1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38
39 //===----------------------------------------------------------------------===//
40 // Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42
43 namespace {
44 struct BinOpInfo {
45 Value *LHS;
46 Value *RHS;
47 QualType Ty; // Computation Type.
48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49 bool FPContractable;
50 const Expr *E; // Entire expr, for error unsupported. May not be binop.
51 };
52
MustVisitNullValue(const Expr * E)53 static bool MustVisitNullValue(const Expr *E) {
54 // If a null pointer expression's type is the C++0x nullptr_t, then
55 // it's not necessarily a simple constant and it must be evaluated
56 // for its potential side effects.
57 return E->getType()->isNullPtrType();
58 }
59
60 class ScalarExprEmitter
61 : public StmtVisitor<ScalarExprEmitter, Value*> {
62 CodeGenFunction &CGF;
63 CGBuilderTy &Builder;
64 bool IgnoreResultAssign;
65 llvm::LLVMContext &VMContext;
66 public:
67
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70 VMContext(cgf.getLLVMContext()) {
71 }
72
73 //===--------------------------------------------------------------------===//
74 // Utilities
75 //===--------------------------------------------------------------------===//
76
TestAndClearIgnoreResultAssign()77 bool TestAndClearIgnoreResultAssign() {
78 bool I = IgnoreResultAssign;
79 IgnoreResultAssign = false;
80 return I;
81 }
82
ConvertType(QualType T)83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86 return CGF.EmitCheckedLValue(E, TCK);
87 }
88
89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90 const BinOpInfo &Info);
91
EmitLoadOfLValue(LValue LV,SourceLocation Loc)92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94 }
95
EmitLValueAlignmentAssumption(const Expr * E,Value * V)96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97 const AlignValueAttr *AVAttr = nullptr;
98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99 const ValueDecl *VD = DRE->getDecl();
100
101 if (VD->getType()->isReferenceType()) {
102 if (const auto *TTy =
103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105 } else {
106 // Assumptions for function parameters are emitted at the start of the
107 // function, so there is no need to repeat that here.
108 if (isa<ParmVarDecl>(VD))
109 return;
110
111 AVAttr = VD->getAttr<AlignValueAttr>();
112 }
113 }
114
115 if (!AVAttr)
116 if (const auto *TTy =
117 dyn_cast<TypedefType>(E->getType()))
118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119
120 if (!AVAttr)
121 return;
122
123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126 }
127
128 /// EmitLoadOfLValue - Given an expression with complex type that represents a
129 /// value l-value, this method emits the address of the l-value, then loads
130 /// and returns the result.
EmitLoadOfLValue(const Expr * E)131 Value *EmitLoadOfLValue(const Expr *E) {
132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133 E->getExprLoc());
134
135 EmitLValueAlignmentAssumption(E, V);
136 return V;
137 }
138
139 /// EmitConversionToBool - Convert the specified expression value to a
140 /// boolean (i1) truth value. This is equivalent to "Val != 0".
141 Value *EmitConversionToBool(Value *Src, QualType DstTy);
142
143 /// Emit a check that a conversion to or from a floating-point type does not
144 /// overflow.
145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146 Value *Src, QualType SrcType, QualType DstType,
147 llvm::Type *DstTy, SourceLocation Loc);
148
149 /// Emit a conversion from the specified type to the specified destination
150 /// type, both of which are LLVM scalar types.
151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152 SourceLocation Loc);
153
154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155 SourceLocation Loc, bool TreatBooleanAsSigned);
156
157 /// Emit a conversion from the specified complex type to the specified
158 /// destination type, where the destination type is an LLVM scalar type.
159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160 QualType SrcTy, QualType DstTy,
161 SourceLocation Loc);
162
163 /// EmitNullValue - Emit a value that corresponds to null for the given type.
164 Value *EmitNullValue(QualType Ty);
165
166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)167 Value *EmitFloatToBoolConversion(Value *V) {
168 // Compare against 0.0 for fp scalars.
169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170 return Builder.CreateFCmpUNE(V, Zero, "tobool");
171 }
172
173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)174 Value *EmitPointerToBoolConversion(Value *V) {
175 Value *Zero = llvm::ConstantPointerNull::get(
176 cast<llvm::PointerType>(V->getType()));
177 return Builder.CreateICmpNE(V, Zero, "tobool");
178 }
179
EmitIntToBoolConversion(Value * V)180 Value *EmitIntToBoolConversion(Value *V) {
181 // Because of the type rules of C, we often end up computing a
182 // logical value, then zero extending it to int, then wanting it
183 // as a logical value again. Optimize this common case.
184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186 Value *Result = ZI->getOperand(0);
187 // If there aren't any more uses, zap the instruction to save space.
188 // Note that there can be more uses, for example if this
189 // is the result of an assignment.
190 if (ZI->use_empty())
191 ZI->eraseFromParent();
192 return Result;
193 }
194 }
195
196 return Builder.CreateIsNotNull(V, "tobool");
197 }
198
199 //===--------------------------------------------------------------------===//
200 // Visitor Methods
201 //===--------------------------------------------------------------------===//
202
Visit(Expr * E)203 Value *Visit(Expr *E) {
204 ApplyDebugLocation DL(CGF, E);
205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206 }
207
VisitStmt(Stmt * S)208 Value *VisitStmt(Stmt *S) {
209 S->dump(CGF.getContext().getSourceManager());
210 llvm_unreachable("Stmt can't have complex result type!");
211 }
212 Value *VisitExpr(Expr *S);
213
VisitParenExpr(ParenExpr * PE)214 Value *VisitParenExpr(ParenExpr *PE) {
215 return Visit(PE->getSubExpr());
216 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218 return Visit(E->getReplacement());
219 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221 return Visit(GE->getResultExpr());
222 }
223
224 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)225 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226 return Builder.getInt(E->getValue());
227 }
VisitFloatingLiteral(const FloatingLiteral * E)228 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229 return llvm::ConstantFP::get(VMContext, E->getValue());
230 }
VisitCharacterLiteral(const CharacterLiteral * E)231 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241 return EmitNullValue(E->getType());
242 }
VisitGNUNullExpr(const GNUNullExpr * E)243 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244 return EmitNullValue(E->getType());
245 }
246 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250 return Builder.CreateBitCast(V, ConvertType(E->getType()));
251 }
252
VisitSizeOfPackExpr(SizeOfPackExpr * E)253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255 }
256
VisitPseudoObjectExpr(PseudoObjectExpr * E)257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259 }
260
VisitOpaqueValueExpr(OpaqueValueExpr * E)261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262 if (E->isGLValue())
263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264
265 // Otherwise, assume the mapping is the scalar directly.
266 return CGF.getOpaqueRValueMapping(E).getScalarVal();
267 }
268
269 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)270 Value *VisitDeclRefExpr(DeclRefExpr *E) {
271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272 if (result.isReference())
273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274 E->getExprLoc());
275 return result.getValue();
276 }
277 return EmitLoadOfLValue(E);
278 }
279
VisitObjCSelectorExpr(ObjCSelectorExpr * E)280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281 return CGF.EmitObjCSelectorExpr(E);
282 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284 return CGF.EmitObjCProtocolExpr(E);
285 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287 return EmitLoadOfLValue(E);
288 }
VisitObjCMessageExpr(ObjCMessageExpr * E)289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290 if (E->getMethodDecl() &&
291 E->getMethodDecl()->getReturnType()->isReferenceType())
292 return EmitLoadOfLValue(E);
293 return CGF.EmitObjCMessageExpr(E).getScalarVal();
294 }
295
VisitObjCIsaExpr(ObjCIsaExpr * E)296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297 LValue LV = CGF.EmitObjCIsaExpr(E);
298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299 return V;
300 }
301
302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308 return EmitLoadOfLValue(E);
309 }
310
311 Value *VisitInitListExpr(InitListExpr *E);
312
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314 return EmitNullValue(E->getType());
315 }
VisitExplicitCastExpr(ExplicitCastExpr * E)316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318 return VisitCastExpr(E);
319 }
320 Value *VisitCastExpr(CastExpr *E);
321
VisitCallExpr(const CallExpr * E)322 Value *VisitCallExpr(const CallExpr *E) {
323 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324 return EmitLoadOfLValue(E);
325
326 Value *V = CGF.EmitCallExpr(E).getScalarVal();
327
328 EmitLValueAlignmentAssumption(E, V);
329 return V;
330 }
331
332 Value *VisitStmtExpr(const StmtExpr *E);
333
334 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)335 Value *VisitUnaryPostDec(const UnaryOperator *E) {
336 LValue LV = EmitLValue(E->getSubExpr());
337 return EmitScalarPrePostIncDec(E, LV, false, false);
338 }
VisitUnaryPostInc(const UnaryOperator * E)339 Value *VisitUnaryPostInc(const UnaryOperator *E) {
340 LValue LV = EmitLValue(E->getSubExpr());
341 return EmitScalarPrePostIncDec(E, LV, true, false);
342 }
VisitUnaryPreDec(const UnaryOperator * E)343 Value *VisitUnaryPreDec(const UnaryOperator *E) {
344 LValue LV = EmitLValue(E->getSubExpr());
345 return EmitScalarPrePostIncDec(E, LV, false, true);
346 }
VisitUnaryPreInc(const UnaryOperator * E)347 Value *VisitUnaryPreInc(const UnaryOperator *E) {
348 LValue LV = EmitLValue(E->getSubExpr());
349 return EmitScalarPrePostIncDec(E, LV, true, true);
350 }
351
352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353 llvm::Value *InVal,
354 bool IsInc);
355
356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357 bool isInc, bool isPre);
358
359
VisitUnaryAddrOf(const UnaryOperator * E)360 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361 if (isa<MemberPointerType>(E->getType())) // never sugared
362 return CGF.CGM.getMemberPointerConstant(E);
363
364 return EmitLValue(E->getSubExpr()).getPointer();
365 }
VisitUnaryDeref(const UnaryOperator * E)366 Value *VisitUnaryDeref(const UnaryOperator *E) {
367 if (E->getType()->isVoidType())
368 return Visit(E->getSubExpr()); // the actual value should be unused
369 return EmitLoadOfLValue(E);
370 }
VisitUnaryPlus(const UnaryOperator * E)371 Value *VisitUnaryPlus(const UnaryOperator *E) {
372 // This differs from gcc, though, most likely due to a bug in gcc.
373 TestAndClearIgnoreResultAssign();
374 return Visit(E->getSubExpr());
375 }
376 Value *VisitUnaryMinus (const UnaryOperator *E);
377 Value *VisitUnaryNot (const UnaryOperator *E);
378 Value *VisitUnaryLNot (const UnaryOperator *E);
379 Value *VisitUnaryReal (const UnaryOperator *E);
380 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)381 Value *VisitUnaryExtension(const UnaryOperator *E) {
382 return Visit(E->getSubExpr());
383 }
384
385 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387 return EmitLoadOfLValue(E);
388 }
389
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391 return Visit(DAE->getExpr());
392 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395 return Visit(DIE->getExpr());
396 }
VisitCXXThisExpr(CXXThisExpr * TE)397 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398 return CGF.LoadCXXThis();
399 }
400
VisitExprWithCleanups(ExprWithCleanups * E)401 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402 CGF.enterFullExpression(E);
403 CodeGenFunction::RunCleanupsScope Scope(CGF);
404 return Visit(E->getSubExpr());
405 }
VisitCXXNewExpr(const CXXNewExpr * E)406 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407 return CGF.EmitCXXNewExpr(E);
408 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410 CGF.EmitCXXDeleteExpr(E);
411 return nullptr;
412 }
413
VisitTypeTraitExpr(const TypeTraitExpr * E)414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416 }
417
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420 }
421
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424 }
425
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427 // C++ [expr.pseudo]p1:
428 // The result shall only be used as the operand for the function call
429 // operator (), and the result of such a call has type void. The only
430 // effect is the evaluation of the postfix-expression before the dot or
431 // arrow.
432 CGF.EmitScalarExpr(E->getBase());
433 return nullptr;
434 }
435
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437 return EmitNullValue(E->getType());
438 }
439
VisitCXXThrowExpr(const CXXThrowExpr * E)440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441 CGF.EmitCXXThrowExpr(E);
442 return nullptr;
443 }
444
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446 return Builder.getInt1(E->getValue());
447 }
448
449 // Binary Operators.
EmitMul(const BinOpInfo & Ops)450 Value *EmitMul(const BinOpInfo &Ops) {
451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453 case LangOptions::SOB_Defined:
454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455 case LangOptions::SOB_Undefined:
456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458 // Fall through.
459 case LangOptions::SOB_Trapping:
460 return EmitOverflowCheckedBinOp(Ops);
461 }
462 }
463
464 if (Ops.Ty->isUnsignedIntegerType() &&
465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466 return EmitOverflowCheckedBinOp(Ops);
467
468 if (Ops.LHS->getType()->isFPOrFPVectorTy())
469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471 }
472 /// Create a binary op that checks for overflow.
473 /// Currently only supports +, - and *.
474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475
476 // Check for undefined division and modulus behaviors.
