1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
18 #define ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
19
20 #include <deque>
21 #include <utility>
22 #include <vector>
23
24 #include "arch/mips64/instruction_set_features_mips64.h"
25 #include "base/arena_containers.h"
26 #include "base/enums.h"
27 #include "base/macros.h"
28 #include "base/stl_util_identity.h"
29 #include "constants_mips64.h"
30 #include "globals.h"
31 #include "managed_register_mips64.h"
32 #include "offsets.h"
33 #include "utils/assembler.h"
34 #include "utils/jni_macro_assembler.h"
35 #include "utils/label.h"
36
37 namespace art {
38 namespace mips64 {
39
40 enum LoadConst64Path {
41 kLoadConst64PathZero = 0x0,
42 kLoadConst64PathOri = 0x1,
43 kLoadConst64PathDaddiu = 0x2,
44 kLoadConst64PathLui = 0x4,
45 kLoadConst64PathLuiOri = 0x8,
46 kLoadConst64PathOriDahi = 0x10,
47 kLoadConst64PathOriDati = 0x20,
48 kLoadConst64PathLuiDahi = 0x40,
49 kLoadConst64PathLuiDati = 0x80,
50 kLoadConst64PathDaddiuDsrlX = 0x100,
51 kLoadConst64PathOriDsllX = 0x200,
52 kLoadConst64PathDaddiuDsllX = 0x400,
53 kLoadConst64PathLuiOriDsllX = 0x800,
54 kLoadConst64PathOriDsllXOri = 0x1000,
55 kLoadConst64PathDaddiuDsllXOri = 0x2000,
56 kLoadConst64PathDaddiuDahi = 0x4000,
57 kLoadConst64PathDaddiuDati = 0x8000,
58 kLoadConst64PathDinsu1 = 0x10000,
59 kLoadConst64PathDinsu2 = 0x20000,
60 kLoadConst64PathCatchAll = 0x40000,
61 kLoadConst64PathAllPaths = 0x7ffff,
62 };
63
64 template <typename Asm>
TemplateLoadConst32(Asm * a,GpuRegister rd,int32_t value)65 void TemplateLoadConst32(Asm* a, GpuRegister rd, int32_t value) {
66 if (IsUint<16>(value)) {
67 // Use OR with (unsigned) immediate to encode 16b unsigned int.
68 a->Ori(rd, ZERO, value);
69 } else if (IsInt<16>(value)) {
70 // Use ADD with (signed) immediate to encode 16b signed int.
71 a->Addiu(rd, ZERO, value);
72 } else {
73 // Set 16 most significant bits of value. The "lui" instruction
74 // also clears the 16 least significant bits to zero.
75 a->Lui(rd, value >> 16);
76 if (value & 0xFFFF) {
77 // If the 16 least significant bits are non-zero, set them
78 // here.
79 a->Ori(rd, rd, value);
80 }
81 }
82 }
83
InstrCountForLoadReplicatedConst32(int64_t value)84 static inline int InstrCountForLoadReplicatedConst32(int64_t value) {
85 int32_t x = Low32Bits(value);
86 int32_t y = High32Bits(value);
87
88 if (x == y) {
89 return (IsUint<16>(x) || IsInt<16>(x) || ((x & 0xFFFF) == 0 && IsInt<16>(value >> 16))) ? 2 : 3;
90 }
91
92 return INT_MAX;
93 }
94
95 template <typename Asm, typename Rtype, typename Vtype>
TemplateLoadConst64(Asm * a,Rtype rd,Vtype value)96 void TemplateLoadConst64(Asm* a, Rtype rd, Vtype value) {
97 int bit31 = (value & UINT64_C(0x80000000)) != 0;
98 int rep32_count = InstrCountForLoadReplicatedConst32(value);
99
100 // Loads with 1 instruction.
101 if (IsUint<16>(value)) {
102 // 64-bit value can be loaded as an unsigned 16-bit number.
103 a->RecordLoadConst64Path(kLoadConst64PathOri);
104 a->Ori(rd, ZERO, value);
105 } else if (IsInt<16>(value)) {
106 // 64-bit value can be loaded as an signed 16-bit number.
107 a->RecordLoadConst64Path(kLoadConst64PathDaddiu);
108 a->Daddiu(rd, ZERO, value);
109 } else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) {
110 // 64-bit value can be loaded as an signed 32-bit number which has all
111 // of its 16 least significant bits set to zero.
112 a->RecordLoadConst64Path(kLoadConst64PathLui);
113 a->Lui(rd, value >> 16);
114 } else if (IsInt<32>(value)) {
115 // Loads with 2 instructions.
116 // 64-bit value can be loaded as an signed 32-bit number which has some
117 // or all of its 16 least significant bits set to one.
118 a->RecordLoadConst64Path(kLoadConst64PathLuiOri);
119 a->Lui(rd, value >> 16);
120 a->Ori(rd, rd, value);
121 } else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) {
122 // 64-bit value which consists of an unsigned 16-bit value in its
123 // least significant 32-bits, and a signed 16-bit value in its
124 // most significant 32-bits.
125 a->RecordLoadConst64Path(kLoadConst64PathOriDahi);
126 a->Ori(rd, ZERO, value);
127 a->Dahi(rd, value >> 32);
128 } else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) {
129 // 64-bit value which consists of an unsigned 16-bit value in its
130 // least significant 48-bits, and a signed 16-bit value in its
131 // most significant 16-bits.
132 a->RecordLoadConst64Path(kLoadConst64PathOriDati);
133 a->Ori(rd, ZERO, value);
134 a->Dati(rd, value >> 48);
135 } else if ((value & 0xFFFF) == 0 &&
136 (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
137 // 16 LSBs (Least Significant Bits) all set to zero.
138 // 48 MSBs (Most Significant Bits) hold a signed 32-bit value.
139 a->RecordLoadConst64Path(kLoadConst64PathLuiDahi);
140 a->Lui(rd, value >> 16);
141 a->Dahi(rd, (value >> 32) + bit31);
142 } else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
143 // 16 LSBs all set to zero.
144 // 48 MSBs hold a signed value which can't be represented by signed
145 // 32-bit number, and the middle 16 bits are all zero, or all one.
146 a->RecordLoadConst64Path(kLoadConst64PathLuiDati);
147 a->Lui(rd, value >> 16);
148 a->Dati(rd, (value >> 48) + bit31);
149 } else if (IsInt<16>(static_cast<int32_t>(value)) &&
150 (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
151 // 32 LSBs contain an unsigned 16-bit number.
152 // 32 MSBs contain a signed 16-bit number.
153 a->RecordLoadConst64Path(kLoadConst64PathDaddiuDahi);
154 a->Daddiu(rd, ZERO, value);
155 a->Dahi(rd, (value >> 32) + bit31);
156 } else if (IsInt<16>(static_cast<int32_t>(value)) &&
157 ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
158 // 48 LSBs contain an unsigned 16-bit number.
159 // 16 MSBs contain a signed 16-bit number.
160 a->RecordLoadConst64Path(kLoadConst64PathDaddiuDati);
161 a->Daddiu(rd, ZERO, value);
162 a->Dati(rd, (value >> 48) + bit31);
163 } else if (IsPowerOfTwo(value + UINT64_C(1))) {
164 // 64-bit values which have their "n" MSBs set to one, and their
165 // "64-n" LSBs set to zero. "n" must meet the restrictions 0 < n < 64.
