• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * lattice.c
13  *
14  * Contains the normalized lattice filter routines (MA and AR) for iSAC codec
15  *
16  */
17 
18 #include "codec.h"
19 #include "settings.h"
20 
21 #define LATTICE_MUL_32_32_RSFT16(a32a, a32b, b32)                  \
22   ((int32_t)(WEBRTC_SPL_MUL(a32a, b32) + (WEBRTC_SPL_MUL_16_32_RSFT16(a32b, b32))))
23 /* This macro is FORBIDDEN to use elsewhere than in a function in this file and
24    its corresponding neon version. It might give unpredictable results, since a
25    general int32_t*int32_t multiplication results in a 64 bit value.
26    The result is then shifted just 16 steps to the right, giving need for 48
27    bits, i.e. in the generel case, it will NOT fit in a int32_t. In the
28    cases used in here, the int32_t will be enough, since (for a good
29    reason) the involved multiplicands aren't big enough to overflow a
30    int32_t after shifting right 16 bits. I have compared the result of a
31    multiplication between t32 and tmp32, done in two ways:
32    1) Using (int32_t) (((float)(tmp32))*((float)(tmp32b))/65536.0);
33    2) Using LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
34    By running 25 files, I haven't found any bigger diff than 64 - this was in the
35    case when  method 1) gave 650235648 and 2) gave 650235712.
36 */
37 
38 /* Function prototype: filtering ar_g_Q0[] and ar_f_Q0[] through an AR filter
39    with coefficients cth_Q15[] and sth_Q15[].
40    Implemented for both generic and ARMv7 platforms.
41  */
42 void WebRtcIsacfix_FilterArLoop(int16_t* ar_g_Q0,
43                                 int16_t* ar_f_Q0,
44                                 int16_t* cth_Q15,
45                                 int16_t* sth_Q15,
46                                 size_t order_coef);
47 
48 /* Inner loop used for function WebRtcIsacfix_NormLatticeFilterMa(). It does:
49    for 0 <= n < HALF_SUBFRAMELEN - 1:
50      *ptr2 = input2 * (*ptr2) + input0 * (*ptr0));
51      *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
52    Note, function WebRtcIsacfix_FilterMaLoopNeon and WebRtcIsacfix_FilterMaLoopC
53    are not bit-exact. The accuracy by the ARM Neon function is same or better.
54 */
WebRtcIsacfix_FilterMaLoopC(int16_t input0,int16_t input1,int32_t input2,int32_t * ptr0,int32_t * ptr1,int32_t * ptr2)55 void WebRtcIsacfix_FilterMaLoopC(int16_t input0,  // Filter coefficient
56                                  int16_t input1,  // Filter coefficient
57                                  int32_t input2,  // Inverse coeff. (1/input1)
58                                  int32_t* ptr0,   // Sample buffer
59                                  int32_t* ptr1,   // Sample buffer
60                                  int32_t* ptr2) { // Sample buffer
61   int n = 0;
62 
63   // Separate the 32-bit variable input2 into two 16-bit integers (high 16 and
64   // low 16 bits), for using LATTICE_MUL_32_32_RSFT16 in the loop.
65   int16_t t16a = (int16_t)(input2 >> 16);
66   int16_t t16b = (int16_t)input2;
67   if (t16b < 0) t16a++;
68 
69   // The loop filtering the samples *ptr0, *ptr1, *ptr2 with filter coefficients
70   // input0, input1, and input2.