477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478 llvm::Value *Zero,bool isDiv);
479 // Common helper for getting how wide LHS of shift is.
480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481 Value *EmitDiv(const BinOpInfo &Ops);
482 Value *EmitRem(const BinOpInfo &Ops);
483 Value *EmitAdd(const BinOpInfo &Ops);
484 Value *EmitSub(const BinOpInfo &Ops);
485 Value *EmitShl(const BinOpInfo &Ops);
486 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)487 Value *EmitAnd(const BinOpInfo &Ops) {
488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489 }
EmitXor(const BinOpInfo & Ops)490 Value *EmitXor(const BinOpInfo &Ops) {
491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492 }
EmitOr(const BinOpInfo & Ops)493 Value *EmitOr (const BinOpInfo &Ops) {
494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495 }
496
497 BinOpInfo EmitBinOps(const BinaryOperator *E);
498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500 Value *&Result);
501
502 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504
505 // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507 Value *VisitBin ## OP(const BinaryOperator *E) { \
508 return Emit ## OP(EmitBinOps(E)); \
509 } \
510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
512 }
513 HANDLEBINOP(Mul)
514 HANDLEBINOP(Div)
515 HANDLEBINOP(Rem)
516 HANDLEBINOP(Add)
517 HANDLEBINOP(Sub)
518 HANDLEBINOP(Shl)
519 HANDLEBINOP(Shr)
520 HANDLEBINOP(And)
521 HANDLEBINOP(Xor)
522 HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524
525 // Comparisons.
526 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527 llvm::CmpInst::Predicate SICmpOpc,
528 llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530 Value *VisitBin##CODE(const BinaryOperator *E) { \
531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532 llvm::FCmpInst::FP); }
533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540
541 Value *VisitBinAssign (const BinaryOperator *E);
542
543 Value *VisitBinLAnd (const BinaryOperator *E);
544 Value *VisitBinLOr (const BinaryOperator *E);
545 Value *VisitBinComma (const BinaryOperator *E);
546
VisitBinPtrMemD(const Expr * E)547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549
550 // Other Operators.
551 Value *VisitBlockExpr(const BlockExpr *BE);
552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553 Value *VisitChooseExpr(ChooseExpr *CE);
554 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556 return CGF.EmitObjCStringLiteral(E);
557 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559 return CGF.EmitObjCBoxedExpr(E);
560 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562 return CGF.EmitObjCArrayLiteral(E);
563 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565 return CGF.EmitObjCDictionaryLiteral(E);
566 }
567 Value *VisitAsTypeExpr(AsTypeExpr *CE);
568 Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 } // end anonymous namespace.
571
572 //===----------------------------------------------------------------------===//
573 // Utilities
574 //===----------------------------------------------------------------------===//
575
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580
581 if (SrcType->isRealFloatingType())
582 return EmitFloatToBoolConversion(Src);
583
584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586
587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588 "Unknown scalar type to convert");
589
590 if (isa<llvm::IntegerType>(Src->getType()))
591 return EmitIntToBoolConversion(Src);
592
593 assert(isa<llvm::PointerType>(Src->getType()));
594 return EmitPointerToBoolConversion(Src);
595 }
596
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)597 void ScalarExprEmitter::EmitFloatConversionCheck(
598 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600 CodeGenFunction::SanitizerScope SanScope(&CGF);
601 using llvm::APFloat;
602 using llvm::APSInt;
603
604 llvm::Type *SrcTy = Src->getType();
605
606 llvm::Value *Check = nullptr;
607 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608 // Integer to floating-point. This can fail for unsigned short -> __half
609 // or unsigned __int128 -> float.
610 assert(DstType->isFloatingType());
611 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612
613 APFloat LargestFloat =
614 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616
617 bool IsExact;
618 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619 &IsExact) != APFloat::opOK)
620 // The range of representable values of this floating point type includes
621 // all values of this integer type. Don't need an overflow check.
622 return;
623
624 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625 if (SrcIsUnsigned)
626 Check = Builder.CreateICmpULE(Src, Max);
627 else {
628 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631 Check = Builder.CreateAnd(GE, LE);
632 }
633 } else {
634 const llvm::fltSemantics &SrcSema =
635 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636 if (isa<llvm::IntegerType>(DstTy)) {
637 // Floating-point to integer. This has undefined behavior if the source is
638 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639 // to an integer).
640 unsigned Width = CGF.getContext().getIntWidth(DstType);
641 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642
643 APSInt Min = APSInt::getMinValue(Width, Unsigned);
644 APFloat MinSrc(SrcSema, APFloat::uninitialized);
645 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646 APFloat::opOverflow)
647 // Don't need an overflow check for lower bound. Just check for
648 // -Inf/NaN.
649 MinSrc = APFloat::getInf(SrcSema, true);
650 else
651 // Find the largest value which is too small to represent (before
652 // truncation toward zero).
653 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654
655 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658 APFloat::opOverflow)
659 // Don't need an overflow check for upper bound. Just check for
660 // +Inf/NaN.
661 MaxSrc = APFloat::getInf(SrcSema, false);
662 else
663 // Find the smallest value which is too large to represent (before
664 // truncation toward zero).
665 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666
667 // If we're converting from __half, convert the range to float to match
668 // the type of src.
669 if (OrigSrcType->isHalfType()) {
670 const llvm::fltSemantics &Sema =
671 CGF.getContext().getFloatTypeSemantics(SrcType);
672 bool IsInexact;
673 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675 }
676
677 llvm::Value *GE =
678 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679 llvm::Value *LE =
680 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681 Check = Builder.CreateAnd(GE, LE);
682 } else {
683 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684 //
685 // Floating-point to floating-point. This has undefined behavior if the
686 // source is not in the range of representable values of the destination
687 // type. The C and C++ standards are spectacularly unclear here. We
688 // diagnose finite out-of-range conversions, but allow infinities and NaNs
689 // to convert to the corresponding value in the smaller type.
690 //
691 // C11 Annex F gives all such conversions defined behavior for IEC 60559
692 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693 // does not.
694
695 // Converting from a lower rank to a higher rank can never have
696 // undefined behavior, since higher-rank types must have a superset
697 // of values of lower-rank types.
698 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699 return;
700
701 assert(!OrigSrcType->isHalfType() &&
702 "should not check conversion from __half, it has the lowest rank");
703
704 const llvm::fltSemantics &DstSema =
705 CGF.getContext().getFloatTypeSemantics(DstType);
706 APFloat MinBad = APFloat::getLargest(DstSema, false);
707 APFloat MaxBad = APFloat::getInf(DstSema, false);
708
709 bool IsInexact;
710 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712
713 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715 llvm::Value *GE =
716 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717 llvm::Value *LE =
718 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720 }
721 }
722
723 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724 CGF.EmitCheckTypeDescriptor(OrigSrcType),
725 CGF.EmitCheckTypeDescriptor(DstType)};
726 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727 "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc)732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733 QualType DstType,
734 SourceLocation Loc) {
735 return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,bool TreatBooleanAsSigned)738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739 QualType DstType,
740 SourceLocation Loc,
741 bool TreatBooleanAsSigned) {
742 SrcType = CGF.getContext().getCanonicalType(SrcType);
743 DstType = CGF.getContext().getCanonicalType(DstType);
744 if (SrcType == DstType) return Src;
745
746 if (DstType->isVoidType()) return nullptr;
747
748 llvm::Value *OrigSrc = Src;
749 QualType OrigSrcType = SrcType;
750 llvm::Type *SrcTy = Src->getType();
751
752 // Handle conversions to bool first, they are special: comparisons against 0.
753 if (DstType->isBooleanType())
754 return EmitConversionToBool(Src, SrcType);
755
756 llvm::Type *DstTy = ConvertType(DstType);
757
758 // Cast from half through float if half isn't a native type.
759 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760 // Cast to FP using the intrinsic if the half type itself isn't supported.
761 if (DstTy->isFloatingPointTy()) {
762 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763 return Builder.CreateCall(
764 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765 Src);
766 } else {
767 // Cast to other types through float, using either the intrinsic or FPExt,
768 // depending on whether the half type itself is supported
769 // (as opposed to operations on half, available with NativeHalfType).
770 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771 Src = Builder.CreateCall(
772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773 CGF.CGM.FloatTy),
774 Src);
775 } else {
776 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777 }
778 SrcType = CGF.getContext().FloatTy;
779 SrcTy = CGF.FloatTy;
780 }
781 }
782
783 // Ignore conversions like int -> uint.
784 if (SrcTy == DstTy)
785 return Src;
786
787 // Handle pointer conversions next: pointers can only be converted to/from
788 // other pointers and integers. Check for pointer types in terms of LLVM, as
789 // some native types (like Obj-C id) may map to a pointer type.
790 if (isa<llvm::PointerType>(DstTy)) {
791 // The source value may be an integer, or a pointer.
792 if (isa<llvm::PointerType>(SrcTy))
793 return Builder.CreateBitCast(Src, DstTy, "conv");
794
795 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796 // First, convert to the correct width so that we control the kind of
797 // extension.
798 llvm::Type *MiddleTy = CGF.IntPtrTy;
799 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800 llvm::Value* IntResult =
801 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802 // Then, cast to pointer.
803 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804 }
805
806 if (isa<llvm::PointerType>(SrcTy)) {
807 // Must be an ptr to int cast.
808 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809 return Builder.CreatePtrToInt(Src, DstTy, "conv");
810 }
811
812 // A scalar can be splatted to an extended vector of the same element type
813 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814 // Sema should add casts to make sure that the source expression's type is
815 // the same as the vector's element type (sans qualifiers)
816 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817 SrcType.getTypePtr() &&
818 "Splatted expr doesn't match with vector element type?");
819
820 // Splat the element across to all elements
821 unsigned NumElements = DstTy->getVectorNumElements();
822 return Builder.CreateVectorSplat(NumElements, Src, "splat");
823 }
824
825 // Allow bitcast from vector to integer/fp of the same size.
826 if (isa<llvm::VectorType>(SrcTy) ||
827 isa<llvm::VectorType>(DstTy))
828 return Builder.CreateBitCast(Src, DstTy, "conv");
829
830 // Finally, we have the arithmetic types: real int/float.
831 Value *Res = nullptr;
832 llvm::Type *ResTy = DstTy;
833
834 // An overflowing conversion has undefined behavior if either the source type
835 // or the destination type is a floating-point type.
836 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839 Loc);
840
841 // Cast to half through float if half isn't a native type.
842 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843 // Make sure we cast in a single step if from another FP type.
844 if (SrcTy->isFloatingPointTy()) {
845 // Use the intrinsic if the half type itself isn't supported
846 // (as opposed to operations on half, available with NativeHalfType).
847 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848 return Builder.CreateCall(
849 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850 // If the half type is supported, just use an fptrunc.
851 return Builder.CreateFPTrunc(Src, DstTy);
852 }
853 DstTy = CGF.FloatTy;
854 }
855
856 if (isa<llvm::IntegerType>(SrcTy)) {
857 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858 if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859 InputSigned = true;
860 }
861 if (isa<llvm::IntegerType>(DstTy))
862 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863 else if (InputSigned)
864 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865 else
866 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867 } else if (isa<llvm::IntegerType>(DstTy)) {
868 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869 if (DstType->isSignedIntegerOrEnumerationType())
870 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871 else
872 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873 } else {
874 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875 "Unknown real conversion");
876 if (DstTy->getTypeID() < SrcTy->getTypeID())
877 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878 else
879 Res = Builder.CreateFPExt(Src, DstTy, "conv");
880 }
881
882 if (DstTy != ResTy) {
883 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885 Res = Builder.CreateCall(
886 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887 Res);
888 } else {
889 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890 }
891 }
892
893 return Res;
894 }
895
896 /// Emit a conversion from the specified complex type to the specified
897 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
899 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
900 SourceLocation Loc) {
901 // Get the source element type.
902 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903
904 // Handle conversions to bool first, they are special: comparisons against 0.
905 if (DstTy->isBooleanType()) {
906 // Complex != 0 -> (Real != 0) | (Imag != 0)
907 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909 return Builder.CreateOr(Src.first, Src.second, "tobool");
910 }
911
912 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913 // the imaginary part of the complex value is discarded and the value of the
914 // real part is converted according to the conversion rules for the
915 // corresponding real type.
916 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917 }
918
EmitNullValue(QualType Ty)919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921 }
922
923 /// \brief Emit a sanitization check for the given "binary" operation (which
924 /// might actually be a unary increment which has been lowered to a binary
925 /// operation). The check passes if all values in \p Checks (which are \c i1),
926 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)927 void ScalarExprEmitter::EmitBinOpCheck(
928 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929 assert(CGF.IsSanitizerScope);
930 StringRef CheckName;
931 SmallVector<llvm::Constant *, 4> StaticData;
932 SmallVector<llvm::Value *, 2> DynamicData;
933
934 BinaryOperatorKind Opcode = Info.Opcode;
935 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
936 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
937
938 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940 if (UO && UO->getOpcode() == UO_Minus) {
941 CheckName = "negate_overflow";
942 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943 DynamicData.push_back(Info.RHS);
944 } else {
945 if (BinaryOperator::isShiftOp(Opcode)) {
946 // Shift LHS negative or too large, or RHS out of bounds.