166 int shift_cnt = 64 - CTZ(value + UINT64_C(1));
167 a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsrlX);
168 a->Daddiu(rd, ZERO, -1);
169 if (shift_cnt < 32) {
170 a->Dsrl(rd, rd, shift_cnt);
171 } else {
172 a->Dsrl32(rd, rd, shift_cnt & 31);
173 }
174 } else {
175 int shift_cnt = CTZ(value);
176 int64_t tmp = value >> shift_cnt;
177 a->RecordLoadConst64Path(kLoadConst64PathOriDsllX);
178 if (IsUint<16>(tmp)) {
179 // Value can be computed by loading a 16-bit unsigned value, and
180 // then shifting left.
181 a->Ori(rd, ZERO, tmp);
182 if (shift_cnt < 32) {
183 a->Dsll(rd, rd, shift_cnt);
184 } else {
185 a->Dsll32(rd, rd, shift_cnt & 31);
186 }
187 } else if (IsInt<16>(tmp)) {
188 // Value can be computed by loading a 16-bit signed value, and
189 // then shifting left.
190 a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllX);
191 a->Daddiu(rd, ZERO, tmp);
192 if (shift_cnt < 32) {
193 a->Dsll(rd, rd, shift_cnt);
194 } else {
195 a->Dsll32(rd, rd, shift_cnt & 31);
196 }
197 } else if (rep32_count < 3) {
198 // Value being loaded has 32 LSBs equal to the 32 MSBs, and the
199 // value loaded into the 32 LSBs can be loaded with a single
200 // MIPS instruction.
201 a->LoadConst32(rd, value);
202 a->Dinsu(rd, rd, 32, 32);
203 a->RecordLoadConst64Path(kLoadConst64PathDinsu1);
204 } else if (IsInt<32>(tmp)) {
205 // Loads with 3 instructions.
206 // Value can be computed by loading a 32-bit signed value, and
207 // then shifting left.
208 a->RecordLoadConst64Path(kLoadConst64PathLuiOriDsllX);
209 a->Lui(rd, tmp >> 16);
210 a->Ori(rd, rd, tmp);
211 if (shift_cnt < 32) {
212 a->Dsll(rd, rd, shift_cnt);
213 } else {
214 a->Dsll32(rd, rd, shift_cnt & 31);
215 }
216 } else {
217 shift_cnt = 16 + CTZ(value >> 16);
218 tmp = value >> shift_cnt;
219 if (IsUint<16>(tmp)) {
220 // Value can be computed by loading a 16-bit unsigned value,
221 // shifting left, and "or"ing in another 16-bit unsigned value.
222 a->RecordLoadConst64Path(kLoadConst64PathOriDsllXOri);
223 a->Ori(rd, ZERO, tmp);
224 if (shift_cnt < 32) {
225 a->Dsll(rd, rd, shift_cnt);
226 } else {
227 a->Dsll32(rd, rd, shift_cnt & 31);
228 }
229 a->Ori(rd, rd, value);
230 } else if (IsInt<16>(tmp)) {
231 // Value can be computed by loading a 16-bit signed value,
232 // shifting left, and "or"ing in a 16-bit unsigned value.
233 a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllXOri);
234 a->Daddiu(rd, ZERO, tmp);
235 if (shift_cnt < 32) {
236 a->Dsll(rd, rd, shift_cnt);
237 } else {
238 a->Dsll32(rd, rd, shift_cnt & 31);
239 }
240 a->Ori(rd, rd, value);
241 } else if (rep32_count < 4) {
242 // Value being loaded has 32 LSBs equal to the 32 MSBs, and the
243 // value in the 32 LSBs requires 2 MIPS instructions to load.
244 a->LoadConst32(rd, value);
245 a->Dinsu(rd, rd, 32, 32);
246 a->RecordLoadConst64Path(kLoadConst64PathDinsu2);
247 } else {
248 // Loads with 3-4 instructions.
249 // Catch-all case to get any other 64-bit values which aren't
250 // handled by special cases above.
251 uint64_t tmp2 = value;
252 a->RecordLoadConst64Path(kLoadConst64PathCatchAll);
253 a->LoadConst32(rd, value);
254 if (bit31) {
255 tmp2 += UINT64_C(0x100000000);
256 }
257 if (((tmp2 >> 32) & 0xFFFF) != 0) {
258 a->Dahi(rd, tmp2 >> 32);
259 }
260 if (tmp2 & UINT64_C(0x800000000000)) {
261 tmp2 += UINT64_C(0x1000000000000);
262 }
263 if ((tmp2 >> 48) != 0) {
264 a->Dati(rd, tmp2 >> 48);
265 }
266 }
267 }
268 }
269 }
270
271 static constexpr size_t kMips64HalfwordSize = 2;
272 static constexpr size_t kMips64WordSize = 4;
273 static constexpr size_t kMips64DoublewordSize = 8;
274
275 enum LoadOperandType {
276 kLoadSignedByte,
277 kLoadUnsignedByte,
278 kLoadSignedHalfword,
279 kLoadUnsignedHalfword,
280 kLoadWord,
281 kLoadUnsignedWord,
282 kLoadDoubleword,
283 kLoadQuadword
284 };
285
286 enum StoreOperandType {
287 kStoreByte,
288 kStoreHalfword,
289 kStoreWord,
290 kStoreDoubleword,
291 kStoreQuadword
292 };
293
294 // Used to test the values returned by ClassS/ClassD.
295 enum FPClassMaskType {
296 kSignalingNaN = 0x001,
297 kQuietNaN = 0x002,
298 kNegativeInfinity = 0x004,
299 kNegativeNormal = 0x008,
300 kNegativeSubnormal = 0x010,
301 kNegativeZero = 0x020,
302 kPositiveInfinity = 0x040,
303 kPositiveNormal = 0x080,
304 kPositiveSubnormal = 0x100,
305 kPositiveZero = 0x200,
306 };
307
308 class Mips64Label : public Label {
309 public:
Mips64Label()310 Mips64Label() : prev_branch_id_plus_one_(0) {}
311
Mips64Label(Mips64Label && src)312 Mips64Label(Mips64Label&& src)
313 : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
314
315 private:
316 uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any.
317
318 friend class Mips64Assembler;
319 DISALLOW_COPY_AND_ASSIGN(Mips64Label);
320 };
321
322 // Assembler literal is a value embedded in code, retrieved using a PC-relative load.
323 class Literal {
324 public:
325 static constexpr size_t kMaxSize = 8;
326
Literal(uint32_t size,const uint8_t * data)327 Literal(uint32_t size, const uint8_t* data)
328 : label_(), size_(size) {
329 DCHECK_LE(size, Literal::kMaxSize);
330 memcpy(data_, data, size);
331 }
332
333 template <typename T>
GetValue()334 T GetValue() const {
335 DCHECK_EQ(size_, sizeof(T));
336 T value;
337 memcpy(&value, data_, sizeof(T));
338 return value;
339 }
340
GetSize()341 uint32_t GetSize() const {
342 return size_;
343 }
344
GetData()345 const uint8_t* GetData() const {
346 return data_;
347 }
348
GetLabel()349 Mips64Label* GetLabel() {
350 return &label_;
351 }
352
GetLabel()353 const Mips64Label* GetLabel() const {
354 return &label_;
355 }
356
357 private:
358 Mips64Label label_;
359 const uint32_t size_;
360 uint8_t data_[kMaxSize];
361
362 DISALLOW_COPY_AND_ASSIGN(Literal);
363 };
364
365 // Jump table: table of labels emitted after the code and before the literals. Similar to literals.