71   for(n = 0; n < HALF_SUBFRAMELEN - 1; n++, ptr0++, ptr1++, ptr2++) {
72     int32_t tmp32a = 0;
73     int32_t tmp32b = 0;
74 
75     // Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0));
76     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0); // Q15 * Q15 >> 15 = Q15
77     tmp32b = *ptr2 + tmp32a; // Q15 + Q15 = Q15
78     *ptr2 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
79 
80     // Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
81     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0); // Q15*Q15>>15 = Q15
82     tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2); // Q15*Q15>>15 = Q15
83     *ptr1 = tmp32a + tmp32b; // Q15 + Q15 = Q15
84   }
85 }
86 
87 /* filter the signal using normalized lattice filter */
88 /* MA filter */
WebRtcIsacfix_NormLatticeFilterMa(size_t orderCoef,int32_t * stateGQ15,int16_t * lat_inQ0,int16_t * filt_coefQ15,int32_t * gain_lo_hiQ17,int16_t lo_hi,int16_t * lat_outQ9)89 void WebRtcIsacfix_NormLatticeFilterMa(size_t orderCoef,
90                                        int32_t *stateGQ15,
91                                        int16_t *lat_inQ0,
92                                        int16_t *filt_coefQ15,
93                                        int32_t *gain_lo_hiQ17,
94                                        int16_t lo_hi,
95                                        int16_t *lat_outQ9)
96 {
97   int16_t sthQ15[MAX_AR_MODEL_ORDER];
98   int16_t cthQ15[MAX_AR_MODEL_ORDER];
99 
100   int u, n;
101   size_t i, k;
102   int16_t temp2,temp3;
103   size_t ord_1 = orderCoef+1;
104   int32_t inv_cthQ16[MAX_AR_MODEL_ORDER];
105 
106   int32_t gain32, fQtmp;
107   int16_t gain16;
108   int16_t gain_sh;
109 
110   int32_t tmp32, tmp32b;
111   int32_t fQ15vec[HALF_SUBFRAMELEN];
112   int32_t gQ15[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
113   int16_t sh;
114   int16_t t16a;
115   int16_t t16b;
116 
117   for (u=0;u<SUBFRAMES;u++)
118   {
119     int32_t temp1 = u * HALF_SUBFRAMELEN;
120 
121     /* set the Direct Form coefficients */
122     temp2 = (int16_t)(u * orderCoef);
123     temp3 = (int16_t)(2 * u + lo_hi);
124 
125     /* compute lattice filter coefficients */
126     memcpy(sthQ15, &filt_coefQ15[temp2], orderCoef * sizeof(int16_t));
127 
128     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
129 
130     /* compute the gain */
131     gain32 = gain_lo_hiQ17[temp3];
132     gain_sh = WebRtcSpl_NormW32(gain32);
133     gain32 <<= gain_sh;  // Q(17+gain_sh)
134 
135     for (k=0;k<orderCoef;k++)
136     {
137       gain32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], gain32); //Q15*Q(17+gain_sh)>>15 = Q(17+gain_sh)
138       inv_cthQ16[k] = WebRtcSpl_DivW32W16((int32_t)2147483647, cthQ15[k]); // 1/cth[k] in Q31/Q15 = Q16
139     }
140     gain16 = (int16_t)(gain32 >> 16);  // Q(1+gain_sh).
141 
142     /* normalized lattice filter */
143     /*****************************/
144 
145     /* initial conditions */
146     for (i=0;i<HALF_SUBFRAMELEN;i++)
147     {
148       fQ15vec[i] = lat_inQ0[i + temp1] << 15;  // Q15
149       gQ15[0][i] = lat_inQ0[i + temp1] << 15;  // Q15
150     }
151 
152 
153     fQtmp = fQ15vec[0];
154 
155     /* get the state of f&g for the first input, for all orders */
156     for (i=1;i<ord_1;i++)
157     {
158       // Calculate f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]);
159       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], stateGQ15[i-1]);//Q15*Q15>>15 = Q15
160       tmp32b= fQtmp + tmp32; //Q15+Q15=Q15
161       tmp32 = inv_cthQ16[i-1]; //Q16
162       t16a = (int16_t)(tmp32 >> 16);
163       t16b = (int16_t)(tmp32 - (t16a << 16));
164       if (t16b<0) t16a++;
165       tmp32 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
166       fQtmp = tmp32; // Q15
167 
168       // Calculate g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0];
169       tmp32  = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[i-1], stateGQ15[i-1]); //Q15*Q15>>15 = Q15
170       tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], fQtmp); //Q15*Q15>>15 = Q15
171       tmp32  = tmp32 + tmp32b;//Q15+Q15 = Q15
172       gQ15[i][0] = tmp32; // Q15
173     }
174 
175     /* filtering */
176     /* save the states */
177     for(k=0;k<orderCoef;k++)
178     {
179       // for 0 <= n < HALF_SUBFRAMELEN - 1:
180       //   f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]);
181       //   g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1];
182       WebRtcIsacfix_FilterMaLoopFix(sthQ15[k], cthQ15[k], inv_cthQ16[k],
183                                     &gQ15[k][0], &gQ15[k+1][1], &fQ15vec[1]);