947 CheckName = "shift_out_of_bounds";
948 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949 StaticData.push_back(
950 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951 StaticData.push_back(
952 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955 CheckName = "divrem_overflow";
956 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957 } else {
958 // Arithmetic overflow (+, -, *).
959 switch (Opcode) {
960 case BO_Add: CheckName = "add_overflow"; break;
961 case BO_Sub: CheckName = "sub_overflow"; break;
962 case BO_Mul: CheckName = "mul_overflow"; break;
963 default: llvm_unreachable("unexpected opcode for bin op check");
964 }
965 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966 }
967 DynamicData.push_back(Info.LHS);
968 DynamicData.push_back(Info.RHS);
969 }
970
971 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972 }
973
974 //===----------------------------------------------------------------------===//
975 // Visitor Methods
976 //===----------------------------------------------------------------------===//
977
VisitExpr(Expr * E)978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979 CGF.ErrorUnsupported(E, "scalar expression");
980 if (E->getType()->isVoidType())
981 return nullptr;
982 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983 }
984
VisitShuffleVectorExpr(ShuffleVectorExpr * E)985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986 // Vector Mask Case
987 if (E->getNumSubExprs() == 2) {
988 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
989 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
990 Value *Mask;
991
992 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
993 unsigned LHSElts = LTy->getNumElements();
994
995 Mask = RHS;
996
997 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
998
999 // Mask off the high bits of each shuffle index.
1000 Value *MaskBits =
1001 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1002 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1003
1004 // newv = undef
1005 // mask = mask & maskbits
1006 // for each elt
1007 // n = extract mask i
1008 // x = extract val n
1009 // newv = insert newv, x, i
1010 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1011 MTy->getNumElements());
1012 Value* NewV = llvm::UndefValue::get(RTy);
1013 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1014 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1015 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1016
1017 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1018 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1019 }
1020 return NewV;
1021 }
1022
1023 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1024 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1025
1026 SmallVector<llvm::Constant*, 32> indices;
1027 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1028 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1029 // Check for -1 and output it as undef in the IR.
1030 if (Idx.isSigned() && Idx.isAllOnesValue())
1031 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1032 else
1033 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1034 }
1035
1036 Value *SV = llvm::ConstantVector::get(indices);
1037 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1038 }
1039
VisitConvertVectorExpr(ConvertVectorExpr * E)1040 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1041 QualType SrcType = E->getSrcExpr()->getType(),
1042 DstType = E->getType();
1043
1044 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1045
1046 SrcType = CGF.getContext().getCanonicalType(SrcType);
1047 DstType = CGF.getContext().getCanonicalType(DstType);
1048 if (SrcType == DstType) return Src;
1049
1050 assert(SrcType->isVectorType() &&
1051 "ConvertVector source type must be a vector");
1052 assert(DstType->isVectorType() &&
1053 "ConvertVector destination type must be a vector");
1054
1055 llvm::Type *SrcTy = Src->getType();
1056 llvm::Type *DstTy = ConvertType(DstType);
1057
1058 // Ignore conversions like int -> uint.
1059 if (SrcTy == DstTy)
1060 return Src;
1061
1062 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1063 DstEltType = DstType->getAs<VectorType>()->getElementType();
1064
1065 assert(SrcTy->isVectorTy() &&
1066 "ConvertVector source IR type must be a vector");
1067 assert(DstTy->isVectorTy() &&
1068 "ConvertVector destination IR type must be a vector");
1069
1070 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1071 *DstEltTy = DstTy->getVectorElementType();
1072
1073 if (DstEltType->isBooleanType()) {
1074 assert((SrcEltTy->isFloatingPointTy() ||
1075 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1076
1077 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1078 if (SrcEltTy->isFloatingPointTy()) {
1079 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1080 } else {
1081 return Builder.CreateICmpNE(Src, Zero, "tobool");
1082 }
1083 }
1084
1085 // We have the arithmetic types: real int/float.
1086 Value *Res = nullptr;
1087
1088 if (isa<llvm::IntegerType>(SrcEltTy)) {
1089 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1090 if (isa<llvm::IntegerType>(DstEltTy))
1091 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1092 else if (InputSigned)
1093 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1094 else
1095 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1096 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1097 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1098 if (DstEltType->isSignedIntegerOrEnumerationType())
1099 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1100 else
1101 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1102 } else {
1103 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1104 "Unknown real conversion");
1105 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1106 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1107 else
1108 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1109 }
1110
1111 return Res;
1112 }
1113
VisitMemberExpr(MemberExpr * E)1114 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1115 llvm::APSInt Value;
1116 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1117 if (E->isArrow())
1118 CGF.EmitScalarExpr(E->getBase());
1119 else
1120 EmitLValue(E->getBase());
1121 return Builder.getInt(Value);
1122 }
1123
1124 return EmitLoadOfLValue(E);
1125 }
1126
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1127 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1128 TestAndClearIgnoreResultAssign();
1129
1130 // Emit subscript expressions in rvalue context's. For most cases, this just
1131 // loads the lvalue formed by the subscript expr. However, we have to be
1132 // careful, because the base of a vector subscript is occasionally an rvalue,
1133 // so we can't get it as an lvalue.
1134 if (!E->getBase()->getType()->isVectorType())
1135 return EmitLoadOfLValue(E);
1136
1137 // Handle the vector case. The base must be a vector, the index must be an
1138 // integer value.
1139 Value *Base = Visit(E->getBase());
1140 Value *Idx = Visit(E->getIdx());
1141 QualType IdxTy = E->getIdx()->getType();
1142
1143 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1144 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1145
1146 return Builder.CreateExtractElement(Base, Idx, "vecext");
1147 }
1148
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1149 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1150 unsigned Off, llvm::Type *I32Ty) {
1151 int MV = SVI->getMaskValue(Idx);
1152 if (MV == -1)
1153 return llvm::UndefValue::get(I32Ty);
1154 return llvm::ConstantInt::get(I32Ty, Off+MV);
1155 }
1156
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1157 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1158 if (C->getBitWidth() != 32) {
1159 assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1160 C->getZExtValue()) &&
1161 "Index operand too large for shufflevector mask!");
1162 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1163 }
1164 return C;
1165 }
1166
VisitInitListExpr(InitListExpr * E)1167 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1168 bool Ignore = TestAndClearIgnoreResultAssign();
1169 (void)Ignore;
1170 assert (Ignore == false && "init list ignored");
1171 unsigned NumInitElements = E->getNumInits();
1172
1173 if (E->hadArrayRangeDesignator())
1174 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1175
1176 llvm::VectorType *VType =
1177 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1178
1179 if (!VType) {
1180 if (NumInitElements == 0) {
1181 // C++11 value-initialization for the scalar.
1182 return EmitNullValue(E->getType());
1183 }
1184 // We have a scalar in braces. Just use the first element.
1185 return Visit(E->getInit(0));
1186 }
1187
1188 unsigned ResElts = VType->getNumElements();
1189
1190 // Loop over initializers collecting the Value for each, and remembering
1191 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1192 // us to fold the shuffle for the swizzle into the shuffle for the vector
1193 // initializer, since LLVM optimizers generally do not want to touch
1194 // shuffles.
1195 unsigned CurIdx = 0;
1196 bool VIsUndefShuffle = false;
1197 llvm::Value *V = llvm::UndefValue::get(VType);
1198 for (unsigned i = 0; i != NumInitElements; ++i) {
1199 Expr *IE = E->getInit(i);
1200 Value *Init = Visit(IE);
1201 SmallVector<llvm::Constant*, 16> Args;
1202
1203 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1204
1205 // Handle scalar elements. If the scalar initializer is actually one
1206 // element of a different vector of the same width, use shuffle instead of
1207 // extract+insert.
1208 if (!VVT) {
1209 if (isa<ExtVectorElementExpr>(IE)) {
1210 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1211
1212 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1213 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1214 Value *LHS = nullptr, *RHS = nullptr;
1215 if (CurIdx == 0) {
1216 // insert into undef -> shuffle (src, undef)
1217 // shufflemask must use an i32
1218 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1219 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1220
1221 LHS = EI->getVectorOperand();
1222 RHS = V;
1223 VIsUndefShuffle = true;
1224 } else if (VIsUndefShuffle) {
1225 // insert into undefshuffle && size match -> shuffle (v, src)
1226 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1227 for (unsigned j = 0; j != CurIdx; ++j)
1228 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1229 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1230 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1231
1232 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1233 RHS = EI->getVectorOperand();
1234 VIsUndefShuffle = false;
1235 }
1236 if (!Args.empty()) {
1237 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1238 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1239 ++CurIdx;
1240 continue;
1241 }
1242 }
1243 }
1244 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1245 "vecinit");
1246 VIsUndefShuffle = false;
1247 ++CurIdx;
1248 continue;
1249 }
1250
1251 unsigned InitElts = VVT->getNumElements();
1252
1253 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1254 // input is the same width as the vector being constructed, generate an
1255 // optimized shuffle of the swizzle input into the result.
1256 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1257 if (isa<ExtVectorElementExpr>(IE)) {
1258 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1259 Value *SVOp = SVI->getOperand(0);
1260 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1261
1262 if (OpTy->getNumElements() == ResElts) {
1263 for (unsigned j = 0; j != CurIdx; ++j) {
1264 // If the current vector initializer is a shuffle with undef, merge
1265 // this shuffle directly into it.
1266 if (VIsUndefShuffle) {
1267 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1268 CGF.Int32Ty));
1269 } else {
1270 Args.push_back(Builder.getInt32(j));
1271 }
1272 }
1273 for (unsigned j = 0, je = InitElts; j != je; ++j)
1274 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1275 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1276
1277 if (VIsUndefShuffle)
1278 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1279
1280 Init = SVOp;
1281 }
1282 }
1283
1284 // Extend init to result vector length, and then shuffle its contribution
1285 // to the vector initializer into V.
1286 if (Args.empty()) {
1287 for (unsigned j = 0; j != InitElts; ++j)
1288 Args.push_back(Builder.getInt32(j));
1289 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1290 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1291 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1292 Mask, "vext");
1293
1294 Args.clear();
1295 for (unsigned j = 0; j != CurIdx; ++j)
1296 Args.push_back(Builder.getInt32(j));
1297 for (unsigned j = 0; j != InitElts; ++j)
1298 Args.push_back(Builder.getInt32(j+Offset));
1299 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1300 }
1301
1302 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1303 // merging subsequent shuffles into this one.
1304 if (CurIdx == 0)
1305 std::swap(V, Init);
1306 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1308 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1309 CurIdx += InitElts;
1310 }
1311
1312 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1313 // Emit remaining default initializers.
1314 llvm::Type *EltTy = VType->getElementType();
1315
1316 // Emit remaining default initializers
1317 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1318 Value *Idx = Builder.getInt32(CurIdx);
1319 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1320 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1321 }
1322 return V;
1323 }
1324
ShouldNullCheckClassCastValue(const CastExpr * CE)1325 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1326 const Expr *E = CE->getSubExpr();
1327
1328 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1329 return false;
1330
1331 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1332 // We always assume that 'this' is never null.
1333 return false;
1334 }
1335
1336 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1337 // And that glvalue casts are never null.
1338 if (ICE->getValueKind() != VK_RValue)
1339 return false;
1340 }
1341
1342 return true;
1343 }
1344
1345 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1346 // have to handle a more broad range of conversions than explicit casts, as they
1347 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1349 Expr *E = CE->getSubExpr();
1350 QualType DestTy = CE->getType();
1351 CastKind Kind = CE->getCastKind();
1352
1353 // These cases are generally not written to ignore the result of
1354 // evaluating their sub-expressions, so we clear this now.
1355 bool Ignored = TestAndClearIgnoreResultAssign();
1356
1357 // Since almost all cast kinds apply to scalars, this switch doesn't have
1358 // a default case, so the compiler will warn on a missing case. The cases
1359 // are in the same order as in the CastKind enum.
1360 switch (Kind) {
1361 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362 case CK_BuiltinFnToFnPtr:
1363 llvm_unreachable("builtin functions are handled elsewhere");
1364
1365 case CK_LValueBitCast:
1366 case CK_ObjCObjectLValueCast: {
1367 Address Addr = EmitLValue(E).getAddress();
1368 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1369 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1370 return EmitLoadOfLValue(LV, CE->getExprLoc());
1371 }
1372
1373 case CK_CPointerToObjCPointerCast:
1374 case CK_BlockPointerToObjCPointerCast:
1375 case CK_AnyPointerToBlockPointerCast:
1376 case CK_BitCast: {
1377 Value *Src = Visit(const_cast<Expr*>(E));
1378 llvm::Type *SrcTy = Src->getType();
1379 llvm::Type *DstTy = ConvertType(DestTy);
1380 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1381 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1382 llvm_unreachable("wrong cast for pointers in different address spaces"
1383 "(must be an address space cast)!");
1384 }
1385
1386 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1387 if (auto PT = DestTy->getAs<PointerType>())
1388 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1389 /*MayBeNull=*/true,
1390 CodeGenFunction::CFITCK_UnrelatedCast,
1391 CE->getLocStart());
1392 }
1393
1394 return Builder.CreateBitCast(Src, DstTy);
1395 }
1396 case CK_AddressSpaceConversion: {
1397 Value *Src = Visit(const_cast<Expr*>(E));
1398 // Since target may map different address spaces in AST to the same address
1399 // space, an address space conversion may end up as a bitcast.