366 class JumpTable {
367 public:
JumpTable(std::vector<Mips64Label * > && labels)368 explicit JumpTable(std::vector<Mips64Label*>&& labels)
369 : label_(), labels_(std::move(labels)) {
370 }
371
GetSize()372 size_t GetSize() const {
373 return labels_.size() * sizeof(uint32_t);
374 }
375
GetData()376 const std::vector<Mips64Label*>& GetData() const {
377 return labels_;
378 }
379
GetLabel()380 Mips64Label* GetLabel() {
381 return &label_;
382 }
383
GetLabel()384 const Mips64Label* GetLabel() const {
385 return &label_;
386 }
387
388 private:
389 Mips64Label label_;
390 std::vector<Mips64Label*> labels_;
391
392 DISALLOW_COPY_AND_ASSIGN(JumpTable);
393 };
394
395 // Slowpath entered when Thread::Current()->_exception is non-null.
396 class Mips64ExceptionSlowPath {
397 public:
Mips64ExceptionSlowPath(Mips64ManagedRegister scratch,size_t stack_adjust)398 explicit Mips64ExceptionSlowPath(Mips64ManagedRegister scratch, size_t stack_adjust)
399 : scratch_(scratch), stack_adjust_(stack_adjust) {}
400
Mips64ExceptionSlowPath(Mips64ExceptionSlowPath && src)401 Mips64ExceptionSlowPath(Mips64ExceptionSlowPath&& src)
402 : scratch_(src.scratch_),
403 stack_adjust_(src.stack_adjust_),
404 exception_entry_(std::move(src.exception_entry_)) {}
405
406 private:
Entry()407 Mips64Label* Entry() { return &exception_entry_; }
408 const Mips64ManagedRegister scratch_;
409 const size_t stack_adjust_;
410 Mips64Label exception_entry_;
411
412 friend class Mips64Assembler;
413 DISALLOW_COPY_AND_ASSIGN(Mips64ExceptionSlowPath);
414 };
415
416 class Mips64Assembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k64> {
417 public:
418 using JNIBase = JNIMacroAssembler<PointerSize::k64>;
419
420 explicit Mips64Assembler(ArenaAllocator* arena,
421 const Mips64InstructionSetFeatures* instruction_set_features = nullptr)
Assembler(arena)422 : Assembler(arena),
423 overwriting_(false),
424 overwrite_location_(0),
425 literals_(arena->Adapter(kArenaAllocAssembler)),
426 long_literals_(arena->Adapter(kArenaAllocAssembler)),
427 jump_tables_(arena->Adapter(kArenaAllocAssembler)),
428 last_position_adjustment_(0),
429 last_old_position_(0),
430 last_branch_id_(0),
431 has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false) {
432 cfi().DelayEmittingAdvancePCs();
433 }
434
~Mips64Assembler()435 virtual ~Mips64Assembler() {
436 for (auto& branch : branches_) {
437 CHECK(branch.IsResolved());
438 }
439 }
440
CodeSize()441 size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
cfi()442 DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
443
444 // Emit Machine Instructions.
445 void Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
446 void Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
447 void Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
448 void Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
449 void Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
450 void Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
451
452 void MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
453 void MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
454 void DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
455 void ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
456 void DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
457 void ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
458 void Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
459 void Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
460 void Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
461 void Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
462 void Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
463 void Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
464
465 void And(GpuRegister rd, GpuRegister rs, GpuRegister rt);
466 void Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16);
467 void Or(GpuRegister rd, GpuRegister rs, GpuRegister rt);
468 void Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16);
469 void Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt);
470 void Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16);
471 void Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt);
472
473 void Bitswap(GpuRegister rd, GpuRegister rt);
474 void Dbitswap(GpuRegister rd, GpuRegister rt); // MIPS64
475 void Seb(GpuRegister rd, GpuRegister rt);
476 void Seh(GpuRegister rd, GpuRegister rt);
477 void Dsbh(GpuRegister rd, GpuRegister rt); // MIPS64
478 void Dshd(GpuRegister rd, GpuRegister rt); // MIPS64
479 void Dext(GpuRegister rs, GpuRegister rt, int pos, int size); // MIPS64
480 void Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64
481 void Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne);
482 void Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne); // MIPS64
483 void Wsbh(GpuRegister rd, GpuRegister rt);
484 void Sc(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);
485 void Scd(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64
486 void Ll(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);
487 void Lld(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64
488
489 void Sll(GpuRegister rd, GpuRegister rt, int shamt);
490 void Srl(GpuRegister rd, GpuRegister rt, int shamt);
491 void Rotr(GpuRegister rd, GpuRegister rt, int shamt);
492 void Sra(GpuRegister rd, GpuRegister rt, int shamt);
493 void Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
494 void Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
495 void Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
496 void Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs);
497 void Dsll(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
498 void Dsrl(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
499 void Drotr(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
500 void Dsra(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
501 void Dsll32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
502 void Dsrl32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
503 void Drotr32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
504 void Dsra32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
505 void Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
506 void Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
507 void Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
508 void Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
509
510 void Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16);
511 void Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16);
512 void Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16);
513 void Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
514 void Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
515 void Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
516 void Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
517 void Lwpc(GpuRegister rs, uint32_t imm19);
518 void Lwupc(GpuRegister rs, uint32_t imm19); // MIPS64
519 void Ldpc(GpuRegister rs, uint32_t imm18); // MIPS64
520 void Lui(GpuRegister rt, uint16_t imm16);
521 void Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16);
522 void Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
523 void Dahi(GpuRegister rs, uint16_t imm16); // MIPS64
524 void Dati(GpuRegister rs, uint16_t imm16); // MIPS64
525 void Sync(uint32_t stype);
526
527 void Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16);
528 void Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16);
529 void Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16);
530 void Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
531
532 void Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt);
533 void Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
534 void Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16);
535 void Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
536 void Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt);
537 void Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt);
538 void Clz(GpuRegister rd, GpuRegister rs);
539 void Clo(GpuRegister rd, GpuRegister rs);
540 void Dclz(GpuRegister rd, GpuRegister rs); // MIPS64
541 void Dclo(GpuRegister rd, GpuRegister rs); // MIPS64
542
543 void Jalr(GpuRegister rd, GpuRegister rs);
544 void Jalr(GpuRegister rs);
545 void Jr(GpuRegister rs);
546 void Auipc(GpuRegister rs, uint16_t imm16);
547 void Addiupc(GpuRegister rs, uint32_t imm19);
548 void Bc(uint32_t imm26);
549 void Balc(uint32_t imm26);
550 void Jic(GpuRegister rt, uint16_t imm16);
551 void Jialc(GpuRegister rt, uint16_t imm16);
552 void Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
553 void Bltzc(GpuRegister rt, uint16_t imm16);
554 void Bgtzc(GpuRegister rt, uint16_t imm16);
555 void Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16);
556 void Bgezc(GpuRegister rt, uint16_t imm16);
557 void Blezc(GpuRegister rt, uint16_t imm16);
558 void Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
559 void Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
560 void Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
561 void Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16);
562 void Beqzc(GpuRegister rs, uint32_t imm21);
563 void Bnezc(GpuRegister rs, uint32_t imm21);
564 void Bc1eqz(FpuRegister ft, uint16_t imm16);
565 void Bc1nez(FpuRegister ft, uint16_t imm16);
566
567 void AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
568 void SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
569 void MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
570 void DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
571 void AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
572 void SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
573 void MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
574 void DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
575 void SqrtS(FpuRegister fd, FpuRegister fs);
576 void SqrtD(FpuRegister fd, FpuRegister fs);
577 void AbsS(FpuRegister fd, FpuRegister fs);
578 void AbsD(FpuRegister fd, FpuRegister fs);
579 void MovS(FpuRegister fd, FpuRegister fs);
580 void MovD(FpuRegister fd, FpuRegister fs);
581 void NegS(FpuRegister fd, FpuRegister fs);
582 void NegD(FpuRegister fd, FpuRegister fs);
583 void RoundLS(FpuRegister fd, FpuRegister fs);
584 void RoundLD(FpuRegister fd, FpuRegister fs);
585 void RoundWS(FpuRegister fd, FpuRegister fs);
586 void RoundWD(FpuRegister fd, FpuRegister fs);
587 void TruncLS(FpuRegister fd, FpuRegister fs);
588 void TruncLD(FpuRegister fd, FpuRegister fs);
589 void TruncWS(FpuRegister fd, FpuRegister fs);
590 void TruncWD(FpuRegister fd, FpuRegister fs);
591 void CeilLS(FpuRegister fd, FpuRegister fs);
592 void CeilLD(FpuRegister fd, FpuRegister fs);
593 void CeilWS(FpuRegister fd, FpuRegister fs);
594 void CeilWD(FpuRegister fd, FpuRegister fs);
595 void FloorLS(FpuRegister fd, FpuRegister fs);
596 void FloorLD(FpuRegister fd, FpuRegister fs);
597 void FloorWS(FpuRegister fd, FpuRegister fs);
598 void FloorWD(FpuRegister fd, FpuRegister fs);
599 void SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
600 void SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