184     }
185 
186     fQ15vec[0] = fQtmp;
187 
188     for(n=0;n<HALF_SUBFRAMELEN;n++)
189     {
190       //gain32 >>= gain_sh; // Q(17+gain_sh) -> Q17
191       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(gain16, fQ15vec[n]); //Q(1+gain_sh)*Q15>>16 = Q(gain_sh)
192       sh = 9-gain_sh; //number of needed shifts to reach Q9
193       t16a = (int16_t) WEBRTC_SPL_SHIFT_W32(tmp32, sh);
194       lat_outQ9[n + temp1] = t16a;
195     }
196 
197     /* save the states */
198     for (i=0;i<ord_1;i++)
199     {
200       stateGQ15[i] = gQ15[i][HALF_SUBFRAMELEN-1];
201     }
202     //process next frame
203   }
204 
205   return;
206 }
207 
208 
209 
210 
211 
212 /* ----------------AR filter-------------------------*/
213 /* filter the signal using normalized lattice filter */
WebRtcIsacfix_NormLatticeFilterAr(size_t orderCoef,int16_t * stateGQ0,int32_t * lat_inQ25,int16_t * filt_coefQ15,int32_t * gain_lo_hiQ17,int16_t lo_hi,int16_t * lat_outQ0)214 void WebRtcIsacfix_NormLatticeFilterAr(size_t orderCoef,
215                                        int16_t *stateGQ0,
216                                        int32_t *lat_inQ25,
217                                        int16_t *filt_coefQ15,
218                                        int32_t *gain_lo_hiQ17,
219                                        int16_t lo_hi,
220                                        int16_t *lat_outQ0)
221 {
222   size_t ii, k, i;
223   int n, u;
224   int16_t sthQ15[MAX_AR_MODEL_ORDER];
225   int16_t cthQ15[MAX_AR_MODEL_ORDER];
226   int32_t tmp32;
227 
228 
229   int16_t tmpAR;
230   int16_t ARfQ0vec[HALF_SUBFRAMELEN];
231   int16_t ARgQ0vec[MAX_AR_MODEL_ORDER+1];
232 
233   int32_t inv_gain32;
234   int16_t inv_gain16;
235   int16_t den16;
236   int16_t sh;
237 
238   int16_t temp2,temp3;
239   size_t ord_1 = orderCoef+1;
240 
241   for (u=0;u<SUBFRAMES;u++)
242   {
243     int32_t temp1 = u * HALF_SUBFRAMELEN;
244 
245     //set the denominator and numerator of the Direct Form
246     temp2 = (int16_t)(u * orderCoef);
247     temp3 = (int16_t)(2 * u + lo_hi);
248 
249     for (ii=0; ii<orderCoef; ii++) {
250       sthQ15[ii] = filt_coefQ15[temp2+ii];
251     }
252 
253     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
254 
255     /* Simulation of the 25 files shows that maximum value in
256        the vector gain_lo_hiQ17[] is 441344, which means that
257        it is log2((2^31)/441344) = 12.2 shifting bits from
258        saturation. Therefore, it should be safe to use Q27 instead
259        of Q17. */
260 
261     tmp32 = gain_lo_hiQ17[temp3] << 10;  // Q27
262 
263     for (k=0;k<orderCoef;k++) {
264       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], tmp32); // Q15*Q27>>15 = Q27
265     }
266 
267     sh = WebRtcSpl_NormW32(tmp32); // tmp32 is the gain
268     den16 = (int16_t) WEBRTC_SPL_SHIFT_W32(tmp32, sh-16); //Q(27+sh-16) = Q(sh+11) (all 16 bits are value bits)
269     inv_gain32 = WebRtcSpl_DivW32W16((int32_t)2147483647, den16); // 1/gain in Q31/Q(sh+11) = Q(20-sh)
270 
271     //initial conditions
272     inv_gain16 = (int16_t)(inv_gain32 >> 2);  // 1/gain in Q(20-sh-2) = Q(18-sh)
273 
274     for (i=0;i<HALF_SUBFRAMELEN;i++)
275     {
276 
277       tmp32 = lat_inQ25[i + temp1] << 1;  // Q25->Q26
278       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(inv_gain16, tmp32); //lat_in[]*inv_gain in (Q(18-sh)*Q26)>>16 = Q(28-sh)
279       tmp32 = WEBRTC_SPL_SHIFT_W32(tmp32, -(28-sh)); // lat_in[]*inv_gain in Q0
280 
281       ARfQ0vec[i] = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
282     }
283 
284     // Get the state of f & g for the first input, for all orders.
285     for (i = orderCoef; i > 0; i--)
286     {
287       tmp32 = (cthQ15[i - 1] * ARfQ0vec[0] - sthQ15[i - 1] * stateGQ0[i - 1] +
288                16384) >> 15;
289       tmpAR = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
290 
291       tmp32 = (sthQ15[i - 1] * ARfQ0vec[0] + cthQ15[i - 1] * stateGQ0[i - 1] +
292                16384) >> 15;
293       ARgQ0vec[i] = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
294       ARfQ0vec[0] = tmpAR;
295     }
296     ARgQ0vec[0] = ARfQ0vec[0];
297 
298     // Filter ARgQ0vec[] and ARfQ0vec[] through coefficients cthQ15[] and sthQ15[].
299     WebRtcIsacfix_FilterArLoop(ARgQ0vec, ARfQ0vec, cthQ15, sthQ15, orderCoef);
300 
301     for(n=0;n<HALF_SUBFRAMELEN;n++)
302     {
303       lat_outQ0[n + temp1] = ARfQ0vec[n];
304     }
305 
306 
307     /* cannot use memcpy in the following */
308 
309     for (i=0;i<ord_1;i++)
310     {
311       stateGQ0[i] = ARgQ0vec[i];
312     }
313   }
314 
315   return;
316 }
317