding::UTF32:
1300 return os << "UTF32";
1301 }
1302 UNREACHABLE();
1303 return os;
1304 }
1305
1306 enum class IterationKind { kKeys, kValues, kEntries };
1307
1308 inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
1309 switch (kind) {
1310 case IterationKind::kKeys:
1311 return os << "IterationKind::kKeys";
1312 case IterationKind::kValues:
1313 return os << "IterationKind::kValues";
1314 case IterationKind::kEntries:
1315 return os << "IterationKind::kEntries";
1316 }
1317 UNREACHABLE();
1318 return os;
1319 }
1320
1321 // Flags for the runtime function kDefineDataPropertyInLiteral. A property can
1322 // be enumerable or not, and, in case of functions, the function name
1323 // can be set or not.
1324 enum class DataPropertyInLiteralFlag {
1325 kNoFlags = 0,
1326 kDontEnum = 1 << 0,
1327 kSetFunctionName = 1 << 1
1328 };
1329 typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags;
1330 DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)
1331
1332 enum ExternalArrayType {
1333 kExternalInt8Array = 1,
1334 kExternalUint8Array,
1335 kExternalInt16Array,
1336 kExternalUint16Array,
1337 kExternalInt32Array,
1338 kExternalUint32Array,
1339 kExternalFloat32Array,
1340 kExternalFloat64Array,
1341 kExternalUint8ClampedArray,
1342 };
1343
1344 } // namespace internal
1345 } // namespace v8
1346
1347 // Used by js-builtin-reducer to identify whether ReduceArrayIterator() is
1348 // reducing a JSArray method, or a JSTypedArray method.
1349 enum class ArrayIteratorKind { kArray, kTypedArray };
1350
1351 namespace i = v8::internal;
1352
1353 #endif // V8_GLOBALS_H_
1354