601 void RintS(FpuRegister fd, FpuRegister fs);
602 void RintD(FpuRegister fd, FpuRegister fs);
603 void ClassS(FpuRegister fd, FpuRegister fs);
604 void ClassD(FpuRegister fd, FpuRegister fs);
605 void MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
606 void MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
607 void MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
608 void MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
609 void CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
610 void CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
611 void CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
612 void CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
613 void CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
614 void CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
615 void CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
616 void CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
617 void CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
618 void CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
619 void CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
620 void CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
621 void CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
622 void CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
623 void CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
624 void CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
625 void CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
626 void CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
627 void CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
628 void CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
629
630 void Cvtsw(FpuRegister fd, FpuRegister fs);
631 void Cvtdw(FpuRegister fd, FpuRegister fs);
632 void Cvtsd(FpuRegister fd, FpuRegister fs);
633 void Cvtds(FpuRegister fd, FpuRegister fs);
634 void Cvtsl(FpuRegister fd, FpuRegister fs);
635 void Cvtdl(FpuRegister fd, FpuRegister fs);
636
637 void Mfc1(GpuRegister rt, FpuRegister fs);
638 void Mfhc1(GpuRegister rt, FpuRegister fs);
639 void Mtc1(GpuRegister rt, FpuRegister fs);
640 void Mthc1(GpuRegister rt, FpuRegister fs);
641 void Dmfc1(GpuRegister rt, FpuRegister fs); // MIPS64
642 void Dmtc1(GpuRegister rt, FpuRegister fs); // MIPS64
643 void Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
644 void Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
645 void Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
646 void Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
647
648 void Break();
649 void Nop();
650 void Move(GpuRegister rd, GpuRegister rs);
651 void Clear(GpuRegister rd);
652 void Not(GpuRegister rd, GpuRegister rs);
653
654 // MSA instructions.
655 void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
656 void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
657 void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
658 void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
659
660 void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
661 void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
662 void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
663 void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
664 void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
665 void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
666 void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
667 void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
668 void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
669 void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
670 void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
671 void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
672 void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
673 void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
674 void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
675 void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
676 void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
677 void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
678 void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
679 void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
680 void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
681 void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
682 void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
683 void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
684 void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
685 void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
686 void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
687 void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
688 void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
689 void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
690 void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
691 void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
692 void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
693 void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
694 void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
695 void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
696 void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
697 void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
698 void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
699 void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
700 void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
701 void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
702 void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
703 void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
704 void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
705 void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
706 void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
707 void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
708 void Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
709 void Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
710 void Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
711 void Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
712 void Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
713 void Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
714 void Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
715 void Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
716 void Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
717 void Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
718 void Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
719 void Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
720 void Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
721 void Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
722 void Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
723 void Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
724
725 void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
726 void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
727 void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
728 void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
729 void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
730 void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
731 void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
732 void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
733 void FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
734 void FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
735 void FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
736 void FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
737
738 void Ffint_sW(VectorRegister wd, VectorRegister ws);
739 void Ffint_sD(VectorRegister wd, VectorRegister ws);
740 void Ftint_sW(VectorRegister wd, VectorRegister ws);
741 void Ftint_sD(VectorRegister wd, VectorRegister ws);
742
743 void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
744 void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
745 void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
746 void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
747 void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
748 void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
749 void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
750 void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
751 void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
752 void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
753 void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
754 void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
755
756 // Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1).
757 void SlliB(VectorRegister wd, VectorRegister ws, int shamt3);
758 void SlliH(VectorRegister wd, VectorRegister ws, int shamt4);
759 void SlliW(VectorRegister wd, VectorRegister ws, int shamt5);
760 void SlliD(VectorRegister wd, VectorRegister ws, int shamt6);
761 void SraiB(VectorRegister wd, VectorRegister ws, int shamt3);
762 void SraiH(VectorRegister wd, VectorRegister ws, int shamt4);
763 void SraiW(VectorRegister wd, VectorRegister ws, int shamt5);
764 void SraiD(VectorRegister wd, VectorRegister ws, int shamt6);
765 void SrliB(VectorRegister wd, VectorRegister ws, int shamt3);
766 void SrliH(VectorRegister wd, VectorRegister ws, int shamt4);
767 void SrliW(VectorRegister wd, VectorRegister ws, int shamt5);
768 void SrliD(VectorRegister wd, VectorRegister ws, int shamt6);
769
770 void MoveV(VectorRegister wd, VectorRegister ws);
771 void SplatiB(VectorRegister wd, VectorRegister ws, int n4);
772 void SplatiH(VectorRegister wd, VectorRegister ws, int n3);
773 void SplatiW(VectorRegister wd, VectorRegister ws, int n2);
774 void SplatiD(VectorRegister wd, VectorRegister ws, int n1);
775 void FillB(VectorRegister wd, GpuRegister rs);
776 void FillH(VectorRegister wd, GpuRegister rs);
777 void FillW(VectorRegister wd, GpuRegister rs);
778 void FillD(VectorRegister wd, GpuRegister rs);
779
780 void LdiB(VectorRegister wd, int imm8);
781 void LdiH(VectorRegister wd, int imm10);
782 void LdiW(VectorRegister wd, int imm10);
783 void LdiD(VectorRegister wd, int imm10);
784 void LdB(VectorRegister wd, GpuRegister rs, int offset);
785 void LdH(VectorRegister wd, GpuRegister rs, int offset);
786 void LdW(VectorRegister wd, GpuRegister rs, int offset);
787 void LdD(VectorRegister wd, GpuRegister rs, int offset);
788 void StB(VectorRegister wd, GpuRegister rs, int offset);
789 void StH(VectorRegister wd, GpuRegister rs, int offset);
790 void StW(VectorRegister wd, GpuRegister rs, int offset);
791 void StD(VectorRegister wd, GpuRegister rs, int offset);
792
793 void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
794 void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
795 void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
796 void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
797
798 // Helper for replicating floating point value in all destination elements.