1400 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
1401 ConvertType(DestTy));
1402 }
1403 case CK_AtomicToNonAtomic:
1404 case CK_NonAtomicToAtomic:
1405 case CK_NoOp:
1406 case CK_UserDefinedConversion:
1407 return Visit(const_cast<Expr*>(E));
1408
1409 case CK_BaseToDerived: {
1410 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1411 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1412
1413 Address Base = CGF.EmitPointerWithAlignment(E);
1414 Address Derived =
1415 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1416 CE->path_begin(), CE->path_end(),
1417 CGF.ShouldNullCheckClassCastValue(CE));
1418
1419 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1420 // performed and the object is not of the derived type.
1421 if (CGF.sanitizePerformTypeCheck())
1422 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1423 Derived.getPointer(), DestTy->getPointeeType());
1424
1425 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1426 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1427 Derived.getPointer(),
1428 /*MayBeNull=*/true,
1429 CodeGenFunction::CFITCK_DerivedCast,
1430 CE->getLocStart());
1431
1432 return Derived.getPointer();
1433 }
1434 case CK_UncheckedDerivedToBase:
1435 case CK_DerivedToBase: {
1436 // The EmitPointerWithAlignment path does this fine; just discard
1437 // the alignment.
1438 return CGF.EmitPointerWithAlignment(CE).getPointer();
1439 }
1440
1441 case CK_Dynamic: {
1442 Address V = CGF.EmitPointerWithAlignment(E);
1443 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1444 return CGF.EmitDynamicCast(V, DCE);
1445 }
1446
1447 case CK_ArrayToPointerDecay:
1448 return CGF.EmitArrayToPointerDecay(E).getPointer();
1449 case CK_FunctionToPointerDecay:
1450 return EmitLValue(E).getPointer();
1451
1452 case CK_NullToPointer:
1453 if (MustVisitNullValue(E))
1454 (void) Visit(E);
1455
1456 return llvm::ConstantPointerNull::get(
1457 cast<llvm::PointerType>(ConvertType(DestTy)));
1458
1459 case CK_NullToMemberPointer: {
1460 if (MustVisitNullValue(E))
1461 (void) Visit(E);
1462
1463 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1464 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1465 }
1466
1467 case CK_ReinterpretMemberPointer:
1468 case CK_BaseToDerivedMemberPointer:
1469 case CK_DerivedToBaseMemberPointer: {
1470 Value *Src = Visit(E);
1471
1472 // Note that the AST doesn't distinguish between checked and
1473 // unchecked member pointer conversions, so we always have to
1474 // implement checked conversions here. This is inefficient when
1475 // actual control flow may be required in order to perform the
1476 // check, which it is for data member pointers (but not member
1477 // function pointers on Itanium and ARM).
1478 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1479 }
1480
1481 case CK_ARCProduceObject:
1482 return CGF.EmitARCRetainScalarExpr(E);
1483 case CK_ARCConsumeObject:
1484 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1485 case CK_ARCReclaimReturnedObject:
1486 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1487 case CK_ARCExtendBlockObject:
1488 return CGF.EmitARCExtendBlockObject(E);
1489
1490 case CK_CopyAndAutoreleaseBlockObject:
1491 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1492
1493 case CK_FloatingRealToComplex:
1494 case CK_FloatingComplexCast:
1495 case CK_IntegralRealToComplex:
1496 case CK_IntegralComplexCast:
1497 case CK_IntegralComplexToFloatingComplex:
1498 case CK_FloatingComplexToIntegralComplex:
1499 case CK_ConstructorConversion:
1500 case CK_ToUnion:
1501 llvm_unreachable("scalar cast to non-scalar value");
1502
1503 case CK_LValueToRValue:
1504 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1505 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1506 return Visit(const_cast<Expr*>(E));
1507
1508 case CK_IntegralToPointer: {
1509 Value *Src = Visit(const_cast<Expr*>(E));
1510
1511 // First, convert to the correct width so that we control the kind of
1512 // extension.
1513 llvm::Type *MiddleTy = CGF.IntPtrTy;
1514 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1515 llvm::Value* IntResult =
1516 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1517
1518 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1519 }
1520 case CK_PointerToIntegral:
1521 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1522 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1523
1524 case CK_ToVoid: {
1525 CGF.EmitIgnoredExpr(E);
1526 return nullptr;
1527 }
1528 case CK_VectorSplat: {
1529 llvm::Type *DstTy = ConvertType(DestTy);
1530 Value *Elt = Visit(const_cast<Expr*>(E));
1531 // Splat the element across to all elements
1532 unsigned NumElements = DstTy->getVectorNumElements();
1533 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1534 }
1535
1536 case CK_IntegralCast:
1537 case CK_IntegralToFloating:
1538 case CK_FloatingToIntegral:
1539 case CK_FloatingCast:
1540 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1541 CE->getExprLoc());
1542 case CK_BooleanToSignedIntegral:
1543 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1544 CE->getExprLoc(),
1545 /*TreatBooleanAsSigned=*/true);
1546 case CK_IntegralToBoolean:
1547 return EmitIntToBoolConversion(Visit(E));
1548 case CK_PointerToBoolean:
1549 return EmitPointerToBoolConversion(Visit(E));
1550 case CK_FloatingToBoolean:
1551 return EmitFloatToBoolConversion(Visit(E));
1552 case CK_MemberPointerToBoolean: {
1553 llvm::Value *MemPtr = Visit(E);
1554 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1555 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1556 }
1557
1558 case CK_FloatingComplexToReal:
1559 case CK_IntegralComplexToReal:
1560 return CGF.EmitComplexExpr(E, false, true).first;
1561
1562 case CK_FloatingComplexToBoolean:
1563 case CK_IntegralComplexToBoolean: {
1564 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1565
1566 // TODO: kill this function off, inline appropriate case here
1567 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1568 CE->getExprLoc());
1569 }
1570
1571 case CK_ZeroToOCLEvent: {
1572 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1573 return llvm::Constant::getNullValue(ConvertType(DestTy));
1574 }
1575
1576 }
1577
1578 llvm_unreachable("unknown scalar cast");
1579 }
1580
VisitStmtExpr(const StmtExpr * E)1581 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1582 CodeGenFunction::StmtExprEvaluation eval(CGF);
1583 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1584 !E->getType()->isVoidType());
1585 if (!RetAlloca.isValid())
1586 return nullptr;
1587 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1588 E->getExprLoc());
1589 }
1590
1591 //===----------------------------------------------------------------------===//
1592 // Unary Operators
1593 //===----------------------------------------------------------------------===//
1594
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)1595 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1596 llvm::Value *InVal, bool IsInc) {
1597 BinOpInfo BinOp;
1598 BinOp.LHS = InVal;
1599 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1600 BinOp.Ty = E->getType();
1601 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1602 BinOp.FPContractable = false;
1603 BinOp.E = E;
1604 return BinOp;
1605 }
1606
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)1607 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1608 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1609 llvm::Value *Amount =
1610 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1611 StringRef Name = IsInc ? "inc" : "dec";
1612 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1613 case LangOptions::SOB_Defined:
1614 return Builder.CreateAdd(InVal, Amount, Name);
1615 case LangOptions::SOB_Undefined:
1616 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1617 return Builder.CreateNSWAdd(InVal, Amount, Name);
1618 // Fall through.
1619 case LangOptions::SOB_Trapping:
1620 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1621 }
1622 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1623 }
1624
1625 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1626 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1627 bool isInc, bool isPre) {
1628
1629 QualType type = E->getSubExpr()->getType();
1630 llvm::PHINode *atomicPHI = nullptr;
1631 llvm::Value *value;
1632 llvm::Value *input;
1633
1634 int amount = (isInc ? 1 : -1);
1635
1636 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1637 type = atomicTy->getValueType();
1638 if (isInc && type->isBooleanType()) {
1639 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1640 if (isPre) {
1641 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1642 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1643 return Builder.getTrue();
1644 }
1645 // For atomic bool increment, we just store true and return it for
1646 // preincrement, do an atomic swap with true for postincrement
1647 return Builder.CreateAtomicRMW(
1648 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1649 llvm::AtomicOrdering::SequentiallyConsistent);
1650 }
1651 // Special case for atomic increment / decrement on integers, emit
1652 // atomicrmw instructions. We skip this if we want to be doing overflow
1653 // checking, and fall into the slow path with the atomic cmpxchg loop.
1654 if (!type->isBooleanType() && type->isIntegerType() &&
1655 !(type->isUnsignedIntegerType() &&
1656 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1657 CGF.getLangOpts().getSignedOverflowBehavior() !=
1658 LangOptions::SOB_Trapping) {
1659 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1660 llvm::AtomicRMWInst::Sub;
1661 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1662 llvm::Instruction::Sub;
1663 llvm::Value *amt = CGF.EmitToMemory(
1664 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1665 llvm::Value *old = Builder.CreateAtomicRMW(aop,
1666 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1667 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1668 }
1669 value = EmitLoadOfLValue(LV, E->getExprLoc());
1670 input = value;
1671 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1672 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1673 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1674 value = CGF.EmitToMemory(value, type);
1675 Builder.CreateBr(opBB);
1676 Builder.SetInsertPoint(opBB);
1677 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1678 atomicPHI->addIncoming(value, startBB);
1679 value = atomicPHI;
1680 } else {
1681 value = EmitLoadOfLValue(LV, E->getExprLoc());
1682 input = value;
1683 }
1684
1685 // Special case of integer increment that we have to check first: bool++.
1686 // Due to promotion rules, we get:
1687 // bool++ -> bool = bool + 1
1688 // -> bool = (int)bool + 1
1689 // -> bool = ((int)bool + 1 != 0)
1690 // An interesting aspect of this is that increment is always true.
1691 // Decrement does not have this property.
1692 if (isInc && type->isBooleanType()) {
1693 value = Builder.getTrue();
1694
1695 // Most common case by far: integer increment.
1696 } else if (type->isIntegerType()) {
1697 // Note that signed integer inc/dec with width less than int can't
1698 // overflow because of promotion rules; we're just eliding a few steps here.
1699 bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1700 CGF.IntTy->getIntegerBitWidth();
1701 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1702 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1703 } else if (CanOverflow && type->isUnsignedIntegerType() &&
1704 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1705 value =
1706 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1707 } else {
1708 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1709 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1710 }
1711
1712 // Next most common: pointer increment.
1713 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1714 QualType type = ptr->getPointeeType();
1715
1716 // VLA types don't have constant size.
1717 if (const VariableArrayType *vla
1718 = CGF.getContext().getAsVariableArrayType(type)) {
1719 llvm::Value *numElts = CGF.getVLASize(vla).first;
1720 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1721 if (CGF.getLangOpts().isSignedOverflowDefined())
1722 value = Builder.CreateGEP(value, numElts, "vla.inc");
1723 else
1724 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1725
1726 // Arithmetic on function pointers (!) is just +-1.
1727 } else if (type->isFunctionType()) {
1728 llvm::Value *amt = Builder.getInt32(amount);
1729
1730 value = CGF.EmitCastToVoidPtr(value);
1731 if (CGF.getLangOpts().isSignedOverflowDefined())
1732 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1733 else
1734 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1735 value = Builder.CreateBitCast(value, input->getType());
1736
1737 // For everything else, we can just do a simple increment.
1738 } else {
1739 llvm::Value *amt = Builder.getInt32(amount);
1740 if (CGF.getLangOpts().isSignedOverflowDefined())
1741 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1742 else
1743 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1744 }
1745
1746 // Vector increment/decrement.
1747 } else if (type->isVectorType()) {
1748 if (type->hasIntegerRepresentation()) {
1749 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1750
1751 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1752 } else {
1753 value = Builder.CreateFAdd(
1754 value,
1755 llvm::ConstantFP::get(value->getType(), amount),
1756 isInc ? "inc" : "dec");
1757 }
1758
1759 // Floating point.
1760 } else if (type->isRealFloatingType()) {
1761 // Add the inc/dec to the real part.
1762 llvm::Value *amt;
1763
1764 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1765 // Another special case: half FP increment should be done via float
1766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1767 value = Builder.CreateCall(
1768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1769 CGF.CGM.FloatTy),
1770 input, "incdec.conv");
1771 } else {
1772 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1773 }
1774 }
1775
1776 if (value->getType()->isFloatTy())
1777 amt = llvm::ConstantFP::get(VMContext,
1778 llvm::APFloat(static_cast<float>(amount)));
1779 else if (value->getType()->isDoubleTy())
1780 amt = llvm::ConstantFP::get(VMContext,
1781 llvm::APFloat(static_cast<double>(amount)));
1782 else {
1783 // Remaining types are Half, LongDouble or __float128. Convert from float.