799 void ReplicateFPToVectorRegister(VectorRegister dst, FpuRegister src, bool is_double);
800
801 // Higher level composite instructions.
802 int InstrCountForLoadReplicatedConst32(int64_t);
803 void LoadConst32(GpuRegister rd, int32_t value);
804 void LoadConst64(GpuRegister rd, int64_t value); // MIPS64
805
806 // This function is only used for testing purposes.
807 void RecordLoadConst64Path(int value);
808
809 void Addiu32(GpuRegister rt, GpuRegister rs, int32_t value);
810 void Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp = AT); // MIPS64
811
812 //
813 // Heap poisoning.
814 //
815
816 // Poison a heap reference contained in `src` and store it in `dst`.
PoisonHeapReference(GpuRegister dst,GpuRegister src)817 void PoisonHeapReference(GpuRegister dst, GpuRegister src) {
818 // dst = -src.
819 // Negate the 32-bit ref.
820 Dsubu(dst, ZERO, src);
821 // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64.
822 Dext(dst, dst, 0, 32);
823 }
824 // Poison a heap reference contained in `reg`.
PoisonHeapReference(GpuRegister reg)825 void PoisonHeapReference(GpuRegister reg) {
826 // reg = -reg.
827 PoisonHeapReference(reg, reg);
828 }
829 // Unpoison a heap reference contained in `reg`.
UnpoisonHeapReference(GpuRegister reg)830 void UnpoisonHeapReference(GpuRegister reg) {
831 // reg = -reg.
832 // Negate the 32-bit ref.
833 Dsubu(reg, ZERO, reg);
834 // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64.
835 Dext(reg, reg, 0, 32);
836 }
837 // Poison a heap reference contained in `reg` if heap poisoning is enabled.
MaybePoisonHeapReference(GpuRegister reg)838 void MaybePoisonHeapReference(GpuRegister reg) {
839 if (kPoisonHeapReferences) {
840 PoisonHeapReference(reg);
841 }
842 }
843 // Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
MaybeUnpoisonHeapReference(GpuRegister reg)844 void MaybeUnpoisonHeapReference(GpuRegister reg) {
845 if (kPoisonHeapReferences) {
846 UnpoisonHeapReference(reg);
847 }
848 }
849
Bind(Label * label)850 void Bind(Label* label) OVERRIDE {
851 Bind(down_cast<Mips64Label*>(label));
852 }
Jump(Label * label ATTRIBUTE_UNUSED)853 void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
854 UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS64";
855 }
856
857 void Bind(Mips64Label* label);
858
859 // Don't warn about a different virtual Bind/Jump in the base class.
860 using JNIBase::Bind;
861 using JNIBase::Jump;
862
863 // Create a new label that can be used with Jump/Bind calls.
CreateLabel()864 std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
865 LOG(FATAL) << "Not implemented on MIPS64";
866 UNREACHABLE();
867 }
868 // Emit an unconditional jump to the label.
Jump(JNIMacroLabel * label ATTRIBUTE_UNUSED)869 void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
870 LOG(FATAL) << "Not implemented on MIPS64";
871 UNREACHABLE();
872 }
873 // Emit a conditional jump to the label by applying a unary condition test to the register.
Jump(JNIMacroLabel * label ATTRIBUTE_UNUSED,JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,ManagedRegister test ATTRIBUTE_UNUSED)874 void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
875 JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
876 ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
877 LOG(FATAL) << "Not implemented on MIPS64";
878 UNREACHABLE();
879 }
880
881 // Code at this offset will serve as the target for the Jump call.
Bind(JNIMacroLabel * label ATTRIBUTE_UNUSED)882 void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
883 LOG(FATAL) << "Not implemented on MIPS64";
884 UNREACHABLE();
885 }
886
887 // Create a new literal with a given value.
888 // NOTE: Force the template parameter to be explicitly specified.
889 template <typename T>
NewLiteral(typename Identity<T>::type value)890 Literal* NewLiteral(typename Identity<T>::type value) {
891 static_assert(std::is_integral<T>::value, "T must be an integral type.");
892 return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
893 }
894
895 // Load label address using PC-relative loads. To be used with data labels in the literal /
896 // jump table area only and not with regular code labels.
897 void LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label);
898
899 // Create a new literal with the given data.
900 Literal* NewLiteral(size_t size, const uint8_t* data);
901
902 // Load literal using PC-relative loads.
903 void LoadLiteral(GpuRegister dest_reg, LoadOperandType load_type, Literal* literal);
904
905 // Create a jump table for the given labels that will be emitted when finalizing.
906 // When the table is emitted, offsets will be relative to the location of the table.
907 // The table location is determined by the location of its label (the label precedes
908 // the table data) and should be loaded using LoadLabelAddress().
909 JumpTable* CreateJumpTable(std::vector<Mips64Label*>&& labels);
910
911 void Bc(Mips64Label* label);
912 void Balc(Mips64Label* label);
913 void Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
914 void Bltzc(GpuRegister rt, Mips64Label* label);
915 void Bgtzc(GpuRegister rt, Mips64Label* label);
916 void Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label);
917 void Bgezc(GpuRegister rt, Mips64Label* label);
918 void Blezc(GpuRegister rt, Mips64Label* label);
919 void Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
920 void Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
921 void Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
922 void Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label);
923 void Beqzc(GpuRegister rs, Mips64Label* label);
924 void Bnezc(GpuRegister rs, Mips64Label* label);
925 void Bc1eqz(FpuRegister ft, Mips64Label* label);
926 void Bc1nez(FpuRegister ft, Mips64Label* label);
927
928 void EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size);
929 void AdjustBaseAndOffset(GpuRegister& base, int32_t& offset, bool is_doubleword);
930 // If element_size_shift is negative at entry, its value will be calculated based on the offset.
931 void AdjustBaseOffsetAndElementSizeShift(GpuRegister& base,
932 int32_t& offset,
933 int& element_size_shift);
934
935 private:
936 // This will be used as an argument for loads/stores
937 // when there is no need for implicit null checks.
938 struct NoImplicitNullChecker {
operatorNoImplicitNullChecker939 void operator()() const {}
940 };
941
942 public:
943 template <typename ImplicitNullChecker = NoImplicitNullChecker>
944 void StoreConstToOffset(StoreOperandType type,
945 int64_t value,
946 GpuRegister base,
947 int32_t offset,
948 GpuRegister temp,
949 ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
950 // We permit `base` and `temp` to coincide (however, we check that neither is AT),
951 // in which case the `base` register may be overwritten in the process.
952 CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base.
953 AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
954 GpuRegister reg;
955 // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
956 // to load and hold the value but we can use AT instead as AT hasn't been used yet.
957 // Otherwise, `temp` can be used for the value. And if `temp` is the same as the
958 // original `base` (that is, `base` prior to the adjustment), the original `base`
959 // register will be overwritten.
960 if (base == temp) {
961 temp = AT;
962 }
963
964 if (type == kStoreDoubleword && IsAligned<kMips64DoublewordSize>(offset)) {
965 if (value == 0) {
966 reg = ZERO;
967 } else {
968 reg = temp;
969 LoadConst64(reg, value);
970 }
971 Sd(reg, base, offset);
972 null_checker();
973 } else {
974 uint32_t low = Low32Bits(value);
975 uint32_t high = High32Bits(value);
976 if (low == 0) {
977 reg = ZERO;
978 } else {
979 reg = temp;
980 LoadConst32(reg, low);
981 }
982 switch (type) {
983 case kStoreByte:
984 Sb(reg, base, offset);
985 break;
986 case kStoreHalfword:
987 Sh(reg, base, offset);
988 break;
989 case kStoreWord:
990 Sw(reg, base, offset);
991 break;
992 case kStoreDoubleword:
993 // not aligned to kMips64DoublewordSize
994 CHECK_ALIGNED(offset, kMips64WordSize);
995 Sw(reg, base, offset);
996 null_checker();
997 if (high == 0) {
998 reg = ZERO;
999 } else {
1000 reg = temp;
1001 if (high != low) {
1002 LoadConst32(reg, high);
1003 }
1004 }
1005 Sw(reg, base, offset + kMips64WordSize);
1006 break;
1007 default:
1008 LOG(FATAL) << "UNREACHABLE";
1009 }
1010 if (type != kStoreDoubleword) {
1011 null_checker();
1012 }
1013 }
1014 }
1015
1016 template <typename ImplicitNullChecker = NoImplicitNullChecker>
1017 void LoadFromOffset(LoadOperandType type,
1018 GpuRegister reg,
1019 GpuRegister base,
1020 int32_t offset,
1021 ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1022 AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
1023
1024 switch (type) {
1025 case kLoadSignedByte:
1026 Lb(reg, base, offset);
1027 break;
1028 case kLoadUnsignedByte:
1029 Lbu(reg, base, offset);
1030 break;
1031 case kLoadSignedHalfword:
1032 Lh(reg, base, offset);
1033 break;
1034 case kLoadUnsignedHalfword:
1035 Lhu(reg, base, offset);
1036 break;
1037 case kLoadWord:
1038 CHECK_ALIGNED(offset, kMips64WordSize);
1039 Lw(reg, base, offset);
1040 break;
1041 case kLoadUnsignedWord:
1042 CHECK_ALIGNED(offset, kMips64WordSize);
1043 Lwu(reg, base, offset);
1044 break;
1045 case kLoadDoubleword:
1046 if (!IsAligned<kMips64DoublewordSize>(offset)) {
1047 CHECK_ALIGNED(offset, kMips64WordSize);
1048 Lwu(reg, base, offset);
1049 null_checker();
1050 Lwu(TMP2, base, offset + kMips64WordSize);
1051 Dinsu(reg, TMP2, 32, 32);
1052 } else {
1053 Ld(reg, base, offset);
1054 null_checker();
1055 }
1056 break;
1057 default:
1058 LOG(FATAL) << "UNREACHABLE";
1059 }
1060 if (type != kLoadDoubleword) {
1061 null_checker();
1062 }
1063 }
1064
1065 template <typename ImplicitNullChecker = NoImplicitNullChecker>
1066 void LoadFpuFromOffset(LoadOperandType type,
1067 FpuRegister reg,
1068 GpuRegister base,
1069 int32_t offset,
1070 ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1071 int element_size_shift = -1;
1072 if (type != kLoadQuadword) {
1073 AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
1074 } else {
1075 AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
1076 }
1077
1078 switch (type) {
1079 case kLoadWord:
1080 CHECK_ALIGNED(offset, kMips64WordSize);
1081 Lwc1(reg, base, offset);
1082 null_checker();
1083 break;
1084 case kLoadDoubleword:
1085 if (!IsAligned<kMips64DoublewordSize>(offset)) {
1086 CHECK_ALIGNED(offset, kMips64WordSize);
1087 Lwc1(reg, base, offset);
1088 null_checker();
1089 Lw(TMP2, base, offset + kMips64WordSize);
1090 Mthc1(TMP2, reg);
1091 } else {
1092 Ldc1(reg, base, offset);
1093 null_checker();
1094 }
1095 break;
1096 case kLoadQuadword:
1097 switch (element_size_shift) {
1098 case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break;
1099 case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break;
1100 case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break;
1101 case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break;
1102 default:
1103 LOG(FATAL) << "UNREACHABLE";
1104 }
1105 null_checker();
1106 break;
1107 default:
1108 LOG(FATAL) << "UNREACHABLE";
1109 }
1110 }
1111
1112 template <typename ImplicitNullChecker = NoImplicitNullChecker>
1113 void StoreToOffset(StoreOperandType type,
1114 GpuRegister reg,
1115 GpuRegister base,
1116 int32_t offset,
1117 ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1118 // Must not use AT as `reg`, so as not to overwrite the value being stored
1119 // with the adjusted `base`.
1120 CHECK_NE(reg, AT);
1121 AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
1122
1123 switch (type) {
1124 case kStoreByte:
1125 Sb(reg, base, offset);
1126 break;
1127 case kStoreHalfword:
1128 Sh(reg, base, offset);
1129 break;
1130 case kStoreWord:
1131 CHECK_ALIGNED(offset, kMips64WordSize);
1132 Sw(reg, base, offset);
1133 break;
1134 case kStoreDoubleword:
1135 if (!IsAligned<kMips64DoublewordSize>(offset)) {
1136 CHECK_ALIGNED(offset, kMips64WordSize);
1137 Sw(reg, base, offset);
1138 null_checker();
1139 Dsrl32(TMP2, reg, 0);
1140 Sw(TMP2, base, offset + kMips64WordSize);
1141 } else {
1142 Sd(reg, base, offset);
1143 null_checker();
1144 }
1145 break;
1146 default:
1147 LOG(FATAL) << "UNREACHABLE";
1148 }
1149 if (type != kStoreDoubleword) {
1150 null_checker();
1151 }
1152 }
1153
1154 template <typename ImplicitNullChecker = NoImplicitNullChecker>
1155 void StoreFpuToOffset(StoreOperandType type,
1156 FpuRegister reg,
1157 GpuRegister base,
1158 int32_t offset,
1159 ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1160 int element_size_shift = -1;
1161 if (type != kStoreQuadword) {
1162 AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
1163 } else {
1164 AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
1165 }
1166
1167 switch (type) {
1168 case kStoreWord:
1169 CHECK_ALIGNED(offset, kMips64WordSize);
1170 Swc1(reg, base, offset);
1171 null_checker();
1172 break;
1173 case kStoreDoubleword:
1174 if (!IsAligned<kMips64DoublewordSize>(offset)) {
1175 CHECK_ALIGNED(offset, kMips64WordSize);
1176 Mfhc1(TMP2, reg);
1177 Swc1(reg, base, offset);
1178 null_checker();
1179 Sw(TMP2, base, offset + kMips64WordSize);
1180 } else {
1181 Sdc1(reg, base, offset);
1182 null_checker();
1183 }
1184 break;
1185 case kStoreQuadword:
1186 switch (element_size_shift) {
1187 case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break;
1188 case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break;
1189 case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break;
1190 case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break;
1191 default:
1192 LOG(FATAL) << "UNREACHABLE";
1193 }
1194 null_checker();
1195 break;
1196 default:
1197 LOG(FATAL) << "UNREACHABLE";
1198 }
1199 }
1200
1201 void LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset);
1202 void LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset);
1203 void StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset);
1204 void StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset);
1205
1206 // Emit data (e.g. encoded instruction or immediate) to the instruction stream.