1784 llvm::APFloat F(static_cast<float>(amount));
1785 bool ignored;
1786 const llvm::fltSemantics *FS;
1787 // Don't use getFloatTypeSemantics because Half isn't
1788 // necessarily represented using the "half" LLVM type.
1789 if (value->getType()->isFP128Ty())
1790 FS = &CGF.getTarget().getFloat128Format();
1791 else if (value->getType()->isHalfTy())
1792 FS = &CGF.getTarget().getHalfFormat();
1793 else
1794 FS = &CGF.getTarget().getLongDoubleFormat();
1795 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1796 amt = llvm::ConstantFP::get(VMContext, F);
1797 }
1798 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1799
1800 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1801 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1802 value = Builder.CreateCall(
1803 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1804 CGF.CGM.FloatTy),
1805 value, "incdec.conv");
1806 } else {
1807 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1808 }
1809 }
1810
1811 // Objective-C pointer types.
1812 } else {
1813 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1814 value = CGF.EmitCastToVoidPtr(value);
1815
1816 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1817 if (!isInc) size = -size;
1818 llvm::Value *sizeValue =
1819 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1820
1821 if (CGF.getLangOpts().isSignedOverflowDefined())
1822 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1823 else
1824 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1825 value = Builder.CreateBitCast(value, input->getType());
1826 }
1827
1828 if (atomicPHI) {
1829 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1830 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1831 auto Pair = CGF.EmitAtomicCompareExchange(
1832 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1833 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1834 llvm::Value *success = Pair.second;
1835 atomicPHI->addIncoming(old, opBB);
1836 Builder.CreateCondBr(success, contBB, opBB);
1837 Builder.SetInsertPoint(contBB);
1838 return isPre ? value : input;
1839 }
1840
1841 // Store the updated result through the lvalue.
1842 if (LV.isBitField())
1843 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1844 else
1845 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1846
1847 // If this is a postinc, return the value read from memory, otherwise use the
1848 // updated value.
1849 return isPre ? value : input;
1850 }
1851
1852
1853
VisitUnaryMinus(const UnaryOperator * E)1854 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1855 TestAndClearIgnoreResultAssign();
1856 // Emit unary minus with EmitSub so we handle overflow cases etc.
1857 BinOpInfo BinOp;
1858 BinOp.RHS = Visit(E->getSubExpr());
1859
1860 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1861 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1862 else
1863 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1864 BinOp.Ty = E->getType();
1865 BinOp.Opcode = BO_Sub;
1866 BinOp.FPContractable = false;
1867 BinOp.E = E;
1868 return EmitSub(BinOp);
1869 }
1870
VisitUnaryNot(const UnaryOperator * E)1871 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1872 TestAndClearIgnoreResultAssign();
1873 Value *Op = Visit(E->getSubExpr());
1874 return Builder.CreateNot(Op, "neg");
1875 }
1876
VisitUnaryLNot(const UnaryOperator * E)1877 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1878 // Perform vector logical not on comparison with zero vector.
1879 if (E->getType()->isExtVectorType()) {
1880 Value *Oper = Visit(E->getSubExpr());
1881 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1882 Value *Result;
1883 if (Oper->getType()->isFPOrFPVectorTy())
1884 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1885 else
1886 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1887 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1888 }
1889
1890 // Compare operand to zero.
1891 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1892
1893 // Invert value.
1894 // TODO: Could dynamically modify easy computations here. For example, if
1895 // the operand is an icmp ne, turn into icmp eq.
1896 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1897
1898 // ZExt result to the expr type.
1899 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1900 }
1901
VisitOffsetOfExpr(OffsetOfExpr * E)1902 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1903 // Try folding the offsetof to a constant.
1904 llvm::APSInt Value;
1905 if (E->EvaluateAsInt(Value, CGF.getContext()))
1906 return Builder.getInt(Value);
1907
1908 // Loop over the components of the offsetof to compute the value.
1909 unsigned n = E->getNumComponents();
1910 llvm::Type* ResultType = ConvertType(E->getType());
1911 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1912 QualType CurrentType = E->getTypeSourceInfo()->getType();
1913 for (unsigned i = 0; i != n; ++i) {
1914 OffsetOfNode ON = E->getComponent(i);
1915 llvm::Value *Offset = nullptr;
1916 switch (ON.getKind()) {
1917 case OffsetOfNode::Array: {
1918 // Compute the index
1919 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1920 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1921 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1922 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1923
1924 // Save the element type
1925 CurrentType =
1926 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1927
1928 // Compute the element size
1929 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1930 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1931
1932 // Multiply out to compute the result
1933 Offset = Builder.CreateMul(Idx, ElemSize);
1934 break;
1935 }
1936
1937 case OffsetOfNode::Field: {
1938 FieldDecl *MemberDecl = ON.getField();
1939 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1940 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1941
1942 // Compute the index of the field in its parent.
1943 unsigned i = 0;
1944 // FIXME: It would be nice if we didn't have to loop here!
1945 for (RecordDecl::field_iterator Field = RD->field_begin(),
1946 FieldEnd = RD->field_end();
1947 Field != FieldEnd; ++Field, ++i) {
1948 if (*Field == MemberDecl)
1949 break;
1950 }
1951 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1952
1953 // Compute the offset to the field
1954 int64_t OffsetInt = RL.getFieldOffset(i) /
1955 CGF.getContext().getCharWidth();
1956 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1957
1958 // Save the element type.
1959 CurrentType = MemberDecl->getType();
1960 break;
1961 }
1962
1963 case OffsetOfNode::Identifier:
1964 llvm_unreachable("dependent __builtin_offsetof");
1965
1966 case OffsetOfNode::Base: {
1967 if (ON.getBase()->isVirtual()) {
1968 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1969 continue;
1970 }
1971
1972 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1973 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1974
1975 // Save the element type.
1976 CurrentType = ON.getBase()->getType();
1977
1978 // Compute the offset to the base.
1979 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1980 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1981 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1982 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1983 break;
1984 }
1985 }
1986 Result = Builder.CreateAdd(Result, Offset);
1987 }
1988 return Result;
1989 }
1990
1991 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1992 /// argument of the sizeof expression as an integer.
1993 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1994 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1995 const UnaryExprOrTypeTraitExpr *E) {
1996 QualType TypeToSize = E->getTypeOfArgument();
1997 if (E->getKind() == UETT_SizeOf) {
1998 if (const VariableArrayType *VAT =
1999 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2000 if (E->isArgumentType()) {
2001 // sizeof(type) - make sure to emit the VLA size.
2002 CGF.EmitVariablyModifiedType(TypeToSize);
2003 } else {
2004 // C99 6.5.3.4p2: If the argument is an expression of type
2005 // VLA, it is evaluated.
2006 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2007 }
2008
2009 QualType eltType;
2010 llvm::Value *numElts;
2011 std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2012
2013 llvm::Value *size = numElts;
2014
2015 // Scale the number of non-VLA elements by the non-VLA element size.
2016 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2017 if (!eltSize.isOne())
2018 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2019
2020 return size;
2021 }
2022 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2023 auto Alignment =
2024 CGF.getContext()
2025 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2026 E->getTypeOfArgument()->getPointeeType()))
2027 .getQuantity();
2028 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2029 }
2030
2031 // If this isn't sizeof(vla), the result must be constant; use the constant
2032 // folding logic so we don't have to duplicate it here.
2033 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2034 }
2035
VisitUnaryReal(const UnaryOperator * E)2036 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2037 Expr *Op = E->getSubExpr();
2038 if (Op->getType()->isAnyComplexType()) {
2039 // If it's an l-value, load through the appropriate subobject l-value.
2040 // Note that we have to ask E because Op might be an l-value that
2041 // this won't work for, e.g. an Obj-C property.
2042 if (E->isGLValue())
2043 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2044 E->getExprLoc()).getScalarVal();
2045
2046 // Otherwise, calculate and project.
2047 return CGF.EmitComplexExpr(Op, false, true).first;
2048 }
2049
2050 return Visit(Op);
2051 }
2052
VisitUnaryImag(const UnaryOperator * E)2053 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2054 Expr *Op = E->getSubExpr();
2055 if (Op->getType()->isAnyComplexType()) {
2056 // If it's an l-value, load through the appropriate subobject l-value.
2057 // Note that we have to ask E because Op might be an l-value that
2058 // this won't work for, e.g. an Obj-C property.
2059 if (Op->isGLValue())
2060 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2061 E->getExprLoc()).getScalarVal();
2062
2063 // Otherwise, calculate and project.
2064 return CGF.EmitComplexExpr(Op, true, false).second;
2065 }
2066
2067 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2068 // effects are evaluated, but not the actual value.
2069 if (Op->isGLValue())
2070 CGF.EmitLValue(Op);
2071 else
2072 CGF.EmitScalarExpr(Op, true);
2073 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2074 }
2075
2076 //===----------------------------------------------------------------------===//
2077 // Binary Operators
2078 //===----------------------------------------------------------------------===//
2079
EmitBinOps(const BinaryOperator * E)2080 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2081 TestAndClearIgnoreResultAssign();
2082 BinOpInfo Result;
2083 Result.LHS = Visit(E->getLHS());
2084 Result.RHS = Visit(E->getRHS());
2085 Result.Ty = E->getType();
2086 Result.Opcode = E->getOpcode();
2087 Result.FPContractable = E->isFPContractable();
2088 Result.E = E;
2089 return Result;
2090 }
2091
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2092 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2093 const CompoundAssignOperator *E,
2094 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2095 Value *&Result) {
2096 QualType LHSTy = E->getLHS()->getType();
2097 BinOpInfo OpInfo;
2098
2099 if (E->getComputationResultType()->isAnyComplexType())
2100 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2101
2102 // Emit the RHS first. __block variables need to have the rhs evaluated
2103 // first, plus this should improve codegen a little.
2104 OpInfo.RHS = Visit(E->getRHS());
2105 OpInfo.Ty = E->getComputationResultType();
2106 OpInfo.Opcode = E->getOpcode();
2107 OpInfo.FPContractable = E->isFPContractable();
2108 OpInfo.E = E;
2109 // Load/convert the LHS.
2110 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2111
2112 llvm::PHINode *atomicPHI = nullptr;
2113 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2114 QualType type = atomicTy->getValueType();
2115 if (!type->isBooleanType() && type->isIntegerType() &&
2116 !(type->isUnsignedIntegerType() &&
2117 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2118 CGF.getLangOpts().getSignedOverflowBehavior() !=
2119 LangOptions::SOB_Trapping) {
2120 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2121 switch (OpInfo.Opcode) {
2122 // We don't have atomicrmw operands for *, %, /, <<, >>
2123 case BO_MulAssign: case BO_DivAssign:
2124 case BO_RemAssign:
2125 case BO_ShlAssign:
2126 case BO_ShrAssign:
2127 break;
2128 case BO_AddAssign:
2129 aop = llvm::AtomicRMWInst::Add;
2130 break;
2131 case BO_SubAssign:
2132 aop = llvm::AtomicRMWInst::Sub;
2133 break;
2134 case BO_AndAssign:
2135 aop = llvm::AtomicRMWInst::And;
2136 break;
2137 case BO_XorAssign:
2138 aop = llvm::AtomicRMWInst::Xor;
2139 break;
2140 case BO_OrAssign:
2141 aop = llvm::AtomicRMWInst::Or;
2142 break;
2143 default:
2144 llvm_unreachable("Invalid compound assignment type");
2145 }
2146 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2147 llvm::Value *amt = CGF.EmitToMemory(
2148 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2149 E->getExprLoc()),
2150 LHSTy);
2151 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2152 llvm::AtomicOrdering::SequentiallyConsistent);
2153 return LHSLV;
2154 }
2155 }
2156 // FIXME: For floating point types, we should be saving and restoring the
2157 // floating point environment in the loop.
2158 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2159 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2160 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2161 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2162 Builder.CreateBr(opBB);
2163 Builder.SetInsertPoint(opBB);
2164 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2165 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2166 OpInfo.LHS = atomicPHI;
2167 }
2168 else
2169 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2170
2171 SourceLocation Loc = E->getExprLoc();
2172 OpInfo.LHS =
2173 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2174
2175 // Expand the binary operator.
2176 Result = (this->*Func)(OpInfo);
2177
2178 // Convert the result back to the LHS type.
2179 Result =
2180 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2181
2182 if (atomicPHI) {
2183 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2184 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2185 auto Pair = CGF.EmitAtomicCompareExchange(
2186 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2187 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2188 llvm::Value *success = Pair.second;
2189 atomicPHI->addIncoming(old, opBB);
2190 Builder.CreateCondBr(success, contBB, opBB);
2191 Builder.SetInsertPoint(contBB);
2192 return LHSLV;
2193 }
2194
2195 // Store the result value into the LHS lvalue. Bit-fields are handled
2196 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2197 // 'An assignment expression has the value of the left operand after the
2198 // assignment...'.
2199 if (LHSLV.isBitField())
2200 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2201 else
2202 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2203
2204 return LHSLV;
2205 }
2206
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2207 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2208 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2209 bool Ignore = TestAndClearIgnoreResultAssign();
2210 Value *RHS;
2211 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2212
2213 // If the result is clearly ignored, return now.
2214 if (Ignore)
2215 return nullptr;
2216
2217 // The result of an assignment in C is the assigned r-value.
2218 if (!CGF.getLangOpts().CPlusPlus)
2219 return RHS;
2220
2221 // If the lvalue is non-volatile, return the computed value of the assignment.
2222 if (!LHS.isVolatileQualified())
2223 return RHS;
2224
2225 // Otherwise, reload the value.
2226 return EmitLoadOfLValue(LHS, E->getExprLoc());
2227 }
2228
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2229 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2230 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2231 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2232
2233 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2234 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2235 SanitizerKind::IntegerDivideByZero));
2236 }
2237
2238 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2239 Ops.Ty->hasSignedIntegerRepresentation()) {
2240 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2241
2242 llvm::Value *IntMin =
2243 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2244 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2245
2246 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2247 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2248 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2249 Checks.push_back(
2250 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2251 }
2252
2253 if (Checks.size() > 0)
2254 EmitBinOpCheck(Checks, Ops);
2255 }
2256
EmitDiv(const BinOpInfo & Ops)2257 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2258 {
2259 CodeGenFunction::SanitizerScope SanScope(&CGF);
2260 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2261 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2262 Ops.Ty->isIntegerType()) {
2263 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2264 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2265 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2266 Ops.Ty->isRealFloatingType()) {
2267 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2268 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2269 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2270 Ops);
2271 }
2272 }
2273
2274 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2275 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2276 if (CGF.getLangOpts().OpenCL) {
2277 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2278 llvm::Type *ValTy = Val->getType();
2279 if (ValTy->isFloatTy() ||
2280 (isa<llvm::VectorType>(ValTy) &&
2281 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2282 CGF.SetFPAccuracy(Val, 2.5);
2283 }
2284 return Val;
2285 }
2286 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2287 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2288 else
2289 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2290 }
2291
EmitRem(const BinOpInfo & Ops)2292 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2293 // Rem in C can't be a floating point type: C99 6.5.5p2.
2294 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2295 CodeGenFunction::SanitizerScope SanScope(&CGF);
2296 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2297
2298 if (Ops.Ty->isIntegerType())
2299 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2300 }
2301
2302 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2303 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2304 else
2305 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2306 }
2307
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2308 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2309 unsigned IID;
2310 unsigned OpID = 0;
2311
2312 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2313 switch (Ops.Opcode) {
2314 case BO_Add:
2315 case BO_AddAssign:
2316 OpID = 1;
2317 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2318 llvm::Intrinsic::uadd_with_overflow;
2319 break;
2320 case BO_Sub:
2321 case BO_SubAssign:
2322 OpID = 2;
2323 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2324 llvm::Intrinsic::usub_with_overflow;
2325 break;
2326 case BO_Mul:
2327 case BO_MulAssign:
2328 OpID = 3;
2329 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2330 llvm::Intrinsic::umul_with_overflow;
2331 break;
2332 default:
2333 llvm_unreachable("Unsupported operation for overflow detection");
2334 }
2335 OpID <<= 1;
2336 if (isSigned)
2337 OpID |= 1;
2338
2339 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2340
2341 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2342
2343 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2344 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2345 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2346
2347 // Handle overflow with llvm.trap if no custom handler has been specified.
2348 const std::string *handlerName =
2349 &CGF.getLangOpts().OverflowHandler;
2350 if (handlerName->empty()) {
2351 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2352 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2353 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2354 CodeGenFunction::SanitizerScope SanScope(&CGF);
2355 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2356 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2357 : SanitizerKind::UnsignedIntegerOverflow;
2358 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2359 } else
2360 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2361 return result;
2362 }
2363
2364 // Branch in case of overflow.
2365 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2366 llvm::Function::iterator insertPt = initialBB->getIterator();
2367 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2368 &*std::next(insertPt));
2369 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2370
2371 Builder.CreateCondBr(overflow, overflowBB, continueBB);
2372
2373 // If an overflow handler is set, then we want to call it and then use its
2374 // result, if it returns.
2375 Builder.SetInsertPoint(overflowBB);
2376
2377 // Get the overflow handler.
2378 llvm::Type *Int8Ty = CGF.Int8Ty;
2379 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2380 llvm::FunctionType *handlerTy =
2381 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2382 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2383
2384 // Sign extend the args to 64-bit, so that we can use the same handler for
2385 // all types of overflow.
2386 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2387 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2388
2389 // Call the handler with the two arguments, the operation, and the size of
2390 // the result.
2391 llvm::Value *handlerArgs[] = {
2392 lhs,
2393 rhs,
2394 Builder.getInt8(OpID),
2395 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2396 };
2397 llvm::Value *handlerResult =
2398 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2399
2400 // Truncate the result back to the desired size.
2401 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2402 Builder.CreateBr(continueBB);
2403
2404 Builder.SetInsertPoint(continueBB);
2405 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2406 phi->addIncoming(result, initialBB);
2407 phi->addIncoming(handlerResult, overflowBB);
2408
2409 return phi;
2410 }
2411
2412 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2413 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2414 const BinOpInfo &op,
2415 bool isSubtraction) {
2416 // Must have binary (not unary) expr here. Unary pointer
2417 // increment/decrement doesn't use this path.
2418 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2419
2420 Value *pointer = op.LHS;
2421 Expr *pointerOperand = expr->getLHS();
2422 Value *index = op.RHS;
2423 Expr *indexOperand = expr->getRHS();
2424
2425 // In a subtraction, the LHS is always the pointer.
2426 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2427 std::swap(pointer, index);
2428 std::swap(pointerOperand, indexOperand);
2429 }
2430
2431 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2432 if (width != CGF.PointerWidthInBits) {
2433 // Zero-extend or sign-extend the pointer value according to
2434 // whether the index is signed or not.
2435 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2436 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2437 "idx.ext");
2438 }
2439
2440 // If this is subtraction, negate the index.
2441 if (isSubtraction)
2442 index = CGF.Builder.CreateNeg(index, "idx.neg");
2443
2444 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2445 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2446 /*Accessed*/ false);
2447
2448 const PointerType *pointerType
2449 = pointerOperand->getType()->getAs<PointerType>();
2450 if (!pointerType) {
2451 QualType objectType = pointerOperand->getType()
2452 ->castAs<ObjCObjectPointerType>()
2453 ->getPointeeType();
2454 llvm::Value *objectSize
2455 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2456
2457 index = CGF.Builder.CreateMul(index, objectSize);
2458
2459 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2460 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2461 return CGF.Builder.CreateBitCast(result, pointer->getType());
2462 }
2463
2464 QualType elementType = pointerType->getPointeeType();
2465 if (const VariableArrayType *vla
2466 = CGF.getContext().getAsVariableArrayType(elementType)) {
2467 // The element count here is the total number of non-VLA elements.
2468 llvm::Value *numElements = CGF.getVLASize(vla).first;
2469
2470 // Effectively, the multiply by the VLA size is part of the GEP.
2471 // GEP indexes are signed, and scaling an index isn't permitted to
2472 // signed-overflow, so we use the same semantics for our explicit
2473 // multiply. We suppress this if overflow is not undefined behavior.
2474 if (CGF.getLangOpts().isSignedOverflowDefined()) {
2475 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2476 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2477 } else {
2478 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2479 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2480 }
2481 return pointer;
2482 }
2483
2484 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2485 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2486 // future proof.
2487 if (elementType->isVoidType() || elementType->isFunctionType()) {
2488 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2489 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2490 return CGF.Builder.CreateBitCast(result, pointer->getType());
2491 }
2492
2493 if (CGF.getLangOpts().isSignedOverflowDefined())
2494 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2495
2496 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2497 }
2498
2499 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2500 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2501 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2502 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2503 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2504 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2505 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2506 bool negMul, bool negAdd) {
2507 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2508
2509 Value *MulOp0 = MulOp->getOperand(0);
2510 Value *MulOp1 = MulOp->getOperand(1);
2511 if (negMul) {
2512 MulOp0 =
2513 Builder.CreateFSub(
2514 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2515 "neg");
2516 } else if (negAdd) {
2517 Addend =
2518 Builder.CreateFSub(
2519 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2520 "neg");
2521 }
2522
2523 Value *FMulAdd = Builder.CreateCall(
2524 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2525 {MulOp0, MulOp1, Addend});
2526 MulOp->eraseFromParent();
2527
2528 return FMulAdd;
2529 }
2530
2531 // Check whether it would be legal to emit an fmuladd intrinsic call to
2532 // represent op and if so, build the fmuladd.
2533 //
2534 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2535 // Does NOT check the type of the operation - it's assumed that this function
2536 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2537 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2538 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2539 bool isSub=false) {
2540
2541 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2542 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2543 "Only fadd/fsub can be the root of an fmuladd.");
2544
2545 // Check whether this op is marked as fusable.
2546 if (!op.FPContractable)
2547 return nullptr;
2548
2549 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2550 // either disabled, or handled entirely by the LLVM backend).
2551 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2552 return nullptr;
2553
2554 // We have a potentially fusable op. Look for a mul on one of the operands.
2555 // Also, make sure that the mul result isn't used directly. In that case,
2556 // there's no point creating a muladd operation.
2557 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2558 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2559 LHSBinOp->use_empty())
2560 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2561 }
2562 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2563 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2564 RHSBinOp->use_empty())
2565 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2566 }
2567
2568 return nullptr;
2569 }
2570
EmitAdd(const BinOpInfo & op)2571 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2572 if (op.LHS->getType()->isPointerTy() ||
2573 op.RHS->getType()->isPointerTy())
2574 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2575
2576 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2577 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2578 case LangOptions::SOB_Defined:
2579 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2580 case LangOptions::SOB_Undefined:
2581 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2582 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2583 // Fall through.
2584 case LangOptions::SOB_Trapping:
2585 return EmitOverflowCheckedBinOp(op);
2586 }
2587 }
2588
2589 if (op.Ty->isUnsignedIntegerType() &&
2590 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2591 return EmitOverflowCheckedBinOp(op);
2592
2593 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2594 // Try to form an fmuladd.
2595 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2596 return FMulAdd;
2597
2598 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2599 }
2600
2601 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2602 }
2603
EmitSub(const BinOpInfo & op)2604 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2605 // The LHS is always a pointer if either side is.
2606 if (!op.LHS->getType()->isPointerTy()) {
2607 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2608 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2609 case LangOptions::SOB_Defined:
2610 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2611 case LangOptions::SOB_Undefined:
2612 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2613 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2614 // Fall through.
2615 case LangOptions::SOB_Trapping:
2616 return EmitOverflowCheckedBinOp(op);
2617 }
2618 }
2619
2620 if (op.Ty->isUnsignedIntegerType() &&
2621 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2622 return EmitOverflowCheckedBinOp(op);
2623
2624 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2625 // Try to form an fmuladd.
2626 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2627 return FMulAdd;
2628 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2629 }
2630
2631 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2632 }
2633
2634 // If the RHS is not a pointer, then we have normal pointer
2635 // arithmetic.
2636 if (!op.RHS->getType()->isPointerTy())
2637 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2638
2639 // Otherwise, this is a pointer subtraction.
2640
2641 // Do the raw subtraction part.
2642 llvm::Value *LHS
2643 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2644 llvm::Value *RHS
2645 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2646 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2647
2648 // Okay, figure out the element size.
2649 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2650 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2651
2652 llvm::Value *divisor = nullptr;
2653
2654 // For a variable-length array, this is going to be non-constant.
2655 if (const VariableArrayType *vla
2656 = CGF.getContext().getAsVariableArrayType(elementType)) {
2657 llvm::Value *numElements;
2658 std::tie(numElements, elementType) = CGF.getVLASize(vla);
2659
2660 divisor = numElements;
2661
2662 // Scale the number of non-VLA elements by the non-VLA element size.
2663 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2664 if (!eltSize.isOne())
2665 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2666
2667 // For everything elese, we can just compute it, safe in the
2668 // assumption that Sema won't let anything through that we can't
2669 // safely compute the size of.
2670 } else {
2671 CharUnits elementSize;
2672 // Handle GCC extension for pointer arithmetic on void* and
2673 // function pointer types.
2674 if (elementType->isVoidType() || elementType->isFunctionType())
2675 elementSize = CharUnits::One();
2676 else
2677 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2678
2679 // Don't even emit the divide for element size of 1.
2680 if (elementSize.isOne())
2681 return diffInChars;
2682
2683 divisor = CGF.CGM.getSize(elementSize);
2684 }
2685
2686 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2687 // pointer difference in C is only defined in the case where both operands
2688 // are pointing to elements of an array.