1207 void Emit(uint32_t value);
1208
1209 //
1210 // Overridden common assembler high-level functionality.
1211 //
1212
1213 // Emit code that will create an activation on the stack.
1214 void BuildFrame(size_t frame_size,
1215 ManagedRegister method_reg,
1216 ArrayRef<const ManagedRegister> callee_save_regs,
1217 const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
1218
1219 // Emit code that will remove an activation from the stack.
1220 void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs) OVERRIDE;
1221
1222 void IncreaseFrameSize(size_t adjust) OVERRIDE;
1223 void DecreaseFrameSize(size_t adjust) OVERRIDE;
1224
1225 // Store routines.
1226 void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
1227 void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
1228 void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
1229
1230 void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
1231
1232 void StoreStackOffsetToThread(ThreadOffset64 thr_offs,
1233 FrameOffset fr_offs,
1234 ManagedRegister mscratch) OVERRIDE;
1235
1236 void StoreStackPointerToThread(ThreadOffset64 thr_offs) OVERRIDE;
1237
1238 void StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off,
1239 ManagedRegister mscratch) OVERRIDE;
1240
1241 // Load routines.
1242 void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
1243
1244 void LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) OVERRIDE;
1245
1246 void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
1247
1248 void LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
1249 bool unpoison_reference) OVERRIDE;
1250
1251 void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
1252
1253 void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) OVERRIDE;
1254
1255 // Copying routines.
1256 void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
1257
1258 void CopyRawPtrFromThread(FrameOffset fr_offs,
1259 ThreadOffset64 thr_offs,
1260 ManagedRegister mscratch) OVERRIDE;
1261
1262 void CopyRawPtrToThread(ThreadOffset64 thr_offs,
1263 FrameOffset fr_offs,
1264 ManagedRegister mscratch) OVERRIDE;
1265
1266 void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
1267
1268 void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
1269
1270 void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch,
1271 size_t size) OVERRIDE;
1272
1273 void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
1274 ManagedRegister mscratch, size_t size) OVERRIDE;
1275
1276 void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch,
1277 size_t size) OVERRIDE;
1278
1279 void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset,
1280 ManagedRegister mscratch, size_t size) OVERRIDE;
1281
1282 void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
1283 ManagedRegister mscratch, size_t size) OVERRIDE;
1284
1285 void MemoryBarrier(ManagedRegister) OVERRIDE;
1286
1287 // Sign extension.
1288 void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
1289
1290 // Zero extension.
1291 void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
1292
1293 // Exploit fast access in managed code to Thread::Current().
1294 void GetCurrentThread(ManagedRegister tr) OVERRIDE;
1295 void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
1296
1297 // Set up out_reg to hold a Object** into the handle scope, or to be null if the
1298 // value is null and null_allowed. in_reg holds a possibly stale reference
1299 // that can be used to avoid loading the handle scope entry to see if the value is
1300 // null.
1301 void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset,
1302 ManagedRegister in_reg, bool null_allowed) OVERRIDE;
1303
1304 // Set up out_off to hold a Object** into the handle scope, or to be null if the
1305 // value is null and null_allowed.
1306 void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, ManagedRegister
1307 mscratch, bool null_allowed) OVERRIDE;
1308
1309 // src holds a handle scope entry (Object**) load this into dst.
1310 void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
1311
1312 // Heap::VerifyObject on src. In some cases (such as a reference to this) we
1313 // know that src may not be null.
1314 void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
1315 void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
1316
1317 // Call to address held at [base+offset].
1318 void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
1319 void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
1320 void CallFromThread(ThreadOffset64 offset, ManagedRegister mscratch) OVERRIDE;
1321
1322 // Generate code to check if Thread::Current()->exception_ is non-null
1323 // and branch to a ExceptionSlowPath if it is.
1324 void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
1325
1326 // Emit slow paths queued during assembly and promote short branches to long if needed.
1327 void FinalizeCode() OVERRIDE;
1328
1329 // Emit branches and finalize all instructions.
1330 void FinalizeInstructions(const MemoryRegion& region);
1331
1332 // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS64,
1333 // must be used instead of Mips64Label::GetPosition()).
1334 uint32_t GetLabelLocation(const Mips64Label* label) const;
1335
1336 // Get the final position of a label after local fixup based on the old position
1337 // recorded before FinalizeCode().
1338 uint32_t GetAdjustedPosition(uint32_t old_position);
1339
1340 // Note that PC-relative literal loads are handled as pseudo branches because they need very
1341 // similar relocation and may similarly expand in size to accomodate for larger offsets relative
1342 // to PC.
1343 enum BranchCondition {
1344 kCondLT,
1345 kCondGE,
1346 kCondLE,
1347 kCondGT,
1348 kCondLTZ,
1349 kCondGEZ,
1350 kCondLEZ,
1351 kCondGTZ,
1352 kCondEQ,
1353 kCondNE,
1354 kCondEQZ,
1355 kCondNEZ,
1356 kCondLTU,
1357 kCondGEU,
1358 kCondF, // Floating-point predicate false.
1359 kCondT, // Floating-point predicate true.
1360 kUncond,
1361 };
1362 friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
1363
1364 private:
1365 class Branch {
1366 public:
1367 enum Type {
1368 // Short branches.
1369 kUncondBranch,
1370 kCondBranch,
1371 kCall,
1372 // Near label.
1373 kLabel,
1374 // Near literals.
1375 kLiteral,
1376 kLiteralUnsigned,
1377 kLiteralLong,
1378 // Long branches.
1379 kLongUncondBranch,
1380 kLongCondBranch,
1381 kLongCall,
1382 // Far label.
1383 kFarLabel,
1384 // Far literals.
1385 kFarLiteral,
1386 kFarLiteralUnsigned,
1387 kFarLiteralLong,
1388 };
1389
1390 // Bit sizes of offsets defined as enums to minimize chance of typos.
1391 enum OffsetBits {
1392 kOffset16 = 16,
1393 kOffset18 = 18,
1394 kOffset21 = 21,
1395 kOffset23 = 23,
1396 kOffset28 = 28,
1397 kOffset32 = 32,
1398 };
1399
1400 static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_
1401 static constexpr int32_t kMaxBranchLength = 32;
1402 static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
1403
1404 struct BranchInfo {
1405 // Branch length as a number of 4-byte-long instructions.
1406 uint32_t length;
1407 // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
1408 // PC-relative offset (or its most significant 16-bit half, which goes first).
1409 uint32_t instr_offset;
1410 // Different MIPS instructions with PC-relative offsets apply said offsets to slightly
1411 // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
1412 // instructions) from the instruction containing the offset.
1413 uint32_t pc_org;
1414 // How large (in bits) a PC-relative offset can be for a given type of branch (kCondBranch is
1415 // an exception: use kOffset23 for beqzc/bnezc).
1416 OffsetBits offset_size;
1417 // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
1418 // count.
1419 int offset_shift;
1420 };
1421 static const BranchInfo branch_info_[/* Type */];
1422
1423 // Unconditional branch or call.
1424 Branch(uint32_t location, uint32_t target, bool is_call);
1425 // Conditional branch.