2689 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2690 }
2691
GetWidthMinusOneValue(Value * LHS,Value * RHS)2692 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2693 llvm::IntegerType *Ty;
2694 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2695 Ty = cast<llvm::IntegerType>(VT->getElementType());
2696 else
2697 Ty = cast<llvm::IntegerType>(LHS->getType());
2698 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2699 }
2700
EmitShl(const BinOpInfo & Ops)2701 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2702 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2703 // RHS to the same size as the LHS.
2704 Value *RHS = Ops.RHS;
2705 if (Ops.LHS->getType() != RHS->getType())
2706 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2707
2708 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2709 Ops.Ty->hasSignedIntegerRepresentation();
2710 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2711 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2712 if (CGF.getLangOpts().OpenCL)
2713 RHS =
2714 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2715 else if ((SanitizeBase || SanitizeExponent) &&
2716 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2717 CodeGenFunction::SanitizerScope SanScope(&CGF);
2718 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2719 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2720 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2721
2722 if (SanitizeExponent) {
2723 Checks.push_back(
2724 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2725 }
2726
2727 if (SanitizeBase) {
2728 // Check whether we are shifting any non-zero bits off the top of the
2729 // integer. We only emit this check if exponent is valid - otherwise
2730 // instructions below will have undefined behavior themselves.
2731 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2732 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2733 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2734 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2735 CGF.EmitBlock(CheckShiftBase);
2736 llvm::Value *BitsShiftedOff =
2737 Builder.CreateLShr(Ops.LHS,
2738 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2739 /*NUW*/true, /*NSW*/true),
2740 "shl.check");
2741 if (CGF.getLangOpts().CPlusPlus) {
2742 // In C99, we are not permitted to shift a 1 bit into the sign bit.
2743 // Under C++11's rules, shifting a 1 bit into the sign bit is
2744 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2745 // define signed left shifts, so we use the C99 and C++11 rules there).
2746 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2747 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2748 }
2749 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2750 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2751 CGF.EmitBlock(Cont);
2752 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2753 BaseCheck->addIncoming(Builder.getTrue(), Orig);
2754 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2755 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2756 }
2757
2758 assert(!Checks.empty());
2759 EmitBinOpCheck(Checks, Ops);
2760 }
2761
2762 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2763 }
2764
EmitShr(const BinOpInfo & Ops)2765 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2766 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2767 // RHS to the same size as the LHS.
2768 Value *RHS = Ops.RHS;
2769 if (Ops.LHS->getType() != RHS->getType())
2770 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2771
2772 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2773 if (CGF.getLangOpts().OpenCL)
2774 RHS =
2775 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2776 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2777 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2778 CodeGenFunction::SanitizerScope SanScope(&CGF);
2779 llvm::Value *Valid =
2780 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2781 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2782 }
2783
2784 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2785 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2786 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2787 }
2788
2789 enum IntrinsicType { VCMPEQ, VCMPGT };
2790 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2791 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2792 BuiltinType::Kind ElemKind) {
2793 switch (ElemKind) {
2794 default: llvm_unreachable("unexpected element type");
2795 case BuiltinType::Char_U:
2796 case BuiltinType::UChar:
2797 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2798 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2799 case BuiltinType::Char_S:
2800 case BuiltinType::SChar:
2801 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2802 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2803 case BuiltinType::UShort:
2804 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2805 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2806 case BuiltinType::Short:
2807 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2808 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2809 case BuiltinType::UInt:
2810 case BuiltinType::ULong:
2811 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2812 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2813 case BuiltinType::Int:
2814 case BuiltinType::Long:
2815 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2816 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2817 case BuiltinType::Float:
2818 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2819 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2820 }
2821 }
2822
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc)2823 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2824 llvm::CmpInst::Predicate UICmpOpc,
2825 llvm::CmpInst::Predicate SICmpOpc,
2826 llvm::CmpInst::Predicate FCmpOpc) {
2827 TestAndClearIgnoreResultAssign();
2828 Value *Result;
2829 QualType LHSTy = E->getLHS()->getType();
2830 QualType RHSTy = E->getRHS()->getType();
2831 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2832 assert(E->getOpcode() == BO_EQ ||
2833 E->getOpcode() == BO_NE);
2834 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2835 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2836 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2837 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2838 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2839 Value *LHS = Visit(E->getLHS());
2840 Value *RHS = Visit(E->getRHS());
2841
2842 // If AltiVec, the comparison results in a numeric type, so we use
2843 // intrinsics comparing vectors and giving 0 or 1 as a result
2844 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2845 // constants for mapping CR6 register bits to predicate result
2846 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2847
2848 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2849
2850 // in several cases vector arguments order will be reversed
2851 Value *FirstVecArg = LHS,
2852 *SecondVecArg = RHS;
2853
2854 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2855 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2856 BuiltinType::Kind ElementKind = BTy->getKind();
2857
2858 switch(E->getOpcode()) {
2859 default: llvm_unreachable("is not a comparison operation");
2860 case BO_EQ:
2861 CR6 = CR6_LT;
2862 ID = GetIntrinsic(VCMPEQ, ElementKind);
2863 break;
2864 case BO_NE:
2865 CR6 = CR6_EQ;
2866 ID = GetIntrinsic(VCMPEQ, ElementKind);
2867 break;
2868 case BO_LT:
2869 CR6 = CR6_LT;
2870 ID = GetIntrinsic(VCMPGT, ElementKind);
2871 std::swap(FirstVecArg, SecondVecArg);
2872 break;
2873 case BO_GT:
2874 CR6 = CR6_LT;
2875 ID = GetIntrinsic(VCMPGT, ElementKind);
2876 break;
2877 case BO_LE:
2878 if (ElementKind == BuiltinType::Float) {
2879 CR6 = CR6_LT;
2880 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2881 std::swap(FirstVecArg, SecondVecArg);
2882 }
2883 else {
2884 CR6 = CR6_EQ;
2885 ID = GetIntrinsic(VCMPGT, ElementKind);
2886 }
2887 break;
2888 case BO_GE:
2889 if (ElementKind == BuiltinType::Float) {
2890 CR6 = CR6_LT;
2891 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2892 }
2893 else {
2894 CR6 = CR6_EQ;
2895 ID = GetIntrinsic(VCMPGT, ElementKind);
2896 std::swap(FirstVecArg, SecondVecArg);
2897 }
2898 break;
2899 }
2900
2901 Value *CR6Param = Builder.getInt32(CR6);
2902 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2903 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2904 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2905 E->getExprLoc());
2906 }
2907
2908 if (LHS->getType()->isFPOrFPVectorTy()) {
2909 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2910 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2911 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2912 } else {
2913 // Unsigned integers and pointers.
2914 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2915 }
2916
2917 // If this is a vector comparison, sign extend the result to the appropriate
2918 // vector integer type and return it (don't convert to bool).
2919 if (LHSTy->isVectorType())
2920 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2921
2922 } else {
2923 // Complex Comparison: can only be an equality comparison.
2924 CodeGenFunction::ComplexPairTy LHS, RHS;
2925 QualType CETy;
2926 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2927 LHS = CGF.EmitComplexExpr(E->getLHS());
2928 CETy = CTy->getElementType();
2929 } else {
2930 LHS.first = Visit(E->getLHS());
2931 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2932 CETy = LHSTy;
2933 }
2934 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2935 RHS = CGF.EmitComplexExpr(E->getRHS());
2936 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2937 CTy->getElementType()) &&
2938 "The element types must always match.");
2939 (void)CTy;
2940 } else {
2941 RHS.first = Visit(E->getRHS());
2942 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2943 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2944 "The element types must always match.");
2945 }
2946
2947 Value *ResultR, *ResultI;
2948 if (CETy->isRealFloatingType()) {
2949 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2950 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2951 } else {
2952 // Complex comparisons can only be equality comparisons. As such, signed
2953 // and unsigned opcodes are the same.
2954 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2955 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2956 }
2957
2958 if (E->getOpcode() == BO_EQ) {
2959 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2960 } else {
2961 assert(E->getOpcode() == BO_NE &&
2962 "Complex comparison other than == or != ?");
2963 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2964 }
2965 }
2966
2967 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2968 E->getExprLoc());
2969 }
2970
VisitBinAssign(const BinaryOperator * E)2971 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2972 bool Ignore = TestAndClearIgnoreResultAssign();
2973
2974 Value *RHS;
2975 LValue LHS;
2976
2977 switch (E->getLHS()->getType().getObjCLifetime()) {
2978 case Qualifiers::OCL_Strong:
2979 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2980 break;
2981
2982 case Qualifiers::OCL_Autoreleasing:
2983 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2984 break;
2985
2986 case Qualifiers::OCL_ExplicitNone:
2987 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
2988 break;
2989
2990 case Qualifiers::OCL_Weak:
2991 RHS = Visit(E->getRHS());
2992 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2993 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2994 break;
2995
2996 case Qualifiers::OCL_None:
2997 // __block variables need to have the rhs evaluated first, plus
2998 // this should improve codegen just a little.
2999 RHS = Visit(E->getRHS());
3000 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3001
3002 // Store the value into the LHS. Bit-fields are handled specially
3003 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3004 // 'An assignment expression has the value of the left operand after
3005 // the assignment...'.
3006 if (LHS.isBitField())
3007 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3008 else
3009 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3010 }
3011
3012 // If the result is clearly ignored, return now.
3013 if (Ignore)
3014 return nullptr;
3015
3016 // The result of an assignment in C is the assigned r-value.
3017 if (!CGF.getLangOpts().CPlusPlus)
3018 return RHS;
3019
3020 // If the lvalue is non-volatile, return the computed value of the assignment.
3021 if (!LHS.isVolatileQualified())
3022 return RHS;
3023
3024 // Otherwise, reload the value.
3025 return EmitLoadOfLValue(LHS, E->getExprLoc());
3026 }
3027
VisitBinLAnd(const BinaryOperator * E)3028 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3029 // Perform vector logical and on comparisons with zero vectors.
3030 if (E->getType()->isVectorType()) {
3031 CGF.incrementProfileCounter(E);
3032
3033 Value *LHS = Visit(E->getLHS());
3034 Value *RHS = Visit(E->getRHS());
3035 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3036 if (LHS->getType()->isFPOrFPVectorTy()) {
3037 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3038 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3039 } else {
3040 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3041 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3042 }
3043 Value *And = Builder.CreateAnd(LHS, RHS);
3044 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3045 }
3046
3047 llvm::Type *ResTy = ConvertType(E->getType());
3048
3049 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3050 // If we have 1 && X, just emit X without inserting the control flow.
3051 bool LHSCondVal;
3052 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3053 if (LHSCondVal) { // If we have 1 && X, just emit X.
3054 CGF.incrementProfileCounter(E);
3055
3056 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3057 // ZExt result to int or bool.
3058 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3059 }
3060
3061 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3062 if (!CGF.ContainsLabel(E->getRHS()))
3063 return llvm::Constant::getNullValue(ResTy);
3064 }
3065
3066 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3067 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3068
3069 CodeGenFunction::ConditionalEvaluation eval(CGF);
3070
3071 // Branch on the LHS first. If it is false, go to the failure (cont) block.
3072 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3073 CGF.getProfileCount(E->getRHS()));
3074
3075 // Any edges into the ContBlock are now from an (indeterminate number of)
3076 // edges from this first condition. All of these values will be false. Start
3077 // setting up the PHI node in the Cont Block for this.
3078 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3079 "", ContBlock);
3080 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3081 PI != PE; ++PI)
3082 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3083
3084 eval.begin(CGF);
3085 CGF.EmitBlock(RHSBlock);
3086 CGF.incrementProfileCounter(E);
3087 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3088 eval.end(CGF);
3089
3090 // Reaquire the RHS block, as there may be subblocks inserted.
3091 RHSBlock = Builder.GetInsertBlock();
3092
3093 // Emit an unconditional branch from this block to ContBlock.
3094 {
3095 // There is no need to emit line number for unconditional branch.
3096 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3097 CGF.EmitBlock(ContBlock);
3098 }
3099 // Insert an entry into the phi node for the edge with the value of RHSCond.
3100 PN->addIncoming(RHSCond, RHSBlock);
3101
3102 // ZExt result to int.
3103 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3104 }
3105
VisitBinLOr(const BinaryOperator * E)3106 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3107 // Perform vector logical or on comparisons with zero vectors.
3108 if (E->getType()->isVectorType()) {
3109 CGF.incrementProfileCounter(E);
3110
3111 Value *LHS = Visit(E->getLHS());
3112 Value *RHS = Visit(E->getRHS());
3113 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3114 if (LHS->getType()->isFPOrFPVectorTy()) {
3115 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3116 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3117 } else {
3118 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3119 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3120 }
3121 Value *Or = Builder.CreateOr(LHS, RHS);
3122 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3123 }
3124
3125 llvm::Type *ResTy = ConvertType(E->getType());
3126
3127 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3128 // If we have 0 || X, just emit X without inserting the control flow.
3129 bool LHSCondVal;
3130 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3131 if (!LHSCondVal) { // If we have 0 || X, just emit X.
3132 CGF.incrementProfileCounter(E);
3133
3134 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3135 // ZExt result to int or bool.