1426 Branch(uint32_t location,
1427 uint32_t target,
1428 BranchCondition condition,
1429 GpuRegister lhs_reg,
1430 GpuRegister rhs_reg);
1431 // Label address (in literal area) or literal.
1432 Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type);
1433
1434 // Some conditional branches with lhs = rhs are effectively NOPs, while some
1435 // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
1436 // So, we need a way to identify such branches in order to emit no instructions for them
1437 // or change them to unconditional.
1438 static bool IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs);
1439 static bool IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs);
1440
1441 static BranchCondition OppositeCondition(BranchCondition cond);
1442
1443 Type GetType() const;
1444 BranchCondition GetCondition() const;
1445 GpuRegister GetLeftRegister() const;
1446 GpuRegister GetRightRegister() const;
1447 uint32_t GetTarget() const;
1448 uint32_t GetLocation() const;
1449 uint32_t GetOldLocation() const;
1450 uint32_t GetLength() const;
1451 uint32_t GetOldLength() const;
1452 uint32_t GetSize() const;
1453 uint32_t GetOldSize() const;
1454 uint32_t GetEndLocation() const;
1455 uint32_t GetOldEndLocation() const;
1456 bool IsLong() const;
1457 bool IsResolved() const;
1458
1459 // Returns the bit size of the signed offset that the branch instruction can handle.
1460 OffsetBits GetOffsetSize() const;
1461
1462 // Calculates the distance between two byte locations in the assembler buffer and
1463 // returns the number of bits needed to represent the distance as a signed integer.
1464 //
1465 // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
1466 // and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
1467 //
1468 // Composite branches (made of several instructions) with longer reach have 32-bit
1469 // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
1470 // The composite branches cover the range of PC + ~+/-2GB. The range is not end-to-end,
1471 // however. Consider the following implementation of a long unconditional branch, for
1472 // example:
1473 //
1474 // auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16
1475 // jic at, offset_15_0 // pc = at + sign_extend(offset_15_0)
1476 //
1477 // Both of the above instructions take 16-bit signed offsets as immediate operands.
1478 // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
1479 // due to sign extension. This must be compensated for by incrementing offset_31_16
1480 // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
1481 // 0x7FFF, adding 1 will overflow the positive offset into the negative range.
1482 // Therefore, the long branch range is something like from PC - 0x80000000 to
1483 // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
1484 //
1485 // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
1486 // case with the addiu instruction and a 16 bit offset.
1487 static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
1488
1489 // Resolve a branch when the target is known.
1490 void Resolve(uint32_t target);
1491
1492 // Relocate a branch by a given delta if needed due to expansion of this or another
1493 // branch at a given location by this delta (just changes location_ and target_).
1494 void Relocate(uint32_t expand_location, uint32_t delta);
1495
1496 // If the branch is short, changes its type to long.
1497 void PromoteToLong();
1498
1499 // If necessary, updates the type by promoting a short branch to a long branch
1500 // based on the branch location and target. Returns the amount (in bytes) by
1501 // which the branch size has increased.
1502 // max_short_distance caps the maximum distance between location_ and target_
1503 // that is allowed for short branches. This is for debugging/testing purposes.
1504 // max_short_distance = 0 forces all short branches to become long.
1505 // Use the implicit default argument when not debugging/testing.
1506 uint32_t PromoteIfNeeded(uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
1507
1508 // Returns the location of the instruction(s) containing the offset.
1509 uint32_t GetOffsetLocation() const;
1510
1511 // Calculates and returns the offset ready for encoding in the branch instruction(s).
1512 uint32_t GetOffset() const;
1513
1514 private:
1515 // Completes branch construction by determining and recording its type.
1516 void InitializeType(Type initial_type);
1517 // Helper for the above.
1518 void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
1519
1520 uint32_t old_location_; // Offset into assembler buffer in bytes.
1521 uint32_t location_; // Offset into assembler buffer in bytes.
1522 uint32_t target_; // Offset into assembler buffer in bytes.
1523
1524 GpuRegister lhs_reg_; // Left-hand side register in conditional branches or
1525 // destination register in literals.
1526 GpuRegister rhs_reg_; // Right-hand side register in conditional branches.
1527 BranchCondition condition_; // Condition for conditional branches.
1528
1529 Type type_; // Current type of the branch.
1530 Type old_type_; // Initial type of the branch.
1531 };
1532 friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
1533 friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
1534
1535 void EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct);
1536 void EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct);
1537 void EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct);
1538 void EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm);
1539 void EmitI21(int opcode, GpuRegister rs, uint32_t imm21);
1540 void EmitI26(int opcode, uint32_t imm26);
1541 void EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct);
1542 void EmitFI(int opcode, int fmt, FpuRegister rt, uint16_t imm);
1543 void EmitBcondc(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21);
1544 void EmitMsa3R(int operation,
1545 int df,
1546 VectorRegister wt,
1547 VectorRegister ws,
1548 VectorRegister wd,
1549 int minor_opcode);
1550 void EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode);
1551 void EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode);
1552 void EmitMsaMI10(int s10, GpuRegister rs, VectorRegister wd, int minor_opcode, int df);
1553 void EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode);
1554 void EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
1555 void EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
1556
1557 void Buncond(Mips64Label* label);
1558 void Bcond(Mips64Label* label,
1559 BranchCondition condition,
1560 GpuRegister lhs,
1561 GpuRegister rhs = ZERO);
1562 void Call(Mips64Label* label);
1563 void FinalizeLabeledBranch(Mips64Label* label);
1564
1565 Branch* GetBranch(uint32_t branch_id);
1566 const Branch* GetBranch(uint32_t branch_id) const;
1567
1568 void EmitLiterals();
1569 void ReserveJumpTableSpace();
1570 void EmitJumpTables();
1571 void PromoteBranches();
1572 void EmitBranch(Branch* branch);
1573 void EmitBranches();
1574 void PatchCFI();
1575
1576 // Emits exception block.
1577 void EmitExceptionPoll(Mips64ExceptionSlowPath* exception);
1578
HasMsa()1579 bool HasMsa() const {
1580 return has_msa_;
1581 }
1582
1583 // List of exception blocks to generate at the end of the code cache.
1584 std::vector<Mips64ExceptionSlowPath> exception_blocks_;
1585
1586 std::vector<Branch> branches_;
1587
1588 // Whether appending instructions at the end of the buffer or overwriting the existing ones.
1589 bool overwriting_;
1590 // The current overwrite location.
1591 uint32_t overwrite_location_;
1592
1593 // Use std::deque<> for literal labels to allow insertions at the end
1594 // without invalidating pointers and references to existing elements.
1595 ArenaDeque<Literal> literals_;
1596 ArenaDeque<Literal> long_literals_; // 64-bit literals separated for alignment reasons.
1597
1598 // Jump table list.
1599 ArenaDeque<JumpTable> jump_tables_;
1600
1601 // Data for AdjustedPosition(), see the description there.
1602 uint32_t last_position_adjustment_;
1603 uint32_t last_old_position_;
1604 uint32_t last_branch_id_;
1605
1606 const bool has_msa_;
1607
1608 DISALLOW_COPY_AND_ASSIGN(Mips64Assembler);
1609 };
1610
1611 } // namespace mips64
1612 } // namespace art
1613
1614 #endif // ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
1615