3136 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3137 }
3138
3139 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3140 if (!CGF.ContainsLabel(E->getRHS()))
3141 return llvm::ConstantInt::get(ResTy, 1);
3142 }
3143
3144 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3145 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3146
3147 CodeGenFunction::ConditionalEvaluation eval(CGF);
3148
3149 // Branch on the LHS first. If it is true, go to the success (cont) block.
3150 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3151 CGF.getCurrentProfileCount() -
3152 CGF.getProfileCount(E->getRHS()));
3153
3154 // Any edges into the ContBlock are now from an (indeterminate number of)
3155 // edges from this first condition. All of these values will be true. Start
3156 // setting up the PHI node in the Cont Block for this.
3157 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3158 "", ContBlock);
3159 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3160 PI != PE; ++PI)
3161 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3162
3163 eval.begin(CGF);
3164
3165 // Emit the RHS condition as a bool value.
3166 CGF.EmitBlock(RHSBlock);
3167 CGF.incrementProfileCounter(E);
3168 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3169
3170 eval.end(CGF);
3171
3172 // Reaquire the RHS block, as there may be subblocks inserted.
3173 RHSBlock = Builder.GetInsertBlock();
3174
3175 // Emit an unconditional branch from this block to ContBlock. Insert an entry
3176 // into the phi node for the edge with the value of RHSCond.
3177 CGF.EmitBlock(ContBlock);
3178 PN->addIncoming(RHSCond, RHSBlock);
3179
3180 // ZExt result to int.
3181 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3182 }
3183
VisitBinComma(const BinaryOperator * E)3184 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3185 CGF.EmitIgnoredExpr(E->getLHS());
3186 CGF.EnsureInsertPoint();
3187 return Visit(E->getRHS());
3188 }
3189
3190 //===----------------------------------------------------------------------===//
3191 // Other Operators
3192 //===----------------------------------------------------------------------===//
3193
3194 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3195 /// expression is cheap enough and side-effect-free enough to evaluate
3196 /// unconditionally instead of conditionally. This is used to convert control
3197 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3198 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3199 CodeGenFunction &CGF) {
3200 // Anything that is an integer or floating point constant is fine.
3201 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3202
3203 // Even non-volatile automatic variables can't be evaluated unconditionally.
3204 // Referencing a thread_local may cause non-trivial initialization work to
3205 // occur. If we're inside a lambda and one of the variables is from the scope
3206 // outside the lambda, that function may have returned already. Reading its
3207 // locals is a bad idea. Also, these reads may introduce races there didn't
3208 // exist in the source-level program.
3209 }
3210
3211
3212 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3213 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3214 TestAndClearIgnoreResultAssign();
3215
3216 // Bind the common expression if necessary.
3217 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3218
3219 Expr *condExpr = E->getCond();
3220 Expr *lhsExpr = E->getTrueExpr();
3221 Expr *rhsExpr = E->getFalseExpr();
3222
3223 // If the condition constant folds and can be elided, try to avoid emitting
3224 // the condition and the dead arm.
3225 bool CondExprBool;
3226 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3227 Expr *live = lhsExpr, *dead = rhsExpr;
3228 if (!CondExprBool) std::swap(live, dead);
3229
3230 // If the dead side doesn't have labels we need, just emit the Live part.
3231 if (!CGF.ContainsLabel(dead)) {
3232 if (CondExprBool)
3233 CGF.incrementProfileCounter(E);
3234 Value *Result = Visit(live);
3235
3236 // If the live part is a throw expression, it acts like it has a void
3237 // type, so evaluating it returns a null Value*. However, a conditional
3238 // with non-void type must return a non-null Value*.
3239 if (!Result && !E->getType()->isVoidType())
3240 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3241
3242 return Result;
3243 }
3244 }
3245
3246 // OpenCL: If the condition is a vector, we can treat this condition like
3247 // the select function.
3248 if (CGF.getLangOpts().OpenCL
3249 && condExpr->getType()->isVectorType()) {
3250 CGF.incrementProfileCounter(E);
3251
3252 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3253 llvm::Value *LHS = Visit(lhsExpr);
3254 llvm::Value *RHS = Visit(rhsExpr);
3255
3256 llvm::Type *condType = ConvertType(condExpr->getType());
3257 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3258
3259 unsigned numElem = vecTy->getNumElements();
3260 llvm::Type *elemType = vecTy->getElementType();
3261
3262 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3263 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3264 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3265 llvm::VectorType::get(elemType,
3266 numElem),
3267 "sext");
3268 llvm::Value *tmp2 = Builder.CreateNot(tmp);
3269
3270 // Cast float to int to perform ANDs if necessary.
3271 llvm::Value *RHSTmp = RHS;
3272 llvm::Value *LHSTmp = LHS;
3273 bool wasCast = false;
3274 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3275 if (rhsVTy->getElementType()->isFloatingPointTy()) {
3276 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3277 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3278 wasCast = true;
3279 }
3280
3281 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3282 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3283 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3284 if (wasCast)
3285 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3286
3287 return tmp5;
3288 }
3289
3290 // If this is a really simple expression (like x ? 4 : 5), emit this as a
3291 // select instead of as control flow. We can only do this if it is cheap and
3292 // safe to evaluate the LHS and RHS unconditionally.
3293 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3294 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3295 CGF.incrementProfileCounter(E);
3296
3297 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3298 llvm::Value *LHS = Visit(lhsExpr);
3299 llvm::Value *RHS = Visit(rhsExpr);
3300 if (!LHS) {
3301 // If the conditional has void type, make sure we return a null Value*.
3302 assert(!RHS && "LHS and RHS types must match");
3303 return nullptr;
3304 }
3305 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3306 }
3307
3308 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3309 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3310 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3311
3312 CodeGenFunction::ConditionalEvaluation eval(CGF);
3313 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3314 CGF.getProfileCount(lhsExpr));
3315
3316 CGF.EmitBlock(LHSBlock);
3317 CGF.incrementProfileCounter(E);
3318 eval.begin(CGF);
3319 Value *LHS = Visit(lhsExpr);
3320 eval.end(CGF);
3321
3322 LHSBlock = Builder.GetInsertBlock();
3323 Builder.CreateBr(ContBlock);
3324
3325 CGF.EmitBlock(RHSBlock);
3326 eval.begin(CGF);
3327 Value *RHS = Visit(rhsExpr);
3328 eval.end(CGF);
3329
3330 RHSBlock = Builder.GetInsertBlock();
3331 CGF.EmitBlock(ContBlock);
3332
3333 // If the LHS or RHS is a throw expression, it will be legitimately null.
3334 if (!LHS)
3335 return RHS;
3336 if (!RHS)
3337 return LHS;
3338
3339 // Create a PHI node for the real part.
3340 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3341 PN->addIncoming(LHS, LHSBlock);
3342 PN->addIncoming(RHS, RHSBlock);
3343 return PN;
3344 }
3345
VisitChooseExpr(ChooseExpr * E)3346 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3347 return Visit(E->getChosenSubExpr());
3348 }
3349
VisitVAArgExpr(VAArgExpr * VE)3350 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3351 QualType Ty = VE->getType();
3352
3353 if (Ty->isVariablyModifiedType())
3354 CGF.EmitVariablyModifiedType(Ty);
3355
3356 Address ArgValue = Address::invalid();
3357 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3358
3359 llvm::Type *ArgTy = ConvertType(VE->getType());
3360
3361 // If EmitVAArg fails, emit an error.
3362 if (!ArgPtr.isValid()) {
3363 CGF.ErrorUnsupported(VE, "va_arg expression");
3364 return llvm::UndefValue::get(ArgTy);
3365 }
3366
3367 // FIXME Volatility.
3368 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3369
3370 // If EmitVAArg promoted the type, we must truncate it.
3371 if (ArgTy != Val->getType()) {
3372 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3373 Val = Builder.CreateIntToPtr(Val, ArgTy);
3374 else
3375 Val = Builder.CreateTrunc(Val, ArgTy);
3376 }
3377
3378 return Val;
3379 }
3380
VisitBlockExpr(const BlockExpr * block)3381 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3382 return CGF.EmitBlockLiteral(block);
3383 }
3384
3385 // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)3386 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3387 Value *Src, unsigned NumElementsDst) {
3388 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3389 SmallVector<llvm::Constant*, 4> Args;
3390 Args.push_back(Builder.getInt32(0));
3391 Args.push_back(Builder.getInt32(1));
3392 Args.push_back(Builder.getInt32(2));
3393 if (NumElementsDst == 4)
3394 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3395 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3396 return Builder.CreateShuffleVector(Src, UnV, Mask);
3397 }
3398
VisitAsTypeExpr(AsTypeExpr * E)3399 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3400 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3401 llvm::Type *DstTy = ConvertType(E->getType());
3402
3403 llvm::Type *SrcTy = Src->getType();
3404 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3405 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3406 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3407 cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3408
3409 // Going from vec3 to non-vec3 is a special case and requires a shuffle
3410 // vector to get a vec4, then a bitcast if the target type is different.
3411 if (NumElementsSrc == 3 && NumElementsDst != 3) {
3412 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3413 Src = Builder.CreateBitCast(Src, DstTy);
3414 Src->setName("astype");
3415 return Src;
3416 }
3417
3418 // Going from non-vec3 to vec3 is a special case and requires a bitcast
3419 // to vec4 if the original type is not vec4, then a shuffle vector to
3420 // get a vec3.
3421 if (NumElementsSrc != 3 && NumElementsDst == 3) {
3422 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3423 Src = Builder.CreateBitCast(Src, Vec4Ty);
3424 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3425 Src->setName("astype");
3426 return Src;
3427 }
3428
3429 return Builder.CreateBitCast(Src, DstTy, "astype");
3430 }
3431
VisitAtomicExpr(AtomicExpr * E)3432 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3433 return CGF.EmitAtomicExpr(E).getScalarVal();
3434 }
3435
3436 //===----------------------------------------------------------------------===//
3437 // Entry Point into this File
3438 //===----------------------------------------------------------------------===//
3439
3440 /// Emit the computation of the specified expression of scalar type, ignoring
3441 /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3442 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3443 assert(E && hasScalarEvaluationKind(E->getType()) &&
3444 "Invalid scalar expression to emit");
3445
3446 return ScalarExprEmitter(*this, IgnoreResultAssign)
3447 .Visit(const_cast<Expr *>(E));
3448 }
3449
3450 /// Emit a conversion from the specified type to the specified destination type,
3451 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)3452 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3453 QualType DstTy,
3454 SourceLocation Loc) {
3455 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3456 "Invalid scalar expression to emit");
3457 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3458 }
3459
3460 /// Emit a conversion from the specified complex type to the specified
3461 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)3462 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3463 QualType SrcTy,
3464 QualType DstTy,
3465 SourceLocation Loc) {
3466 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3467 "Invalid complex -> scalar conversion");
3468 return ScalarExprEmitter(*this)
3469 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3470 }
3471
3472
3473 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3474 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3475 bool isInc, bool isPre) {
3476 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3477 }
3478
EmitObjCIsaExpr(const ObjCIsaExpr * E)3479 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3480 // object->isa or (*object).isa
3481 // Generate code as for: *(Class*)object
3482
3483 Expr *BaseExpr = E->getBase();
3484 Address Addr = Address::invalid();
3485 if (BaseExpr->isRValue()) {
3486 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3487 } else {
3488 Addr = EmitLValue(BaseExpr).getAddress();
3489 }
3490
3491 // Cast the address to Class*.
3492 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3493 return MakeAddrLValue(Addr, E->getType());
3494 }
3495
3496
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3497 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3498 const CompoundAssignOperator *E) {
3499 ScalarExprEmitter Scalar(*this);
3500 Value *Result = nullptr;
3501 switch (E->getOpcode()) {
3502 #define COMPOUND_OP(Op) \
3503 case BO_##Op##Assign: \
3504 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3505 Result)
3506 COMPOUND_OP(Mul);
3507 COMPOUND_OP(Div);
3508 COMPOUND_OP(Rem);
3509 COMPOUND_OP(Add);
3510 COMPOUND_OP(Sub);
3511 COMPOUND_OP(Shl);
3512 COMPOUND_OP(Shr);
3513 COMPOUND_OP(And);
3514 COMPOUND_OP(Xor);
3515 COMPOUND_OP(Or);
3516 #undef COMPOUND_OP
3517
3518 case BO_PtrMemD:
3519 case BO_PtrMemI:
3520 case BO_Mul:
3521 case BO_Div:
3522 case BO_Rem:
3523 case BO_Add:
3524 case BO_Sub:
3525 case BO_Shl:
3526 case BO_Shr:
3527 case BO_LT:
3528 case BO_GT:
3529 case BO_LE:
3530 case BO_GE:
3531 case BO_EQ:
3532 case BO_NE:
3533 case BO_And:
3534 case BO_Xor:
3535 case BO_Or:
3536 case BO_LAnd:
3537 case BO_LOr:
3538 case BO_Assign:
3539 case BO_Comma:
3540 llvm_unreachable("Not valid compound assignment operators");
3541 }
3542
3543 llvm_unreachable("Unhandled compound assignment operator");
3544 }
3545